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“We need to explicitly integrate bubbles, a combination of rational and nonrational intuitive

human responses, and other aspects of behavioral economics into our monetary policy models.” —

Greenspan (2015)

1 Introduction

The booms and busts of asset prices in stock markets and real estate markets around the world have

typically been associated with business cycles in the macroeconomy (Borio, Kennedy, and Prowse

(1994) and Jordà, Schularick, and Taylor (2015)). The general public, policy makers, and academic

researchers often attribute the large movements of asset prices to the emergence and collapse of

bubbles because asset price volatility cannot be explained entirely by fundamentals (Shiller (1981)).

How do asset bubbles affect the real economy? How does monetary policy affect asset bubbles?

Should monetary policy respond to asset bubbles? The goal of our paper is to provide a theoretical

framework to address these questions.

These questions have been the subject of a heated debate in the literature. Two views are

dominant (Gaĺı (2014)).1 The first view is that central banks should view price stability and

financial stability as highly complementary and mutually consistent objectives. Even if asset prices

can amplify and propagate shocks, including asset prices in monetary policy rules may result in

only slight gains (Bernanke and Gertler (1999, 2001)). Moreover, asset bubbles driven by non-

fundamental shocks are highly unpredictable. Thus monetary policy should not respond to asset

prices. The second view is that central banks should act preemptively to prevent bubbles from

forming, by raising interest rates or decreasing money supply to appropriate levels.2 Such a policy,

often referred to as “leaning against the wind,” may call for a change in the inflation target.

One reason for the debate is that the literature has yet to agree on a theoretical framework

for understanding the formation of asset bubbles and the mechanism of how asset bubbles interact

with the macroeconomy and monetary policy. The debate stems from the model of Bernanke and

Gertler (1999) who introduce an irrational bubble to the model of Bernanke, Gertler, and Gilchrist

(1999) (henceforth BGG). This model cannot address the question of how and why a bubble can

emerge and burst under rational expectations. We contribute to the literature by providing an

infinite-horizon model of rational asset bubbles in a dynamic new Keynesian (DNK) framework.3

The key feature of our model is that entrepreneurs (or firms) are heterogenous in their in-

vestment efficiencies and face credit constraints. In a frictionless Arrow-Debreu economy, rational

bubbles cannot emerge and movements of asset prices reflect changes in the underlying economic

1See Schularick and Taylor (2012) and Brunnermeier and Schnabel (2015) for empirical evidence.
2See, e.g., Borio and Lowe (2002), Cecchetti et al. (2000), Issing (2009), ECB (2010), and Blanchard et al. (2012).
3By rational bubbles, we mean that they are consistent with individual optimality, rational expectations, and

market clearing. See Brunnermeier and Oehmek (2013) for a survey of the literature on rational and irrational
bubbles.
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fundamentals. In this case central banks would not have to worry about asset prices. By contrast,

due to credit constraints, an intrinsically useless bubble asset can provide liquidity and command a

liquidity premium.4 If all agents believe the bubble asset is valuable, this belief can be self-fulfilling

and the bubble asset can raise its owners’ net worth. Efficient entrepreneurs sell the bubble asset to

inefficient ones to finance investment, who want to buy the bubble asset for precautionary reasons

because they may become efficient in the future. Thus the bubble asset can be traded at a positive

price and has an intensive margin effect in that it raises an entrepreneur’s net worth and hence his

investment. It also has an extensive margin effect in that inefficient entrepreneurs must hold the

bubble and will not make investment. The net effect on aggregate investment is typically positive.

To introduce money and monetary policy, we incorporate a banking system with legal restric-

tions in the sense that banks must meet reserve requirements. Reserve requirements generate a

spread between the lending rate and the deposit rate. Households and entrepreneurs can save by

making deposits in banks and banks can lend to investing entrepreneurs. The central bank changes

the money supply by changing reserves (high-powered money or monetary base). Monetary policy

is conducted by following an interest rate rule. In this case money supply is endogenous. To allow

monetary policy to have a large impact on the real economy, we introduce monopolistic competition

and sticky prices as in Calvo (1983).

Our main results can be summarized as follows. First, monetary policy can affect the conditions

for the existence of a bubble. High inflation erodes entrepreneurs’ real balance and hence their net

worth, generating a large liquidity premium for holding a bubble asset. When the liquidity premium

is sufficiently high, a bubble can emerge. Thus raising the inflation target by raising the money

supply permanently can fuel a bubble. The higher the inflation target, the more likely a bubble

will emerge. On the other hand, if the economy already has a bubble, cutting the inflation target

by decreasing the money supply permanently can prick the bubble.

Second, monetary policy can affect the steady-state size and dynamics of the asset bubble

including its initial size. In particular, a higher inflation target is associated with a higher steady-

state size of the bubble. An expansionary monetary policy by cutting the interest rate or raising

the money supply can raise the initial size of the asset bubble, which in turn generates a large

amplification effect of monetary policy. Moreover, the coefficients in the interest rate rule affect

the dynamics of the asset bubble in response to exogenous shocks. A higher interest rate response

to asset bubbles reduces bubble volatility, but may raise inflation volatility.

Third, whether monetary policy should respond to asset bubbles depends on the particular

interest rate rule adopted by the central bank and on the type of exogenous shocks hitting the

economy. Following Bernanke and Gertler (1999, 2001) and Gilchrist and Leahy (2002), we consider

4Introducing dividends or rents will complicate our analysis without changing our key insights. See Miao and
Wang (2015, 2018), Miao, Wang, and Zha (2014), and Miao, Wang, and Xu (2015) for models of rational bubbles
attached to assets with dividends or rents.
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two types of interest rate rules: (i) a Taylor rule, which responds to inflation and the gap between

the actual output and steady-state output, and (ii) an inflation targeting rule, which responds to

expected inflation, but not the output gap. We consider two types of shocks: (i) a fundamental

TFP shock, and (ii) a non-fundamental sentiment shock to the bubble. We include a weight on

the asset bubble in the interest rate rules and search for an optimal weight to maximize household

utility. Our calibrated model shows that the central bank should cut interest rates in response to

either a positive TFP shock or a positive sentiment shock. The welfare gains are relatively larger

conditional on sentiment shocks, and are generally small for all cases.

In our model the benefit of an asset bubble is to improve investment efficiency and its cost is

to increase business cycle volatility. In response to a positive TFP shock, an efficient real business

cycles model implies positive comovements of consumption, investment, output, and labor. But

labor drops under the Taylor rule in a DNK model (Gaĺı (1999)). Cutting interest rates when the

asset bubble is expanding can raise aggregate demand and hence labor. In response to a positive

sentiment shock, the asset bubble expands, but consumption falls on impact under the standard

Taylor rule because the nominal and real interest rates rise too much. Cutting interest rates when

the asset bubble is expanding can also boost consumption and benefit households.

Under the inflation targeting rule, the optimal coefficients on the asset bubble are generally very

small negative numbers. The welfare gains are also quite small as in Bernanke and Gertler (1999)

and Gilchrist and Leahy (2002). As Bernanke and Gertler (1999) argue, to the extent that asset

bubbles tend to be positively correlated with movements in output and inflation, policies based on

these two variables subsume most of the gains from reacting to asset bubbles. In fact, in response

to a TFP shock or a sentiment shock, the simple inflation targeting rule can generate the right

comovements of macroeconomic quantities, giving very small welfare gains from reacting to asset

bubbles.

2 Basic Intuition and Related Literature

Our model features a standard aggregate supply block as in the DNK literature. The key part of

our model is about aggregate demand and asset pricing equations. In the case without aggregate

uncertainty, our model implies that deposits (or bonds) and the bubble asset satisfy the following

two asset pricing equations

1 = SDFt+1
Rt

Πt+1
(1 + LIQt+1) , (1)

pht = SDFt+1p
h
t+1

(
1 + LIQht+1

)
, (2)

where SDFt+1, Rt, and Πt+1 denote the stochastic discount factor (SDF), the nominal interest

rate, and the inflation rate between periods t and t+1, respectively, pht denotes the real price of the
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bubble asset, and LIQt+1 and LIQht+1 are the liquidity premiums for the deposits and the bubble

asset, respectively.5

To understand the above two pricing equations, we consider a simple real model consisting of a

continuum of risk-neutral entrepreneurs (or firms) in [0, 1] . Each firm j’s optimization problem is

given by

max
∞∑
t=0

βtDjt, β ∈ (0, 1)

subject to Bj,t+1 ≥ 0, Hj,t+1 ≥ 0, Ijt ≥ 0, Djt ≥ 0,

Djt + Ijt + phtHj,t+1 +Bj,t+1 = RktKjt +BjtR
r
t−1 + phtHjt,

Kj,t+1 = (1− δ)Kjt + εjtIjt. (3)

In each period t, the firm pays dividends Djt, makes real investment Ijt, buys (Hj,t+1 −Hjt) units

of the bubble asset at price pht , and buys Bj,t+1 units of riskfree bonds. The real capital return is

Rkt, and the real interest rate is Rrt−1. Suppose that investment is irreversible and that the firm

cannot borrow, issue new equity, or short the bubble asset. Capital Kjt evolves according to (3)

where εjt is independently and identically drawn from distribution F across firms and time.

Firm j’s value function satisfies the Bellman equation

Vt (Kjt, Bjt, Hjt, εjt) = max Djt + βEVt+1 (Kj,t+1, Bj,t+1, Hj,t+1, εj,t+1) .

Conjecture that the value function takes the following form:

Vt (Kjt, Bjt, Hjt, εjt) = φkt (εjt)Kjt + φbt(εjt)Bjt + φht (εjt)Hjt.

Let qkt denote Tobin’s marginal Q, qkt ≡ β
∫
φkt+1 (ε) dF (ε) . Using the conjectured value function,

we can rewrite the Bellman equation as

φkt (εjt)Kjt + φbt(εjt)Bjt + φht (εjt)Hjt (4)

= max RktKjt +BjtRt−1 + phtHjt − Ijt − phtHj,t+1 −Bj,t+1

+qkt [(1− δ)Kjt + εjtIjt] + β

∫
φbt+1 (ε) dF (ε)Bj,t+1

+β

∫
φht+1 (ε) dF (ε)Hj,t+1

subject to Bj,t+1 ≥ 0, Hj,t+1 ≥ 0, and

0 ≤ Ijt ≤ RktKjt +BjtR
r
t−1 + phtHjt − phtHj,t+1 −Bj,t+1.

5Equations (1) and (2) follow from (30) and (48) with δh = 0.
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Clearly, if qkt εjt > 1, making real investment is profitable. In this case firm j sells all its

holdings of the bubble asset (Hj,t+1 = 0) and exhausts its borrowing limit (Bj,t+1 = 0) to reach

the maximum investment level

Ijt = RktKjt +BjtR
r
t−1 + phtHjt.

Substituting these decision rules for εjt > 1/qkt into (4) and matching coefficients yield

φkt (εjt) = qkt εjtRkt + qkt (1− δ),

φbt(εjt) = qkt εjtR
r
t−1, φht (εjt) = qkt εjtp

h
t . (5)

If εjt < 1/qkt , firm j does not make real investment (Ijt = 0), and is a marginal trader of the

bubble asset and bonds. The first-order conditions for Hj,t+1 and Bj,t+1 are given by

pht = β

∫
φht+1 (ε) dF (ε) , 1 = β

∫
φbt+1 (ε) dF (ε) . (6)

Then matching coefficients in (4) for εjt < 1/qkt yields

φkt (εjt) = Rkt + qkt (1− δ), φbt(εjt) = Rrt−1, φ
h
t (εjt) = pht . (7)

Substituting (5) and (7) into (6) yields

pht = β

[
1 +

∫
1/qkt+1

(qkt+1ε− 1)dF (ε)

]
pht+1, (8)

1 = βRrt

[
1 +

∫
1/qkt+1

(qkt+1ε− 1)dF (ε)

]
.

We then obtain equations (1) and (2) by noticing that Rrt = Rt/Πt+1. The liquidity premiums

for both bonds and the bubble asset are equal to the integral terms in the above two equations in

this simple model. The intuition is that a sufficiently efficient firm with εjt+1 > 1/qkt+1 can sell the

bubble asset to inefficient firms at a positive price pht+1 to raise its net worth, which can fund the

maximum investment level. This makes extra profits to the efficient firm, generating gains of the

bubble asset in addition to its resale value. Inefficient firms are willing to buy the bubble asset at

a positive price because they may become efficient and sell the bubble asset to finance investment

in the future. Equation (8) shows that the marginal cost of buying a unit of the bubble asset is

equal to the associated marginal benefit. The intuition for the bond pricing equation is similar. In

this simple model bonds and the bubble asset are perfect substitutes.

The bubble asset is intrinsically useless in the sense that it does not pay any dividend and does

not enter utility or technology. Its fundamental value is zero as the equilibrium with pht = 0 for all t

satisfies (2). There may exist a bubbly equilibrium in which pht > 0 for all t. In a steady state with
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an infinitely lived representative agent, the SDF is equal to his subjective discount factor β ∈ (0, 1) .

For a bubble pht = pht+1 > 0 to exist in the steady state, equation (2) becomes

1 = β
(

1 + LIQh
)
.

This equation cannot hold in a frictionless model without liquidity premium LIQh = 0, but it can

hold if there is a positive liquidity premium LIQh > 0.6 The liquidity premium provides a benefit

for holding a bubble asset, even though the bubble asset does not provide any dividends, such that

discounting by β cannot eliminate its value in the steady state. We have elaborated on this point

in our previous studies in real models without monetary policy (e.g., Miao and Wang (2012, 2014,

2015, 2018), Miao, Wang, and Xu (2015), Miao, Wang, and Xu (2016), and Miao, Wang, and Zhou

(2015, 2016)). Our analysis of the conditions for the existence of a bubble revolves around the

existence of a solution to the preceding equation and how monetary policy affects LIQh.

In the special case of LIQt+1 = LIQht+1, equations (1) and (2) imply that the growth rate of

the bubble is equal to the real interest rate

pht =
pht+1

Rt/Πt+1
. (9)

This equation also holds in overlapping generations (OLG) models in which a bubble can exist

without a liquidity premium because the SDF is not equal to β in the steady state of OLG models.

In particular, equations (1) and (9) imply that SDF = R/Π = 1 in the steady state. The existence

conditions are then about whether there is a solution to this equation.

Our model is consistent with the conventional wisdom that monetary policy can have an impact

on asset price bubbles and that it can fuel or prick a bubble. Gaĺı (2014) challenges this wisdom

using an OLG model. The OLG framework naturally incorporates household heterogeneity and

incomplete market participation, which can allow a bubble to emerge without any other frictions

in dynamically inefficient economies (Samuelson (1958), Diamond (1965), and Tirole (1985)). Our

infinite-horizon model features financial frictions and has the advantage that it can be integrated

into the dynamic stochastic general equilibrium framework or the DNK framework and hence has

the potential to be quantified (see Ikeda (2013) and Miao, Wang, Xu (2015)). After all, asset

bubbles are used to describe large price movements and a theory of bubbles would be vacuous if it

cannot be quantified.

Gaĺı (2014) sets up an elegant simple model in which equilibrium dynamics can be summarized

by a unidimensional system based on (9). He shows that the conditions for the existence of bubbles

are independent of monetary policy. He also shows that his unidimensional equilibrium system

has a continuum of stable bubbly steady states and a continuum of unstable bubbly steady states.

6More technically, the transversality condition will rule out bubbles without liquidity premium. This condition is
not needed in OLG models with finitely lived agents. However, Giglio, Maggiori, and Stroebel (2016) find no evidence
of bubbles that violate the transversality condition in the UK and Singapore housing markets.
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He focuses on a stable bubbly steady state and assumes that the bubble pht is a backward-looking

predetermined variable.7 In this case the initial size of the bubble ph0 is exogenously given and

independent of monetary policy. Equation (9) then implies that a larger real interest rate generates

a higher growth rate of the bubble. By contrast, the asset bubble in our model is a nonpredetermined

forward-looking variable like any asset prices. Our equilibrium system is multi-dimensional and also

features a continuum of bubbly steady states. But any bubbly steady state is a local saddle point.8

In response to an exogenous shock, the initial size of the asset bubble jumps and provides a powerful

amplification mechanism. In our model monetary policy affects the initial size of the bubble and

its dynamics through interest rates and liquidity premium.

Like Gaĺı (2014), we find that the “leaning against the wind” policy may not be optimal, but

for a different reason. Our model shows that this policy can lower bubble volatility at the expense

of raising inflation volatility. Gaĺı’s model shows that this policy may raise bubble volatility and

reduce dividend volatility depending on the size of the bubble. Inflation does not cause a welfare

loss in his model.

Caballero and Krishnamurthy (2006), Farhi and Tirole (2012), Martin and Ventura (2012,

2015), and Asriyan et al. (2016) introduce credit constraints to OLG models of asset bubbles.

Only Asriyan et al. (2016) introduce money and monetary policy. None of these papers derives

asset pricing equations like (1) and (2). The role of the liquidity premium is emphasized by

Kiyotaki and Moore (2008) in their infinite-horizon model with credit constraints. They focus on

fiat money, which is also a pure bubble. Our model borrows some insights from theirs but differs

from theirs in many ways: (i) the bubble asset is privately supplied, (ii) we have a DNK framework

with sticky prices, and (iii) we have a banking system with reserve requirements. The reserve

requirements generate a real balance effect, which is critical for the non-superneutrality of money

and for monetary policy to affect the conditions for the existence of a bubble.9

Our paper is also related to infinite-horizon real models of rational bubbles with credit con-

straints (Santos and Woodford (1997), Kocherlakota (2009), Wang and Wen (2012), Miao and

Wang (2012, 2018), Hirano and Yanagawa (2017), Miao, Wang, and Xu (2015), Miao, Wang, and

Zhou (2015), and Aoki and Nikolov (2015)).10 Ikeda (2013) introduces monetary policy and wage

rigidities to the model of Miao, Wang, and Xu (2015). Based on Bayesian estimations, he shows

that the optimal monetary policy calls for monetary tightening to restrain the boom at the cost

7Miao, Shen, and Wang (2019) show that Gali’s results will be overturned if one focuses on an unstable bubbly
steady state. Moreover, a stable bubbly steady state and the equilibrium around that state are not learnable (i.e.,
not E-stable).

8This is a numerical result because our equilibrium system is too complicated to permit a theoretical result. We
have obtained this result numerically in Miao, Wang, and Xu (2015) and formally proved this result theoretically in
simpler models of Miao and Wang (2012, 2018) and Miao, Wang, and Zhou (2015).

9As long as entrepreneurs hold money for whatever reasons, there will be a real balance effect even if there is no
reserve requirement.

10See Miao (2014) for a recent survey.
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of greater inflation volatility. Biswas, Hanson, and Phan (2018) introduce nominal wage rigidities

and a zero lower bound on interest rates to the model of Hirano and Yanagawa (2017). They study

how the macro-prudential learning-against-the-wind policy balances between the tradeoff between

the booms and busts of bubbles.

More broadly, our model is related to the large literature on the relationship between monetary

policy and asset prices (see Gilchrist and Leahy (2002) for a survey). Our model shares many

insights with Kiyotaki and Moore (1997), BGG (1999), and Bernanke and Gertler (1999, 2001), in

which the financial accelerator, bank lending, net worth, and balance sheet channels are important

transmission and propagation mechanisms. Our result that a strong inflation targeting rule does

not call for the need to respond to asset bubbles because the welfare gain is too small confirms the

early finding of Bernanke and Gertler (1999), albeit asset bubbles are rational in our model.

3 The Model

Consider an infinite-horizon economy consisting of households, firms, retailers, financial interme-

diaries (banks), and a government (monetary authority). Following BGG (1999), we assume that

retailers are monopolistically competitive and their role is to introduce nominal price rigidities.

3.1 Households

There is a continuum of identical households of measure unity. The representative household is an

extended family consisting of workers, entrepreneurs, and bankers. Each entrepreneur runs a firm

and workers supply labor to firms. Bankers are identical and each banker manages a bank. The

family and firms can save by making deposits in banks which in turn extend loans to borrowers.

Entrepreneurs, bankers, and retailers hand in their dividends to households who are shareholders.

Each household chooses consumption {Ct}, labor supply {Nt} , and deposits {Sa,t+1} to maximize

utility

max
{Ct,Sa,t+1,Nt}

E0

∞∑
t=0

βt (lnCt − ψNt) , (10)

subject to

Ct +
Sa,t+1

Pt
= wtNt +Dt +

Rt−1Sat
Pt

+Xt, (11)

where β is the subjective discount factor, wt is the real wage, Pt is the price level, Dt is the total

dividends from bankers, entrepreneurs, and retailers, Rt−1 is the nominal interest rate (deposit

rate) between periods t − 1 and t, and Xt denotes the sum of money transfers and lump-sum

taxes/transfers from the government. Suppose that the household cannot borrow so that Sa,t+1 ≥ 0.
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The first-order conditions imply that

wt =
ψ

Λt
, (12)

1 ≥ Et

[
βΛt+1

Λt

Rt
Πt+1

]
, with equality when Sat+1 > 0, (13)

where Λt = 1/Ct denotes the household marginal utility and Πt+1 = Pt+1/Pt denotes the (gross)

inflation rate between periods t and t+ 1.

3.2 Banks

Bankers are identical of measure unity. At each time t, the representative bank receives total

deposits St+1 and chooses loans Lt+1 and reserves Mt+1. For simplicity, suppose that there is no

bank net worth and that there is no interest on reserves. Reserves are often called high-powered

money or monetary base. We do not consider currency in circulation or inter-bank loan markets in

this model.

The balance sheet equation is given by

Lt+1 +Mt+1 = St+1. (14)

The bank is also subject to the reserve requirement

Mt+1 ≥ λSt+1, (15)

where λ ∈ (0, 1) denotes the required reserve ratio. The bank’s objective is to maximize profits

max
Mt+1,Lt+1

Et
βΛt+1

Λt

(
Lt+1Rlt +Mt+1 − St+1Rt

Pt+1

)
, (16)

subject to (14) and (15), where Rlt denotes the loan rate between periods t and t+ 1.

We can show that, as long as Rlt > Rt, the constraint (15) binds so that

Mt+1 = λSt+1, (17)

and

Rlt =
Rt − λ
1− λ . (18)

This equation implies that the equilibrium deposit rate must satisfy Rt > 1 in order for Rlt > Rt

to hold. It also shows that the bank makes zero profit and that the lending rate Rlt increases with

the deposit rate in order for the bank to break even because reserves do not bear any interest.
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3.3 Firms

Each entrepreneur j ∈ [0, 1] runs a firm that combines labor Njt and capital Kjt to produce an

intermediate (wholesale) good j according to the technology

Yjt = AtK
α
jtN

1−α
jt , α ∈ (0, 1) ,

where At denotes TFP, which follows an AR(1) process

lnAt = ρa lnAt−1 + εat,

where {εat} is a white noise process. The entrepreneur sells wholesale goods to retailers at the real

price pwt. The static profit maximization problem yields

RktKjt = max
Njt

pwtAtK
α
jtN

1−α
jt − wtNjt,

where

Rkt = α

(
1− α
wt

) 1−α
α

(pwtAt)
1
α . (19)

and the first-order condition gives labor demand

wt = (1− α) pwtAtK
α
jtN

−α
jt . (20)

At the beginning of period t, the entrepreneur faces idiosyncratic investment-specific shock εjt

and makes investment Ijt to increase his capital stock so that the law of motion for capital follows

Kjt+1 = (1− δ)Kjt + εjtIjt, (21)

where δ ∈ (0, 1) represents the depreciation rate. Suppose that the cumulative distribution function

of εjt is F and the density function is f on [εmin, εmax] ⊂ [0,∞) and εjt is independently and

identically distributed across firms and over time. Assume that there is no insurance market

against the idiosyncratic investment-specific shock and that investment is irreversible at the firm

level so that Ijt ≥ 0.

The entrepreneur chooses to save Sjt+1 ≥ 0 in banks at the deposit rate Rt and borrow Ljt+1 ≥ 0

at the lending rate Rlt. He is endowed with δh ∈ (0, 1) units of an intrinsically useless bubble asset

at the beginning of each period t. Its nominal price is denoted by P ht|t, which is nonnegative by

free disposal. In each period a fraction δh of each vintage of the bubble assets is assumed to lose

its value, due to depreciation for example. This implies that the total amount of bubble assets

outstanding remains constant and is normalized to one. Our modeling of such recurrent bubbles is

related to Martin and Ventura (2012), Gaĺı (2014), and Miao, Wang, and Xu (2015). The purpose

is to introduce a non-fundamental sentiment shock that drives movements of the asset bubbles.
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Entrepreneurs can trade each vintage of the bubble asset. Let Hj,t+1|t−k represent the period

t choice of the bubble asset endowed in period t − k. By convention, we set Hj,t|t = δh/ (1− δh) .

Let P ht|t−k denote the period t nominal price of the bubble asset at vintage t − k. Assume that

entrepreneurs cannot short the bubble asset so that

Hj,t+1|t−k ≥ 0, t, k = 0, 1, 2, .... (22)

Assume that entrepreneurs face borrowing constraints due to imperfect contract enforcement.

We impose

0 ≤ Ljt+1 ≤ µPtKjt, (23)

where µ ∈ (0, 1) . The interpretation of this constraint is that the entrepreneur’s borrowing is

limited by the collateral value of a fraction µ of his existing capital.11

We write the flow-of-funds constraints as

Djt + Ijt +
∞∑
k=0

pht|t−kHj,t+1|t−k +
1

Pt
(Sjt+1 + LjtRlt−1)

= RktKjt +
1

Pt
(SjtRt−1 + Ljt+1) + (1− δh)

∞∑
k=0

pht|t−kHj,t|t−k, (24)

where Djt denotes real dividends and pht|t−k = P ht|t−k/Pt denotes the real price of the bubble asset.

Suppose that equity finance is so costly that the firm does not issue any new equity.12 Thus we

impose

Djt ≥ 0. (25)

The entrepreneur’s objective is to maximize the discounted present value of dividends. We can

write his decision problem using dynamic programming

Vt

(
Kjt, Sjt, Ljt,

{
Hj,t|t−k

}∞
k=0

, εjt

)
(26)

= max
{Ijt,Sjt+1,Ljt+1,Hjt+1}

Djt + βEt
Λt+1

Λt
Vt+1

(
Kjt+1, Sjt+1, Ljt+1,

{
Hj,t+1|t−k

}∞
k=0

, εjt+1

)
,

subject to (21), (22), (23), (24), and (25), where we have used the household’s intertemporal

marginal rate of substitution as the stochastic discount factor. Here Vt (·) denotes the value function.

Define Tobin’s (marginal) Q as

qkt ≡
∂

∂Kjt+1
Et
βΛt+1

Λt
Vt+1

(
Kjt+1, Sjt+1, Ljt+1,

{
Hj,t|t−k

}∞
k=0

, εjt+1

)
.

The following proposition characterizes the entrepreneur’s optimal decisions.

11Unlike Kiyotaki and Moore (1997), we do not use future capital as collateral. Using future capital as collateral
will complicate algebra significantly without changing our key insights. See Caballero and Krishnamurthy (2006),
Miao and Wang (2018), and Miao, Wang and Zhou (2015) for related discussions.

12Our key insights will not change as long as new equity issues are sufficiently limited (see Miao and Wang (2008)
and Miao, Wang, and Xu (2015)).
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Proposition 1 In an equilibrium with Rlt > Rt > 1, there exist two cut-off values ε∗t and ε∗∗t such

that the decision rules are given by Ijt = 0 if εjt < ε∗t and

Ijt = RktKjt +
1

Pt
(SjtRt−1 − Sjt+1 + Ljt+1 − LjtRlt−1)

+ (1− δh)

∞∑
k=0

pht|t−kHj,t|t−k if εjt ≥ ε∗t ,

Sjt+1 =

{
0, if εjt ≥ ε∗t
indeterminate, otherwise

,

Ljt+1

Pt
=

{
0, if εjt < ε∗∗t
µKjt, otherwise

,

Hj,t+1|t−k =

{
0, if εjt ≥ ε∗t
indeterminate, otherwise

,

where the cut-off values satisfy

ε∗t =
1

qkt
, (27)

ε∗∗t =
Rlt
Rt

ε∗t , (28)

and qkt , Rt, and pht|t−k satisfy13

qkt = βEt
Λt+1

Λt
Rkt+1

[
1 +

∫ εmax

ε∗t+1

(
qkt+1ε− 1

)
dF (ε)

]

+βEt
Λt+1

Λt
qkt+1 (1− δ) + βEt

Λt+1

Λt
µ

∫ εmax

ε∗∗t+1

(
qkt+1ε−

Rlt
Rt

)
dF (ε) , (29)

1 = βEt
Λt+1

Λt

Rt
Πt+1

[
1 +

∫ εmax

ε∗t+1

(
qkt+1ε− 1

)
dF (ε)

]
, (30)

pht|t−k = (1− δh)βEt
Λt+1

Λt
pht+1|t−k

[
1 +

∫ εmax

ε∗t+1

(
qkt+1ε− 1

)
dF (ε)

]
. (31)

This proposition shows that there are two cutoff values ε∗t and ε∗∗t such that the firm makes

investment if and only if εjt > ε∗t = 1/qkt . This is consistent with Tobin’s rule. Making one unit

of investment costs one unit of consumption goods, but yields εjt units of capital, and hence the

marginal benefit is qkt εjt. When the marginal benefit is higher than the marginal cost, the firm

invests. When investing, it sells the bubble asset as much as possible to finance investment. It does

not save, but borrows from banks if and only if investment is sufficiently profitable (i.e., investment

efficiency exceeds the cutoff ε∗∗t > ε∗t ), since the lending rate Rlt is higher than the deposit rate Rt.

13The usual transversality conditions must also hold. Moreover, for ease of exposition, we assume that parameter
values are such that ε∗t and ε∗∗t are in the interior of (εmin, εmax) .
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The ratio of these two cutoffs ε∗∗t /ε
∗
t is equal to the ratio of the lending rate to the deposit rate,

which is interpreted as the external finance premium as in BGG (1999). When the firm decides to

borrow, it does so up to the credit limit.

Equations (29), (30), and (31) are the asset pricing equations for capital, deposits, and the

bubble asset of vintage t− k. In addition to the usual terms in these equations, two integral terms

deserve discussion. Both terms represent liquidity premium due to financial frictions. The first term

represents the liquidity premium from internal funds, savings (deposits), and the bubble asset. The

entrepreneur sells all the bubble asset when his investment efficiency exceeds ε∗t+1, which appears

in equation (31). The marginal benefit is qkt+1ε in period t+ 1. Thus the preceding equation gives

the expected profits from one unit of borrowing. The multiplicative factor (1− δh) represents the

undepreciated value because a fraction δh of the bubble asset loses its value. The factor µ appears

in equation (29) because only µ dollars can be borrowed using one dollar of capital as collateral.

3.4 Retailers

Retailers are monopolistically competitive. In each period t they buy intermediate goods from

entrepreneurs at the real price pwt and sell good j at the nominal price Pjt. Intermediate goods are

transformed into final goods according to the CES aggregator

Yt =

[∫ 1

0
Yjt

σ−1
σ dj

] σ
σ−1

, σ > 1. (32)

Thus retailers face demand given by

Yjt =

(
Pjt
Pt

)−σ
Yt, (33)

where the price index is given by

Pt ≡
[∫ 1

0
Pjt

1−σdi

] 1
1−σ

. (34)

To introduce price stickiness, we assume that each retailer is free to change its price in any

period only with probability 1− ξ, following Calvo (1983). Following Erceg, Henderson, and Levin

(2000), we also assume that whenever the retailer is not allowed to reset its price, its price is

automatically increased at the steady-state inflation rate. The retailer selling good j chooses the

nominal price P ∗t in period t to maximize the discounted present value of profits

max
P ∗t

∞∑
k=0

ξkEt

[
βkΛt+k

Λt

(
(1 + τ)

ΠkP ∗t
Pt+k

− pw,t+k
)
Y ∗jt+k

]
, (35)

subject to the demand curve

Y ∗jt+k =

(
ΠkP ∗t
Pt+k

)−σ
Yt+k, (36)
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where τ denotes the output subsidy and Π denotes the steady-state inflation target. We use the

household intertemporal marginal rate of substitution as the stochastic discount factor because

retailers must hand in all profits to households who are the shareholders.

The first-order condition gives the pricing rule

P ∗t =
1

1 + τ

σ

σ − 1

Et
∑∞

k=0 (βξ)k Λt+kpw,t+kP
σ
t+kYt+k(Π

k)−σ

Et
∑∞

k=0 (βξ)k Λt+kP
σ−1
t+k (Πk)1−σYt+k

. (37)

We set 1 + τ = σ/(σ− 1) to completely remove the distortion due to monopolistic competition.

Let p∗t = P ∗t /Pt. We can then write the pricing rule in a recursive form as follows

p∗t =
Γat
Γbt
, (38)

where

Γat = ΛtpwtYt + βξEt

(
Πt+1

Π

)σ
Γat+1, (39)

Γbt = ΛtYt + βξEt

(
Πt+1

Π

)σ−1

Γbt+1. (40)

The aggregate price level satisfies

Pt =
[
ξ (ΠPt−1)1−σ + (1− ξ) (P ∗t )1−σ

] 1
1−σ

,

or

1 =

[
ξ

(
Π

Πt

)1−σ
+ (1− ξ) p∗1−σt

] 1
1−σ

. (41)

3.5 Monetary Policy

To close the model, we consider two types of interest rate rules for monetary policy. First, the

central bank sets the nominal deposit rate in response to the current inflation, output, and asset

prices:

lnRt = lnR+ φπ ln (Πt/Π) + φy ln (Yt/Y ) + φp ln
(
pht /p

h
)

+ vt, (42)

where pht denotes the aggregate bubble index to be defined later, ph is its steady state value, Π

is the target inflation rate, R is the steady-state nominal deposit rate, and Y is the steady-state

output level. Assume that {vt} follows an AR(1) process

vt = ρvvt−1 + εvt,

where ρv ∈ (0, 1) and {εvt} is a white noise process. In the DNK literature one often focuses on

the zero-inflation steady state by setting Π = 1. But we will study the case with Π > 1 because a

positive inflation rate is important for the emergence of a bubble.
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Second, we consider the inflation targeting rule following Bernanke and Getter (1999) and

Gilchrist and Leahy (2002):

lnRt = lnR+ φπEt ln (Πt+1/Π) + φp ln
(
pht /p

h
)

+ vt. (43)

As a baseline rule, we set φp = 0 in (42) and (43) and call the former the Taylor rule. In Section 6

we will search for the optimal value of φp to maximize household utility with full commitment.

The interest rate rule policy implies that money supply is endogenous. Let reserves follow the

dynamics

Mt+1 = Mt exp (gt) , (44)

where gt is the endogenous exponential growth rate of money. Assume that the increased money

is transferred to households in a lump-sum manner. If one assumes that gt is exogenous, then the

nominal interest rate will be endogenous. In our analysis below we will follow the tradition of the

DNK framework to adopt the interest rate rule.

3.6 Equilibrium System

The market-clearing conditions for bank loans, deposits, and the bubble asset are given by∫
Ljtdj = Lt,

∫
Sjtdj + Sat = St,

∫
Hj,t+1|t−kdj = δh (1− δh)k , k = 0, 1, 2... (45)

for all t. Equation (13) and (30) imply that Sa,t+1 = 0 because the deposit rate is too low.14

Assuming Sa0 = 0, we have Sat = 0 for all t ≥ 0.

Define aggregate capital, aggregate investment, and aggregate labor as Kt =
∫
Kjtdj, It =∫

Ijtdj, and Nt =
∫
Njtdj. By the labor demand condition (20), we can show that the capital-labor

ratio is independent of j and hence we have

wt = (1− α) pwtAtK
α
t N
−α
t . (46)

Plugging (46) into (19), we can show that Rkt is equal to the marginal revenue product of capital

Rkt = αpwtAtK
α−1
t N1−α

t . (47)

Define an index for pre-existing bubbles as

pEt =
∞∑
k=1

pht|t−k (1− δh)k δh.

The size of the total new bubble is denoted by pNt = δhp
h
t|t. Define the economy’s aggregate bubble

as pht = pEt + pNt . Using these definitions, we can rewrite equation (31) as

pht = βEt
Λt+1

Λt
pEt+1

[
1 +

∫ εmax

ε∗t+1

(
qkt+1ε− 1

)
dF (ε)

]
. (48)

14Similarly, households will not hold any bubble asset by equation (31), even though they are allowed to trade it.
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This equation is analogous to equation (14) in Gaĺı (2014). Note that pEt+1 appears on the right-hand

side of (48) because all bubbles today become old tomorrow.

By Proposition 1, firms with εjt ≥ ε∗∗t take loans from banks up to the borrowing limit in (23).

Aggregating the borrowing limits from all lending banks yields

Lt+1

Pt
= µKt (1− F (ε∗∗t )) .

Using (14) and (17), we can rewrite the preceding equation as

mt+1 =
λ

1− λµKt (1− F (ε∗∗t )) , (49)

where we have used mt+1 ≡ Mt+1/Pt to denote the real balance. This equation gives money

demand. Equation (44) gives the money supply

mt+1 =
mt

Πt
exp (gt) . (50)

By Proposition 1, equations (14), (17), (18), and the market-clearing conditions above, we can

show that

It =

(
RktKt +

mt

Πt
+ pht

)
(1− F (ε∗t )) + µKt (1− F (ε∗∗t )) , (51)

and

Kt+1 = (1− δ)Kt +

(
RktKt +

mt

Πt
+ pht

)∫ εmax

ε∗t

εdF (ε) + µKt

∫ εmax

ε∗∗t

εdF (ε) . (52)

Equation (51) shows that aggregate investment is financed by internal funds RktKt, the real balance

mt/Πt (or returns on net savings), asset sales pht , and bank loans µKt. The two equations above

show that asset bubbles have intensive and extensive margin effects on aggregate investment and

capital accumulation. The two cutoffs ε∗t and ε∗∗t reflect the extensive margin effect. The term

1−F (ε∗t ) represents the mass of firms that sell the bubble asset to finance investment and the term

1− F (ε∗∗t ) represents the mass of firms that take loans to finance investment.

Aggregating (33) over all firms yields

Yt =
At
∆t
Kα
t N

1−α
t , (53)

where ∆t =
∫ (Pjt

Pt

)−σ
dj is the price dispersion, which satisfies the recursive equation

∆t = (1− ξ) p∗−σt + ξ

(
Π

Πt

)−σ
∆t−1, (54)

where ∆−1 is exogenously given.

The resource constraint is given by

Ct + It = Yt. (55)
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In summary, we have shown that the equilibrium system in a neighborhood of the steady state

withRt > 1 consists of 21 equations (12), (18), (27), (28), (29), (30), (38), (39), (40), (41), (46), (47),

(48), (49), (50), (51), (52), (53), (54), and (55), plus a monetary policy equation (42) or (43), for

22 variables {wt, ε∗t , ε∗∗t , qkt , Rt, Rlt, p∗t ,Γat ,Γbt ,Πt, pwt, Nt, Rkt, p
h
t , p

E
t , mt, gt, It,Kt, Yt,∆t, Ct}, where

Λt = 1/Ct. Here Kt, mt, and ∆t are endogenously predetermined variables in that K0, m0 and

∆−1 are exogenously given. The usual transversality conditions must also hold.

As in Gaĺı (2014), the sizes of pre-existing bubbles and new bubbles cannot be independently

determined in equilibrium. That is, there could exist a continuum of bubbly equilibria. Gaĺı then

assumes that new bubbles follow an exogenous IID process, which is interpreted as a bubble shock.

For ease of computations, we follow Miao, Wang, and Xu (2015) and assume that new bubbles

account for a stochastic fraction of aggregate bubbles so that pEt = stp
h
t , where st ∈ (0, 1) . Suppose

that

ln st = (1− ρs) ln s+ ρs ln st−1 + εst,

where ρs ∈ (0, 1) , s ∈ (0, 1) is the non-stochastic steady-state value of st, and {εst} is a white noise

process. We can interpret st as an exogenously given bubble shock or sentiment shock that drives

the movements of aggregate bubbles.

4 Steady-State Analysis

There are two types of steady state equilibria: bubbleless and bubbly. We remove the time subscript

from a variable to indicate its steady state value. Whenever necessary, we also use a variable with

subscript f or b to indicate its bubbleless or bubbly steady state value, respectively. In both types

of steady states we have p∗ = pw = ∆ = 1 and the inflation rate is equal to the growth rate

of money, Π = exp (g). Due to the full price indexation assumed earlier, both the flexible price

equilibrium and the sticky price equilibrium have the same steady states.15

We first derive some common equations that hold in both the bubbleless and bubbly steady

states. By equation (30), we can derive the nominal deposit rate as

R =
Πβ−1

1 +
∫ εmax

ε∗

(
ε
ε∗ − 1

)
dF (ε)

≡ R(ε∗). (56)

It is straightforward to show that R (ε∗) increases with ε∗ and R/Π < 1/β. Since the steady-state

real interest rate R/Π in both the bubbly and bubbleless steady states is too low, households will

not hold the bubble asset (even if they are allowed to trade it) and will not save in a neighborhood

of either steady state so that Sa,t+1 = 0.

15Without full indexation, since price dispersion increases with trend inflation, there will be non-superneutrality
of money (i.e., a negative relationship between long-run output and inflation) in the steady state even in a standard
DNK model without financial frictions (Ascari and Sbordone (2014)).
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By equation (18) and (28), we have

ε∗∗ =
1− λ/R(ε∗)

1− λ ε∗ ≡ ε (ε∗) . (57)

We can easily check that ε∗∗ increases with ε∗. Using equation (29) and (57), we can derive

Rk =
1

ε∗

1
β − 1 + δ − µ

∫ εmax

ε∗∗ (ε− ε∗∗) dF (ε)

1 +
∫ εmax

ε∗

(
ε
ε∗ − 1

)
dF (ε)

≡ Rk(ε∗). (58)

We will impose assumptions below such that R > 1 so that Rl > R and ε∗∗ > ε∗. The critical

step of establishing the existence of steady state equilibria is to show the existence of a cutoff ε∗.

Once this cutoff is obtained, other steady-state values can be easily derived.

4.1 Bubbleless Steady State

In a bubbleless steady state ph = 0 and hence we can ignore equation (31). To show the existence

of a bubbleless steady state with Rf > 1, we impose the following:

Assumption 1 Let βE [ε] > Πεmin and Π > β.

The first inequality holds for any distribution with εmin = 0 and the second is needed because

it is implied by (56) for R > 1 in the steady state.

Lemma 1 Under assumption 1, there exists a unique ε ∈ (εmin, εmax) such that

1 +

∫ εmax

ε

(
ε

ε
− 1

)
dF (ε) = Πβ−1.

This lemma implies that R (ε) = 1. Since R (ε∗) increases with ε∗, we need to find an ε∗ > ε so

that R = R (ε∗) > 1 in the steady state.

Proposition 2 Suppose that assumption 1 holds and µ satisfies the assumptions in Appendix A.

Then there exists a unique bubbleless steady state with Rf = R
(
ε∗f

)
> 1, where ε∗f ∈ (ε, εmax) is

the unique solution to the equation

δ =

(
Rk(ε

∗) +
λµ

1− λ
1− F (ε (ε∗))

Π

)∫ εmax

ε∗
εdF (ε) + µ

∫ εmax

ε(ε∗)
εdF (ε) , (59)

where ε (ε∗) is given in (57).

Equation (59) is derived from the steady-state version of equation (52). The left-hand side of

(59) is the depreciation rate and the right-hand side is the ratio of investment in efficiency units

to the capital stock. Investment (in consumption units) is financed by internal funds Rk(ε
∗)K and

the real balance of reserves (i.e., savings minus loan repayments) by equation (49)

m

Π
=
λµK

1− λ
1− F (ε (ε∗))

Π
. (60)
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In addition, firms with efficiency levels higher than ε (ε∗) borrow from banks. Since the bubble

asset has no value in a bubbleless equilibrium, firms can only borrow against a fraction µ of their

capital. This explains the last term in (59).

After determining the investment threshold ε∗f , we then derive the other threshold ε∗∗f = ε(ε∗f )

using (57). The other equilibrium variables can also be easily determined as shown in the proof

of Proposition 3 in Appendix A. From the analysis above, our model clearly implies the non-

superneutrality of money in the sense that the steady-state levels of the capital-labor ratio, con-

sumption, and output all depend on the inflation rate.

Proposition 3 Suppose that the assumptions in Proposition 2 hold. Then in the bubbleless steady

state ε∗f , Kf/Nf , wf , Yf/Nf , and Cf all decrease with Π.

The intuition is that the inflation rate Π affects entrepreneurs’ net worth and hence their

investment behavior. In particular, it affects the investment cutoff ε∗f according to (59). The

impact on ε∗f in turn affects the mass of investing entrepreneurs and the liquidity premium and

hence the real economy. Note that the assumption of the reserve requirement λ ∈ (0, 1) generates

a credit spread between the lending and deposit rates and hence a real balance effect, which is

crucial for the non-superneutrality of money and also for inflation to affect the bubbly steady state

analyzed in the next subsection.

4.2 Bubbly Steady State

We now turn to the bubbly steady state. As in Gaĺı (2014), there could exist a continuum of bubbly

steady states because the sizes of pre-existing bubbles and new bubbles cannot be independently

determined.

Proposition 4 Suppose that the assumptions in Proposition 2 hold so that there exists a bubbleless

steady state with Rf = R
(
ε∗f

)
> 1, where ε∗f is the investment threshold. Then there exists a

continuum of bubbly steady states indexed by s ∈ (0, 1) with Rb = R (ε∗b) > Rf > 1 if and only if

βs

[
1 +

∫ εmax

ε∗f

(
ε

ε∗f
− 1

)
dF (ε)

]
> 1, (61)

where the cutoff ε∗b ∈
(
ε∗f , εmax

)
is the unique solution to the equation

βs

[
1 +

∫ εmax

ε∗

( ε
ε∗
− 1
)
dF (ε)

]
= 1. (62)

Equation (62) follows from the steady-state version of the asset pricing equation (48) for the

bubble asset when pEt = stp
h
t > 0 is constant over time. The interpretation of condition (61)

is as follows: The left-hand side of (61) represents the benefit of buying one unit of the bubble
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asset today and the right-hand side represents the associated cost. In addition to its resale value,

the bubble asset commands a liquidity premium due to credit constraints. The liquidity premium

emerges because an entrepreneur can sell all his bubble asset to finance investment if his investment

efficiency exceeds ε∗f . This explains the integral terms in (61). When the benefit exceeds the cost

in the bubbleless steady state, entrepreneurs have incentives to trade the bubble asset at a positive

price, thereby creating a bubble.

Once the cutoff ε∗b is determined, we can follow a similar procedure to that described in the

previous subsection to derive other steady state variables. The details can be found in the proof of

Proposition 4 in Appendix A.

How do we relate our existence condition (61) to the traditional condition that the bubbleless

steady-state interest rate must be lower than the rate of economic growth (Tirole (1985))? Unlike

the OLG model of Tirole (1985), our model features credit constraints in the infinite-horizon DNK

framework. We have the following result.

Proposition 5 Suppose that the assumptions in Proposition 2 hold so that there exists a bubbleless

steady state with Rf = R
(
ε∗f

)
> 1, where ε∗f is the investment threshold. A necessary condition

for the existence of a bubbly steady state with Rb > 1 is

Π > max

{
1

s
,Rf

}
> 1.

This proposition shows that for a bubbly steady state to exist, the net inflation rate must be

positive and sufficiently high and the gross real interest rate Rf/Π must be less than the gross

growth rate of the economy (which is 1). But these conditions are not sufficient as shown in the

previous proposition.

Does monetary policy affect the existence condition for a bubbly steady state? As shown in

Proposition 3, an increase in the rate of inflation reduces an entrepreneur’s real balance and hence

his net worth and investment. To maintain the aggregate investment rate at the same level as the

depreciation rate in the bubbleless steady state, there must be more firms to make investment.

Thus the investment threshold must fall or Tobin’s Q must rise, causing the liquidity premium

to rise in the bubbleless steady state. This raises the benefit of trading the bubble asset so that

condition (61) is more likely to be satisfied for higher inflation.

It is possible that (61) does not hold for low inflation so that only a bubbleless equilibrium can

exist initially. The central bank can conduct an expansionary monetary policy by increasing money

supply such that inflation rises to a permanently higher level. At this higher level, condition (61)

holds so that a bubble can emerge. On the other hand, suppose that the economy is initially in the

bubbly steady state. When the central bank reduces money supply such that inflation decreases to

a permanently lower level at which condition (61) fails to hold, the asset bubble will collapse. This
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result is consistent with the conventional wisdom that an expansionary monetary policy can fuel a

bubble and a contractionary monetary policy can prick a bubble. The key intuition comes from the

balance sheet channel. Inflation caused by expansionary monetary policy reduces an entrepreneur’s

net worth and raises the liquidity premium, thereby raising his demand for the bubble asset.

We now conduct a comparative statics analysis based on the parameter values given in Section

5.1. We study the impact of the inflation target on the bubbly steady state when condition (61)

holds. Figure 1 presents the result, which shows that higher inflation has a negative effect on the

economy in the long run. Higher inflation raises the size of the asset bubble, but lowers output,

consumption, capital, and labor. The intuition is that higher inflation lowers the real balance

and hence entrepreneurs’ net worth, leading to lower investment. On the other hand, the credit-

constrained entrepreneurs will demand more bubble assets to finance investment. In the meantime,

higher inflation is associated with higher money supply, which can support a larger size of bubbles

and inflate asset bubbles. As discussed earlier, a larger size of the asset bubble has both intensive

and extensive margin effects. It allows entrepreneurs to borrow more to make investment. But as

the borrowing cutoff ε∗∗t rises (see Figure 1), fewer firms will borrow and invest. The net effect

leads to reduced aggregate investment and capital accumulation.

5 Dynamic Responses to Shocks

In this section we study the dynamic responses of the model economy to various shocks. We shall

focus on a bubbly steady state and local dynamics around the bubbly steady state. To provide

quantitative experiments, we need to assign parameter values.

5.1 Calibration

We calibrate our model at quarterly frequency so that a particular bubbly steady state is roughly

consistent with the long-run behavior of the US economy. We assume that the investment-efficiency

shock follows a Pareto distribution with F (ε) = 1 − (ε/εmin)
− 1
η . We set εmin = 1 − η so that the

unconditional mean is 1. As is standard in the business cycle literature, we set α = 0.33, β = 0.99,

and δ = 0.025. We choose η = 0.28 to match the aggregate investment-to-output ratio of 20% as

in the data. We choose the utility weight on labor ψ = 3.39 so that the average number of hours

worked in the bubbly steady state equals 25% of the total time endowment. We set Π = 1.01 so

that the steady state annual inflation rate is 4%, which is consistent with the average inflation rate

during the period between 1975 and 2016. We set λ = 0.1 so that the required reserve ratio is

10%. As in the DNK literature (e.g., BGG (1999) and Gilchrist and Leahy (2002)), we set ξ = 0.75

and σ = 11, implying that the duration of price adjustments is four quarters and the steady-state

markup is σ/ (σ − 1) = 1.1. We set the pledgeability parameter for capital µ = 0.2, which is
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consistent with the estimates reported in Liu, Wang, and Zha (2013) and Miao, Wang, and Xu

(2015).

We pick a bubbly steady state with s = 99.22% so that ph/Y = 20%. It is difficult to measure

the size of the bubble asset in the data. Some people argue that cryptocurrencies are pure bubbles.

The cryptocurrency market is very volatile and its current market capitalization is around $570

billion, which is around 20% of the US quarterly GDP in 2017. For robustness, we consider two

other calibrations with ph/Y = 10% and 40%. We find our results do not change significantly.

Now we assign parameter values for the shocks and the interest rate rules. As in the DNK

literature (e.g., Gaĺı (2008)), we set φπ = 1.5, φy = 0.5/4, and φp = 0 in the Taylor rule (42).

For the inflation targeting rule (43), we set φp = 0, φπ = 1.1 (weak inflation targeting), and

φπ = 2 (strong inflation targeting), as in Bernanke and Gertler (1999) and Gilchrist and Leahy

(2002). As baseline values, we set the persistence parameters for the monetary policy shock and

the technology shock as ρv = 0.5 and ρa = 0.9. Following Angeletos, Collard and Dellas (2014), we

set the persistence and the volatility of the sentiment shock as ρs = 0.833 and σs = 0.613%.

Similar to Gaĺı (2014), our model implies a continuum of bubbly steady states indexed by s. In

his unidimensional equilibrium system, Gaĺı (2014) shows that there are two types of bubbly steady

states: one is stable and the other is unstable. We are unable to derive this result theoretically for

our multi-dimensional equilibrium system. However, we have verified numerically that the bubbly

steady state is a saddle point for many values of s. Gaĺı (2014) restricts his analysis to the stable

steady state and views the bubble as a backward-looking predetermined variable that converges

to the steady state starting at any initial value. He also introduces a sunspot shock to drive the

dynamics of the bubble. By contrast, when the bubbly steady state is a saddle point, the bubble

is a forward-looking nonpredetermined variable and its initial value must be solved endogenously.

5.2 Technology Shocks

We start by analyzing the impact of a positive technology shock that raises εat by 1% initially.

Figure 2 plots the impulse responses of some key variables and shows that consumption, investment,

and output all rise, whereas inflation and nominal interest rate both decline on impact. The positive

comovement of consumption, investment, and output is easy to understand as in the real business

cycles literature. The negative responses of inflation and nominal interest rate follow the usual

intuition in the DNK literature (e.g., Woodford (2003) and Gaĺı (2008)). To see this, we log-

linearize the equilibrium system around the non-stochastic bubbly steady state and derive the

following New Keynesian Phillips curve16

Π̂t =
1

ξ
(1− ξ)(1− βξ)p̂wt + βEtΠ̂t+1,

16We use hatted variable to denote the log deviation from the deterministic steady state. Appendix B presents the
complete log-linearized equilibrium system.
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where the marginal cost p̂wt (the relative price of wholesale goods) satisfies

p̂wt = αR̂kt + (1− α) ŵt − Ât.

Following a positive technology shock, the marginal cost goes down or the markup (the inverse

of the marginal cost) goes up. Thus inflation declines. The central bank’s interest rate rule calls for

a decline of the nominal interest rate by increasing the money supply. Hours worked also decline

due to price rigidities under the Taylor rule and the weak inflation targeting rule. Firms that do not

adjust prices to meet their output demand have to reduce hours when facing a positive technology

shock (see, e.g., Gaĺı (1999, 2008)). This negative effect can dominate depending on the parameter

values in preferences, technology, and the interest rate rule. For the strong inflation targeting

rule, labor actually rises because the large fall of interest rates stimulates aggregate demand. This

monetary policy rule causes consumption, investment, and output to have the largest rise on impact.

A special feature of our model is that the asset bubble responds on impact even though the

asset has no fundamental payoffs. To see the intuition, we can derive the log-linearized equation

for the asset bubble

p̂ht = Etp̂
h
t+1 +

(
Ĉt − EtĈt+1

)
+ ŝt − sβ

∫ εmax

ε∗

ε

ε∗
dF (ε)Etε̂

∗
t+1. (63)

Three factors affect the asset bubble: the SDF Ĉt − EtĈt+1, the sentiment shock ŝt, and the

liquidity premium. Figure 2 shows that the two cutoffs ε̂∗t and ε̂∗∗t fall on impact in response

to a positive technology shock. Thus the liquidity premium rises. The SDF also rises because

consumption growth declines. Both components cause the asset bubble to expand on impact. Note

that the bubble pht or p̂ht is a forward-looking variable and its initial value must be endogenously

determined, just like any asset prices.

The fall of ε∗t is due to the rise of the capital price qkt as ε∗t = 1/qkt , which in turn is driven

by the rise in the marginal revenue product of capital Rkt following a positive technology shock.

The fall of ε∗∗t is due to the fall of the lending rate Rlt. When the nominal deposit rate Rt falls,

Rlt must fall by equation (18), which is derived from the zero-profit condition of banks. Thus real

bank lending Lt+1/Pt rises to enable more investment. Note that money supply (gt) increases in

the short run in order to support the lower nominal deposit rate and higher bank lending.

5.3 Monetary Policy Shocks

Next we consider the impact of an expansionary monetary policy shock when vt or εvt drops by 25

basis points initially in equation (42) and (43). This corresponds to a one percentage point drop

of the annual nominal rate on impact holding other variables fixed. Figure 3 displays the impulse

responses. We find that the (quarterly) nominal interest rate Rt initially drops by less than 25
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basis points because the interest rate endogenously responds to changes in output and inflation by

the Taylor rule (42) and to expected inflation by the inflation targeting rule (43).

The traditional transmission mechanism of monetary policy is through the interest rate channel.

When prices are sticky, the real rate falls and thus consumption rises following an expansionary

monetary policy shock. This can be seen from the log-linearized equation of (30):

Ĉt = EtĈt+1 −
(
R̂t − EtΠ̂t+1

)
+
Rβ

Π

∫ εmax

ε∗

ε

ε∗
dF (ε)Etε̂

∗
t+1. (64)

This equation is analogous to the dynamic IS curve in the traditional DNK model, with an

additional liquidity premium term. The fall of the real rate also causes the increase in investment

and hence output. Thus monetary policy is not neutral in the DNK framework.

In addition to the interest rate channel, our model features a lending channel and an asset

price channel. An expansionary monetary policy causes money supply to increase in the short

run and hence bank lending rises. The lending rate Rlt falls with the deposit rate Rt. This in

turn raises investment. A unique feature of our model is that asset prices rise for the following

two reasons. First, the SDF rises on impact because consumption rises initially before gradually

declining. Second, both components of the liquidity premium rise on impact. The intuition is the

following. Since consumption, investment, and output rise as discussed earlier, labor demand must

also rise on impact as capital is predetermined so that the real wage rate rises. Thus, the marginal

cost or the relative price of wholesale goods pwt must go up, causing inflation to rise. Moreover, it

follows from equation (47) that the marginal revenue product of capital Rkt must rise, pushing up

the capital price qkt . As a result, the liquidity premium rises and the investment cutoff ε∗t falls, and

hence the lending cutoff ε∗∗t falls with Rt by (18) and (28).

The increased asset price raises entrepreneurs’ net worth, allowing them to finance more invest-

ment. Both the intensive and extensive margin effects work in the same direction so that the asset

price channel provides a large amplification effect on investment. As shown in Figure 3, investment

rises by about 1-2% on impact in response to a cut of 25 basis points in the nominal deposit rate.

Our result that an expansionary monetary policy by cutting interest rates drives asset bubbles

on impact is different from that in Gaĺı (2014). Gaĺı focuses on the stable steady state in his

unidimensional equilibrium system and assumes that the asset bubble is predetermined and hence

its initial size is independent of monetary policy. By contrast, the asset bubble in our paper

is a forward-looking nonpredetermined variable so that both its initial size and growth rate are

determined by the real interest rate. The initial jump of the asset bubble provides an important

amplification mechanism for monetary policy.

25



5.4 Sentiment Shocks

Suppose that agents suddenly become more optimistic in that there is a positive sentiment shock

that raises εst by one standard deviation 0.613% initially. As Figure 4 shows, this shock immediately

raises the asset bubble by the asset pricing equation, thereby raising entrepreneurs’ net worth. Thus

bank lending and investment rise, causing output to follow suit. Labor must rise on impact because

output rises and capital is predetermined. The increased bank lending causes money supply and

inflation to go up. The initial rise of inflation is quantitatively small.

The nominal deposit rate must rise due to the interest rate rules. Since prices are sticky, the

real deposit rate rises and hence households have an incentive to save instead of consuming. For the

Taylor rule in (42), the real interest rate rises so much so that consumption falls on impact. Thus

there is no comovement between consumption and investment in response to a positive sentiment

shock. This may seem counterintuitive at first because asset prices do not have a wealth effect

on households, but it is in fact a special feature of our model in which households do not hold

the bubble in equilibrium. Miao, Wang, and Xu (2015) show that introducing endogenous capital

utilization can amplify the initial impact on output and hence allow consumption to rise. For the

inflation targeting rule in (43), the nominal interest rate does not respond to output directly so

that the rise of the real interest rate is smaller, causing consumption to rise on impact. This effect

is stronger for the strong inflation targeting rule.

Increased investment generates more capital accumulation and hence the capital price qkt falls

on impact. Consequently the investment cutoff ε∗t = 1/qkt rises as does the lending cutoff ε∗∗t . This

implies that fewer firms make investment. But this negative extensive margin effect is dominated by

the positive intensive margin effect so that aggregate investment rises. The net effect on investment

is relatively small: a 3.7% increase in the asset bubble only raises aggregate investment by about

0.1% on impact. In the meantime, the liquidity premium falls on impact, but this negative effect

on the asset bubble is dominated by the direct effect of the positive sentiment shock.

Note that Figure 4 shows that the asset bubble contracts over time, but the real interest rate

is still positive. This is because the initial sentiment shock dies out over time so that the path of

the asset bubble follows that of the shock by (63). The initial jump of the asset bubble roughly

reflects the cumulative effect of the initial sentiment shock, εs0/ (1− ρs) = 3.7%.

In summary, the non-fundamental sentiment shock can drive large movements of the asset

bubble due to its forward-looking nature. But it has a small positive impact on the real economy

and generates mild inflation. The main reason is that the opposite intensive and extensive margin

effects partially offset each other and mitigate the impact of a sentiment shock on aggregate demand

and the real economy.
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Monetary Policy Rules Sentiment Shock TFP shock
weight φp gain Ω (%) weight φp gain Ω (%)

R̂t = 1.5Π̂t + 0.125Ŷt + φpp̂ht -0.07 1.82 -0.07 0.09

R̂t = 1.1EtΠ̂t+1 + φpp̂ht -0.0009 0.03 -0.01 0.09

R̂t = 2EtΠ̂t+1 + φpp̂ht -0.04 0.10 -0.04 0.03

Table 1: Optimal weights on asset bubbles and welfare gains. (ph/Y = 0.2)

6 Should Monetary Policy Respond to Asset Bubbles?

In the previous section we have shown how asset bubbles and other macroeconomic variables re-

spond to various exogenous shocks when monetary policy does not respond to asset bubbles. In

this section we address the question whether monetary policy should respond to asset bubbles.

We consider the Taylor rule in (42) by fixing the parameters φπ = 1.5 and φy = 0.125. We also

consider the weak inflation targeting rule and strong inflation targeting rule by fixing φπ = 1.1

and φπ = 2 in (43). We turn off the monetary policy shock by setting vt = 0. We search for the

weight φp that maximizes the unconditional mean of household utility in (10) in response to each

of the two shocks to sentiment and TFP.17 We set the persistence parameters for these shocks to

ρs = 0.833 and ρa = 0.9, and set the standard deviations to σs = 0.613% and σa = 1%. Table 1

presents the optimal weights φp on asset bubbles and the welfare gains from optimally responding

to asset bubbles.

The welfare gains are computed as follows. Let {Ct} and {Nt} denote the equilibrium consump-

tion and labor processes for φp = 0. Let V and V ∗ denote the unconditional means of household

utility when monetary policy does not respond and when it does respond to asset bubbles, respec-

tively. Then the welfare gains Ω in terms of the increase in consumption satisfies the equation

E

∞∑
t=0

βt [ln(1 + Ω)Ct − ψNt] = V ∗.

Solving yields Ω = exp ((1− β) (V ∗ − V ))− 1.

Table 1 shows that the welfare gain is equal to a 1.82% increase in consumption for monetary

policy to respond to asset bubbles under the interest rate rule in (42), when only the sentiment

shock hits. The weight on asset bubbles is equal to −0.07, meaning that the central bank under the

Taylor rule should cut the nominal interest rate by about 0. 28% per annum when the asset bubble

expands by 1% from the steady state. The welfare gains are small for all other cases (around 0.1%

increase in consumption).

To see the intuition, we present the impulse responses to a positive TFP shock in Figure 5 for

three cases under the interest rate rule in (42): (i) monetary policy optimally responds to asset

17We use the second-order approximation method to compute the welfare gains implemented by Dynare (Adjemian
et al (2011)). We emphasize that our exercise is to find the optimal simple rule instead of the optimal Ramsey policy.
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bubbles; (ii) monetary policy does not respond to asset bubbles; and (iii) prices are flexible with

φp = 0. In the flexible price equilibrium, consumption, investment, output, and labor all comove

in response to a positive technology shock. But when prices are sticky and φp = 0, labor falls on

impact. To correct this inefficiency, monetary policy should respond to the expanding asset bubble

by setting φp = −0.07 to cut the nominal interest rate . In this way the asset price can increase

more so that bank lending rises more, mitigating the fall of inflation. The Taylor-type interest rate

rule also calls for cutting the nominal interest rate in response to a decline of inflation. Thus the

real interest rate falls. In the meantime, the asset price and bank lending channels cause investment

and output to rise more. This allows consumption to rise more and labor to also rise instead of

falling. Overall, the impulse responses of consumption, investment, output, and labor under the

optimal simple rule are closer to those in the flexible price equilibrium.

Figure 6 presents impulse responses to a positive sentiment shock under the interest rate rule

in (42). We find that consumption, investment, output, and labor all increase in response to a

positive sentiment shock under the optimal simple rule (φp = −0.07). Without responding to the

asset bubble, consumption falls because the real interest rate rises (also see Figure 4). Moreover,

the impact of the sentiment shock on the real economy and inflation is very small for both the

sticky price and flexible price equilibria. Under the optimal simple rule, the central bank should

cut the nominal interest rate to reduce the real interest rate and raise consumption, thereby raising

household utility. In the meantime, the asset bubble rises more on impact. As Figures 5 and 6 show,

our model is different from Gaĺı’s (2014) in which the asset price does not move on impact. In our

model the initial rise of the bubble improves allocation efficiency by raising aggregate investment

and output.

Figure 7 shows that, under the Taylor-type rule (42), inflation volatility increases with φp

conditional on the TFP shock and is a U-shaped function of φp conditional on the sentiment shock.

For both cases, bubble volatility decreases with φp. Thus the ‘leaning against the wind’ interest

rate policy will reduce bubble volatility, but at the possible cost of raising inflation volatility. This

is in sharp contrast to Gaĺı’s (2014) result that such a policy may raise bubble volatility conditional

on the sentiment shock. The intuition is that a larger φp reduces the initial response of the bubble

to either a TFP shock or a sentiment shock as the bubble is a forward-looking variable. This

reduces aggregate demand more and causes a larger drop of inflation from the target in response

to a positive TFP shock, so that inflation volatility is higher conditional on the TFP shock. In

response to a positive sentiment shock, a larger negative φp lowers nominal interest rates more and

raises aggregate demand more, thereby generating a larger rise of inflation relative to the target.

But a larger positive φp raises nominal interest rates more and reduces aggregate demand more,

thereby generating a larger drop of inflation relative to the target. In both cases inflation volatility

is higher conditional on the sentiment shock.
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Will the preceding results change if the central bank adopts the inflation targeting rule in (43)?

Table 1 shows that the optimal weights on the asset bubble are generally small under the inflation

targeting rule. Under the inflation targeting rule, the nominal interest rate does not respond to

output changes and hence is more accommodative to economic growth. Thus consumption can rise

in response to a positive sentiment shock due to the small change in the real interest rate and labor

can rise in response to a positive TFP shock due to the fall of the real interest rate, as shown in

Figures 2 and 4. This means that the distortion caused by price stickiness is less severe. Thus the

welfare gains are small for the inflation targeting rule.18 Our results confirm the early findings of

Bernanke and Gertler (1999).

7 Discussions

In our model deposits are money (or M1) and households do not hold money in equilibrium because

the return is too low around the steady state. Moreover, there is no cash in our model. We can

adopt several approaches in monetary economics (e.g., Chari, Christiano, and Eichenbaum (1995),

Einarsson and Marquis (2001), and Gaĺı (2014)) to allow households to hold money including

deposits and cash in equilibrium. For example, we could introduce cash-in-advance constraints

and deposit-in-advance constraints. We could also simply introduce cash or deposits in the utility

function because they provide some services other than “storage of wealth.”

For simplicity we ignore cash and introduce deposits in the utility function as follows

E0

∞∑
t=0

βt
(

lnCt − ψNt + χ ln

(
Sa,t+1

Pt

))
, (65)

where χ > 0. In this case aggregate investment satisfies

It =

(
RktKt +

mt

Πt
− satRt−1

Πt
+ pht

)
(1− F (ε∗t )) + µKt (1− F (ε∗∗t )) , (66)

where sat ≡ Sa,t/Pt−1 denotes household real deposits. Since banks have to pay interest on house-

hold deposits, the funds available for aggregate investment is reduced by satRt−1/Πt relative to

equation (51). The conditions for the existence of bubbleless and bubbly steady states are too

complicated to permit a complete characterization. For example, one has to subtract saR/Π in the

first parenthesis of equation (59). Thus the bubbleless steady-state cutoff becomes smaller. But we

need additional equations to pin down this cutoff because sa is endogenous.

For the bubbly steady state, we can still prove that there is a unique solution for the bubbly

steady-state cutoff in equation (62) if and only if condition (61) holds as in Proposition 4. But

this is not sufficient to pin down the bubbly steady state for the reason discussed above. We

18Regarding the impact of φp on the inflation and bubble volatilities under the inflation targeting rule (43), we find
a figure similar to Figure 7 and hence will not report it here.
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need numerical methods to solve the model. We use numerical examples to illustrate the intuition

by varying χ > 0 and fixing other parameter values as in Section 5.1. We find that the bubble

size is larger when χ > 0 is larger. In this case, households prefer to save more in banks, banks

can extend more loans, and repayments to households are also higher. Inefficient firms have more

funds to buy bubble assets and efficient firms can sell bubble assets at a higher price to repay

loans. The increased bubble size is used partly to repay household deposits so that real investment,

consumption, and output barely change.

We also find that impulse responses are qualitatively similar for χ > 0 and χ = 0. The key

difference is that household saving sa,t+1 responds to shocks. In particular, sa,t+1 falls in response

to a positive TFP shock or an expansionary monetary policy shock because the real interest rate

falls. But sa,t+1 rises in response to a sentiment shock because the real interest rate rises. The

movements of sa,t+1 can amplify the shocks.

For another extension, it is straightforward to introduce long-run growth to our model as in

Tirole (1985), Gaĺı (2014), Miao and Wang (2018), and Miao, Wang, and Xu (2015). With a

positive economic growth rate, the bubbly and bubbleless steady-state real interest rates can be

positive. Since such an analysis is standard, we leave out the details.

In our model asset bubbles improves investment efficiency, but generate excessive volatility.

Trading off between the benefit and the cost, optimal monetary policy encourages asset bubbles,

even if the welfare gains could be small. One can identify other sources of benefits and costs of

asset bubbles. For example, Miao and Wang (2014) and Miao, Wang, and Zhou (2015) show that

asset bubbles can generate resource misallocation. Ikeda and Phan (2016) show that risk shifting

can lead to welfare-reducing bubbles. Introducing these costs to our model may generate a different

type of optimal monetary policy.

8 Conclusion

We have presented an infinite-horizon model of rational asset bubbles in the DNK framework. We

have studied how monetary policy affects asset bubbles in the steady state and their dynamics

in response to fundamental and non-fundamental shocks. We have also studied whether central

banks should respond to asset bubbles. We find that the real balance effect together with credit

constraints is important for our results. Our model can deepen our understanding of the relation

between monetary policy and asset bubbles. Many of our results are different from those in Gaĺı’s

(2014) OLG model. We believe that modeling the interaction between financial frictions and

asset bubbles and the role of the bubbles are critical for understanding the differences. Moreover,

whether asset bubbles are treated as a forward-looking or backward-looking variable is important

for understanding their dynamics. Some of our results confirm the early findings of Bernanke and

Gertler (1999, 2001) and provide a theoretical foundation for the conventional wisdom on the role
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of monetary policy in managing asset bubbles.
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Figure 1: Comparative statics for the bubbly steady state. Parameter values are given in Section
5.1.
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Figure 2: Impulse responses to a positive 1% technology shock. All vertical axes are measured in
percentage. The solid, dashed, and dot dashed lines represent responses under the Taylor rule in
(42), the weak inflation targeting rule in (43) with φπ = 1.1, and the strong inflation targeting rule
in (43) with φπ = 2. In all these rules, φp = 0.
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Figure 3: Impulse responses to a negative 0.25% shock to the nominal interest rate. All vertical axes
are measured in percentage. The solid, dashed, and dot dashed lines represent responses under the
Taylor rule in (42), the weak inflation targeting rule in (43) with φπ = 1.1, and the strong inflation
targeting rule in (43) with φπ = 2. In all these rules, φp = 0.
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responses under the Taylor rule in (42), the weak inflation targeting rule in (43) with φπ = 1.1,
and the strong inflation targeting rule in (43) with φπ = 2. In all these rules, φp = 0.
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Appendix

A Proofs

Proof of Proposition 1: We conjecture that the value function takes the following form

Vt

(
Kjt, Sjt, Ljt,

{
Hj,t|t−k

}∞
k=0

, εjt

)
(A.1)

= φkt (εjt)Kjt + φst (εjt)Sjt − φlt (εjt)Ljt +
∞∑
k=0

φht|t−k (εjt)Hj,t|t−k,

where φit (εjt) , i ∈ {k, s, l, h} , satisfy

qkt = βEt
Λt+1

Λt

∫
φkt+1 (ε) dF (ε) , (A.2)

1

Pt
= βEt

Λt+1

Λt

∫
φst+1 (ε) dF (ε) ,

Rlt
Rt

1

Pt
= βEt

Λt+1

Λt

∫
φlt+1 (ε) dF (ε) ,

pht|t−k = βEt
Λt+1

Λt

∫
φht+1|t−k (ε) dF (ε) . (A.3)

By convention, we set Hj,t|t = δh
1−δh .

Substituting (21), (24), and the above conjecture into the Bellman equation (26), we obtain

Vt

(
Kjt, Sjt, Ljt,

{
Hj,t|t−k

}∞
k=0

, εjt

)
= max

Ijt,Sjt+1,Ljt+1,Hjt+1

RktKjt − Ijt +
1

Pt
(SjtRt−1 − Sjt+1 + Ljt+1 − LjtRlt−1)

+ (1− δh)

∞∑
k=0

pht|t−kHj,t|t−k −
∞∑
k=0

pht|t−kHj,t+1|t−k

+qkt ((1− δ)Kjt + εjtIjt) +
1

Pt
Sjt+1 −

Rlt
Rt

1

Pt
Ljt+1 +

∞∑
k=0

pht|t−kHj,t+1|t−k

= max
Ijt,Sjt+1,Ljt+1

(
Rkt + qkt (1− δ)

)
Kjt +

Rt−1

Pt
Sjt −

Rlt−1

Pt
Ljt

+ (1− δh)
∞∑
k=0

pht|t−kHj,t|t−k +
(
qkt εjt − 1

)
Ijt −

1

Pt

(
Rlt
Rt
− 1

)
Ljt+1. (A.4)

Since Ijt ≥ 0 and Djt ≥ 0, it follows from (A.4) that Ijt = 0 if εjt < 1/qkt ≡ ε∗t , but the firm makes
as much investment as possible so that Djt = 0 if εjt > ε∗t . Therefore, when εjt ≥ 1/qkt ≡ ε∗t , it
follows from (24) that

Ijt = RktKjt +
SjtRt−1 − Sjt+1 + Ljt+1 − LjtRlt−1

Pt
(A.5)

+ (1− δh)

∞∑
k=0

pht|t−kHj,t|t−k −
∞∑
k=0

pht|t−kHj,t+1|t−k.
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Using this investment rule, we can simplify (A.4) for εjt < ε∗t as

Vt

(
Kjt, Sjt, Ljt,

{
Hj,t|t−k

}∞
k=0

, εjt

)
= max

Ljt+1

(
Rkt + qkt (1− δ)

)
Kjt +

Rt−1

Pt
Sjt −

Rlt−1

Pt
Ljt

+ (1− δh)

∞∑
k=0

pht|t−kHj,t|t−k −
1

Pt

(
Rlt
Rt
− 1

)
Ljt+1. (A.6)

Given Rlt > Rt, we have Ljt+1 = 0. Therefore, when εjt < ε∗t , equation (A.6) becomes

Vt

(
Kjt, Sjt, Ljt,

{
Hj,t|t−k

}∞
k=0

, εjt

)
(A.7)

=
(
Rkt + qkt (1− δ)

)
Kjt +

Rt−1

Pt
Sjt −

Rlt−1

Pt
Ljt + (1− δh)

∞∑
k=0

pht|t−kHj,t|t−k.

Matching coefficients in (A.1) and (A.7), we have

φkt (εjt) = Rkt + qkt (1− δ) , φht|t−k (εjt) = (1− δh) pht|t−k,

φst (εjt) =
Rt−1

Pt
, φlt (εjt) =

Rlt−1

Pt
,

for εjt < ε∗t .
Next consider the case of εjt ≥ ε∗t = 1/qkt . Substituting (A.5) into (A.4) yields

Vt

(
Kjt, Sjt, Ljt,

{
Hj,t|t−k

}∞
k=0

, εjt

)
= max

Sjt+1,Ljt+1,Hjt+1

(
Rkt + qkt (1− δ)

)
Kjt +

Rt−1

Pt
Sjt −

Rlt−1

Pt
Ljt + (1− δh)

∞∑
k=0

pht|t−kHj,t|t−k

+
(
qkt εjt − 1

)(
RktKjt +

SjtRt−1 − Sjt+1 + Ljt+1 − LjtRlt−1

Pt

)
− 1

Pt

(
Rlt
Rt
− 1

)
Ljt+1

+
(
qkt εjt − 1

)[
(1− δh)

∞∑
k=0

pht|t−kHj,t|t−k −
∞∑
k=0

pht|t−kHj,t+1|t−k

]

= max
Sjt+1,Ljt+1,Hjt+1

(
Rkt +

(
qkt εjt − 1

)
Rkt + qkt (1− δ)

)
Kjt +

(
1 +

(
qkt εjt − 1

)) Rt−1

Pt
Sjt

−
(

1 +
(
qkt εjt − 1

)) Rlt−1

Pt
Ljt +

(
1 +

(
qkt εjt − 1

))
(1− δh)

∞∑
k=0

pht|t−kHj,t|t−k

−
(
qkt εjt − 1

)
Sjt+1 −

1

Pt

(
Rlt
Rt
− qkt εjt

)
Ljt+1 −

(
qkt εjt − 1

) ∞∑
k=0

pht|t−kHj,t+1|t−k. (A.8)

Thus we must have Sjt+1 = 0 and

Hj,t+1|t−k = 0, k = 0, 1, 2, ...,

Moreover, using (23) gives

Ljt+1

Pt
=

{
0, if εjt < ε∗∗t
µKjt, otherwise

,
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where we define

ε∗∗t ≡
Rlt

Rtqkt
=
Rlt
Rt

ε∗t .

Since Rlt > Rt, ε
∗∗
t > ε∗t .

Using the preceding decision rules, we can derive that

Vt

(
Kjt, Sjt, Ljt,

{
Hj,t|t−k

}∞
k=0

, εjt

)
=

(
Rkt +

(
qkt εjt − 1

)
Rkt + qkt (1− δ)

)
Kjt +

(
1 +

(
qkt εjt − 1

)) Rt−1

Pt
Sjt

−
(

1 +
(
qkt εjt − 1

)) Rlt−1

Pt
Ljt +

(
1 +

(
qkt εjt − 1

))
(1− δh)

∞∑
k=0

pht|t−kHj,t|t−k

+qkt µKjt max {εjt − ε∗∗t , 0} , (A.9)

for εjt ≥ ε∗t .
Matching coefficients in (A.1) and (A.9) yields

φkt (εjt) = Rkt +
(
qkt εjt − 1

)
Rkt + qkt (1− δ) + max {εjt − ε∗∗t , 0} qkt µ

=

(
1 +

(
εjt
ε∗t
− 1

))
Rkt + qkt (1− δ) + max {εjt − ε∗∗t , 0} qkt µ,

φst (εjt) =
(

1 +
(
qkt εjt − 1

)) Rt−1

Pt
=

(
1 +

(
εjt
ε∗t
− 1

))
Rt−1

Pt
,

φlt (εjt) =
(

1 +
(
qkt εjt − 1

)) Rlt−1

Pt
=

(
1 +

(
εjt
ε∗t
− 1

))
Rlt−1

Pt
,

φht (εjt)

1− δh
=
(

1 +
(
qkt εjt − 1

))
pht|t−k =

(
1 +

(
εjt
ε∗t
− 1

))
pht|t−k,

for εjt ≥ ε∗t .
Combining the above two cases, we deduce that, for any εjt ∈ (εmin, εmax), we have

φkt (εjt) =

(
1 + max

(
εjt
ε∗t
− 1, 0

))
Rkt + qkt (1− δ) + max {εjt − ε∗∗t , 0} qkt µ,

φst (εjt) =

(
1 + max

(
εjt
ε∗t
− 1, 0

))
Rt−1

Pt
,

φlt (εjt) =

(
1 + max

(
εjt
ε∗t
− 1, 0

))
Rlt−1

Pt
,

φht (εjt)

1− δh
=

(
1 + max

(
εjt
ε∗t
− 1, 0

))
pht|t−k.

Substituting the preceding four equations into (A.2)-(A.3) yields (29), (30), (31) in the proposition.
Q.E.D.
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Proof of Lemma 1: Define the function

G(z) =

∫ εmax

εmin

max(ε, z)dF (ε)− Π

β
z = 0, z ∈ [εmin, εmax] .

Note that G′(z) = F (z) − Π
β < 0, G(εmin) = E [ε] − Π

β εmin > 0, and G(εmax) = εmax − Π
β εmax < 0

by assumption 1. The intermediate value theorem ensures that there exists a unique solution for
ε ∈ (εmin, εmax) in the equation in the lemma. Q.E.D.

Proof of Proposition 2: In any steady state, we can use (18) and (56) to derive that

ε∗∗ =
Rl
R
ε∗ =

1− λ
R(ε∗)

1− λ ε∗ =
ε∗ − λβ

Π

∫ εmax

εmin
max(ε∗, ε)dF (ε)

1− λ . (A.10)

By assumption 1 and λ ∈ (0, 1) , we can show that

dε∗∗

dε∗
=

1− λβ
Π F (ε∗)

1− λ > 0.

Thus ε∗∗ = ε (ε∗) increases with ε∗. We need the following result.

Lemma 2 For a sufficiently small µ, Rk(ε
∗) decreases with ε∗ for ε∗ ∈ (εmin, εmax). A sufficient

condition is

0 < µ <

1
β − 1 + δ

max
ε∗∈[εmin,εmax]

1−F (ε(ε∗))
F (ε∗)

∫ εmax

εmin
max(ε∗, ε)dF (ε)

1−λβ
Π
F (ε∗)

1−λ +
∫ εmax

ε(ε∗) (ε− ε (ε∗)) dF (ε)
. (A.11)

Proof. Using (58), we can compute that

dRk(ε
∗)

dε∗

=
µ [1− F (ε∗∗)]

∫ εmax

εmin
max(ε∗, ε)dF (ε) dε

∗∗

dε∗ −
[

1
β − 1 + δ − µ

∫ εmax

ε∗∗ (ε− ε∗∗) dF (ε)
]
F (ε∗)[∫ εmax

εmin
max(ε∗, ε)dF (ε)

]2

=
µ (1− F (ε∗∗))

∫ εmax

εmin
max(ε∗, ε)dF (ε)

1−λβ
Π
F (ε∗)

1−λ −
[

1
β − 1 + δ − µ

∫ εmax

ε∗∗ (ε− ε∗∗) dF (ε)
]
F (ε∗)[∫ εmax

εmin
max(ε∗, ε)dF (ε)

]2 .

If µ = 0,

dRk(ε
∗)

dε∗
= −

1
β − 1 + δ[∫ εmax

εmin
max(ε∗, ε)dF (ε)

]2 < 0.

Since Rk(ε
∗) is a continuous function, the above inequality is also true for a sufficiently small

µ.
Define the function

H (ε∗) =

(
Rk(ε

∗) +
λµ

1− λ
1− F (ε (ε∗))

Π

)∫ εmax

ε∗
εdF (ε) + µ

∫ εmax

ε(ε∗)
εdF (ε) , (A.12)

45



for ε∗ ∈ [ε, εmax] . Since ε (ε∗) increases with ε∗, it follows from the preceding lemma that H (ε∗)
decreases with ε∗. Note that H (εmax) = 0 and

H (ε) =

(
Rk(ε) +

λµ

1− λ
1− F (ε (ε))

Π

)∫ εmax

ε
εdF (ε) + µ

∫ εmax

ε(ε)
εdF (ε) > δ,

given the following assumption

µ >
δ −Rk(ε)

∫ εmax

ε εdF (ε)

λ
1−λ

1−F (ε(ε))
Π

∫ εmax

ε εdF (ε) +
∫ εmax

ε(ε) εdF (ε)
. (A.13)

By the intermediate value theorem, there exists a unique solution for ε∗f ∈ (ε, εmax) in the equation

H (ε∗) = δ. Since ε∗f > ε, it follows Lemma 1 and (56) that Rf = R
(
ε∗f

)
> R (ε) = 1. Finally,

the additional assumptions on µ not explicitly specified in the proposition are (A.11) and (A.13).
Q.E.D.

Proof of Proposition 3: Equation (58) gives Rkf = Rk(ε
∗
f ). Since Rkf = αYf/Kf , we can

determine Yf/Kf . We now use the following procedure to derive other bubbleless steady-state
variables. Equation (60) determines mf/Kf . Equation (51) gives

If
Kf

=

(
Rkf +

mf

ΠKf

)(
1− F (ε∗f )

)
+ µ

(
1− F (ε∗∗f )

)
. (A.14)

Thus we can derive If/Yf = (If/Kf ) / (Yf/Kf ) , and hence Cf/Yf = 1− If/Yf .
Using equation (12), we can derive that

ψ =
wf
Cf

= (1− α)
Yf
Nf

1

Cf
,

and thus

Nf =
1− α
ψ

Yf
Cf

.

Now we use Rkf = αAKα−1
f N1−α

f to solve for Kf and then use the ratios derived above to determine
Yf , mf , If , and Cf .

Consider the function H defined in (A.12). It decreases with Π. Since the solution for ε∗f is

given by the intersection of the downward sloping curve H (ε∗) and the line δ, ε∗f decreases with Π.

Since Rkf = αKα−1
f N1−α

f = αYf/Kf = Rk

(
ε∗f

)
, it follows from Lemma 2 that Kf/Nf decreases

with Π, but Yf/Kf increases with Π. The rest of results are straightforward to prove and hence are
omitted. Q.E.D.

Proof of Proposition 4: We first prove sufficiency. Suppose that condition (61) holds. Define
the function

G (ε∗) = βs

(
1 +

∫ εmax

ε∗

( ε
ε∗
− 1
)
dF (ε)

)
(A.15)

for ε∗ ∈ [ε∗f , εmax). Since R (ε∗) increases with ε∗, it follows from (57) that ε (ε∗) and ε (ε∗) /ε∗

increase with ε∗. Thus G (ε∗) decreases with ε∗. Moreover, G (εmax) = β < 1 and G
(
ε∗f

)
< 1 by

(61). By the intermediate value theorem, there exists a unique solution ε∗b ∈ (ε∗f , ε
∗
max) to (62).
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Since Rf = R
(
ε∗f

)
> 1 and R (ε∗) increases with ε∗, we have R (ε∗b) > R

(
ε∗f

)
> 1. Once the

bubbly steady-state cutoff ε∗b is determined, other bubbly steady-state values can be easily solved.
In particular, we use equation (57) to derive ε∗∗b = ε(ε∗b). Equation (58) gives Rkb = Rk(ε

∗
b).

Since Rkb = αYb/Kb, we can determine Yb/Kb. The steady-state version of equation (52) implies
that

δ∫ εmax

ε∗b
εdF (ε)

=

(
Rk(ε

∗
b) +

mb

Kb

1

Π
+
ph

Kb

)
+ µ

∫ εmax

ε(ε∗b)
εdF (ε)∫ εmax

ε∗b
εdF (ε)

, (A.16)

where we use equation (49) to derive

mb

Kb
=

λ

1− λµ (1− F (ε∗∗b )) .

In turn, we can solve for ph/Kb as

ph
Kb

=
δ −

[
Rk(ε

∗
b) + µ

Π
λ

1−λ (1− F (ε (ε∗b)))
] ∫ εmax

ε∗b
εdF (ε)− µ

∫ εmax

ε(ε∗b)
εdF (ε)∫ εmax

ε∗b
εdF (ε)

.

We can show that the numerator on the right-hand side of the equation above is an increasing
function of ε∗b when µ is sufficiently small. Since that expression is equal to zero when ε∗b is
replaced with ε∗f (see (59)), it follows from ε∗b > ε∗f that ph/Kb > 0.

Using (51), we can solve for Ib/Kb and hence Ib/Yb = (Ib/Kb) / (Yb/Kb) . It follows from the
resources constraint that Cb/Yb = 1− Ib/Yb. Using (12) and wb = (1− α)Yb/Nb, we can show that

Nb =
1− α
ψ

Yb
Cb
.

Using Rkb = αKα−1
b N1−α

b , we can solve for Kb. We can then determine other equilibrium variables
using the ratios derived above.

We next prove necessity. Suppose that a bubbly steady state exists. In a bubbly steady state
ph > 0 and in a bubbleless steady state ph = 0. Since (A.16) holds for both bubbly and bubbleless
steady states, we have

δ =

[
Rk(ε

∗
f ) +

λ

1− λ
µ

Π

(
1− F

(
ε(ε∗f )

))] ∫ εmax

ε∗f

εdF (ε) + µ

∫ εmax

ε(ε∗f)
εdF (ε)

>

[
Rk(ε

∗
b) +

λ

1− λ
µ

Π
(1− F (ε (ε∗b)))

] ∫ εmax

ε∗b

εdF (ε) + µ

∫ εmax

ε(ε∗b)
εdF (ε) .

When µ is sufficient small, Lemma 2 implies that Rk(ε
∗) decreases with ε∗. We have also shown

that ε (ε∗) increases with ε∗. Thus we deduce that[
Rk(ε

∗) +
λ

1− λ
µ

Π
(1− F (ε (ε∗)))

] ∫ εmax

ε∗
εdF (ε) + µ

∫ εmax

ε(ε∗)
εdF (ε)

decreases with ε∗. The preceding inequality then implies that ε∗b > ε∗f . We have shown that G (ε∗)

defined in (A.15) decreases with ε∗. Since equation (48) implies that G (ε∗b) = 1 in a bubbly steady

state, it follows from ε∗b > ε∗f that G
(
ε∗f

)
> 1. Q.E.D.
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Proof of Proposition 5: In the bubbly steady state, G (ε∗b) = 1 where G is defined in (A.15).
Since

ε∗∗b
ε∗b

=
ε (ε∗b)

ε∗b
=
Rlb
Rb

> 1,

we have ∫ εmax

ε(ε∗b)

(
ε

ε∗b
− ε (ε∗b)

ε∗b

)
dF (ε) <

∫ εmax

ε∗b

(
ε

ε∗b
− 1

)
dF (ε) .

Thus

βs

(
1 +

∫ εmax

ε∗b

(
ε

ε∗b
− 1

)
dF (ε)

)
> G (ε∗b) = 1.

This implies that ∫ εmax

ε∗b

(
ε

ε∗b
− 1

)
dF (ε) >

1

βs
− 1.

By (56), we have

1 < R (ε∗b) =
Π

β
(

1 +
∫ εmax

ε∗b

(
ε
ε∗b
− 1
)
dF (ε)

) < 1

β

Π

1 + 1
βs − 1

= sΠ.

Thus

Π >
1

s
> 1.

Moreover, since ε∗b > ε∗f ,

Π > sΠ > R(ε∗b) > R(ε∗f ).

We then obtain the desired result. Q.E.D.

B Log-linearized System

The log-linearized equilibrium system can be described by 17 equations for 17 variables {Ĉt, Ît, K̂t,

Ŷt, N̂t, Π̂t, p̂wt, ŵt, p̂ht, q̂
k
t , R̂kt, ε̂

∗
t , ε̂
∗∗
t , R̂lt, m̂t, ĝt, R̂t}.

• Aggregate demand

Ĉt = EtĈt+1 − (R̂t − EtΠ̂t+1) +
Rβ

Π

∫ εmax

ε∗

ε

ε∗
dF (ε)Etε̂

∗
t+1, (B.1)

Ît =
RkK

I
(1− F (ε∗)) (R̂kt + K̂t) +

m

Π
(1− F (ε∗)) (m̂t − Π̂t) (B.2)

+ (1− F (ε∗∗))
µK

I
K̂t + (1− F (ε∗))

ph
I
p̂ht

−
(
RkK +

m

Π

) f(ε∗)ε∗

I
ε̂∗t − µK

f(ε∗∗)ε∗∗

I
ε̂∗∗t ,

K̂t+1 = (1− δ)K̂t +Rk

∫ εmax

ε∗
εdF (ε)

(
K̂t + R̂kt

)
(B.3)

+µ

∫ εmax

ε∗∗
εdF (ε) K̂t +

m

ΠK

∫ εmax

ε∗
εdF (ε)

(
m̂t − Π̂t

)
+

∫ εmax

ε∗
εdF (ε)

ph

K
p̂ht

−
(
Rk +

m

ΠK
+
ph

K

)
(ε∗)2 f(ε∗)ε̂∗t − µ (ε∗∗)2 f(ε∗∗)ε̂∗∗t ,
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Ŷt =
C

Y
Ĉt +

I

Y
Ît. (B.4)

• Aggregate supply

Π̂t =
1

ξ
(1− ξ)(1− βξ)p̂wt + βEtΠ̂t+1, (B.5)

Ŷt = Ât + αK̂t + (1− α)N̂t, (B.6)

ŵt = p̂wt + Ât + αK̂t − αN̂t, (B.7)

Ĉt = ŵt. (B.8)

• Asset prices

p̂ht = Etp̂
h
t+1 +

(
Ĉt − EtĈt+1

)
+ ŝt − sβ

∫ εmax

ε∗

ε

ε∗
dF (ε)Etε̂

∗
t+1, (B.9)

q̂kt =
(
Ĉt − EtĈt+1

)
+
RkΠ

qkR
EtR̂kt+1 + β (1− δ)Etq̂kt+1 (B.10)

−βµε∗∗ (1− F (ε∗∗))Etε̂
∗∗
t+1 − β

[
µ

∫ εmax

ε∗∗
(ε− ε∗∗) dF (ε) +Rk

∫ εmax

ε∗
εdF (ε)

]
Etε̂
∗
t+1,

R̂kt = p̂wt + Ât + (α− 1)K̂t + (1− α)N̂t. (B.11)

• Lending rate and two cutoffs
R̂lt − R̂t = ε̂∗∗t − ε̂∗t , (B.12)

ε̂∗t = −q̂kt , (B.13)

ε̂∗∗t = ε̂∗t +
λ/R

1− λ/RR̂t. (B.14)

• Money demand and supply

m̂t+1 = k̂t −
ε∗∗f(ε∗∗)

1− F (ε∗∗)
ε̂∗∗t , (B.15)

m̂t+1 = m̂t − Π̂t + ĝt. (B.16)

• Interest rate rule
R̂t = φπΠ̂t + φyŶt + φpp̂ht + v̂t, (B.17)

or
R̂t = φπEtΠ̂t+1 + φpp̂ht + v̂t, (B.18)

• Exogenous shocks

Ât = ρaÂt−1 + εat,

v̂t = ρvv̂t−1 + εvt,

ŝt = ρsŝt−1 + εst.
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