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Abstract

We show how commuting �ows can be used to infer the spatial distribution of income

within a city. We use a simple workplace choice model, which predicts a gravity equation

for commuting �ows whose destination �xed e�ects correspond to wages. We implement

this method with cell phone transaction data from Dhaka and Colombo. Model-predicted

income predicts separate income data, at the workplace and residential level. Unlike machine

learning approaches, our method does not require training data, yet achieves comparable

predictive power. In an application, we show that hartals (transportation strikes) in Dhaka

lower commuting, leading to 5-8% lower predicted income.
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1 Introduction

Measures of urban economic activity at �ne temporal and spatial scales are important yet rare.

Such data is necessary to understand how cities respond to localized shocks such as changes in

transportation infrastructure or �oods, and to help governments target scarce public resources.

These issues are especially salient in large cities in developing countries, which are growing fast

yet are least covered by conventional data sources. For example, less than 10% of the urban

population in sub-saharan African countries is covered by a census of �rms with wage data.
1

At

the same time, comprehensive new data sources on urban behavior, especially individual mobility

and commuting, are becoming available across the world.

In this paper, we provide a theory-based method to predict the spatial distribution of urban

economic activity from commuting choices. The revealed-preference logic of our approach is sim-

ple. A core function of cities is to connect workers and jobs (Duranton and Puga 2015). While

many factors enter into workplace choice decisions, areas with high wages should dispropor-

tionately attract workers, keeping distance and home locations �xed. We propose inverting this

reasoning to infer the relative average wage at a location based on how “attractive” it is as a com-

muting destination. We use tools from recent urban economics models to formalize this intuition.

In the model, work location decisions aggregate up to a gravity equation on commuting �ows,

and destination �xed e�ects are proportional to log wages. This property holds for a general class

of models developed to evaluate urban policies and transport infrastructure (Redding and Turner

2015, Redding and Rossi-Hansberg 2017).
2

Our approach di�ers from previous studies that use machine learning techniques to empiri-

cally predict wealth and consumption at the individual and geographic area level (Blumenstock

et al. 2015, Jean et al. 2016, Glaeser et al. 2017). First, our primary focus is the prediction of income

within a city, which is more challenging than at a wider spatial scale. Furthermore, the distribu-

tion of income changes during the day, as income “moves” around the city due to commuting. The

model and data we use are explicit about this link. Second, our approach is grounded in a simple

and general theory of behavior; as such, it may be more transferable across settings compared

to data-driven prediction methods. Third, we will show that despite not using any training data,

1
Authors’ calculation (Appendix A.1).

2
Other contributions include Ahlfeldt et al. 2015, Heblich et al. 2018, Tsivanidis 2018, Severen 2019.
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our approach performs comparably to machine learning techniques, explaining 70-90% as much

income variation within cities as those methods.

We implement our approach using call detail record (CDR) data from two large metropolises:

Colombo, Sri Lanka and Dhaka, Bangladesh. CDR data is a prototypical example of “big data”

available in developing countries (Björkegren 2018), and it contains phone user location for every

transaction (phone call or text message). We construct individual home and work locations by

observing a user’s location at di�erent times of the day over time. We show that commuting �ows

constructed this way correlate strongly with commuting �ows from a transportation survey from

Dhaka, while additionally o�ering very �ne geographic resolution. We use this data to estimate

the gravity equation implied by the model. We return to the high-frequency temporal aspect of

the data in an application below, where we use the cell phone data to construct daily individual

commuting trips.

Estimated log wages by location are derived solely from observed commuting decisions and

data on travel times, without any model training with actual wage data. We next assess how well

this simple measure captures real di�erences in wages, using two income proxy data sources.

First, model workplace income is signi�cantly positively correlated with workplace commuter

income data from a large transportation survey in Dhaka. This also holds after controlling for

employment density and distance to the central business district (CBD), and when repeating the

exercise after projecting out demographic and occupation covariates from the survey. Second,

in both cities, model-predicted residential income is a robust predictor of the census residential

income proxy. This relationship remains stable within sub-districts and after controlling for resi-

dential density and distance to the CBD.

A key advantage of the model is that we can compute how income “moves” around the city.

As a further check of the model �t, we perform a horse-race between residential- and workplace-

income. While the two measures are highly correlated, we �nd suggestive evidence that model

workplace income better correlates with workplace survey income data, and model residential in-

come better correlates with the residential income proxy.

In each validation exercise, the model measure, computed without any training data, explains

between 70% and 90% as much income variation compared to a trained machine learning method

that uses a rich set of cell phone features (Zou and Hastie 2005, Blumenstock et al. 2015). Hence,
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the simple revealed preference logic in the model captures a signi�cant part of all the information

contained in the cell phone data, and the destination �xed e�ects function as a near “summary

statistic.”

The overall explanatory power (R2
) varies for the workplace and residential exercises de-

scribed above. Prediction is signi�cantly more di�cult (using any explanatory variable) when

focusing only on areas within the urban core of Dhaka (R2 ≈ 0.25), compared to an exercise that

covers a wider geographical region with both urban and peri-urban areas (R2 ≈ 0.5). Overall,

comparisons of predictive power are more informative within a given setting rather than across

applications. We further discuss the comparison with previous work using model-based or ma-

chine learning-based approaches in section 4.1.

The ideal application of our income-prediction method and of the high-frequency commuting

data is to trace out the spatial and temporal impact of urban events and policies. This may be par-

ticularly useful in the case of acute events when there is no time for conventional data collection,

such as lock-downs due to quarantines for pandemics or terrorist attacks, �oods, etc. To illustrate

this potential, we estimate a measure of the economic costs of hartals, a type of strike intended

to disrupt transportation and economic activity in Bangladesh. We use daily commuting �ows

constructed by observing each user’s location at di�erent times during a single day. The onset

of hartal lowers commuting by 5-8%. Assuming wages throughout the city are unchanged on

hartal days, our accounting exercise implies a decrease in take-home income of around the same

magnitude. While precisely estimated, these changes are relatively small, in line with previous

studies of hartal.

2 Cell-Phone Data and Commuting Flows

2.1 Data Sources

Cell phone transaction data. We use call detail record (CDR) data from large operators in Sri

Lanka and Bangladesh to compute detailed commuting matrices. CDR data includes an observa-

tion for each transaction, such as outgoing or incoming voice call and text messages, or GPRS

internet connections. Each observation has a timestamp, the anonymized participant user iden-

ti�ers, and their cell tower locations. Towers are unevenly distributed in space; they are denser
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in urban and developed areas. We focus on the greater metropolitan areas around the capital

cities of Colombo and Dhaka. The data covers a little over a year in Sri Lanka and four months in

Bangladesh in the early 2010’s.
3

We construct commuting trips by assigning “home” and “work” locations for each user. Home

(work) locations are identi�ed as the most frequent towers with a transaction between 9pm to

5am of the next day (10am to 3pm) during weekdays excluding hartal days. For robustness, we

also construct daily commuting trips, to incorporate the possibility that some users do not have

�xed work locations.
4

We then aggregate over users to obtain an origin-destination (OD) matrix

of commuting �ows between every pair of cell towers.

Google Maps travel time. As a proxy for travel costs, we obtain estimated typical driving

travel times between pairs of cell towers using the Google Maps API. In each city we obtain

Google data for 90,000 randomly selected pairs of towers, and interpolate to pairs with nearby

origin and nearby destination. We use predicted time without tra�c congestion. Using predicted

time with tra�c congestion in Colombo, where such data was available, yields virtually identical

model-predicted wages (Table B.4).

Household transportation survey. We use individual survey data from the 2009 Dhaka Ur-

ban Transport Network Development Study or DHUTS (JICA 2010). The survey covers 16,394

randomly selected households in the Dhaka City Corporation (DCC), Dhaka’s urban core, and

1,716 households outside the DCC. Home and work locations are at the level of 108 “survey ar-

eas.” Our main analysis sample covers 12,510 commuters who live and work within the 90 survey

areas inside the DCC, with positive income from work, excluding students, homemakers, and

the unemployed. In the main analysis, we exclude households outside of DCC, because the 18

corresponding survey areas are signi�cantly coarser and detailed information on sampling is not

available. Results are robust to including commuters who live outside DCC (Appendix Table B.5).

Population Censuses. We use census data from 2011 in Bangladesh and 2012 in Sri Lanka, the

closest years to our cell phone data. Since the census does not report income in either country, we

obtain the �rst principal component of houshold assets (house building materials, toilet facilities,

3
In Bangladesh, the data only covers outgoing voice calls. Our sample covers the Western Province in Sri Lanka,

and the Dhaka, Narayanganj, and Gazipur Districts in Bangladesh.

4
On a given day, we de�ne a user’s origin as the location of the �rst transaction between 5am to 10am, and the

user’s destination as the location of the last transaction between 10am and 3pm. If transaction data is missing in either

time interval, commuting behavior is not observed for that user-day (Table B.1).
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water and electricity connection) at the �nest geographic unit available.
5

The residential income

proxy at the cell tower level is the average across overlapping census units, weighted by overlap

area with the tower.

2.2 Representativeness of Commuters in Cell Phone Data

Here we explore to what extent cell phone data is representative of urban commuters. In Dhaka,

commuting �ows derived from cell phone data are strongly related to those from the DHUTS

commuting survey, including when controlling for log travel time, origin and destination survey

area �xed e�ects (Appendix Table B.2). This is consistent with previous research validating cell-

phone-based commuting �ows (Calabrese et al. 2011, Wang et al. 2012, Iqbal et al. 2014). The

decay of commuting �ows with travel time is virtually identical between the two data sources

(Appendix Figure B.2, Panel A).

Residential population density from cell phone data correlates well with census population

density at the level of 1,866 and 1,201 cell phone towers in the two cities (Appendix Table B.3),

with R2 = 0.61 in Dhaka and R2 = 0.49 in Colombo. The slope is 1.16 for both cities, hence

cell phone data slightly over-represents population in denser areas. This type of bias does not

automatically a�ect our results. As we show in the next section, our approach infers wages based

on how commuters in a given location choose between di�erent workplace locations. However,

this method may still be biased if, for example, workers in high-density locations choose their

work locations based on di�erent criteria compared to other workers (e.g., they place di�erent

weight on commuting distances and wages).

3 Model: Commuting Flows, Gravity, and Wages

Is it possible to infer the spatial distribution of wages from commuting �ows? The interaction

between wages and commuting costs to determine urban structure is fundamental in classical

urban economics models (Alonso 1960, Mills 1967, Muth 1968). Here, we explore this insight

using a new generation of models inspired from the trade literature, designed to better match

spatially disaggregated urban data (Ahlfeldt et al. 2015).

5
In the study areas, there are 2,381 Grama Niladhari (GN) in Sri Lanka, and 3,704 mauza in Dhaka.
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In the model, commuters decide their work location taking into account wages at di�erent

potential work locations, commuting costs, and destination-speci�c idiosyncratic utility shocks.

Together with a parametric assumption on utility shocks, this implies that log bilateral commuting

�ows follow a linear gravity equation, with destination �xed e�ects proportional to log wages.

This relationship holds in equilibrium regardless of how wages are determined.

3.1 Workplace Choice Model

Space is partitioned into a �nite set of locations, which may serve as both residential and work

locations. In our application, locations correspond to Voronoi cells around cell phone towers

(Appendix Figure B.1).

There is a unit mass of workers, and each worker ω sequentially decides where to live, and

then where to work. We do not impose restrictions on the home location choice.
6

Given her

residential location (or origin) i, the worker chooses her work location (or destination) j. The

utility of worker ω residing in location i if she chooses destination j is:

Uijω =
WjZijω

Dτ
ij

(1)

Wj is the wage per e�ective unit of labor supply at location j (all �rms at location j o�er the same

wage), Dij is the travel time between i and j, and Zijω is an idiosyncratic utility shock that is i.i.d.

following the Fréchet distribution, with scale parameter T and shape parameter ε. We assume

that each worker supplies one unit of labor, and hence earns income Wj if she works in location

j. We abstract from heterogeneity due to skill or other worker attributes.
7

Each worker observes the shocks Zijω and chooses the work location j where Uijω is max-

imized. The probability that a worker commutes to j conditional on residing in i is given by

6
Assuming joint home and work location choice leads to the same gravity equation (Ahlfeldt et al. 2015). How-

ever, if workers choose their workplace �rst and then the home location (as perhaps in the case of new migrants), we

would obtain a di�erent gravity equation.

7
We model and investigate empirically two extensions where labor supply varies across individuals. First, in

Appendix A.2, labor supply (and hence income) depends on observable demographics. Second, in Appendix A.3, Zijω
and Dij partly a�ect labor supply, rather than only a�ecting utility, as in the main analysis. We develop a method to

estimate how much Zijω and Dij a�ect income using survey income data. The results are consistent with Dij being

a pure utility shock, and Zijω partly a�ecting income (Appendix Table A.1).
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πij = (Wj/Dτ
ij)

ε/ ∑s(Ws/Dτ
is)

ε
. Taking logs, and denoting log quantities by lowercase letters:

log(πij) = εwj − ετdij − log

(
∑

s
exp (εws − ετdis)

)
(2)

3.2 Estimating the Gravity Equation

We estimate equation (2) using the empirical Poisson pseudo-maximum likelihood (PPML) method

with two-way �xed e�ects:

log(E[πij]) = ψj − βdij + µi (3)

where µi and ψj are origin and destination �xed e�ects. We use PPML, rather than OLS, to deal

with zero commuting �ows (Silva and Tenreyro 2006).
8,9

Importantly, ψj is proportional to the (relative) log wage at j with a factor of ε, the Fréchet

dispersion parameter. Our main goal is to recover the ψj’s from observed commuting choices.

For this purpose, it is not necessary to model explicitly how wages are determined in equilibrium.

The mapping between commuting choices and wages holds in any general equilibrium model

that micro-founds the gravity equation for commuting �ows with a discrete commuting choice

model.
10

To obtain relative wage levels, we further require knowing ε, the Fréchet parameter, which in

the model governs the variance of idiosyncratic preferences shocks. This is identi�ed, for example,

from the overall variance of wages in the city (Ahlfeldt et al. 2015, see Section 3.4).

Lacking detailed bilateral commuting �ow data, some authors estimate log wages with an

exactly identi�ed procedure only using residential and employment populations and separately

calibrated parameter β (Ahlfeldt et al. 2015, Tsivanidis 2018). Our approach using commuting

�ows is more robust against noise in a particular subset of tower pairs in the gravity equation (3).

In fact, we explore robustness to including or excluding �ows between nearby tower pairs and

within-tower �ows.

8
Fally (2015) shows that the Poisson regression estimator asymptotically satis�es the structural relationship be-

tween ψj and µi in equation (2).

9
Log travel time as a measure of distance o�ers a good �t (Appendix Figure B.2).

10
Our model does not include workplace amenities. If these di�er considerably across space, the gravity destina-

tion �xed e�ects will capture the combined e�ect of wages and amenities. Our empirical results in section 4 address

empirically the extent to which our measure is correlated with wages.



9

3.3 Mapping Model Locations to Geographic Areas

A key advantage of the model is that locations can be mapped directly to two-dimensional urban

data. However, the choice of spatial scope of location may not be innocuous for inferring wages.

Larger Voronoi cells may mechanically yield larger destination �xed e�ects.

When the true model has independent shocks at sub-locations within a given location, com-

muting �ows de�ned at the larger location level still follow gravity equation (2) approximately

using an “e�ective” wage at that location. Assume that location j is divided into Nj smaller ar-

eas with independent shocks, and all areas have the same “true” wage WR
j . By standard Fréchet

properties, the commuting probability to j is approximately equivalent to a model with a sin-

gle shock at j and “e�ective” wage Wj = N1/ε
j WR

j .
11

(The approximation comes from assuming

that the smaller areas are located at exactly the same location.) From equation (3) we estimate

ψj = ε logWj and we recover the true wage as the area-adjusted destination �xed e�ect

ψ̂R
j = ψ̂j − log

(
Nj
)

. (4)

In robustness exercises, using un-adjusted destination �xed e�ects does not a�ect results,

except when including distant peri-urban areas where cell phone towers are very sparse.

3.4 Estimation Results: Gravity and Wages

We estimate gravity equation (3) using cell phone commuting �ows and Google Maps travel times.

Our goal is to recover the destination �xed e�ects, which in the model are proportional to work-

place log wages. The estimation sample is non-holiday weekday commuting trips between pairs

of towers excluding nearby and very distant towers.
12

Table 1 reports the results, based on commuting �ows between 1,859 locations in Dhaka

(columns 1-2) and between 1,201 locations in Colombo (columns 3-4). The gravity equation is

estimated with commuting �ows constructed from assigned home and work locations for 1.5 and

11
See Appendix A.4. Redding and Weinstein (2019) prove a related result for gravity models in trade.

12
In Dhaka, we exclude 31 days with transportation strikes (hartals). Tower pairs closer than 3 minutes are ex-

cluded as they may capture calls randomly connecting to di�erent towers (“tower-bouncing”) rather than real com-

muting. Destination �xed e�ects estimated including nearby and same tower pairs are virtually identical (Appendix

Table B.4). Towers over the 99th percentile of the travel time distribution are also excluded (137 and 96 minutes in

Dhaka and Colombo, respectively).
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1 million commuters in the two cities (columns 1 and 3), and using the commuting �ows identi�ed

at the daily level (columns 2 and 4), which number 20 and 130 million in the two cities.

Commuting probability decreases strongly with travel time. Interestingly, although the aver-

age commuting trip is 25% longer on average in Sri Lanka, once we adjust for residential locations,

the coe�cients become similar, -2.44 and -2.19. This is a substantive �nding, as the two cities di�er

in terms of economic development, population, and urban structure (mono- vs poly-centric).

Figure 1 displays smoothed estimated wages in Dhaka and Colombo using choropleth maps.

Our estimated measure ψR
j is proportional to log wages, with factor ε (the Fréchet shape param-

eter). If we know ε (e.g., from other data or estimate using ground-truth wage data), we can also

recover wage levels up to a multiplicative constant. Ahlfeldt et al. (2015) estimate ε = 6.83 in

Berlin, while in Dhaka we �nd ε = 9.09 (Appendix A.3). In Figure 1 we use ε = 9.09. Estimated

wages are higher near city centers and alongside some (but not all) major road corridors. More-

over, secondary centers are visible, especially in Dhaka. The next sections will compare these

results with independent income proxies.

Destination �xed e�ects using di�erent estimation methods are highly correlated, using daily

commuting �ows instead of home and work assignment, when we use travel times with conges-

tion in Colombo, and when we include neighboring and same tower pairs in the samples (Ap-

pendix Table B.4). Using OLS instead of PPML leads to a �atter pro�le of destination �xed e�ects

due to many zero commuting �ows (57% of all possible tower pairs in Bangladesh and 15% in Sri

Lanka).

4 Validation using Survey Income and Census Residential Income Proxy

The method above infers wages based on observed commuting choices. This section investigates

to what extent this approach predicts within-city income patterns, using independent data on

workplace and residential income.

4.1 Model-Predicted and Survey Workplace Income in Dhaka

Our �rst validation exercise compares income from the model and survey income from the DHUTS

survey (Section 2.1). We compute average income at the workplace level in each survey area in
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the DCC, the �nest geographic location available in the DHUTS survey.
13

The model-predicted income measure is the area adjusted destination �xed e�ects ψ̂R
j . In

the model, this equals log labor income divided by ε, the Fréchet shape parameter of worker

unobserved preferences. Hence, we expect a regression coe�cient of around 1/ε. Since survey

areas are coarser than cell phone towers, we average model income within each of the 88 survey

areas, weighting each tower by cell phone workplace population.

In our main exercise, we investigate whether model-predicted income predicts survey income

at the workplace level. We benchmark the statistical signi�cance and the predictive power in two

ways. First, we compare with other simpler measures: employment density (from cell phone data)

and distance to the Central Business District (CBD), established indicators of spatial economic ac-

tivity within cities (Duranton and Puga 2015). Second, we compare the predictive performance

with that from a supervised-learning approach (elastic net regularization) using hundreds of fea-

tures from cell-phone data, trained using survey income data on a subset of locations.

Table 2 presents the main results. Column 1 in panel A shows that model-predicted income

explains 25 percent of the variation in average income at the survey area level, and the coe�cient

implies a Fréchet shape parameter of ε̂= 8.3, similar to estimates in the urban economics literature

(6.83 in Ahlfeldt et al. 2015). In columns 2-3, employment density and distance have slightly

lower and slightly higher predictive power, respectively.
14

The coe�cient on model-predicted

income is almost unchanged when controlling for these variables (column 4), showing that the

model contains information not available in these other measures. In column 5, we include model-

predicted residential income. While the two model measures are highly correlated, the positive

correlation with survey workplace income is loaded onto model workplace income. The coe�cient

on residential income is negative and less precisely estimated.

Panel (A) shows that our model-predicted income is a statistically signi�cant predictor of sur-

vey income. This is a substantial result, given that our model-predicted income only requires com-

muting matrix data extracted from cell-phone data. In some settings, wage data may be available

at some point in time or for a subset of locations within a city. In such cases, a supervised-learning

13
Given that government jobs are typically paid less yet include large non-monetary bene�ts (such as job tenure)

and are centrally located, our baseline estimation sample excludes government workers. Including them does not

substantially change our results (Appendix Table B.7).

14
Note that averaging within relatively coarse geographic areas favors the distance to CBD measure. When av-

eraging, while the range of distance to CBD remains roughly unchanged, the variance of average model-predicted

income goes down, which tends to decrease R2
.
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approach using the high-dimensional information contained in cell phone data is also possible.

We implement the supervised learning approach as follows. We randomly select half of all

survey areas as “training data," and predict survey income in the other half as “test data." We

compare two models: �rst, using OLS with model-predicted workplace income. Second, we use

elastic net regularization using 498 features extracted from cell-phone data (Blumenstock et al.

(2015) uses a similar method). (See Appendix A.5 for more details.)

Panel (B) of Table 2 reports the results. Test R2
and Training R2

indicate the average R2
in

the training data and test data over 100 random splits. Model-predicted income alone predicts

22% of the variation in the test data (column 1). The area of the tower voronoi cell, an intuitive

predictor of economic activity from cell phone data, has test R2 = 0.09 (column 2).
15

Includ-

ing all features from cell-phone data raises test R2
to 0.24, a slight improvement over just using

the model-predicted income (Column 3). This result indicates that the model-predicted income

(one statistic computed from cell phone data) summarizes nearly all information about predicting

workplace income in this context.

Here, we compare the model measure with alternate predictors within the same setting. This

helps hold constant factors such as how much underlying variation in the outcome variable there

is across locations, as well as the level of aggregation, which a�ect the value of R2
across the

board, for any explanatory variable. In this setting, we focus on the urban core of Dhaka (due

to DHUTS data availability), where prediction is signi�cantly more di�cult than if we were to

include peri-urban areas (as we do in the next section).
16

Results are robust to several alternate gravity equation speci�cations (Appendix Table B.5),

and to replacing log income from the survey with the residual after partialing out age, gender,

years of education, occupation and job sector (Appendix Table B.6). Appendix Table B.7 uses an

individual-level speci�cation and shows that our main result is robust to controlling for workplace

sorting along observable worker characteristics: origin survey area �xed e�ects, geographic area

15
Cell phone operators tend to locate more towers in locations with high activity. See Appendix Figure B.1 for

maps of tower density.

16
Indeed, the use of wider areas and more aggregate units helps explain the level of predictive power in previous

studies. Using �ne divisions (census tracts), Severen (2019) �nds that model wages estimated using commuting �ows

barely predict tract-level wages in Los Angeles. Tsivanidis (2018) calibrates and estimates a general equilibrium model

in Bogotá, and �nds that model-predicted wages across 19 urban areas predict survey wages, with an R2 = 0.36. For

machine learning methods, Blumenstock et al. (2015) �nds R2 ≈ 0.35 when restricting to 37 urban DHS clusters

in Rwanda. Jean et al. (2016) do not report results separately by urban areas. However, within entire countries,

DHS-cluster level predicted consumption explains between 0.37 and 0.55 of the variation in measured consumption.
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of destination location, travel time, and including government workers.

4.2 Model-Predicted Income and Residential Income Proxies

We next use a residential income proxy constructed from population census data to validate the

model prediction at the residential location level. Model-predicted residential income at tower i

is de�ned as

∑
j

ψ̂R
j Vij/VH

i

where j indexes workplace towers, ψ̂R
j is the area adjusted destination �xed e�ect at j, VH

i is total

residential population at i, and Vij is the commuting volume from i to j.

Table 3 shows the results in Bangladesh. Model residential income is strongly related to the

income proxy at the cell tower level (panel A). The R2 = 0.54 is high, partly because of the cover-

age of suburban areas.
17

Residential density and distance to CBD are also highly correlated with

residential income (columns 2-3).

Model income performs well at �ne spatial resolution. The coe�cient on model-predicted

residential income remains large when including sub-district �xed e�ects (55 units in Dhaka),

and when controlling for residential density, distance to CBD, as well as the model-predicted

workplace income (column 4). Residential income remains signi�cant, while workplace income

is negative and signi�cant. Once again, this indicates that residential and workplace model in-

come are correlated, yet it is encouraging that the positive correlation loads onto the residential

measure.

We next benchmark the predictive power to a supervised learning method (panel (B) Table

3). The procedure is similar to Panel (B) in Table 2. Test R2
is 0.53 when using model-predicted

income alone (column 1). The test R2
when using the cell phone tower Voronoi cell area alone is

0.68 (column 2), and the supervised-learning method using all features increases it to 0.71. Model-

predicted residential income alone achieves about 75% of the predictive power of using all the

cell-phone data metrics.

Appendix Table B.8 repeats the same exercise in Colombo, Sri Lanka. Results are similar and

model income has slightly better predictive performance (R2 = 0.77). Results are robust to using

17
The analysis covers three districts of Dhaka, Narayanganj, and Gazipur, which include suburban areas outside

the DHUTS survey areas investigated in Section 4.1.
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daily commuting �ows and to excluding neighboring towers in the de�nition of residential in-

come. Not area-adjusting destination �xed e�ects reverses the sign of the correlation with census

income proxy, because of very large cells far away from the city center (Appendix Table B.9).

As a last robustness exercise, we explore the residential income validation exercise using sur-

vey income. We do not �nd any statistically signi�cant correlation between model income and

survey income at the residential level. Residential population density and distance to CBD also

have very low R2
(≤ 0.05). This may be due to lower underlying di�erences in average income at

the residential level (compared to the workplace level) in the urban core area, and hence a more

noisy measure. Indeed, residential model income also has lower explanatory power for the census

income proxy when we restrict to towers inside the DCC urban core in Dhaka (R2 = 0.15).

5 Application: The Impact of Hartal on Commuting and Forgone Income

We illustrate how high-frequency commuting data and the detailed model-predicted income mea-

sure can be used to measure the economic impact of sudden urban shocks.

Hartals are a form of political strike that involves a partial shutdown of urban transportation

and businesses. They are common in South Asia, and especially in Bangladesh (UNDP 2005). On

hartal days, typically announced a few days in advance by unions or political groups, groups of

people enforce the transportation shutdown, especially on major roads and in certain locations.

However, the ultimate impact of hartals on travel is an empirical question, as commuters may

defy disruptions, change routes, or take advantage of the lower tra�c congestion.

We use the cell-phone data and model-predicted income to quantify how the onset of hartal

a�ects short-run commuting behavior and predicted take-home income.

Hartal dates in Dhaka are from Ahsan and Iqbal (2015). They identify 33 hartal days and we

code 6 hartal events over the 4 months in our sample.
18

The study period preceded parliamen-

tary elections and was marked by general instability, and hence hartals were more frequent than

in previous years. Hence, our results may not directly generalize to periods with lower hartal

intensity.

We use daily individual commuting data from cell phone records. The sample covers com-

muters with distinct home and work locations (towers) identi�ed with the procedure in Section

18
Unfortunately, spatial information on hartal location is not available.
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2.1, accounting for 35% of all users in the data.
19

We only observe travel behavior if a user makes

calls on a given day, and call behavior itself may di�er on hartal days. Hence, we include com-

muter �xed e�ects to ensure that our results are not driven by selection across di�erent types of

commuters. Moreover, restricting to frequent callers are almost identical (Appendix A.6).

Figure 2 shows the impact of hartal onset on the probability to commute (red, solid dots).

Hartals have a sudden negative impact, reducing commuting probability by approximately 5%

relative to the days just before. Appendix Figure A.3 shows for each calendar date, the change

in probability to commute relative to workdays. Commuting probability is lower on all hartal

days, yet not as much as on Fridays or some important holidays. Longer hartals spells have lower

impacts on average.

Figure 2 also shows the impact of hartal onset on the income forgone due to lower commuting

on hartal days. For each individual trip we assign an income as follows. From non-hartal days, we

obtain destination log wages ψ̂R
j , which we assume do not change during the study period. In other

words, we assume that workers earn a daily wage if they show up to work, and zero otherwise,

and that market wages do not change given short-term �uctuations due to hartal or other events.

Our empirical strategy does not quantify direct impacts of hartals on worker productivity, nor

long-term adaptation costs. In Figure 2, the drop in predicted take-home income is slightly larger

yet around the same magnitude as the drop in commuting (5-8%). The reduction in predicted

income is driven primarily by the extensive margin, namely fewer trips. However, the di�erence

is also statistically signi�cant, as the commuting reduction is stronger for commuters who work

in locations with high predicted wage (Appendix Table A.4).

These results show that hartal disturbances reduce travel and economic activity, yet com-

muters broadly succeed to maintain their workday travel routines on hartal days. This limits

the short-term impact of hartal on economic activity. These results are consistent with previous

studies on hartals in more speci�c settings (Ashraf et al. 2015, Ahsan and Iqbal 2015).

19
We are interested in canceled trips due to hartals, which are di�cult to observe for users with identical home

and work towers. Results with all users are qualitatively similar and smaller in magnitude.
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6 Conclusion

This paper provides a theory-based toolkit for using cell phone data to understand the spatial

distribution of economic activity in cities. This framework is especially suited to measuring and

interpreting the short-term impact of urban shocks such as �oods, lock-downs or quarantines

due to pandemics, or of transportation incidents or improvements, on commuting and economic

activity. Together with o�cials statistics, they can be used to investigate spatial discrepancies

between formal and informal economic activity.

Big data, such as cell phone or smartphone mobility records, credit card transactions, or user-

generated reviews, are rapidly gaining popularity due to their ability to predict behavior, indi-

vidual characteristics and economic conditions (Blumenstock et al. 2015, Jean et al. 2016, Glaeser

et al. 2017, Björkegren and Grissen 2018).

However, big data also contain a wealth of information regarding individual choices. This

allows researchers to apply revealed preference techniques to infer attributes of choice options,

such as workplace wages in our paper or spatial aspects of consumption behavior (Athey et al.

2018, Davis et al. 2018, Agarwal et al. 2018). We believe that this type of applications is a promising

path for using “big data” using economic tools.
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Figures and Tables

Table 1: Gravity Equation Estimation Results

Commuting Probability

(1) (2) (3) (4)

log Travel Time -2.44 -2.55 -2.19 -2.22

(0.0011) (0.0003) (0.0015) (0.0001)

City Dhaka Dhaka Colombo Colombo

Commuting Measure Home-Work Daily Home-Work Daily

Number of Destination FE 1859 1868 1201 1201

Number of Trips 1.5e+06 1.9e+07 9.4e+05 1.3e+08

Observations 3.4e+06 3.4e+06 1.3e+06 1.3e+06

Pseudo R
2

0.67 0.82 0.66 0.88

Notes. This table reports estimates of the gravity equation (3) by Poisson pseudo-maximum likelihood (PPML) method

with two-way �xed e�ects. The outcome variable is total commuting probability

(
πij
)

between a pair of cell phone

towers, computed from cell phone data and aggregated over weekdays. In Bangladesh, we exclude hartal days.

Commuting �ows are constructed from assigned home and work locations (columns 1 and 3) and using the commuting

�ows identi�ed at the daily level (columns 2 and 4) using cell phone data as described in Section 2.1. Travel time

between towers from the Google Maps API. The sample is all tower pairs with travel time between 180 seconds and

the 99th percentile. Two-way clustered standard errors at the origin and destination level are reported in parentheses.

∗p ≤ 0.10,
∗∗p ≤ 0.05,

∗∗∗p ≤ 0.01.
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Table 2: Average Workplace Income: Model Prediction and Survey Data in Dhaka

(A) Comparison with other economic indicators

log Survey Income (workplace)

(1) (2) (3) (4) (5)

log Model Income (workplace) 0.12
∗∗∗

0.11
∗∗∗

0.17
∗

(0.03) (0.03) (0.09)

log Employment Density 0.11
∗∗ −0.07 −0.06

(0.06) (0.05) (0.05)

log Dist. to CBD −0.18
∗∗∗ −0.14

∗∗∗ −0.15
∗∗∗

(0.03) (0.02) (0.03)

log Model Income (residential) −0.12

(0.15)

Adjusted R2
0.25 0.06 0.33 0.42 0.42

Observations 88 88 88 88 88

(B) Comparison with supervised learning using features derived from cell-phone data

(1) (2) (3) (4)

Features

log Model Income

(workplace)

log Tower Area All CDR Features

(3) + log Model Income

(workplace)

Training R
2

0.26 0.16 0.44 0.44

Test R
2

0.22 0.09 0.24 0.24

Observations 88 88 88 88

Notes. This table compares survey and model predictions of average workplace income. The unit of analysis is a

survey area from the DHUTS survey. The survey sample is 11,006 commuters who live and work inside the Dhaka

City Corporation, who report positive income, excluding students, homemakers, the unemployed, and government

workers. The outcome variable is the average income of survey respondents who work in a survey area, using log

income truncated at the 99th percentile. Model-predicted workplace income in survey area b is ∑j∈b yjVW
j /VW

b
where j is a cell phone tower, yj = ψ̂R

j is the area adjusted destination �xed e�ect at j, VW
j = ∑i Vij and VW

b =

∑j∈b VW
j denote workplace population in tower j and survey area b, respectively (Vij is the commuting volume from

i to j). Regressions in both panels are weighted by survey area employment population (from the DHUTS survey).

In Panel (A), the Central Business District (CBD) is Shapla Chatter in Motijheel. Conley standard errors with 5 km

distance cuto� shown in parentheses.
∗p ≤ 0.10,

∗∗p ≤ 0.05,
∗∗∗p ≤ 0.01.

In Panel (B), Test R2
and Training R2

indicate the average R2
in the training data and test data over 100 random

splits. See Appendix A.5 for the description of the supervised learning method (elastic-net regularization) and cell

phone data feature construction.

Appendix Table B.6 repeats the analysis using the residual of survey income on demographic and job characteristics.
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Table 3: Average Residential Income: Model Prediction and Residential Income Proxy in Dhaka

(A) Comparison with other economic indicators

Census Residential Income Proxy

(1) (2) (3) (4)

log Model Income (residential) 0.89
∗∗∗

0.64
∗∗∗

(0.06) (0.23)

log Residential Density 0.67
∗∗∗

0.37
∗∗∗

(0.02) (0.06)

log Dist. to CBD −0.84
∗∗∗ −0.02

(0.10) (0.11)

log Model Income (workplace) −0.35
∗∗∗

(0.13)

Sub-district FE (count) X (55)

Adjusted R2 0.54 0.63 0.33 0.74

Observations 1,844 1,844 1,844 1,844

(B) Comparison with supervised learning using features derived from cell-phone data

(1) (2) (3) (4)

Features

log Model Income

(residential)

log Tower Area All CDR Features

(3) + log Model Income

(residential)

Training R
2

0.54 0.69 0.78 0.78

Test R
2

0.53 0.68 0.71 0.71

Observations 1844 1844 1844 1844

Notes. This table compares a census proxy and model predictions of average residential income. The unit of analysis

is a cell phone tower in the greater metropolitan area of Dhaka. Income proxy is the �rst principal component of

census residential assets (weighting each census block by its area overlap with the Voronoi cell). Average model

residential (take-home) income at tower i is ∑j yjVij/VH
i where j indexes workplace towers, yj = ψ̂R

j is the area

adjusted destination �xed e�ect at j, VH
i is total residential population at i, and Vij is the commuting volume from i

to j. Regressions in both panels are weighted by tower residential population (from cell phone data). In Panel (A), the

Central Business District (CBD) is Shapla Chatter in Motijheel. Column 4 controls for 55 sub-district (thana) �xed

e�ects. Conley standard errors with 5 km distance cuto� shown in parentheses.
∗p ≤ 0.10,

∗∗p ≤ 0.05,
∗∗∗p ≤ 0.01

Panel (B) repeats the analysis in Table 2 panel (B). See Appendix A.5 for details.

Appendix Table B.8 repeats the analysis in Panel A for Colombo, Sri Lanka.
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Figure 2: Impact of Hartal on Travel Behavior and Predicted Take-Home Income

-1
0

-5
0

5

% Change

-5 -4 -3 -2 -1 start +1 +2 +3 +4

Days relative to hartal start date

Make Trip
Predicted Take-Home Income

Notes. This �gure shows the event study impact of the onset of a hartal event on the probability to commute and

on model-predicted income. The sample is based on all commuters whose long-term home and workplace towers

are di�erent (35% of all users), who travel at least once on hartal and on non-hartal days. The base analysis sam-

ple is all days with commuting data (including stationary trips). “Make trip” is a dummy for making a proper trip

(origin distinct from destination). Predicted model income is exp (ψ̂R
j /ε) for a trip to destination j, where ψ̂R

j is the

(area-adjusted) estimated destination �xed e�ect at j (our measure of log wages), and ε = 9.09 is the Fréchet shape

parameter. Predicted model income is set to zero when “Make Trip” is zero. To construct the �gure, we �rst obtain

calendar date �xed e�ects from a regression that also includes commuter �xed e�ects. We then adjust the date �xed

e�ects for the average e�ect on Friday and Saturday, and create an unbalanced panel over six hartal events. Finally,

we regress the date �xed e�ect on hartal event study time dummies. The bars represent 95% con�dence intervals

from robust standard errors. See section A.6 for details. Appendix Table A.4 reports corresponding regression results.
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A Appendix

A.1 Availability of Conventional Data on Economic Activity in Developing Countries

Fine-grained spatially disaggregated data on wages at the �rm location is rare and di�cult to

access in developing countries. For example, the Bangladesh economic census does not include

labor costs data, and we were not able to acces Sri Lanka economic census microdata.

As a case study, here we document the availability of �rm census data in Sub-Saharan Africa,

a region undergoing rapid urban growth and urban transformation. We collected data on the 27

largest countries that account for over 95% of the population in the region. Of these, 16 ever had

an economic census, 11 covered informal �rms. However, at most 4 included wage data, which

accounts for between 5.6 and 8.6% of the urban population of all countries in the sample. (The

2014 Ghana and 2015 Zimbabwe censuses included wage data, while for the ongoing censuses in

Mali and Togo we do not know if wage data was collected.)

For each country, we checked the national statistics agency website as well as the Google

Search results for the terms “economic census,” “�rm census,” “establishment census,” “enterprise

census,” and “business registry,” in English, French or Portuguese. We could not �nd o�cial census

reports for Ethiopia and Zambia, while the Mali and Togo censuses are still ongoing. Detailed re-

sults available upon request. Data on urban population from https://en.wikipedia.org/wiki/Urbanization_

by_country and https://en.wikipedia.org/wiki/List_of_sovereign_states_and_dependent_territories_in_Africa.

A.2 Model Extension: Worker Heterogeneity in E�ective Labor Supply

In Section 3, we assumed that workers are ex-ante identical. However, in appendix table B.6, we

measure the model’s predictive power after netting out individual demographic characteristics

from survey income. Here, we show how this validation regression arises directly in a speci�c

model with worker heterogeneity.

Assume that worker ω supplies ξω e�ective units of labor. ω′s income from working in j
is ξωWj instead of simply Wj. Otherwise, workers have the same disutility of commuting, and

face the same pro�le of wages. This implies that workers living at the same location i face the

same workplace location choice, regardless of ξω. Hence, in aggregate, the gravity equation (2)

continues to hold unchanged.

However, the average ξω of commuters working in j a�ects average income at that location.

Hence, the correct validation regression should control for average ξω at location j from individual

income. To the extent that ξω depends on observable characteristics (gender, age, education level,

occupation, job sector), this is exactly what the speci�cation in Appendix Table B.6 achieves.

A.3 Structural Estimation: How Much do Individual Shocks and Travel Time A�ect Income

In the main analysis, we assume that an agent earns income directly proportional to her wage.

Formally, the Fréchet shocks Zijω and travel time Dij a�ect utility but not income. Here, we

relax this assumption and allow Zijω and Dij to partly a�ect income; for example, they may a�ect

https://en.wikipedia.org/wiki/Urbanization_by_country
https://en.wikipedia.org/wiki/Urbanization_by_country
https://en.wikipedia.org/wiki/List_of_sovereign_states_and_dependent_territories_in_Africa
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productivity or labor supply. We derive a transparent method that allows survey income data to

speak as to the role of shocks and travel time for income.

Model. Assume that income is given by Yαz,αd
ijω = WjZ

αz
ijωD−ταd

ij , where αz,αd ∈ [0,1] respec-

tively control the extent to which the shocks Zijω and travel time Dij a�ect income. For example,

when αz = 1 and αd = 0, shocks a�ect utility and income equally, while travel time only a�ects

utility. We derive formulas for expected income in the following four extreme extreme cases:

Ey0,0
ijω = wj

Ey0,1
ijω = wj − τdij

Ey1,1
ijω =

1
ε

log

(
∑

s
exp (εws − ετdis)

)
− K

ε
for some absolute constant K

Ey1,0
ijω = Ey1,1

ijω + τdij

(5)

When neither shocks nor travel time a�ect income, income is simply the destination wage.

In the second case, travel time fully a�ects labor earnings. When the shocks Zijω a�ect income,

as in the third and fourth cases, log income for a worker commuting between i and j depends on

the distribution of the shock conditional on destination j being chosen. By virtue of the Fréchet

distribution, the conditional distribution yijω|j ∈ argmaxs Uisω is also Fréchet with the same

shape parameter ε and scale Ti = ∑s Tis = ∑s
(
WsD−τ

is
)ε

. In particular, this distribution only

depends on the origin i and thus expected log income is the same for all destinations j.
In the general case, log income is a convex combination of the four extreme cases described

above:

yαz,αd
ijω = αzαd · y1,1

ijω + αz (1− αd)y1,0
ijω + (1− αz)αd · y0,1

ijω + (1− αz) (1− αd)y0,0
ijω. (6)

Using (5) and dropping the constant K, this simpli�es to

Eyαz,αd
ijω =

αz

ε

[
log

(
∑

s
exp (εws − ετdis)

)
+ ετdij

]
+

1− αz

ε

[
εwj
]
+

αd
ε

[
−ετdij

]
(7)

The intuition of this expression is as follows. For the third term, if travel time a�ects income,

we expect that people who commute further away have lower income. The di�erence between

the �rst two terms is more subtle. If Fréchet shocks a�ect income, then the �rst term is the best

explanatory variable for income.
20

If shocks do not a�ect income, the wage at the destination

should be the best predictor of income.

Estimating Parameters αz,αd,ε. We are now in a position to estimate the parameters αz, αd

and ε. Speci�cally, we estimate by OLS the equation:

yS
ijω = ρ1X̂1

ij + ρ2X̂2
j + ρ3X̂3

ij + εS
ijω, (8)

where yS
ijω is survey-based income of commuter ω who lives at i and works at j, and

20
The �rst term is analogous to the market access term in gravity trade literature, except that it includes the

compensation income from commuting cost in utility.
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X̂1
ij = log

(
∑s exp

(
ψ̂s − β̂dij

))
+ β̂dij, X̂2

j = ψ̂j and X̂3
ij =−β̂dij are estimators of the three terms

in square brackets in (7), computed using the gravity equation estimates. (Recall that ψ̂j is a

consistent estimator for εwj, and β̂ is a consistent estimator for ετ.) Asymptotically, we have

α̂z =
ρ̂1

ρ̂1 + ρ̂2
, α̂d =

ρ̂3

ρ̂1 + ρ̂2
, and ε̂ =

1
ρ̂1 + ρ̂2

. (9)

Table A.1 reports the estimates of αz, αd, and ε based on estimating equation (8) with OLS, and

using transformation (9). We report two types of standard errors: based on the Delta method (in

round parentheses) and based on bootstrapping at the origin survey area level (in square paren-

theses). In columns 1-2, we estimate the full equation (8), and we �nd that α̂d is close to zero

with a small and insigni�cant negative value, and the other parameters are imprecisely estimated

when using bootstrapped standard errors. Given that the model restricts ρ3 ≥ 0 (from αd ∈ [0,1]),
in columns 3-4 we restrict the coe�cient on travel time to be equal to zero (ρ3 = 0) and estimate

the other two parameters. This increases the point estimate for α̂z and slightly lowers that for ε̂

while improving precision.

These results show that idiosyncratic shocks partly a�ect income, while travel time is most

consistent with a pure utility cost.

Table A.1: How Pref. Shocks and Travel Time A�ect Income: Estimated Structural Parameters

(1) (2) (3) (4) (5)

Full model

Constrained model
(αd = 0)

Shock productive αz 0.21 -0.10 0.27 0.56 0.55

(0.05) [4.68] [0.26] (0.10) [0.10]

Shock distance αd -0.57 -1.09 0.03 0 0

(0.50) [7.89] [0.07]

Shape parameter ε 12.84 16.97 11.85 9.09 9.11

(7.59) [60.25] [3.80] (1.16) [1.36]

Observations 10,947 10,947 10,947 10,947 10,947

Bootstrap clusters 71 71 71

Notes. This table reports estimates of the structural parameters that control the degree to which idiosyncratic shocks

a�ect income (αz), travel time a�ects income (αd), and the Fréchet shape parameter ε, using the procedure described

in Appendix A.3. We estimated equation (8) by regressing individual log survey income from the DHUTS survey on

the three model-predicted terms. In columns 4 and 5, we restrict the third coe�cient that corresponds to travel time

to be zero (ρ3 = 0). The estimates for αz, αd and ε in this table are transformations of the estimated OLS coe�cients

as detailed in equation (9). Columns 1 and 4 report standard errors computed using the Delta method. Columns 2, 3,

and 4 report results from 100 bootstrap runs where we cluster at the origin survey area level (70 survey areas with

at least one out-commuter in DHUTS survey). The coe�cient is the median estimate and standard errors in square

parentheses. Column 3 censors ρ̂1 ≥ 0 and ρ̂2 ≥ 0.
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A.4 Model: Approximate Invariance to Aggregation Level

The model has a general (approximate) invariance property with respect to the level of geographic

aggregation, both at the origin and at the destination level.

At the origin level, the model is approximately invariant with respect to the origin aggregation

level, because the basic discrete choice problem is individual speci�c.

At the destination level, the aggregation level a�ects the interpretation of wages Wj in a

straight-forward way. Assume that location j is in fact composed of several sub-locations k1,k2, ...,kNj ,

and we estimate the model at the higher level (j) and ignore the sub-locations. The wage we obtain,

Wj =
(

∑
Nj
`=1 Wε

k`

)1/ε
, represents a C.E.S. aggregate with elasticity ε of the true underlying wages

at all sub-locations within j. (This is easy to prove using the standard properties of the Fréchet dis-

tribution.) In particular, this implies a simple adjustment for the destination �xed e�ect ψj = εwj

estimated using the gravity model. Assume that the “real” underlying wage is constant and de-

noted by WR
j within each location j, then the C.E.S. relationship becomes Wj = N1/ε

j WR
j , or in

logs the underlying wage is given by wR
j = w1/ε

j − log(Nj). In terms of estimated quantities, this

becomes ψ̂R
j = ψ̂j − log

(
Nj
)
. The underlying destination �xed e�ect ψ̂R

j is obtained from the

�xed e�ect ψ̂j, estimated ignoring sub-locations, minus an adjustment factor equal to the log of

the number of true underlying locations where shocks are realized, Nj. This relationship is ex-

act if the distances between each sub-location in location j and all other locations do not depend

on the sub-location. Redding and Weinstein (2019) derive an exact relationship by using all the

distance pro�les in the context of gravity equations of trade models.

A.5 Details of Supervised-Learning Approach in Section 4

In Section 4, we compare the predictive power of a single model-predicted income measure, and

of a supervised learning approach that uses multiple features derived from cell phone data. This

appendix describes the details of the supervised-learning approach.

The main steps of our procedure as as follows. We begin by computing a large set of cell

phone tower-level metrics from cell phone data. Following Blumenstock et al. (2015), we then

use elastic net regularization (Zou and Hastie 2005) to �t a linear model without over-�tting the

data. We then assess the predictive power on a hold-out testing sample. The rest of this section

explains the details of feature construction, model �tting and hyper-parameter calibration, and of

the comparison with the model-predicted income measure.

A.5.1 Extracting a Large Set of Quantitative Metrics from Cell-Phone Data

To construct our set of features from cell phone data, whenever the data allows we closely follow

Steele et al. (2017), who use cell phone data to map poverty in Bangladesh. We then add additional

hour-and-location level metrics.
21

To capture the nonlinear patterns, for each variable described

21
Note that, our cell phone data from Bangladesh only record outgoing calls, hence transactions refer to all out-

going calls only.
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below, we include both the variable and its logarithm. Altogether, we have 498 tower-level features

from this procedure.

User-level characteristics averaged at home and work locations. The �rst set of features are

constructed as the average statistics of users at the identi�ed home and work location level. We

construct the following statistics for each user for the entire sample period.

1. Number of transactions

2. Number of places: unique number of towers that the user ever visits

3. Radius of Gyration: the sum of squared distances from each visited tower (each transaction)

to the centroid of all visited towers

4. Entropy of places: −∑i∈Ni
Pi log Pi, where Pi is the fraction of transactions at tower i, and

Ni is the set of all towers visited by i

For each tower, we then take the average of these metrics, once for all users for whom this

tower is their home location, and once for all users for whom this tower is their work location.

Altogether, we obtain 8 metrics (4 metrics × 2 (home and work)).

Hourly statistics at the tower level. The second set of features are constructed for each hour of

the day and tower level. We �rst compute the following statistics for each tower, date and hour:

1. Number of transactions

2. Number of unique users who made transactions

3. Average travel time distance to home locations of users who made at least one transaction

at the tower on the speci�ed date and hour

4. Average travel time distance to work locations of users who made at least one transaction

at the tower on the speci�ed date and hour

5. Average duration of calls

We then aggregate these statistics at the tower level, separately for weekends and weekdays

(excluding Hartal days). Together, we have 240 (5 metrics × 24 hours × 2 (weekdays/weekends))

features.

Tower areas. The last statistic is the geographic area of the voronoi cell that contains the tower.

We choose this statistic as a particularly compelling predictor of economic activity because cell

phone operators tend to strategically locate towers at a high spatial frequency in areas where they

expect high (cell phone) activity.

Our �nal set of cell phone features includes all the variables above, and for each one, its loga-

rithm. In total, we have 498 features (2 × (8+240+1)).

A.5.2 Elastic Net Regularization for Relevant Feature Selection

Given the large number of features (or variables) relative to the size of the data, our next step is

to use a supervised learning model that has good out-of-sample predictive power and does not



30

over�t the training data set. Following Blumenstock et al. (2015), we use elastic net regularization,

which is a regularized linear regression method that minimizes the sum of squared deviations

from a linear model, minus a penalty term. The penalty term is the sum of an absolute value or

L1
penalty (as in LASSO regression) and a quadratic or L2

penalty (as in ridge regression):

λ
p

∑
j=1

(αβ2
j + (1− α)|β j|) (10)

where β j is the coe�cient on feature j, and λ and α are hyperparameters.

We implement the elastic net regularization in the following steps. First, we randomly select

50% of our survey areas as our “training data," and predict the survey income of the remaining

survey areas as “test data." Second, we implement the elastic net regularization to select relevant

features and �t the model. Third, we assess the predictive performance of the model in the test

data. Our primary measure is test R2
, de�ned by the sum of squared prediction error divided by

the total sum of squares. Lastly, we repeat this exercise 100 times, and report the average test R2

(as well as the training R2
).

Our baseline results use α = 0.5. We show in robustness exercises below that this parameter

choice does not signi�cantly a�ect our results. For λ, a typical strategy used in the literature

is cross-validation. Due to the very small sample (88 observations), this does not perform well

in our case. Instead, we select λ to maximize the R-squared in the test data over 100 random

splits of the data into training and test. Given that we are using the test data for choosing λ, the

predictive power we obtain is likely an upper bound of the true predictive power. Below, we show

that choosing λ based on cross-validation within the training data set performs worse (for survey

workplace income prediction).

A.5.3 Additional Robustness Results with DHUTS Survey Workplace Income

Hyperparameter λ using cross-validation. Here we replicate Table 2 panel (B) where the elastic

net hyperparameter λ is computed via cross-validation. For each iteration of splitting the training

and test data set, we further split the training data set into N folds. Within these N set of samples,

we repeat training the data with N − 1 subsets and predict the in remaining subset. We repeat

this procedure N times, and compute the sum of squared prediction residuals. We choose λ that

minimizes the prediction error, and we use the chosen λ to once again train the model with the

entire training data set, and evaluate the predictive performance using the test data set.

Table A.2 reports the results. Column (1) is the OLS prediction with the model-predicted

income, and Columns (2)-(7) are the results of the elastic net using all cell phone data features.

Column (2) simply reproduces Panel (B) of Table 2 where λ is chosen to maximize the test R2
.

Columns (3)-(7) show the results when we choose λ based on di�erent number of folds for cross-

validation.
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Table A.2: Predicting Workplace Income: Choosing Hyperparameter with Cross-Validation

(1) (2) (3) (4) (5) (6) (7)

OLS

(log Model Income)

Elastic Net

(All CDR Features)

Maximize Test R
2

CV CV CV CV CV

Training R
2

0.26 0.44 0.44 0.48 0.50 0.51 0.53

Test R
2

0.22 0.24 0.19 0.18 0.13 0.16 0.12

Number of Folds for CV 3 5 10 20 44

Observations 88 88 88 88 88 88 88

Columns (3)-(7) show that the test R2
falls when we use the cross-validation procedure for

choosing λ. In fact, test R2
is lower than the OLS with model-predicted income. At the same time,

training R2
is higher than in columns (1) and (2), suggesting that poorer predictive performance

is likely due to over�tting. Over�tting is unavoidable given the small sample size.
22

Hyperparameter α robustness. Table A.3 shows the results where we choose di�erent weights

α of the L1
and L2

penalty regularization terms. α = 1 assigns all weight to the L2
norm, which

is equivalent to the ridge regression. α = 0 assigns all weight to the L1
norm, which is equivalent

to LASSO. Note that our baseline result in Panel (B) of Table 2 was based on α = 0.5. The results

indicate that the predictive performance is lower for α = 0, but stays the same for all other values

of α.

Table A.3: Predicting Workplace Income: Di�erent Weights for L1
and L2

Penalty Terms

(1) (2) (3) (4) (5) (6)

OLS

(log Model Income)

Elastic Net

(All CDR Features)

Training R
2

0.26 0.61 0.53 0.44 0.50 0.45

Test R
2

0.22 0.17 0.24 0.24 0.24 0.23

α 0 0.25 0.5 0.75 1

Observations 88 88 88 88 88 88

A.6 Additional Results for the Impact of Hartal on Commuting and Forgone Income

In order to construct the predicted income (up to scale), we need to choose the Fréchet parameter

ε. We use ε = 9.09, our estimate from the structural estimation method (Appendix A.3). The

22
Indeed, for the residential asset prediction (where the sample size is over 1,000) the cross-validation and choosing

λ to maximize the test R2
perform similarly (not reported).
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regression coe�cient from Table 2 of log survey income (measuring ωj) on the destination �xed

e�ect (εωj) implies a very similar number (ε̂ = 8.3 = 0.12−1
). Since we are interested in changes

in income during hartal days, the scale of ψ̂R
j , which is not identi�ed, does not matter for this

exercise. Finally, note that results are not particularly sensitive to the value of ε. Indeed, they are

very similar using ε = 4.65, which sets the variance of average income at the commuting zone

level to the value in the DHUTS data (results not reported).

The event study in Figure 2 is constructed as follows. First, we compute calendar date �xed

e�ects using the regression Xct = ψt + µc + εct where c denotes a commuter, t denotes a calendar

date, and Xct is the outcome of interest. (Appendix Figure A.3 plots these �xed e�ects, normalized

as percentage changes relative to the mean of the outcome variable on non-hartal, non-holiday

workdays.) Next, we adjust the date �xed e�ects by the average di�erences on Friday (the main

free day in Bangladesh) and Saturday (the other weekend day). We exclude holidays from the

sample, as well as the 5 days in the sample that are both hartal and weekend. Lastly, we construct

hartal “onset” events. We require at least two days between hartal events, which leads to a sample

of six hartal onset events (see the thin vertical red lines in Figure A.3). We use an unbalanced

panel pooling the six hartal events. For each event, we include up to 5 days prior to the �rst hartal

day, excluding holidays. If another hartal takes place in this preceding period, we exclude it and

all previous days. We include all consecutive hartal days after it starts.

Figure A.3: Commuting by Calendar Date (Hartals, Holidays and Weekends)
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Notes. This �gure shows average commuting probability by calendar date. The Y axis plots the percentage change

relative to the mean on non-hartal, non-holiday workdays. The sample and outcome are as in Panel A, Column

1 in Table A.4. The �gure plots calendar date �xed e�ects from a regression of any trip commuting dummy on

commuter and calendar date �xed e�ects. Hartal dates are from Ahsan and Iqbal (2015) and public holidays from

https://www.timeanddate.com/holidays/bangladesh/. The red vertical lines indicate hartal event onset date for the

six hartal events. Friday is the main free day in Bangladesh, and Saturday is the other weekend day. August 2 is

Jumatul Bidah, August 6 is Shab-e-qadr, August 9-12 is the Eid ul-Fitr (end of Ramadan), August 15 is the National

Mourning Day, August 28 is Janmashtami, November 14 is Ashura, December 16 is Victory Day, and December 25th

is Christmas Day. The last week in December preceded the General Election of January 5, 2014. Five days in the

sample are both hartal and weekend: August 13, September 18, November 4, 10, and 27, and December 15. We drop

these throughout the analysis.

https://www.timeanddate.com/holidays/bangladesh/
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Table A.4, panel A reports the average e�ect of hartal and heterogeneity by high-wage work-

place and commute duration. Given that users may travel to di�erent destinations on di�erent

days, in this table we use two de�nitions of commuting. The outcome in odd columns is a dummy

for any proper trip (a trip with di�erent origin and destination towers), while in even columns it

is a dummy for proper trip going to the commuter’s long-term workplace. To facilitate interpre-

tation, all coe�cients indicate proportional changes relative to the outcome mean on workdays.

The speci�cation in the �rst two columns is:

yct = βH Hartalt + βFFridayt + βSSaturdayt + βHoHolidayt + µc + γMonth(t) + εct (11)

for commuter c and calendar date t, where Hartalt, Fridayt, Saturdayt and Holidayt are date

type dummies, and µc and γMonth(t) are commuter and month �xed e�ects. Throughout Table

A.4, standard errors are clustered at the level of calendar dates.

Hartal days reduce any trip by around 5%, compared to a 14% reduction on Fridays. Work

trips (daily trips where the destination corresponds to the user’s long-term workplace) account for

around 40% of all trips, and they decrease by 8% on hartal days and by 42% on Fridays. Hence,

work trips are disproportionately a�ected on Fridays. This suggests a limited “destination selec-

tion” e�ect of hartals; commuters do not switch a lot to traveling to lower-wage destinations. In

columns 3-4, we fully interact the model with an indicator for whether the commuter’s long-term

workplace location is below median in the predicted wage distribution. High-income commuters

see large decreases in trips, both on hartal days and especially on Fridays. For work days, the

hartal e�ect for high-income commuters is almost twice as large as for low-income commuters.

Columns 5-6 document that this heterogeneity is not driven by heterogeneity in commute dura-

tion.

We now conduct an accounting exercise to estimate the income forgone due to lower com-

muting on hartal days. To do so, for each individual trip we assign an income as follows. First,

we run our procedure on non-Hartal days and obtain predicted destination log wages ψ̂R
j , which

we assume do not change during the study period. In other words, we assume that workers earn

a daily wage if they show up to work, and zero otherwise, and that market wages do not change

given short-term �uctuations due to hartal or other events. Hence, our empirical strategy does

not quantify direct impacts of hartals on worker productivity, nor long-term adaptation costs.

As before, we assign income in two di�erent ways. With the �rst method (“all trips”), for a

proper trip from i to j 6= i, the commuter “earns” the wage exp (ψ̂R
j /ε), and zero for trips with

i = j. This is meant to capture the fact that workers may earn income from di�erent destinations

on di�erent days. In the second method (“work trips”), the commuter “earns” exp (ψ̂R
j /ε) only if

the destination j is her long-term workplace location. The assigned income is zero when i = j or

when i 6= j but j is not her long-term workplace.

The results show that the drop in predicted take-home income is around the same magnitude

as the drop in commuting (5-8%). These results show that most of the reduction in predicted

income is driven primarily by the extensive margin, namely fewer trips.
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As robustness, restricting the sample to frequent callers, de�ned as those who have commuting

data on at least half of all days (61 out of 122 days), who account 8.3% of all commuters in the

sample, does not substantially change the results. The results from Table A.4 change as follows:

�rst, the number of observations becomes ≈ 6 million. Second, in panel A, the coe�cients on

Hartal become−0.040 and−0.049 in the �rst two columns. Third, in panel B, the coe�cients on

Hartal become −0.046 and −0.051 in the �rst two columns.

Table A.4: Impact of Hartal on Travel Behavior, Workplace Attendance, and Predicted Income

(1) (2) (3) (4) (5) (6)

All Coe�cients: Proportional Change From Workday Mean

All Trips Work Trips All Trips Work Trips All Trips Work Trips

Panel A. Make a Trip

Hartal −0.049
∗∗∗ −0.081

∗∗∗ −0.054
∗∗∗ −0.102

∗∗∗ −0.053
∗∗∗ −0.100

∗∗∗

(0.007) (0.016) (0.008) (0.019) (0.008) (0.019)

Friday (free day) −0.142
∗∗∗ −0.423

∗∗∗ −0.173
∗∗∗ −0.542

∗∗∗ −0.175
∗∗∗ −0.558

∗∗∗

(0.010) (0.023) (0.011) (0.029) (0.011) (0.030)

Hartal x Low Income 0.011
∗∗∗

0.045
∗∗∗

0.011
∗∗∗

0.046
∗∗∗

(0.003) (0.010) (0.003) (0.010)

Friday x Low Income 0.067
∗∗∗

0.253
∗∗∗

0.066
∗∗∗

0.247
∗∗∗

(0.005) (0.016) (0.005) (0.016)

Hartal x Short Commute −0.008
∗∗∗ −0.014

∗∗∗

(0.001) (0.003)

Friday x Short Commute 0.010
∗∗∗

0.121
∗∗∗

(0.001) (0.005)

Observations 26,165,887 26,165,887 26,165,887 26,165,887 26,165,887 26,165,887

Workday Mean 0.74 0.32 0.74 0.32 0.74 0.32

Panel B. Predicted Income

Hartal −0.056
∗∗∗ −0.084

∗∗∗

(0.009) (0.016)

Friday (free day) −0.180
∗∗∗ −0.439

∗∗∗

(0.012) (0.023)

Observations 26,165,887 26,165,887

Notes. This table shows di�erences in travel probability and predicted income on hartal days and Fridays relative

to workdays. All coe�cients show proportional changes relative to the outcome mean on non-hartal, non-holiday

workdays. The sample is all days with commuting data (including stationary trips) for commuters whose long-term

residential and workplace towers are di�erent (35% of all users). For commuter c on calendar date t, denote their trip

origin by ict, destination by jct, and c’s long-term workplace by jWc . In panel A, the outcome is a dummy for proper

trip (jct 6= ict) in odd columns, and a dummy for proper workplace trip (jct = jWc 6= ict) in even columns. In panel

A columns 3-6, we fully interact the model with dummies for low-wage commuters (c’s long-term workplace wage

ψ̂R
jWc

is below-median) and short-commute commuters (c’s travel time between long-term home and work is below-

median). In panel B, the outcome is predicted income; in the �rst column, commuters earn the destination wage

exp
(

ψ̂R
jct

/ε
)

for any proper trip and zero otherwise. In the second column, commuters earn positive income only

when ict 6= jct = jWc and zero otherwise. In both cases, the gravity equation is estimated on non-hartal weekdays, and

we use the Fréchet shape parameter set to ε = 9.09 (see section A.6 for details). All regressions include commuter

and month �xed e�ects, and dummies for Saturday and holidays. Standard errors clustered at the calendar date level

in parentheses.
∗p ≤ 0.10,

∗∗p ≤ 0.05,
∗∗∗p ≤ 0.01
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B Additional Figures and Tables

B.1 Cell-Phone Data and the Validation of Commuting Flows

Figure B.1: Administrative Units and Cell Phone Voroni Cells in Dhaka

(A) Dhaka

Study Area

Voronoi cells

Central Dhaka

CBD

(B) Colombo

Study Area

Voronoi Cells

Subdistricts

CBD

Notes. This �gure shows the map of cell phone tower Voronoi cells in Dhaka, Bangladesh (Panel A), and in Colombo,

Sri Lanka (Panel B). The yellow shaded area is the Dhaka City Corporation (DCC), the urban core of Dhaka, the

main sample in the DHUTS transportation survey. The overall study area covers for Dhaka are three districts in

Bangladesh: Dhaka, Gazipur, and Narayanganj, and the entire Western Province in Sri Lanka. The Voronoi cell of a

tower is the locus of all points closer to that tower than to any other tower.
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Table B.1: Cell Phone Data Coverage at User-Day Level

Dhaka, Colombo,

Bangladesh Sri Lanka

Panel A. Home-Work Commuting Flows
(1) Unique users 5.1e+06 3.0e+06

(2) Users with home and work towers 4.9e+06 2.6e+06

(3) Users (distinct home and work towers) 1.6e+06 9.9e+05

(4) Users (gravity equation sample) 1.5e+06 9.4e+05

Panel B. Daily Commuting Flows
(5) Unique users 3.6e+06 3.0e+06

(6) Weekdays in sample 87 282

(7) All user-days possible (= (5)× (6)) 3.1e+08 8.4e+08

(8) User-days with data (daily trips) 3.8e+07 2.4e+08

(9) Coverage rate (= (8)/(7)) 12.4% 28.1%

(10) Trips (distinct origin and destination towers) 2.1e+07 1.4e+08

(11) Trips (gravity equation sample) 1.9e+07 1.3e+08

Notes: This table describes data coverage in the two countries. Panel A reports the number of commuters based on

our home-work classi�cation. Row 1 indicates the number of commuters with at least one home tower (based on

calls between 9pm and 5am) or at least one work tower (based on calls between 10am and 3pm). Row 2 indicates

the number of commuters with both home and work towers. Row 3 restricts to distinct towers, and row 4 to our

baseline gravity equation estimation sample, towers more than 180 seconds away and closer than the 99th percentile

of the duration distribution. Panel B reports information about daily commuting trips. A daily trip is a pair of

origin and destination towers visited by the same user during a single day, in the intervals 5am-10am and 10am-3pm,

respectively. Row 5 indicates the number of unique users who have at least one trip on a weekday. (We do not have

this number for Sri Lanka so we use the number of users from row 1.) Row 6 is the number of calendar weekdays in

the data. Row 7 is the product of the previous two, which is the theoretical upper bound of user-day combinations

that could appear in the data. (Note that in practice some users only start using a cell phone partway through the

period, so this is an overestimate.) Row 8 describes the actual number of daily trips. Row 9 reports coverage for daily

trips. Rows 10 and 11 replicate rows 3 and 4 for daily trips.
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Figure B.2: Commuting Flows from Survey Data and Cell Phone Data

Panel (A) Survey vs Cell Phone Data
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Notes. This �gure compares the decay of commuting �ows with travel time in survey and cell phone data. The unit

of analysis is 7,836 survey area pairs in Panel A, and 1.6 · 106
and 1.4 · 106

tower pairs in Dhaka and Colombo in

Panel B, respectively. Panel A compares commuting �ows from the DHUTS survey (red, dash) and from cell phone

data (blue, solid) in Dhaka. Panel B compares daily commuting trips (blue, solid) and home-work commuting trips

(black, dash). See Section 2.1 for the de�nition of home-work and daily commuting trips. In each graph, commuting

�ows are �rst averaged within each of 100 equal bins of log travel time below the 99th percentile, and the plot shows

the local linear regression of log mean commuting �ow on log travel time. This procedure avoids the bias due to zero

commuting �ows, which is important for survey and home-work commuting data. The DHUTS sample (described in

Table B.2) has 12,510 commuters. The cell phone data sample has 18 · 106
trips in Panel A, and 38 · 106

daily trip and

5.2 · 106
for home-work trips in Dhaka, and 237 · 106

daily trips and 2.6 · 106
home-work trips in Colombo, in Panel

B. In Panel A, pointwise bootstrapped 95% con�dence intervals clustered at the origin survey area shown in gray.
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Table B.2: Comparison of Commuting Flows from Survey Data and Cell Phone Data

Flow survey data (DHUTS)

(1) (2) (3) (4)

Log �ow cell phone data 0.63
∗∗∗

0.70
∗∗∗

0.30
∗∗∗

0.53
∗∗∗

(0.020) (0.026) (0.059) (0.049)

Log duration -1.05
∗∗∗

-0.51
∗∗∗

(0.17) (0.11)

Origin and destination

�xed e�ects Yes Yes

Observations 6026 6026 6026 6026

Notes: This table shows the relationship between commuting �ows from two di�erent data sets in Dhaka: the DHUTS

transportation survey (outcome) and home-work comuting �ows from cell phone data (explanatory variable). The

survey sample consists of the 12,510 commuters who live and work within the 90 survey areas inside the DCC and

who report positive income from work, excluding students, homemakers, and the unemployed. (The sample includes

government workers.) An observation is a pair of survey areas from the DHUTS survey. The coe�cients show the

estimates from the Poisson pseudo-maximum-likelihood (PPML) estimation of DHUTS commuting �ow on log �ows

from cell phone. We use PPML to deal with the presence of zeros in DHUTS commuting �ows (Silva and Tenreyro

2006). If cell phone commuting �ow data is a perfect measure of commuting �ows, one would expect coe�cients

equal to one. Standard errors are clustered at the origin survey area level.
∗p ≤ 0.10,

∗∗p ≤ 0.05,
∗∗∗p ≤ 0.01.

Table B.3: Comparison of Residential Population from Cell Phone Data and Population Census

log Residential Density
(cell phone)

log Residential Population
(cell phone)

(1) (2) (3) (4)

log Residential Density 1.16
∗∗∗

1.16
∗∗∗

(census) (0.03) (0.14)

log Residential Population 0.57
∗∗∗

0.40
∗∗∗

(census) (0.07) (0.04)

City Dhaka Colombo Dhaka Colombo

Observations 1,866 1,201 1,866 1,201

Adjusted R
2

0.61 0.49 0.25 0.24

Notes: This table shows the representativeness of the cell phone data at the residential level. The unit of analysis

is a Voronoi cell around each cell phone tower in the greater metropolitan area of each city (Dhaka, Gazipur, and

Narayanganj districts in Bangladesh, and Western Province in Sri Lanka). In cell phone data, residential population is

de�ned as out-commuting �ow, namely the total number of commuting trips from a given origin excluding stationary

trips (including them yields virtually identical results). Census residential population in a Voronoi cell is computed

as the average census population in census geographic units (Mauza for Bangladesh, Grama Niladhari for Sri Lanka),

weighted by their area overlap with the Voronoi cell. The high adjusted R-squared in columns (1) and (2) indicates

a strong association between the geographic density from the two data sources. The slope above one indicates that

the cell phone data slightly over-represents residential population in denser areas. The comparatively lower adjusted

R-squared in columns (3) and (4) may be due to the fact that cell phone operators tend to assign cell phone towers to

equalize the subscriber coverage per tower. Conley standard errors with 5 km distance cuto� shown in parentheses.

∗p ≤ 0.10,
∗∗p ≤ 0.05,

∗∗∗p ≤ 0.01.
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B.2 Estimation of Gravity Equation

Table B.4: Gravity Equation Robustness: Destination Fixed E�ects

Destination Fixed E�ects (Benchmark)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dest FE (Daily Flows) 0.98
∗∗∗

1.09
∗∗∗

(0.01) (0.01)

Dest FE (Full Sample) 0.95
∗∗∗

1.03
∗∗∗

(0.01) (0.01)

Dest FE (OLS with log(volume)) 3.58
∗∗∗

3.20
∗∗∗

(0.04) (0.04)

Dest FE (OLS with log(volume + 1)) 7.06
∗∗∗

5.32
∗∗∗

(0.11) (0.12)

Dest FE (Travel Time with Congestion) 0.98
∗∗∗

(0.003)

Estimation Method PPML PPML OLS OLS PPML PPML OLS OLS PPML

City Dhaka Dhaka Dhaka Dhaka Colombo Colombo Colombo Colombo Colombo

Observations 1,859 1,859 1,859 1,859 1,201 1,201 1,201 1,201 1,201

Adjusted R
2

0.92 0.88 0.81 0.68 0.92 0.87 0.82 0.62 0.99

Notes. This table compares destination �xed e�ects computed under di�erent assumptions. The outcome in the

�rst four (last �ve) columns is the destination �xed e�ects from the �rst (third) column in Table 1. Each row uses

destination �xed e�ects (FE) from the gravity equation estimated di�erently. The (destination FE estimated in the)

�rst row uses daily commuting �ows (columns 2 and 4 in Table 1). The second row uses all tower pairs below the

99th percentile of the travel time including same-tower pairs (which account for over half of all commuting �ows),

with travel time censored from below at 180 seconds. The third row estimates the gravity equation by OLS dropping

all tower pairs with zero commuting �ows (to allow for logarithms). The fourth row estimates the gravity equation

by OLS using log commuting �ow plus one as outcome. The last row uses the travel time from Google Maps query

with tra�c congestion taken into account. (The query for Sri Lanka was sent for 8am on Friday, August 26, 2016,

one month prior to this date.) Most coe�cients are close to 1 and the R2
is above 0.8, except for the third and fourth

rows. High regression coe�cients of the third and fourth rows indicate that the destination e�ects are �atter if we

estimate the gravity equation by OLS. This leads to a �atter pro�le of destination �xed e�ects. Omitting zero �ows

results in overestimation of destination �xed e�ects for locations with low wages (in third row). Incorporating the

zero �ows by arbitrarily adding one does not solve this issue. Standard errors in parentheses.
∗p≤ 0.10,

∗∗p≤ 0.05,

∗∗∗p ≤ 0.01.

B.3 Validation of Workplace Income with DHUTS Survey Workplace Income
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Table B.6: Average Workplace Income: Survey Income Residualized by Demographic Character-

istics

log Survey Income (workplace, residual)

(1) (2) (3) (4) (5)

log Model Income (workplace) 0.06
∗∗∗

0.06
∗∗∗

0.10
∗

(0.01) (0.02) (0.05)

log Employment Density 0.06
∗∗ −0.04 −0.03

(0.03) (0.03) (0.03)

log Dist. to CBD −0.08
∗∗∗ −0.05

∗∗∗ −0.06
∗∗∗

(0.02) (0.02) (0.02)

log Model Income (residential) −0.06

(0.10)

Adjusted R2 0.2 0.05 0.17 0.27 0.26

Observations 88 88 88 88 88

Notes. This table replicates Panel A, Table 2 replacing log survey income by the residual of log income on gender,

age, years of education, occupation and job sector dummies. See the footnote of Table 2 for the speci�cation.
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Table B.7: Individual Income: Model Predictions and Survey Data

log Survey Income

(1) (2) (3) (4)

Model log Income (workplace) 0.11
∗∗∗

0.04
∗∗∗

0.03
∗∗∗

0.02
∗∗

(0.02) (0.01) (0.01) (0.01)

log Travel Time 0.12
∗∗∗

0.13
∗∗∗

0.07
∗∗∗

(0.02) (0.01) (0.01)

log Dest. Dist. to CBD −0.05
∗∗∗ −0.05

∗∗∗
0.01

(0.01) (0.02) (0.02)

log Dest. Commuting Zone Area −0.04
∗∗∗ −0.06

∗∗∗ −0.07
∗∗∗

(0.02) (0.02) (0.02)

Male 0.46
∗∗∗

(0.02)

Age 0.01
∗∗∗

(0.001)

Level of education 0.17
∗∗∗

(0.01)

Origin FE X X X

Occupation and Sector FE X

Government Worker No No Yes Yes

Observations 10,948 10,948 12,348 12,347

Adjusted R
2

0.02 0.03 0.03 0.28

Notes: This table regresses log income from the DHUTS survey on model-predicted income and controls. The unit of

observation is a survey respondent in the sample described in Table 2. Model-predicted income for a pair of origin and

destination survey areas is the weighted average of tower-pair model income, with weights given by tower-to-tower

commuting �ows. Formally, for survey areas a and b, yab ≡ ∑i∈a,j∈b Vij/Vab · yj, where i ∈ a and j ∈ b index towers,

yj = ψ̂R
j is the area-adjusted destination �xed e�ect at j, and Vab ≡ ∑i∈a,j∈b Vij is the total �ow between a and b. We

assign to each survey respondent the predicted income between his or her home and work survey areas. Columns 2,

3 and 4 include origin survey area �xed e�ects, and column 4 includes occupation and job sector �xed e�ects. Conley

standard errors with 5 km distance cuto� in parentheses. (For computational purposes, when including �xed e�ects,

the standard errors are computed after residualizing the �xed e�ects.)
∗p ≤ 0.10,

∗∗p ≤ 0.05,
∗∗∗p ≤ 0.01
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B.4 Residential Income Validation

Table B.8: Average Residential Income: Model Prediction and Residential Income Proxy in

Colombo, Sri Lanka

Census Residential Income Proxy

(1) (2) (3) (4)

log Model Income (residential) 1.29
∗∗∗

1.38
∗∗∗

(0.06) (0.19)

log Residential Density 1.23
∗∗∗

0.20
∗∗∗

(0.07) (0.07)

log Dist. to CBD −2.04
∗∗∗ −0.57

∗∗

(0.22) (0.27)

log Model Income (workplace) −0.72
∗∗∗

(0.12)

Sub-district FE (count) X (41)

Adjusted R2 0.77 0.67 0.7 0.92

Observations 1,193 1,193 1,193 1,193

Notes. This table repeats the analysis in Table 3, panel (A), in Colombo, Sri Lanka. Column 4 controls for 41 sub-

districts (Divisional Secretariat) �xed e�ects. The Central Business District (CBD) is Colombo Fort. For Sri Lanka,

beyond commuting �ows, we do not have access to the cell phone data necessary to construct the features used in

the supervised learning method in Bangladesh.
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Table B.9: Robustness: Average Residential Income and Census Income Proxy

(A) Dhaka

Census Residential Income Proxy

(1) Daily
Flows

(2) Excluding
Neighboring Towers

(3) Without
Area Adjustment

log Model Income (residential) 1.08
∗∗∗

0.37
∗∗∗

0.93
∗∗∗

0.82
∗∗∗ −1.52

∗∗∗ −0.82
∗∗∗

(0.08) (0.12) (0.06) (0.17) (0.11) (0.13)

Geographic Controls X X X

Sub-district FE (count) X (55) X (55) X (55)

Adjusted R2 0.47 0.7 0.56 0.74 0.42 0.74

Observations 1,821 1,821 1,866 1,866 1,866 1,866

(B) Colombo

Census Residential Income Proxy

(1) Daily
Flows

(2) Excluding
Neighboring Towers

(3) Without
Area Adjustment

log Model Income (residential) 1.69
∗∗∗

0.68
∗∗∗

1.48
∗∗∗

1.00
∗∗∗ −1.52

∗∗∗ −0.62
∗∗∗

(0.08) (0.14) (0.08) (0.33) (0.31) (0.16)

Geographic Controls X X X

Sub-district FE (count) X (41) X (41) X (41)

Adjusted R2 0.82 0.91 0.82 0.91 0.08 0.91

Observations 1,188 1,188 1,197 1,197 1,197 1,197

Notes. Robustness for panel (A) in Tables 3 and B.8. Odd and even columns correspond to the speci�cations in columns

1 and 4 in Tables 3 and B.8. The �rst two columns use daily commuting �ows instead of home-work commuting �ows

(see Section 2.1 for de�nitions). The next two columns de�ne workplace income at the survey-area level excluding

commuters whose origin towers are within 180 seconds of the destination cell tower, when we aggregate up from

cell tower level. The last two columns use destination �xed e�ects not adjusted for Voronoi cell tower area.


