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Abstract

We study infinitely repeated games with perfect monitoring and without public
randomization devices. Both symmetric and asymmetric discounting cases are con-
sidered; a new geometric construct called “self-accessibility” is proposed and used to
unify the analyses of these two cases. In the case of symmetric discounting, our ap-
proach delivers a constructive version of the folk theorem of Fudenberg and Maskin
(1991). If discounting is asymmetric, we show that any payoff that is in the interior of
the smallest rectangular region that contains the stage game feasible set is realizable
in the repeated game for identifiable sets of discount factor vectors. Next, we provide
necessary and sufficient conditions for payoff vectors to be subgame-perfect equilib-
rium payoffs for some discount factor vector. Sets that are defined by these conditions
are easily described; moreover, discount factor vectors and strategies that support a
specific payoff vector can be explicitly constructed.
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In the words of Kronecker, the positive integers were created by God. ...When a man
proves a positive integer to exist, he should show how to find it. If God has mathematics
of his own that needs to be done, let him do it himself. - Errett Bishop1

1 Introduction

The pioneering work of Fudenberg and Maskin (1986), hereafter FM 1986, demonstrated
that provided the players are patient enough, any FSIR (feasible and strictly individual
rational) payoff vector for a game is supportable as the discounted average of payoffs arising
from an SPNE (subgame perfect Nash equilibrium) of the corresponding repeated game.
This result is often construed as the foundation of the argument behind the assertion that
rational, self-interested agents can be induced to cooperate with one another as long as the
future is reasonably important to them. To accord legitimacy to this argument, however,
it is vital to ensure that it does not depend on fragile assumptions. Two such assumptions
made in the original FM 1986 paper are of concern to us; the first is the availability of a
public randomization device (hereafter PRD) and second is the assumption that all players
have exactly the same discount factor.

While the arguments in the original FM 1986 paper were ‘constructive’, existing papers
that have attempted to weaken one or both of these assumptions either are unable to
provide explicit equilibrium strategies, or can not compute numerical bounds on discount
factors for folk-theorem type results, or (in the case of asymmetric discounting) require
very specific patterns of discount factor vectors, or are unable to describe in simple terms,
the possible equilibrium payoff sets. Using a new geometric concept called self-accessibility,
we are able to unify the study of ‘PRD-less’ games with both symmetric and asymmetric
discounting. We strengthen results in the former case and offer new results in the latter
case, while maintaining a constructive approach throughout.

Dispensing with PRDs is not a minor addendum because it is problematic to argue
that all players have access to a correlating device fine enough to realize all FSIR payoffs.
While, following Aumann and Maschler (1995), communication can be used to construct
‘jointly controlled lotteries’ that serve as correlating devices, in the industrial organization
context, this might run foul of antitrust regulations that forbid communication among
firms. Similarly, requiring exact equality of discount factors seems too restrictive; if we al-
low economic agents to have differential preferences over consumption bundles, why should
we require them to hold identical time preferences?2 Lehrer and Pauzner (1999), hereafter
LP 1999, have argued that even when payoffs are monetary and players can borrow in an
outside market to smooth their consumption streams, different agents, because of their

1From “A Constructivist Manifesto”, quoted in Errett Bishop and Douglas Bridges, “Constructive
Analysis”, Springer, 1985, Chapter 1, Page 4.

2See for example Harrington (1989), Obara and Zincenko (2017) and Haag and Lagunoff (2007) who
provide interesting economic models with differential discounting, the first two in the context of price-
setting oligopolies, and the last in the context of collective effort-expending games.
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differential financial standings, may be subject to different interest rates. Finally, it is
odd to argue against the importance of asymmetric discounting in complete information
games when the literature on incomplete information games is rife with such models.

A plethora of interesting and counterintuitive things happen as soon as one disallows
PRDs, even when players are patient. For example, in the symmetric discounting case
Yamamoto (2010) shows that for large enough common discount factors, the set of SPNE
payoffs can be non-convex and non-monotonic with respect to the common discount factor.
Salonen and Vartiainen (2008) show that for large enough but unequal discount factors the
feasible payoff set of the repeated game can be totally disconnected,3 and the Pareto
frontier function can be everywhere discontinuous! For a class of two-player finite games,
Olszewski (1998) shows that the undiscounted folk theorem does not hold.

To establish whether a given point in the payoff space is an equilibrium payoff vector
when PRDs are unavailable, the first question that must be answered is: Is this payoff
feasible in the repeated game using uncorrelated (but possibly mixed) actions? If this
is answered in the affirmative, the second question is: Is this an equilibrium (SPNE)
payoff? To fix terminology, we shall henceforth call these questions those of realizability
and supportability respectively.

In the context of symmetric discounting, Fudenberg and Maskin (1991), hereafter FM
1991, was the first paper to prove a folk theorem without public randomization. They start
by addressing realizability and provide a lower bound for discount factors such that any
point in the feasible set is representable as the discounted average of an infinite sequence
of its vertices. This result goes by the name ‘Sorin’s lemma’ as Sylvain Sorin (1986) had
first analyzed a similar representation. Going from realizability to supportability requires
work; the sequence of pure actions given by Sorin’s lemma may not be an equilbrium
path. As the standard text of Mailath and Samuelson (2006) notes, “The difficulty is
that some of the continuation values generated by these sequences may fail to be even
weakly individual rational.” In trying to address this issue FM 1991 relies on complex
as well as non-constructive arguments to build on top of Sorin’s result which in the end,
delivers strategies to support a specific payoff vector (like FM 1986), but is unable to
yield a computable discount factor bound (unlike FM 1986).4 Our key contribution is
to use the the recursion-based notion of self-accessibility to address both realizability and
individual rationality simultaneously. A set of payoffs is self-accessible for a discount factor
vector if, for any point in the set, there is a pure action that can be played such that the
induced continuation payoff also lies in the set. In the case of symmetric discounting we
show that closed balls of small enough radii strictly inside the FSIR set are self-accessible
for discount factors above a bound that can be explicitly computed using a simple non-
linear program. This insight enables us to strengthen and offer a simpler yet completely

3A set is totally disconnected if the only connected subsets it has are either empty or singleton.
4As an example of a non-constructive argument, consider covering a compact set S with an infinite

collection of open balls and then choosing some characteristic of the finite subcover of S that is guaranteed
because of compactness. But then, how does one figure out which finite subcover will do the job?
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constructive argument of the FM 1991 folk theorem.5

Why might knowing a bound be important? From a practical standpoint, the whole
argument of repeated interaction being a prime motivator behind cooperation among
otherwise selfish individuals is much more plausible when the required discount factor
bound is, say, .7 rather than .9999. In fact, if the bound works out to be .2, one has
described what can be achieved for fairly myopic players as well. From a theoretical
standpoint, even when we know that the set of equilibrium payoffs approaches the FSIR
set as the common discount factor increases, it is of some interest to know if the approach
is fast enough.6

The first paper to systematically study the asymmetric discounting case was LP 1999.
They noted that in this setup, unlike in the symmetric discounting case, as the players
become increasingly patient, a) realizable payoffs may lie outside the stage game feasible
set and b) the limiting set of supportable payoffs could be very different from the FSIR set.
However, they only analyze 2-player games, require fixed ratios of log discount factors, and
their proof crucially relies on existence of PRDs. They conjecture that it might be possible
to remove this last restriction using techniques similar to FM 1991; however, we show by
a simple counterexample that the building block of the FM approach, Sorin’s Lemma
does not hold in this situation. Under unequal discounting, Chen and Takahashi (2012)
show that a sequence of action profiles that delivers a given payoff can be supported in
equilibrium if all its continuation payoffs are uniformly bounded away from the minmax
values. However, without a PRD only an ‘approximate’ folk theorem is proved. The
question of realizability is not tackled either.7

Repeated games with imperfect public monitoring are studied using ‘self-generation’, a
technique originally advanced in Abreu, Pearce, and Stacchetti (1990), and subsequently
extended by Fudenberg and Levine (1994) and Fudenberg, Levine, and Maskin (1994).
Using this approach, Sugaya (2015) extends LP 1999 to prove a very comprehensive folk
theorem that applies to any finite number of players, perfect and imperfect public monitor-
ing and possibly asymmetric discounting while dispensing with PRDs.8 He too, like Lehrer
and Pauzner works with restrictive discount factor vector sequences, specifically assuming
that pairwise ratios of discount rates9 are either constants or are converging to constants.
His main result shows that the limiting sets of payoff vectors that are individually rational
each period and that of equilibrium payoffs are identical.

Although results based on self-generation apply to perfect monitoring, the following
points about that approach are worth noting and will be contrasted with our approach.

5Although the strategies we use are very similar to the ones used in FM 1991, one of our innovation is
to design a punishment phase that does not increase without bound as players become arbitrarily patient.

6A recent paper, Hörner and Takahashi (2016) addresses this question systematically for the first time.
7Chen and Fujishige (2013) shows that the set of realizable payoffs in a finitely repeated game with

unequal discounting is monotonically increasing in the length of the horizon.
8See also Hörner and Olszewski (2005) who prove a folk theorem for almost-perfect private monitoring

without using a PRD, though their results do not encompass unequal discounting.
9If δi is the i-th player’s discount factor, his discount rate is 1

δi
� 1.
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• Self-generation proofs do not offer a clear-cut way of calculating a bound that dis-
count factors must obey for supporting a target payoff vector.

• The actual computation of actions to be played requires solving an infinite sequence
of nonlinear programs for the asymmetric discounting case, a computationally oner-
ous task.

• Self-generation considers realizability and supportability together. The issue of re-
alizability which is interesting in its own right is not addressed separately.

• When the number of players is three and higher, this approach does not yield a simple
condition for verifying if a given point is an equilibrium point for some discount factor
vector.

As it turns out, we can use the notion of self-accessibility to fill many of these voids.
To support points inside the interior of the FSIR set, we can find a common bound for
each player’s discount factor - the same one we can compute with symmetric discounting!
We show that for games with full-dimensional feasible sets, if one is allowed to choose
discount rates, for large enough (computable) discount factors, one can make any payoff
vector realizable as long as its i-th coordinate is strictly between the maximum and the
minimum of player i’s stage game payoffs. Next, we offer necessary and sufficient conditions
for payoffs to belong to the limiting equilibrium payoff set10. These conditions, respectively
referred to as the weak and strict diagonal conditions, characterize sets that are quite easy
to compute and visualize. We show that with a symmetric stage game, if we wish to give
a player (close to) the maximum possible payoff (of the stage game), we have to make
him the least patient among all players. We offer specific strategies and sets of discount
factors that realize or support a given payoff vector satisfying the sufficiency conditions
of realizability and supportability respectively. As such, we go well beyond proving folk
theorems: our constructive approach empower game theorists with prescriptive powers
above and beyond explicative ones.11

The paper is structured as follows. In the next section, we formally introduce the
model and notation, define self-accessibility and briefly explain its significance. In section
3, a numerical example is discussed to illustrate the constructive nature of our arguments
and present the flavor of some of our findings. Section 4 analyzes self-accessibility when
discounting is symmetric and presents a constructive extension of FM 1991. Section 5 dis-
cusses self-accessibility in the asymmetric discounting case and explores the supportability
of payoffs within the interior of the FSIR set. Section 6 addresses the issue of realizability
in the asymmetric discounting case outside the feasible set. Section 7 defines the weak and
strict diagonal conditions and shows how they relate to supportability of payoff vectors
outside the FSIR set. Section 8 concludes. All proofs are collected in an appendix.

10By this we mean the set of payoffs which are SPNE payoffs for some discount factor vector.
11In fairness, we readily admit that for the n-player case we do not solve the problem of characterizing

the set of supportable payoffs for a specific discount factor vector (or even the corresponding limiting set
for fixed discount rate ratios). However, we do throw some light on it since, our necessary condition tells
us what cannot be part of that set.
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2 Preliminaries

2.1 Notation and The Model

We consider a standard infinitely repeated game of perfect monitoring with possibly un-
equal discounting. At each t P t0, 1, 2, . . .u the (finite) stage-game G � 〈I; pAiqi; pgiqi〉
is played, where I is the set of players t1, . . . , nu, Ai is player i’s finite set of actions,
A :� �

j Ai is the set of all pure action profiles, and gi : A Ñ R is player i’s payoff
function. A mixed action of i is αi P 4Ai, where for any set S, 4S denotes the set of all
probability distributions on the set S. Let aptq P A be the (realized) action profile played
at time t.12 When player i discounts future payoffs using the discount factor δi, player i’s
average discounted utility defined over infinite sequences of pure actions in A is

uip
!
aptq

)8
t�0

q :� p1� δiq
8̧

t�0
δi
tgi

�
aptq

	
.

Under perfect monitoring the public history at the end of period t is ht � pap0q, . . . ,aptqq P
At�1. A pure strategy of i is a (sequence of) maps sipt�1q : Ht Ñ Ai pfor t � �1, 0, 1, . . .)
where Ht denotes the set of histories at the end of period t (with the convention that h�1 is
the empty set). Mixed stategies are analogous, except that they map to the corresponding
mixed actions 4Ai. This formulation implies that strategies cannot be conditioned on
anything other than the history of actions actually played; in particular, there is no publicly
observable random variable on whose realized value actions may be conditioned, and mixed
actions are not observable; only their realizations are.

This describes the repeated game G8pδq, where the vector δ � pδ1, . . . , δnq is referred
to as the discount factor vector. In the special case where each player discounts the future
at the same rate δ, we denote the game (by a slight abuse of notation) as G8pδq. We
let Fpδq denote the set of feasible payoff vectors and Vpδq to denote the set of subgame
perfect equilibrium payoff vectors in the repeated game.

Let C � gpAq. Player i’s minmax value is wi :� minα�iP�j�ip∆Ajq maxaiPAi gipai,α�iq,
Let mi P �n

j�1p∆Ajq be the profile that minmaxes i, with player i playing a best re-
sponse. Whenever it is convenient to do so, we will assume without loss of generality
that wi � 0 for all i. The feasible set is F :� copCq, the feasible and weakly indi-
vidually rational (FWIR) set is F� :� tx P F |xi ¥ wiu and the feasible strictly indi-
vidually rational (FSIR) set is F � :� tx P F |xi ¡ wiu. The lower boundary of F is
BF :� tx P F : Ey P F such that y    xu. We let M � maxi t|gipaq| : a P Au; when F �

is full-dimensional, this is strictly positive.
For any set S � Rn, and M � t1, . . . , nu, ProjM pSq denotes the projection of S along

12In what follows vectors are boldfaced while scalars and sets are not. Sequence indices are denoted by
superscripts and sometimes they are enclosed in parentheses to distinguish them from exponents or from
another sequence denoted by the same letter; for example, cl denotes the l-th vertex of a polytope C,
while tcptqu denotes an infinite sequence of vertices each element of which is a cl for some l. Coordinates
of vectors are denoted by subscripts.
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the coordinates in M . In particular when M � t1, 2, . . . , n � 1u, we use the shorthand
Proj�npSq to denote the projection on the first n�1 coordinates. For a finite set C of pure
action payoffs in an n-player game, we define the corresponding ‘feasible set’ for Players
1, . . . , l (l ¤ n) as F p1, . . . , lq :� copProjt1,...,lupCqq � Projt1,...,luF .

ι is a vector of 1’s while ei is the i’th unit vector. For later use, we recall the definitions
of a few geometric terms. The affine hull of a set X � Rn is

aff pXq :�
#

ķ

l�1
λlxl

�����xl P X,
ķ

l�1
λl � 1, k P N

+
.

If λl ¥ 0 above, we obtain the convex hull of X, denoted as copXq. For x P X, the affine
(closed) ball with center x and radius r is BXpx, rq :� ty P aff pXq : d py,xq ¤ ru, while
Bpx, rq denotes the usual (closed) ball in Rn. The relative interior of X is

relintpXq :� tx : D r ¡ 0 such that BXpx, rq � Xu.

When X � copCq, where C � tc1, . . . , cLu, and every point in C is an extreme point of
X, then each point in relintpXq can be expressed as a convex combination of those points
with strictly positive weights, i.e. relintpXq �

!°L
l�1 λ

lcl
���λl ¡ 0,

°L
l�1 λ

l � 1
)
. The

usual interior of a set S is denoted by intpSq. Finally, we introduce a new terminology: the
rectangular hull of a bounded set in Rn, denoted as repSq is the smallest closed rectangle
that contains S. Formally,

repSq :�
£
RPR

R where R �
#

n¹
i�1

rai, bis : ai ¤ bi,
n¹
i�1

rai, bis � S

+
.

2.2 Self-accessibility

We now define self-accessibility, for possibly unequal discounting and explain its usefulness.
Although self-accessibility is an independent geometric notion, in the definition below the
set C may be usefully thought of as the set of payoff vectors from pure action profiles of
the stage game and δj may be thought of as the discount factor of player j.

Definition. Let C � Rn be a finite set. A set S � copCq is said to be self-accessible
relative to C for a vector δ � pδ1, . . . δnq P r0, 1qn if for any x P S there exists y P S and
c P C such that xj � p1� δjqcj � δjyj for j � 1, . . . , n.13

The definition is particularly intuitive for equal discounting. For some x P S � copCq,
suppose that we can find c P C, y P S and δ P r0, 1q such that x � p1� δq c� δy; this is
a ‘dynamic programming decomposition’ of the target payoff x, with the restrictions that
the current payoff c is generated by a pure action profile and the continuation payoff y
lies in the set S itself. If there is a uniform δ P r0, 1q for which any point x P S can be

13When there is no scope for confusion about C, we omit it. Note that if S is self-accessible relative to
C for δ, then it is self-acessible relative to any superset of C for the same δ.
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written as the p1 � δ, δq convex combination of a pure-action payoff and a continuation
payoff within the set itself, then S is self-accessible for δ � δι.

Why is self-accessibility useful for dispensing with PRDs? Suppose C is the set of
pure-action payoffs in the stage game, S � copCq is self-accessible for δ, and x P S. It
follows that there exists cp0q P C such that xj � p1� δjqcp0qj � δjy

1
j for each j where y1 is

also in S. Because of the latter, we can write y1
j � p1� δjqcp1qj � δjy

2
j for each j for some

c1 P C and y2 P S. By induction there is a sequence of vertices tcptqut¥0 such that

xj � p1� δjq
τ̧

t�0
δtjc

ptq
j � δτ�1

j yτ�1
j @j, @τ.

Since δj   1 and S is bounded, we have ‖ δτ�1
j yτ�1

j ‖Ñ 0 as τ Ñ 8. Hence any point x
in a self-accessible set S has a representation xj � p1 � δjq°t¥0 δ

t
jc

ptq
j . Restating this in

the context of repeated games, any point lying in a set that is self-accessible for a given δ
vector can be represented as the coordinate-wise discounted average of a sequence of pure
action payoffs for that δ vector.14

3 A Numerical Example

Next, we presents a numerical example to underscore the computational advantages of
using self-accessibility in supporting specific payoff vectors in the symmetric discounting
case. Although the results presented later are more general, and are valid for any number
of players, in order to abstract away from ancillary issues, we choose a simple, asymmetric
version of the Prisoner’s dilemma game.

3.1 Achieving the Nash Bargaining Point with Symmetric Discounting

Each of two players simultaneously choose one of two actions (A) and (N) with the payoff
matrix displayed below.

A N

A ( 4, 2) (9, 0)
N (0, 7) ( 5, 5)

Henceforth, we refer to the payoff vectors p4, 2q, p9, 0q, p5, 5q and p0, 7q as c1, c2, c3

and c4 respectively. The unique dominant strategy equilibrium pA,Aq is inefficient. The
(efficient) Nash Bargaining payoff vector (where the set of possible agreement payoffs is
the feasible set and c1 is the disagreement point) is n � p5.700, 4.125q, which is a convex
combination of c3 and c2 with weights .825 and .175 respectively (see Figure 1). We will

14To make this sequence well-defined, whenever a point in S can be decomposed in more than two ways
with more than one choice of current action, we can use some pre-assigned arbitrary ordering among the
vertices to decide which current action to choose.
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like to obtain this payoff vector in a SPNE.

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9

c3

c2

c1

c4

l
n

r

Figure 1: Realizable Payoffs in an Asymmetric Prisoner’s Dilemma Game

Let us first examine the realizability of n. Choose a one-dimensional closed ball S �
coptc2, c3uq containing n, with extreme points l and r (l being closer to c3). Let l �
λp5, 5q� p1�λqp9, 0q � p9� 4λ, 5λq and r � µp5, 5q� p1�µqp9, 0q � p9� 4µ, 5µq with the
requirements

1 ¥ λ ¥ .825 and 0 ¤ µ ¤ .825 (3.1)

to ensure that S contains n. We shall find a cutoff δ above which S is self-accessible
(relative to tc2, c3u).

Any x P S can be written as θp5, 5q � p1� θqp9, 0q � p9� 4θ, 5θq, with µ ¤ θ ¤ λ. Let
δpx, c3q be the lowest value of δ in r0, 1s such that x � p1�δqc3�δy for some point y P S.
Since the farthest continuation payoff within S is r, δpx, c3q solves x � p1 � δqc3 � δr �
p1 � δqp5, 5q � δp9 � 4µ, 5µq, and therefore δpx, c3q � p1 � θq{p1 � µq. Similarly, define
δpx, c2q as the the lowest value of δ in r0, 1s such that x � p1 � δqc2 � δy for some point
y P S; using an analogous argument this is seen to be θ{λ. If the discount factor δ is at
least as much as δ�pxq :� mintδpx, c2q, δpx, c3qu, then x can be attained by playing one
of the vertices c2 or c3 with the continuation payoff lying in S.15 Finally, note that the
maximum of δ�pxq as x varies over S is achieved for a point x̄ where δpx̄, c2q � δpx̄, c3q,
i.e. p1 � θq{p1 � µq � θ{λ. Eliminating θ and then substituting in either expression gives

15More accurately, we mean “...by playing the actions corresponding to the vertices c2 or c3...”. Here
and elsewhere we indulge in this slight abuse of notation for brevity’s sake.
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a needed bound for S to be self-accessible:

δ :� max
xPS

δ�pxq � max
xPS

mintδpx, c2q, δpx, c3qu � 1
1� µ� λ

. (3.2)

In particular, when δ ¥ δ and (3.1) holds, n can be realized by playing a sequence of
actions from the set tpA,Nq, pN,Nqu.

Next, to support n in equilibrium, we wish to deter deviation from the prescribed path
via a grim trigger mecahnism `a la Friedman (1971): pA,Aq is played forever as soon as
any deviation is detected. This is achieved by two incentive compatibility constraints that
ensure receiving the worst payoff in S for one period is at least as good as receiving the
best payoff in the game once and being minmaxed forever afterwards:

9� 4λ ¥ 9p1� δq � 4δ, (3.3)

5µ ¥ 7p1� δq � 2δ. (3.4)

The minimum δ satisfying (3.1), (3.2), (3.3) and (3.4) is .761, and the corresponding
ball S is given by λ � .952, µ � .639. This suggests that above a reasonable discount
factor the Nash bargaining payoff n can be implemented in an SPNE where one player
never plays his dominant action and the the other some times plays hers.

3.2 Expanding Possibilities With Asymmetric Discounting

If all players use the same discount factor, any discounted average payoff vector must stay
inside the feasible set. What if they do not? We preview some of the results to follow by
explaining how they apply in the context of the current example.

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9

c3

c2

c1

c4

Figure 2: Realizable and Supportable Payoffs with Asymmetric Discounting
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Theorem 3 will later show that any payoff vector in intprepF qq (which in this case is the
open rectangle p0, 9q � p0, 7q) can be realized for large enough discount factors if we are
allowed to choose the relative patience of the two players by fixing the ratio of their discount
rates. Which of these are equilibrium payoffs and for what kind of discount factors?
Theorem 5 demonstrates that there are some points in the open rectangle p0, 9q � p0, 7q
that can not be supported in equilibrium no matter what the discount factors are. These
are points in the small lightly shaded rectangle in the north-east of the figure; a payoff
vector such as p8.9, 6.9q where both both players receive close to their maximum payoffs is
ruled out.

On the positive front, Theorem 2 will show that points in the interior of F � (the dotted
and darkly shaded region) can be supported in equilibrium for large enough discount
factors and arbitrary discount rate ratios. Moreover, using ideas developed in Theorem
6 we can show that if both players are sufficiently patient and player 2 ’s discount rate
is sufficiently lower relative to player 1, then it is possible to support points in the open
rectangle p4, 9q� p2, 5.4q. The coordinates of this latter rectangle are arrived at by letting
player 1’s payoff to range between his minmax payoff (4) and the maximum he can receive
in the game (9), whereas player 2’s payoff is allowed to range between his minmax (2) and
the maximum he can receive subject to giving player 1 his minmax amount. Analogously,
if both players are sufficiently patient and player 1 is sufficiently more patient relative
to player 2, points in the open rectangle p4, 7.4q � p2, 9q can be supported (7.4 is the
maximum player 1 can receive subject to giving player 2 his minmax amount). Points
that are common to both rectangles may be supported by (large enough) discount factors
exhibiting a wide variety of relative patience. To summarize then, the dotted region in
Figure 2 is the feasible set, points in p0, 9q � p0, 7q are realizable payoffs for some discount
factors, while the interior of the darkly shaded region are supportable payoffs for some
discount factors.

4 The Case of Symmetric Discounting

This section discusses how self-accessibility simplifies the arguments of FM 1991’s main
result, makes discount factor bounds computable and delivers some new results as well.

4.1 Self Accessibility Under Symmetric Discounting

The main building block of the FM 1991 is Sorin’s Lemma which addresses the question
of realizability. The lemma states the following: Suppose x P Rn is in the convex hull
of C � tc1, c2, . . . , cLu. Then, for all δ ¥ 1 � 1{L there exists a sequence tcptqu8t�0 in C
such that x � p1 � δq°8

t�0 δ
tcptq.16 Armed with this result, FM then tackle the problem

16Actually the bound stated in this lemma is not tight. Using Caratheodory’s Theorem it can be shown
that the exact tight bound is 1�1{m wherem � mintL, n�1u, rather than 1�1{L. Also, in his original 1986
paper, Sorin, using a result from Fenchel (1929) obtains the bound 1� 1

n
when mixed actions are allowed.
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of ensuring that continuation payoffs stay close enough to the original payoff (so as to
maintain individual rationality) via their Lemma 2, which makes critical use of Sorin’s
lemma but has a complex argument and offers little computational guidance.

Using our terminology, Sorin’s Lemma shows that the entire feasible set is self-accessible
relative to its extreme points for large enough discount factors. However, we can show that
for any set of points in Rn, affine balls contained in the relative interior of the convex hull
of that set are self-accessible (relative to its extreme points and for large enough discount
factors). When a target payoff is in F �, by placing it at the center of a ‘small’ ball, we
can thus achieve both realizability and (period-wise) individual rationality in a single step.
This approach bypasses the need for Sorin’s Lemma altogether and as a bonus, we can
also easily compute a relevant discount factor bound.

Proposition 1. Suppose C 1 � C � gpAq is a set of points in Rn where X � CopC 1q need
not be full-dimensional. Let S � BXpo, rq � relintpXq be some affine ball with center o
and radius r ¡ 0. Then D δ P p0, 1q such that S is self-accessible relative to C 1 for any
vector δι with δ ¥ δ. This δ is computable by solving a nonlinear maximization problem
with linear/quadratic objective and constraint functions.

As this proposition is central to the computability of discount factor bounds, we provide
some intuition behind the construction of δ. Fix a closed ball S � BXpo, rq in the relint of
copC 1q. Take any point x in S. Let δpx, cq be the smallest value of δ P r0, 1s satisfying the
dynamic programming decomposition x � p1� δq c� δy for some y P S. The geometrical
interpretation of this function is as follows: consider the line connecting c and x; it cuts
the surface of the ball at two points, one that is on the same side of x where c is and one
on the other side (they could be same). Call this latter point y (y could be x itself). We
can think of x as a p1 � δq : δ convex combination of c and y. It is this δ that is δpx, cq.
It is not hard to find a formula for this function, and as expected, it is continuous in x.

Now we assert that δpx, cq   1 for some vertex c. If x is in relintpSq, any vertex
c P C 1 works but if x is on its (relative) boundary of S, not all vertices do. However, since
S lies in the (relative) interior of the convex hull of C 1, we can use any point in C 1 that
is separated from the ball by the supporting hyperplane to S at x. In the accompanying
figure, C 1 � tc1, c2, c3u and X is the triangular region with those three points acting as
vertices (it could be a face of the feasible set). The shaded region is S; x is a point in
S. If we try to extend a line from ci to x to the farthest point in S, we reach yi. Here,
δpx, c1q � 1, δpx, c2q � ‖x�c2‖

‖y2�c2‖ and δpx, c3q � ‖x�c3‖
‖y3�c3‖ .

Let δ�pxq :� mincPC δpx, cq. For our figure, it turns out that δ�pxq � δpx, c3q. Now
consider maximizing δ� over S; Weierstrass’s theorem guarantees that the maximum is
attained. Since δ�   1 throughout, this maximum δ is less than unity and the convexity
of S ensures that S is self-accessible above δ. Lastly, one can show that the two-stage
nested optimization problem we just described can be written as one large optimization
problem which is the NLP referred to in Proposition 1.

11
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Figure 3: How δ�pxq is constructed.

Once the affine ball BXpo, rq is self-accessible relative to a set of vertices C 1 for a
discount factor vector δ � δι, as was explained in section 2.2, any vector x in that
ball can be expressed as a discounted average of a sequence of vertices from C 1; we let
taptqpx, BXpo, rq, δqu8t�0 denote this sequence.

One of the biggest advantage of the self-accessibility approach over the FM 1991 ap-
proach is that we are very easily able to provide a computable uniform bound on discount
factors that guarantee realizability of each point in any geometrically well-described com-
pact set while keeping continuation payoffs within a certain small fixed distance of the
original point. Non-constructive arguments such as every open cover of a compact set
has some finite subcover are not required. As is well-known, these uniform bounds may
become relevant if unbeservable mixed strategies are needed to minmax a player, because
post-punishment plays are not known beforehand; they are calculated based on the real-
izations of mixed actions during the punishment period. Extending ideas that are used
to prove Proposition 1, our next result shows that we can easily find a bound on discount
factors that makes a collection of balls self-accessible where each has a certain fixed radius
(say ω) and a center that lies within a fixed ball with a different radius (say r̄); in Figure
4, these balls are colored dark grey, while the ball within which their centers lie is colored
light grey.

Proposition 2. Let x � °K
l�1 λ

lcl with λl ¡ 0 for each l. Let C 1 � tc1, . . . , cKu and
X � copC 1q. Let r̄ ¡ 0 and ω ¡ 0 be such that BXpx, r̄ � ωq � F � X relintpXq. Then,
we can find δ   1 such that for any δ P pδ, 1q, any Bpx1, ωq where x1 P BXpx, r̄q is self-
accessible relative to C 1 for δ � δι. Furthermore, δ is computable by solving a nonlinear
maximization problem.
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Figure 4: Finding a bound for which a collection of balls is self-accessible

4.2 A Constructive Folk Theorem via Self-Accessibility

As soon as we observe that affine balls with small enough radii are self-accessible, there
hardly remains any difference between the two problems where we are trying to support
a payoff vector with and without PRDs. If, assuming the extence of PRDs, one can find
a discount factor bound (say δ1) for which incentive compatibility conditions are strict,
then all we have to do in the PRD-less case is to work with small enough balls around
points which could potentially be played in the first case, find bounds which will make
these balls self-accessible and then we can support the same target payoff vector in the
second case using a grand bound which is the maximum of all these bounds and δ1.

This insight drives the main result of this section which is a fully constructive version of
the main result in FM 1991. It differs from the original version in three important aspects.
First, because of our reliance on self-accessibility, all paths, whether on or off equilibrium
become recursively computable. Second, Propositions 1 and 2 and the fact that our
method of proof simplifies incentive compatibility conditions, reducing them to only two
linear inequalities, allow us to compute a critical discount factor bound needed to support
a given payoff vector in F �zBF . Third, our proof reveals that the number of punishment
periods during which a deviating player is minmaxed need not become arbitrarily large
as δ goes to one. While in FM 1991, the punishment length is of the order of p�ln δq�1,
in our proof, we fix it once and for all. We believe that this is a desirable feature of our
strategies, practically relevant when there is a possibility of players being susceptible to
involuntary mistakes or trembles with minute probabilities.

Theorem 1. Let F � be full-dimensional and let v P F �zBF . Then, there exists δ P p0, 1q
such that for all δ P pδ, 1q there is an SPNE that does not use a PRD and has discounted
average payoff v. This bound is computable using the NLPs provided by Propositions 1 and
2 and two linear inequalities. All paths, on and off equilibrium, are recursively computable
as well. Punishment (minmaxing) period lengths are not δ-dependent.

A detailed proof is provided in the appendix for completeness’s sake and also because,
the proof applies with little change to a similar theorem in the asymmetric discounting
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setting. It relies on the standard architecture of equilibrium strategies introduced in FM
1986 characterized in terms of 3 phases, which is well-understood in the literature. It
may be instructive here though to consider what self-accessibility brings to the table that
allows us to keep the number of punishment periods δ-independent. To that end, consider
the situation where Player i has deviated, has been minmaxed, and play now has shifted
into the so-called Phase III(i) where players are supposed to receive the (continuation)
payoff vector u.17 If one had access to PRD’s, one would prescribe a path where in every
period, an action generating u would be played. Without PRDs however, players play
a sequence of actions that generates u as a discounted average, while the continuation
payoffs stay, say, ε-close to u. But now suppose, after this path is started, in the very
next period, i’s continuation payoff becomes ui � ε. Then, if the number of punishment
periods is a constant independent of the discount factor, a sufficiently patient i might
want to re-start his own punishment by deviating! This is why FM 1991 needs to let the
punishment period become unboundedly large as the discount factor approaches one. In
our proof, the target Phase III(i) payoff is u� εei, the lowest point (from i’s perspective)
in a self-accessible ball (since there is no requirement that a target payoff must be in
its center). Thus the perverse situation described above where a patient player wants to
restart his own punishment never arises in our case and δ-independent punishment periods
can indeed be devised to wipe out the gains from deviation.

5 Asymmetric Discounting: Supporting Points in intpF �q

In this section, we show that any point in the inerior of F � is both realizable and sup-
portable provided the discount factors are large enough. We begin by showing that the
natural counterpart of Sorin’s lemma in the asymmetric case does not hold which negates
Lehrer and Pauzner’s conjecture and makes the FM 1991 approach to the problem in-
valid. Next we show that if the discount rate ratios are not fixed, not even small balls
are self-accessible for large enough discount factors. However, if they are, closed balls can
be shown to be self-accessible for computable sets of discount factors. Lastly, we show
that for any ball, there is a discount factor bound, such that for a discount factor vector
where each component exceeds this bound, one can always find a self-accessible ellipsoid
within the ball that is self-accessible relative to that specific discount factor vector. This
last result leads to an asymmetric counterpart of Theorem 1.

5.1 Two Negative Results

One might hope that the following ‘global’ extension of Sorin’s lemma to unequal dis-
counting holds: If C � Rn is a finite set there exists δ P r0, 1q such that if δj ¥ δ for
1 ¤ j ¤ n, and x P copCq, there exists a sequence of points tcptqu8t�0 in C for which

17It is during this phase that players j � i are rewarded for participating in i’s punishment phase.
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xj � p1 � δjq°8
t�0 δj

t c
ptq
j . It is easy to see that as stated, the conjecture cannot be true:

for example, when n � L � 2 (whereupon copCq is a one-dimensional set with just two
vertices) we need the two discount factors to be equal in order to realize points in copCq. Is
this then an artifact of copCq not being full-dimensional or x lying on the boundary rather
than in the interior of copCq? Are points that defy the desired representation non-generic?
Unfortunately, the problem runs deeper.

Counterexample 1. Let n � 2, with C � tp1, 0q, p0, 0q, p0, 1qu. Let any δ P p0, 1q be
given. We will show the existence of an open set in copCq and a δ1, δ2 pair both at least as
large as δ such that no point in that open set is representable using the vertices in C and
the given discount factors. To that end, suppose, one can find real numbers ε1, ε2, δ1, δ2,
and an integer T with the following properties:

0   ε2   ε1   1, (5.1)

δ � δ2   δ1   1, (5.2)

δ2
T   ε2, (5.3)

p1� δ1q δ1
T�1 ¡ ε1. (5.4)

We assert that the point p1 � ε1, ε2q, which is in intpcopCqq by (5.1), is not realizable for
discount factors pδ1, δ2q. To prove this, we first prove inductively that if

x1 � 1� ε1 � p1� δ1q
8̧

t�0
δ1
t x

ptq
1 ,

then xp0q � xp1q � . . . � xpT�1q � p1, 0q, i.e. p1, 0q must be played for the first T periods.
If xp0q � p1, 0q, then even if p1, 0q were to be played in each subsequent period, x1 could
be at most δ1. This would mean 1 � ε1 ¤ δ1, or ε1 ¥ p1 � δ1q. However, (5.4) rules
this out. If xp0q � p1, 0q but xp1q � p1, 0q, then x1 ¤ p1 � δ1q � pδ1q2, which implies
p1 � δ1q � pδ1q2 ¥ 1 � ε1; from this it follows that ε1 ¥ p1 � δ1q δ1, which violates (5.4).
Proceeding this way, p1, 0q must be played at least the first T times. But then x2 ¤ pδ2qT ,
which violates (5.3) if x2 � ε2.

It remains to show that one can indeed satisfy the properties (5.1) – (5.4) by judicious
choice of ε1, ε2, δ1, δ2, and T . For integer t, notice that the function

δt

1
t

�
1� 1

t

�t�1 Ñ 0 (5.5)

as t goes to infinity, and hence there exists an integer T for which a) the expression above
is strictly below 1, and b) T�1

T ¡ δ. Now, if we define δ1 � T�1
T , then, for t � T the

denominator in (5.5) , 1
T

�
1� 1

T

�T�1 is p1� δ1qδ1
T�1. Hence, if δ2 � δ, we can choose an

open set of ε1, ε2 pairs such that 0   δT2   ε2   ε1   p1 � δ1qδ1
T�1 and we have fulfilled

all our requirements. This shows that, no matter how high the discount factors are forced
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to be, if we are allowed to choose them unequal, we can find an open set of points in a
full-dimensional feasible set of payoffs that cannot be realized without PRDs. �

It then seems natural to invoke self-accessibility. In analogy with the equal-discounting
case, one might conjecture the following ‘local’ property. If C � Rn is a finite set with an
n-dimensional convex hull, for any x in the interior of copCq there exists a quantity r ¡ 0
and a cutoff δ such that the ball Bpx, rq is self-accessible for discount factor vectors of the
form δ � pδ1, . . . , δnq with δi ¥ δ. The following shows that this conjecture is false as well.

Counterexample 2. Let n � 2, with C � tp�1, 1q, p�1,�1q, p1, 1q, p1,�1qu. Take any
ball Bpp0, 0q, rq with r   1. Suppose that the conjecture holds for 0   δ   1. In that case,
if δ � pδ1, δ2q ¥ pδ, δq and x is in the ball, there exists c P C such that if we define ypδq
via the equation

xi � p1� δiq ci � δi yipδq for i � 1, 2, (5.6)

then, ypδq P Bpp0, 0q, rq. Write δ � 1{p1� θq and choose δ1 � δ, and δ2 � 1{p1� k2θq for
k2 P p0, 1q; this ensures that δ2 ¥ δ. Now specifically let us consider the point x � p0, rq
and ask which c P C will make the ypδq given via (5.6) lie in the ball. It is easy to see that
the vertices p1,�1q and p�1,�1q are ruled out. By symmetry, p1, 1q works if and only if
p�1, 1q works. For c � p1, 1q, equation (5.6) gives ypδq � p�θ, r � k2θpr � 1qq. Hence,
ypδq Ñ p�θ, rq as k2 Ñ 0; for any given θ, this is strictly outside the ball. Hence there
exists a θ, k combination for which ypδq is outside the ball. �

5.2 Two Positive Results

We now present two positive results on self-accessibility with asymmetric discounting. The
first focuses on the self-accessibility of a fixed ball and uses the same parametrization of
the discount factors as in Sugaya (2015) where δi is written as 1{p1� kiθq with k fixed.18

This result will be used in the next section to examine which points are realizable. The
second demonstrates the existence of flexible, δ-dependent self-accessible sets but places
no restrictions on discount rate ratios (and hence, relative patience). It will be used in
this section to support points inside intpF �q.

Proposition 3. Let C � Rn be finite, and let X � copCq be full-dimensional and contain
in its interior the ball Bpo, rq with r ¡ 0. For any k P Rn��, there exists θ̄po, r,kq ¡ 0
such that for any θ P p 0, θ̄po, r,kq s, the ball Bpo, rq is self-accessible relative to C for any
δ satisfying δi � 1{p1 � kiθq for each i. Furthermore, θ̄po, r,kq is continuous in all its
arguments.

The technique for proving Proposition 3 is similar to that of Proposition 1 though
neither follows directly from the other. In particular, note that the current proposition

18Normalizing k1 to 1, the k vector captures the ratios of discount rates, i.e. relative patience among
players. With that fixed, one can let θ tend to 0 so as to simultaneously make all players become absolutely
very patient.
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cannot handle affine balls - it must work with full-dimensional balls since, for arbitrary k,
the continuation payoff vector need not be in the original affine ball, no matter how small
θ is. Also note that it is possible to provide a NLP that would enable us to compute θ̄
in the proposition. The details have been omitted and are available from the authors on
request. Our next proposition starts out with a ball that is self-accessible for the equal
discount factor δ, and then for any discount factor vector δ where each δi ¥ δ, proposes a
new, ellipsoidal self-accessible set.19

Proposition 4. Let C � Rn be finite, and let X � copCq be full-dimensional and contain
in its interior the ball Bpo, rq with r ¡ 0. Assume that Bpo, rq is self-accessible realtive
to C for the discount factor vector δι where δ P p0, 1q. For any δ such that δi P rδ, 1q
for i � 1, . . . , n, there exists an ellipsoid Epo, r, δ, δq � Bpo, rq given by center o and
semi-axes lengths 1�δi

1�δ r such that Epo, r, δ, δq is self-accessible relative to C for δ.

The proposition implies that for any v P Epo, r, δ, δq, there is a sequence of pure actions
that realizes v when the discount factor vector δ is used; we let taptqpv, Epo, r, δ, δqqu8t�0
denote that sequence.

5.3 Supporting Points in intpF �q

We now present a constructive folk theorem with asymmetric discounting and without
PRDs for points in intpF �q. The proof of this result uses Proposition 4 and requires only
minor re-writing of the proof of Theorem 1. The self-accessibility led approach thus allows
us to provide a unified treatment of folk theorems with or without PRDs and with or
without symmetric discounting (as long as we are interested in points in intpF �q).

Theorem 2. Let F � be full-dimensional. For any v P intpF �q, let δ be the discount
factor bound computed in Theorem 1 such that v can be supported as SPNE when players
use the discount factor vector δι with δ ¥ δ. Then, v is also an SPNE payoff when the
discount factor vector δ ¥ δι is used. As in Theorem 1, all paths on and off equilibrium
are recursively computable and punishment (minmaxing) periods are independent of the
discount factors.

We remark that the unbridled freedom to have players with any configuration of relative
patience works only for supporting points inside F �; it may not work for points outside it,
as the analysis in Section 7 will show. The Fact below extends Theorem 2; its justification
follows from the proofs of Theorems 1 and 2 as well as the rich continuity properties that
discount factor bounds are endowed with in Theorem 1 thanks to self-accessibiliy.

Fact 1. Let F � be full-dimensional and let u and r ¡ 0 be such that Bpu, rq P intpF �q.
Then there exists a uniform δ ¡ 0 such that if δ is such that δi ¥ δ for each i, every

19We owe a special debt to Costas Cavounidis for pointing us in the direction of this result and suggesting
how it can improve a previous version of Theorem 2.
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v P Bpu, rq is a SPNE payoff for δ. Hence, for a fixed k vector, there exists a bound θ̄,
such that if θ ¤ θ̄, and δi � 1{p1� kiθq, every v P Bpu, rq is an SPNE payoff.

6 Going Beyond the Feasible Set: Realizability

In non-cooperative game theory, contracts are assumed to be unenforceable, which is why
we are only interested in equilibrium outcomes, i.e. outcomes that respect incentive-
compatibility restrictions. However, if contracts are actually enforceable, identifying the
set of realizable payoffs becomes important, especially if it is a bigger set than the set of
equilibrium payoffs. But typically, that is indeed the case when discounting is asymmetric,
even in the limit as all discount factors tend to one, without being necessarily equal. We
now present a result that shows that if we are allowed to choose the players’ discount rate
ratios, then, provided these players are patient enough, in the repeated game they can
simultaneously get in a realizable payoff virtually anything they can individually get in
the stage game feasible set.

Theorem 3. Let F be full-dimensional. Then

¤
δPp0,1qn

Fpδq � intprepF qq

More precisely, given any payoff vector v P intprepF qq we can compute positive numbers
k1, . . . , kn (not necessarily unique) and a θ̄ such that if δi � 1

1�kiθ with θ   θ̄, then,
v P Fpδq. Furthermore, for any given payoff vector u P intpF q, and any ν ¡ 0, one can
ensure that along the path that realizes v, after a finite sequence of actions, all continuation
payoff vectors lie in a ν-neighborhood of u.

To obtain some intuition behind this result, suppose, n � 2 and we are examining the
realizability of v P intprepF qq. If for some k, and low enough θ, after playing a certain
sequence of vertices initially, the next continuation payoff (needed to realize v) enters a
small fixed ball Bpu, rq inside intpF q, then we are done thanks to Proposition 3, because
that proposition shows that any payoff in that ball is realizable for any k and low enough
θ. What kind of vertices should the players play? Of course, vertices that nudge the
continuation payoff from v to u. For n � 2, there is a vertex cp1q that nudges Player 1’s
payoff in the right direction (cp1q1 being on the opposite side of v1 from u1) and there is
another vertex cp2q which does the same for Player 2. A potential pitfall is that while we
are nudging one player’s payoff in the ‘right’ direction, the other player’s payoff could be
moving in the ‘wrong’ direction. One can show that by playing cp1q for T1 periods and cp2q

for T2 periods where T1 and T2 are suitably chosen functions of θ and by choosing k, we
can indeed achieve our goal (for θ small). This involves solving a nonlinear simultaneous
equation system involving the limiting trajectory (as θ tends to 0). Once this is done, the
n-player version of the problem can be recursively tackled.
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For n � 2 (but not for n ¥ 3 !), Theorem 3 can be sharpened as follows.

Theorem 4. For two-player games, if F is full-dimensional,

¤
δPp0,1q2

Fpδq � intprepF qq
¤
F.

7 Going Beyond the FSIR Set: Supportability

The n�1 phase path described in the proof of Theorem 3 unfortunately does not guarantee
that the continuation payoff for each player at each period satisfies individual rationality,
even when the target payoff v is strictly individually rational and the eventual continuation
payoff is some point in F �. We need additional conditions on v.

A permutation π is a 1-1 correspondence between I and itself; by πi we mean πpiq. We
represent π by simply stating the vector pπ1, . . . , πnq. The permutation p1, . . . , nq is called
the ‘natural permutation’ or ‘natural order’. An interpretation of these permutations is
now suggested: π simply maps the ranks of discount factors into player ‘names’; thus, in
a 5-player game, if π2 � 4, that means player 4’s discount factor is the second-lowest. The
inverse function maps names to the ranks; thus if π�1pjq ¤ π�1piq, we understand that
player i is at least as patient as player j. This interpretetion will be useful to keep in
mind for the two definitions to follow; the proofs of Theorem 5 and 6 will later validate
this interpretetion.

7.1 The Diagonal Conditions

In the definitions below C is any set of points in Rn , F � copCq and w is some point
in repCq. Of course, these objects have their standard interpretations in the context of a
game: pure action payoffs, feasible set and minmax point.

Definition A payoff vector v P repCq is said to satisfy the weak diagonal condition
(WD) if there exists a permutation π, such that @ i, D a vector ui P F with the property

uiπi � vπi

and
uij ¥ wj if π�1pjq ¤ π�1piq.

Definition A payoff vector v P intprepCqq is said to satisfy the strict diagonal condi-
tion (SD) if there exists a permutation π, such that @ i, D a vector ui P intpF q with the
property

uiπi � vπi

and
uij ¡ wj if π�1pjq ¤ π�1piq.
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When v satisfies the first (second) definition we say that it satisfies WD (SD) in the
order π. Also, the set of all points satisfying WD (SD) for a given π will be denoted as
W pπqpSpπqq. Note that full dimensionality of F � is needed for Spπq to be non-empty, but
not so for W pπq. As for the relation between these sets, it is easy to see that for any π,
clpSpπqq �W pπq and assuming full-dimensionality of F �, intpW pπqq � Spπq.

In a 2-player game, v satisfies WD in some order if it is weakly individual rational
and if, from that point, we can draw a line parallel to one of the axes and make that line
intersect F�. This implies that the the darkly shaded region (including its boundary)
in Figure 2 in Section 3.2 is the set of points that satisfy WD for some permutation.
Specifically, for example, the point v � p8, 5q satisfies WD in the natural order because
u1 can be chosen to be p8, 1q and u2 can be chosen to be p5, 5q. For games with 3 or more
players, the following Fact, stated without proof, is helpful in discerning which points will
satisfy WD or SD (for some order).

Fact 2. v satisfies WD for permutation π iff vi P r vipπq, v̄ipπqs @i � 1, . . . , n, where for
any given permutation π, vpπq and v̄pπq are defined as follows:

vipπq :� mintvi : v P F such that vj ¥ wj @j such that π�1pjq ¤ π�1piqu.
v̄ipπq :� maxtvi : v P F such that vj ¥ wj @j such that π�1pjq ¤ π�1piqu.

Example (The “stand-out” game): We present a three-player game that illustrates
Fact 2’s usefulness. In this “stand-out game”, each of three players can play two actions:
R (right) or W (wrong). All players get 0 if 0, 2 or 3 players play R. Only if exactly
one player plays R, that player gets 1 � 2η while each of the other two players receive
�η where η is some positive number. Thus, C � tp0, 0, 0q, p1 � 2η,�η,�ηq, p�η, 1 �
2η,�ηq, p�η,�η, 1 � 2ηqu. In this game the only way to obtain the superior payoff of
1 � 2η is to uniquely ‘stand out’ (by doing the right thing) whereupon the other players
are ‘shamed’ into getting a negative payoff of �η. Note that for each player, R weakly
dominates W . However, if all players play this weakly dominant strategy the total utility
is 0, while each of the three action vectors pR,W,W q, pW,R,W q and pW,W,Rq gives the
players a total utility of 1. Each player can be minmaxed by the other two players playing
R, and hence w � p0, 0, 0q.

Since w is in the feasible set, clearly vipπq � 0 @i and @π. Now notice that the Pareto
frontier in the feasible set is coptp1� 2η,�η,�ηq, p�η, 1� 2η,�ηq, p�η,�η, 1� 2ηquq and
all points on this frontier belong to the same plane as that of the unit simplex. Hence, if
we were to maximize one player’s payoff in F while giving the other two a non-negative
payoff, we can give him at most 1. If we were to maximize his payoff while giving one of
the others at least 0 and putting no other restriction on the third, apart from requiring
that we stay inside F , we can give him at most 1 � η. Finally, if we tried to maximize
this player’s payoff without any restriction on the other two’s payoffs apart from requiring
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that we stay in F , we can give him at most 1� 2η. Hence, for the natural permutation π,
v̄pπq � p1� 2η, 1� η, 1q and W pπq � r0, 1� 2ηs � r0, 1� ηs � r0, 1s.

We end our discussion of the diagonalizability conditions by noting that a vector’s
diagonalizability (weak or strict) is ‘inherited’ by its subvectors in a sense made precise
by the Fact below, stated without proof. It will be used in the proof of Theorem 6.

Fact 3. If v satisfies weak or strict diagonalizability under the natural order with respect
to C (given the n-dimensional null vector as w), then v�n satisfies the same with respect
to Proj�npCq (using the n� 1 dimensional null vector as w).

7.2 Necessity and Weak Diagonalizability

Theorem 5. Consider an n-player game and let P denote the set of all permutations of
1, . . . , n. Then, ¤

πPP
W pπq �

¤
δPp0,1qn

Vpδq

i.e., for any n-player game if v is a SPNE payoff vector for some discount factor vector
δ, then v PW pπq for some permutation π.

Note that no full-dimensionality assumption is required in the above theorem. Its proof
proceeds by asking the counterfactual question: What would the payoff profile look like if
the players played the proposed equilibrium path but all of them used one of the player’s
discount factor to evaluate their normalized payoff? It turns out that the u’s needed for
the WD property fall right out of these freshly evaluated payoff vectors.

Going back to the Stand-out game, Theorem 5 tells us that any payoff vector that does
not lie in the union of the six cubes of the form r0, as � r0, bs � r0, cs where a, b, c are some
arrangements of the 3 numbers 1, 1 � η and 1 � 2η, can never be an equilibrium payoff.
Thus, for example, if η � .5, we can conclude that the payoff vector p.5, 1.7, 1.9q cannot
be an equilibrium payoff vector because two of its coordinates lie above 1.5 - it does not
matter what the other coordinate is. However, this payoff vector is realizable by virtue of
Theorem 3. The proof of Theorem 5 also rules out arbitrary associations of equilibrium
payoffs with relative ordering of patience among the players; for example, although the
payoff vector p1.9, 1.4, .9q is an equilibrium payoff vector, it is conformable with one and
only one ranking of player patience: the one given by the natural order.

7.3 Sufficiency and Strict Diagonalizability

Weak diagonalizability, however, cannot be a sufficient condition for a payoff vector to be
an equilibrium payoff vector, even when we have full dimensionality of the FSIR set. This
is easy to see - just consider the two player game with the given payoff matrix:
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L R

U ( 1, 0) (0, 0)
D (0, 0) ( 0, 1)

The payoff vector p1, 1q belongs to W pπq for each π, but it is not even realizable let alone
be supportable for any discount factor vector. Strict diagonalizability, however, ‘works’.

Theorem 6. Consider an n-player game with a full-dimensional FSIR set. Let P denote
the set of all permutations of 1, . . . , n. Then,

¤
πPP

Spπq �
¤

δPp0,1qn
Vpδq

More specifically, if v P Spπq for some π, it is possible to determine k ¡¡ 0 (not neces-
sarily uniquely), and θ̄ ¡ 0 such that if θ P p0, θ̄q and δi � 1

1�kiθ for each i, it is possible
to specify a SPNE strategy profile that supports v for those discount factors.

The proof of Theorem 6 uses several complex ideas; hence, for the reader’s benefit, we
now provide the intuition behind our methods in some detail.

We will borrow a technique from the proof of Theorem 3: Devise discount factor
parameters and an action sequence so as to create a path for the continuation payoffs that
will start with the target payoff and will end inside a suitable set (hereafter we will call
this the pre-entry path). In the case of Theorem 3 the set we wished to enter was intpF q,
while in this case it would be intpF �q. Once we are able to enter intpF �q, Fact 1 takes
over. There are two new challenging tasks here: first to create a pre-entry path that stays
strictly individual rational throughout and second, to design an equilibrium strategy that
takes care of incentive compatibilty along the pre-entry play.

Where strict diagonalizability helps is with the first task. To see this for the two-player
case, suppose our target payoff v is in Spπq where π is the natural order. Then, strict
diagonalizability of v guarantees us the existence of a vector u2 in intpF �q where u2

2 � v2.
Also, there must exist a vertex c such that sgnpv1 � c1q � sgnpu2

1 � v1q. Each time this
vertex is played the continuation payoff of Player 1 shifts towards u2

1. If we play this vertex
T times where T is r bθ sq, by choosing a suitable b ¡ 0 and θ small, limiting arguments used
in the proof of Theorem 3, show us that it is possible to take the first coordinate of the
continuation payoff arbitraily close to u2

1. On top of this if k2 is chosen small, the second
coordinate of the continuation payoff barely changes from v2 during these T periods and
the continuation payoff vector after Tperiods gets close to u2 and hence, enters intpF �q.

For three or more players, unfortunately, extending this idea runs into difficulties.
Suppose n � 3 and v P Spπq for the natural order π. Now, there is a point in intpF �q,
namely u3, the third element of which is v3. A small neighborhood of this point suggests
itself as the location of entry into intpF �q. This is what we might want to do to accomplish
our goal: while keeping Player 3 extremely patient throughout, first we ‘fix’ Player 1’s
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payoff by moving it to u3
1 (via the play of some suitable vertex). We keep Player 2 patient

relative to Player 1, so that his payoff does not fall below his minmax during this first
phase. Next, we fix Player 2’s payoff to u3

2 by playing another suitable vertex and try and
enter intpF �q. The problem with this strategy is that when we are trying to fix Player 2’s
payoff, Player 1 can find his payoff getting ‘unfixed’! We could try and fix both players’
payoffs simultaneously following the method used in the proof of Theorem 3, but then, we
would not have any guarantee that the path will maintain individual rationality for these
players even though v1 ¡ 0, v2 ¡ 0, u3

1 ¡ 0 and u3
2 ¡ 0.

We, therefore, need a new tool: how to move one strictly individually rational payoff
vector to another’s neighborhood without violating (strict) individual rationality along the
path. This can indeed be done as long as the two payoff vectors are both inside intpF q.
Our next proposition, called The Capsule Lemma shows exactly how it can be done and
also provides an upper bound on the number of periods needed to do it. Its proof offers
the remarkable insight that the notion of self-accessibility is not just useful for keeping
continuation payoffs tethered to a point; it can also be used to take them for a ‘walk’
inside intpF �q!

In m-dimensional Euclidean space, let ry, zs represent the line segment joining the
points y and z and let Cpy, z, rq denote the set of points that are at most distance r from
ry, zs, i.e.

Cpy, z, rq �
¤

o P ry,zs

Bpo, rq

From now on, we will refer to sets of these types as ‘capsules’.

Proposition 5. (The Capsule Lemma) Let D be a finite set in m-dimensional Euclidean
space. For y, z in intpcopDqq, let r ¡ 0 be such that the capsule Cpy, z, rq is in the interior
of copDq X Rm��, which is assumed to be m-dimensional. Then,

a) For any u P Bpy, rq and any vector k ¡¡ 0, there exists θ:pkq ¡ 0 such that for any
θ P p0, θ:pkqq we can find a finite sequence of points tctuT�1

t�0 in D and a finite sequence of
points txtuTt�0 in Cpy, z, rq such that
i) x0 � u,
ii) xt�1

i � cti � p1� kiθqpxti � ctiq for i � 1, . . . ,m, t � 0, . . . , T � 1 and
iii) xT P Bpz, rq.
b) Furthermore, there exists a θ;pkq ¤ θ:pkq, a strictly positive numbers m1 and a strictly
negative number m2 (both dependent on k) such that when θ P p0, θ;q, the T given in part
a) is less than or equal to

Q
||y�z||

r�
?
m1θ2�m2θ�r2

U
.

Theorem 6’s proof uses a combination of strict diagonalizability, Capsule Lemma and
Fact 3 to design a (continuation payoff) path that starts at the target payoff v and ends
inside intpF �q. We cannot effect this transition with one application of the Capsule
Lemma because for that to work, the entire pre-entry path needs to be inside intpF q
which of course we may not assume. However, we can use the Capsule lemma to first
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change only Player 1’s payoff, then Player 1 and 2’s payoffs, then Player 1, 2 and 3’ s
payoffs etc., each time operating inside the interior of F � of the relevant subset of players.
The strict diagonalizability condition provides us the ‘anchors’ which serve as landmarks
for the pre-entry path around which our capsules are fashioned. It is then shown that
with appropriate choice of the ki’s and θ small, we can indeed enter intpF �q while keeping
each continuation payoff vector strictly individual rational all along the pre-entry path.

The equilibrium strategy now can be qualitatively described. Play starts and continues
on the pre-entry action path until one of the players unilaterally deviates whereupon he
is minmaxed by the other players for a certain number of periods. After minmaxing, play
‘returns’ to the same point on the pre-entry action path where the deviation took place.
At the completion of the pre-entry path, players play an action sequence corresponding
to a point which shifts the target post-entry equilibrium continuation payoff by a) an
‘adjustment’ term to make any punishing player indifferent among his minmaxing pure
strategies, and b) a ‘reward’ to them for participating in the punishment. During pre-
entry, any deviation from a punishment phase or a new deviation after play has returned
to the ‘pre-entry’ path is treated as if a fresh deviation just took place.

Why does this “stick now (for the deviant), carrot later (for the punisher)” strategy
ensure incentive compatibility for patient players? With rising patience, bad outcomes for
a finite number of periods still wipes out one period gains (if nothing else changes). That
is how the ‘stick now’ threat keeps players from deviating. The prospective punishers may
also suffer during the punishment periods but they are compensated by a reward coming
later. Now it is true that as they become more patient, the time taken to to get one’s
reward also grows infinitely large, but the Capsule Lemma ensures that these times don’t
grow too fast, and in fact, the PDV of the reward tends to a limit. With finite punishment
periods, this ensures that patient players do not balk from punishing a deviant player.

8 Conclusion

This paper provides a unified treatment of discounted repeated games with perfect mon-
itoring and without PRDs. The scope of our inquiry follows a logical chain, successively
allowing for wider target payoff sets and less restrictive discounting structures. The glue
that holds all the results together is the simple geometrical notion: self-accessibility. The
analysis culminates in Theorem 6, where we show that any point v satisfying the Strict
Diagonal Condition is an SPNE payoff for some possibly asymmetric discounting profile.
This easy to check condition translates into the following: there exists an ordering π of
the players such that for player πpiq there is a payoff vector in the interior of the feasible
set at which πpiq gets the payoff vπpiq and everyone before πpiq in the ordering gets more
than their respective minmax values. Our result can be viewed as a new folk theorem for
repeated games with unrestricted discounting patterns that is built on fully constructive
foundations.
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Appendix: All Proofs

Proof of Proposition 1

Existence of δ: We assume wlog that the center of the ball is the origin. Also wlog, we assume
that C 1 � tc1, . . . cKu is in fact, the set of extreme points of X.

Fix c P C 1, x P S and let δpx, cq be defined as the solution of the following problem20:

Min δ P r0, 1s subject to x � p1� δqc� δ y, for some y P S.

We now characterize δpx, cq. Note that if y satisfies the equation x � p1 � δpx, cqqc � δpx, cqy,
then y must be at the boundary of the ball. Hence, it must be that y.y � r2 which implies
x� p1� δpx, cqqc’s dot product with itself is δ2r2. Upon rearranging this shows that δpx, cq must
be a root of the following quadratic equation in δ :

δ2pc.c� r2q � 2δc.px� cq � px � cq.px � cq � 0. (8.1)

For any c, given that the left hand side of (8.1) is a convex quadratic (since c.c � r2 ¡ 0), with
a strictly positive value at 0 (since px � cq.px � cq ¡ 0q and a non-positive value at 1 (since
x.x�r2 ¤ 0q, there are two roots: one is greater than 0 and less than or equal to 1 while the other
is greater than or equal to 1. We are seeking the smaller root, which is continuous in x, making
δpx, cq continuous in x.

Furthermore, we assert that for one of the c’s, the smaller root must be strictly less than 1.
Clearly this will be true if the quadratic at 1 is strictly negative, i.e. x.x� r2   0. So assume that
x.x � r2. It now suffices to show that the slope of the quadratic at 1 is strictly positive for some
c, which will be true if for at least one l, cl.x ¡ r2. If not, then

cl.x ¤ r2 for l � 1, . . . ,K (8.2)

If that is the case, we claim that each of these inequalities must actually be an equality. To
see this note that since x is in the relative interior of X, x � °K

l�1 λ
l cl where λl’s are strictly

positive weights summing to 1. Multiplying each inequality in (8.2) by λl and summing over l,
on the left hand side we will have

�°K
l�1 λ

lcl
	
.x � x.x while on the right hand side we will

have
�°K

l�1 λ
l
	
r2 � r2 and since these two are equal, the claim follows. But now, if for each l,

cl.x � r2, since the center of the ball (the origin) can also be expressed as a convex cobination of
the vertices, i.e. o � °

θlcl for a set of weights θl summing to one, this will imply o.x � 0 � r2,
a contradiction. Hence, for every x P BXp0, rq, there exists a vertex c such that the quadratic in
(8.1) has a strictly positive slope at 1, and hence for that vertex, δpx, cq P p0, 1q.

Let δ�pxq :� min tδpx, cq : c P C 1u, with the minimum attained at c�pxq.21Clearly, δ� is
continuous, being the minimum of continuous functions and lies in p0, 1q. Finally, define δ :�
maxtδ�pxq : x P Su. Since S is compact, this maximum is attained at some x�. Since for any x,
δ�pxq P p0, 1q we must have δ P p0, 1q. It is now easily verifiable that for this δ and any common
discount factor above this value S is self-accessible relative to C 1.

20For the first part of the proof, to keep the notation simple, when a function depends on the location
of the ball, we will drop the center and the radius as arguments (thus, for example δpx, c,o, rq will be
simply referred to as δpx, cq).

21To achieve well-definition, in case of ties, use any arbitrary preference ordering among the vertices.

25



Computability of δ: Having described the problem of determining δpo, rq as the nested problem

Max
x P BXpo, rq

Min
c P C 1

δpx, c,o, rq

we note that the ‘inside’ problem can be stated as a maximization, rather than a minimization
problem as shown:

Max δ

subject to

δ ¤ δpx, cl,o, rq @cl P C 1.

For affine balls BXpo, rq in the relative interior of X, an explicit formula for δpx, cl,o, rq exists in
terms of the smaller root of equation (8.1); a numerically simpler way to characterize that root is
to just require that the slope of the quadratic is less than or equal to zero, in addition to stating
that the quadratic vanishes. For any given o (not necessarily the origin), this leads to the NLP
below the solution of which gives us δpo, rq:

Max δ

subject to

δ ¤ δl @ l � 1, . . . ,K p1q

pδlq2tpcl � oq.pcl � oq � r2u � 2δlpcl � oq.px� clq � ‖x� cl‖2 � 0 @ l � 1, . . . ,K p2q

pδlqtpcl � oq.pcl � oq � r2u � pcl � oq.px� clq ¤ 0 @ l � 1, . . . ,K p3q

px� oq.px� oq ¤ r2 p4q

x � °K
l�1 λ

lcl p5q°K
l�1 λ

l � 1 p6q

λl ¥ 0 @ l � 1, . . . ,K p7q.

In the NLP, constraints (2) and (3) characterize the δpx, ci,o, rq’s (for i � 1, . . . ,K) while con-
straint (1) finds the minimum of these. Of course, the minimization is also over x and constraints
(4) - (7) ensure that each feasible x belongs to the affine ball BXpo, rq.22 �

Proof of Proposition 2

The function δpo, rq defining a discount factor bound that makes BXpo, rq self-accessible is con-
tinuous in both its arguments - as follows from the continuity of δpx, c,o, rq in po, rq, the proof
of Proposition 1 and a straightforward application of the Maximum Theorem. The set BXpx, r̄q
being compact (wherein the centers of the smaller balls must lie), the existence of the required

22Note that if the ball was full-dimensional, we could have dropped constraints (5) - (7).
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uniform bound follows. Now we can state the required NLP.

Max δ

subject to

δ ¤ δl @ i � 1, . . . ,K p1q

pδlq2tpcl � x1qpcl � x1q � ω2u � 2δlpcl � x1qpx2 � clq � ‖x2 � cl‖2 � 0 @ l � 1, . . .K p2q

pδlqtpcl � x1qpcl � x1q � ω2u � pcl � x1qpx2 � clq ¤ 0 @ l � 1, . . . ,K p3q

px� x1q.px� x1q ¤ r̄2 p4q

px1 � x2q.px1 � x2q ¤ ω2 p5q

x1 � °K
l�1 λ

lcl p6q

x2 � °K
l�1 θ

lcl p7q°K
l�1 λ

l � 1 p8q°K
l�1 θ

l � 1 p9q

λl, θl ¥ 0 @ l � 1, . . . ,K p10q

The construction of the given NLP follows directly from the proof of Proposition 1 and the obser-
vation that the problem of finding a uniform bound as x1 ranges in the set BXpx, r̄q adds another
layer of nesting to the optimization problem in that proposition, making the current problem
representable as

Max
x
1 P BXpx, r̄q

Max
x
2 P BXpx1, ωq

Min
c P C 1

δpx2, c,x1, ωq.

�

Proof of Theorem 1

Because F� is full-dimensional and v P F�zBF , there exists v1 such that it is in intpF�q and
v1    v. First, we define two constants ∆ and N that we need to define the equilibrium strategy.23

We choose ∆ ¡ 0 such that

Bpv1, 4?n� 1∆q � intpF�q. (8.3)

Further, if v is not a payoff vector associated with a pure strategy profile, and can be expressed
as
°K
l�1 λ

lcl where each λl ¡ 0, ∆ should be small enough so that

BXpv,∆q � relintpXq (8.4)

where X � cotc1, . . . , cKu. Note that from (8.3), it follows that v1i ¡ ∆. Now define N P N by

N �
S

max
i

M

v1i �∆

W
, (8.5)

232∆ serves as the ‘reward’ for the punishers; while ∆ serves as the radius of all self-accessible balls we
will be dealing with in this proof. N is the number of minmaxing periods.
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implying that N � 1 ¡M{pv1i �∆q for all i. Let δ1 be such that for δ ¥ δ1,

δN ¥ N

N � 1 . (8.6)

The last two inequalities guarantee the following inequality which will be critical later:

1� δ � . . .� δN ¥ M

v1i �∆ @i . (8.7)

Next, given N , there is a δ2, such that for δ ¥ δ2,

δN ¥ M

M �∆ @i. (8.8)

Note that this implies, for δ ¥ δ2,

δN ¥ v1i
v1i �∆ ¥ v1i �∆

v1i �∆ @i. (8.9)

If v is a payoff vector for a pure action profile, let δ3 � 0. Otherwise, BXpv,∆q referred to in (8.4)
is self-accessible for all δ larger than some bound; let δ3 be that bound computable via Proposition
2. Lastly define

v1piq :� pv11 � 2∆, . . . , v1i�1 � 2∆, v1i, v1i�1 � 2∆, . . . , v1n � 2∆q

Consider the set of all (full-dimensional) balls the centers of which are at most
?
n� 1 ∆ away

from v1piq, each with radius ∆. It may be checked because of (8.3), each of these small balls are
fully contained in the interior of F�. Using Proposition 2, a uniform bound can be computed such
that each of these balls is self-accessible when the common discount factor is as large as the bound.
Call this bound δ4i. Now define

δ � maxpδ1, δ2, δ3, max
i
δ4iq. (8.10)

For any discount factor δ exceeding this bound, v may be supported by a three-phase strategy
which we now describe.

Phase I: If v is a pure action profile, play that pure action profile forever. Otherwise, play the
action sequence taptqpv, BXpv,∆q, δqu8t�0. If there is a unilateral deviation by player i in Phase I,
move to Phase II(i).

Phase II(i): For each of N periods playmi, the (possibly mixed) action profile that minmaxes
i. If player j unilaterally deviates from this phase (i.e. he is observed to play an action that is not
in the support of mi

j), start Phase II(j). Otherwise, at the completion of this phase, go to Phase
III(i).

Phase III(i): Let ãptq, t � 1, . . . , N be the realized actions during Phase II(i). In Phase III(i),
play the sequence of actions given by taptqpv1piq � zi � ∆ei, Bpv1piq � zi,∆q, δqu8t�0, where zi is
an adjustment vector defined by the following two equations

zij �
$&
%

p1�δN q
δN

rij if j � i

0 otherwise.
(8.11)
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rij �
p1� δq
p1� δN q

Ņ

t�1
δt�1 gipãptqq, (8.12)

If there is any unilateral deviation from Phase III(i) by player j, start Phase II(j).

Inequality (8.8) implies 1�δN
δN

M ¤ ∆ and since, |rij | ¤ M , |zij | ¤ ∆ for j � i. This implies
that v1piq � zi is at most

?
n� 1 ∆ away from v1piq. Hence, given the construction of δ4i earlier,

Bpv1piq�zi,∆q is indeed self-accessible for discount factors above that bound. Let us now examine
conditions for player i’s strategy to be unimprovable.

• For unimprovability from Phase I, it suffices to have

p1� δqM � δN�1pv1i �∆q ¤ vi �∆, (8.13)

• For unimprovability from Phase II(i) with τ periods left in the phase, it suffices to have

0� δN�1pv1i �∆q ¤ 0� δτ pv1i �∆q for τ � 1, . . . , N. (8.14)

• For unimprovability from Phase III(i), it suffices to have

p1� δqM � δN�1pv1i �∆q ¤ v1i �∆. (8.15)

• To analyze unimprovability from Phase II(j) we note that because of the adjustment term
z in Phase IIIj’s target point, player i is indifferent in Phase IIj between playing any action
that is in the support of mj . The question is whether he wishes to play an action which is
not in the support of mj . Letting tãptquNt�1 denote the sequence of actions that are realized
in Phase II(j), with τ periods left in that phase, if player i knew the last τ entries of that
sequence, the following inequality would deter deviation:

p1�δqM�δN�1pv1i�∆q ¤ p1�δqrgipãpN�τ�1qq�. . .�δτ�1gipãpNqqs�δτ pv1i�2∆�zji q. (8.16)

Using (8.11) and (8.12), the right hand side of (8.16) becomes:

δτ pv1i � 2∆q � 1� δ

δN�τ

�
gipãp1qq � . . .� δN�τ�1gipãpN�τqq

	
, (8.17)

which is bounded from below by δτi
�
v1i � 2∆� 1�δN

δN
M
	
. Hence by (8.8), inequality (8.16)

is satisfied for any sequence of a’s if

p1� δqM � δN�1
i pv1i �∆q ¤ δN

�
v1i �∆

�
. (8.18)

• Lastly, for unimprovability from Phase IIIj it suffices to have:

p1� δqM � δN�1pv1i �∆q ¤ v1i � 2∆� zji �∆ (8.19)

for all possible values of zji . Because |zji | ¤ ∆, this is satisfied if the following holds:

p1� δqM � δN�1v1i ¤ v1i. (8.20)
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Examination of these conditions shows that while (8.14) is trivially true, (8.15) directly implies
(8.13) and (8.20). Because of (8.9), it also implies (8.18). Thus to ensure all incentive compatibility
conditions one only needs to satisfy equation (8.15), which is (8.7). Thus the given strategy profile
is indeed an SPNE. �

Proof of Proposition 3

Without loss of generality, we can and henceforth do discard points in C that are not extreme
points of X, and relabel it as C 1 � tc1, � � � , cL1u. For x P Bpo, rq, and c P C 1 define a vector
ypx, c,o, r,k, θq where

yipx, c,o, r,k, θq :� θkipxi � ciq � xi for i � 1, . . . , n. (8.21)

In terms of discount factors, the above is just 1
δi
xi � 1�δi

δi
ci, i.e. it is the i’th coordinate of

the‘continuation point’ given the target x, the current action c and the discount factor vector δ.
Let

fpx, c,o, r,k, θq :� ||ypx, c,o, r,k, θq � o||2 � r2

�
ņ

i�1
pθ kipxi � ciq � pxi � oiqq2 � r2.

� θ2
ņ

i�1
k2
i pxi � ciq2 � 2θ

ņ

i�1
kipxi � ciqpxi � oiq � p

ņ

i�1
pxi � oiq2 � r2q (8.22)

Because of the full-dimensionality assumption, f ¤ 0 ùñ ypx, c,o, r,k, θq P Bpo, rq. To prove
the proposition, we will show that there exists θ̄po, r,kq ¡ 0 such that if 0   θ ¤ θ̄po, r,kq, then
for every x P Bpo, rq, there exists a c such that f ¤ 0.

The expression in (8.22) is a strictly convex quadratic in θ with fpx, c,o, r,k, 0q ¤ 0 (and
so has at least one non-negative real root). Let θpx, c,o, r,kq denote its larger root, which is
continuous in px,o, r,kq.

For x � o, for every c, fpx, c,o, r,k, 0q � �r2   0 and hence, the larger root is strictly positive
and hence, for every c, f ¤ 0 for θ P p0, θpx, c,o, r,kqs.

For x � o, if we can show that there exists a c such that Bf
Bθ   0 at θ � 0 then we can assert

that for that x there exists a c, such that θp x, c,o, r,kq ¡ 0 and for θ P p0, θpx, c,o, r,kqs, f is non-
positive. It suffices to show that that for every x, there exists a c such that

°n
i�1 kipxi�ciqpxi�oiq  

0, or
ņ

i�1
kipxi � oiqxi  

ņ

i�1
kipxi � oiqci (8.23)

Consider the hyperplane H � ty : py � αu, where pi � kipxi � oiq and α � °n
i�1 kipxi � oiqxi

(since x � o, p is a non-zero vector). If inequality (8.23) is false for every vertex c, that would
mean that every vertex lies on one side of the hyperplane, while clearly x is situated on that
hyperplane. This can not be true since x is in a ball which lies in the interior of copC 1q.

The foregoing analysis implies θ�px,o, r,kq :� maxcPC θpx, c,o, r,kq is a strictly positive num-
ber, and is continuous in k,o, r and x (being the maximum of continuous functions), and further-
more, for every x P Bpo, rq, if θ P p0, θ�px,o, r,kqs, f ¤ 0. Finally, define the required bound
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as
θ̄po, r,kq :� min

x PBpo,rq
θ�px,o, r,kq. (8.24)

Since Bpo, rq is compact, this minimum is achieved at some x, is strictly positive-valued, and
because of the Maximum Theorem is continuous in o, r and k. Clearly it satisfies the desired
requirement of the bound. �

Proof of Proposition 4

Define ri :� 1�δi
1�δ r for each i. With these being the lengths of the semi-axes of the desired

ellipsoid, the latter can be written as: Epo, r, δ, δq � tx :
°n
i�1

pxi�oiq2

r2
i

¤ 1u. It is easy to see that
Epo, r, δ, δq is contained in Bpo, rq and can be written as fpBpo, rqq where f is a 1-1 correspondence
from Bpo, rq to Epo, r, δ, δq given by

fipxq � oi � pxi � oiq 1� δi
1� δ

@i. (8.25)

Now let x P Epo, r, δ, δq; to prove the proposition, we need to show that there exists c P C such
that y P Epo, r, δ, δq where

yi � 1
δi
xi � 1� δi

δi
ci @i. (8.26)

To see this, let x � fpx1q where x1 P Bpo, rq. By equation (8.25),

p1� δqxi � p1� δiqx1i � pδi � δqoi @i. (8.27)

and because of the self-accessibility of Bpo, rq for δι, there exists c such that

ņ

i�1

1
r2

�
1
δ

�
x1i � p1� δqci

�� oi


2
¤ 1 (8.28)

Using this particular c in the edfintion of y in (8.26),

yi � oi
ri

� 1
r

1� δ

1� δi

"
1
δi
rxi � p1� δiqcis � oi

*
(8.29)

� 1
r

"
1
δi

�
1� δ

1� δi
xi � p1� δqci

�
� 1� δ

1� δi
oi

*
(8.30)

� 1
r

"
1
δi

�
x1i �

δi � δ

1� δi
oi � p1� δqci

�
� 1� δ

1� δi
oi

*
(8.31)

� 1
r

"
1
δi

�
x1i � p1� δqci

�� δ

δi
oi

*
(8.32)

� 1
r

"
δ

δi

�
1
δ

�
x1i � p1� δqci

�� oi


*
(8.33)

where we have used (8.27) to go from (8.30) to (8.31). Now, equation (8.28) and the fact that
δi ¥ δ for each i, allow us to conclude that

°n
i�1

�
yi�oi
ri

	2
¤ 1 and we are done. �
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Proof of Theorem 2

The reader is requested to refer once again to the proof of Theorem 1 as we point out the parallels
and dissmilarities between that proof and the current one. We choose v1, ∆, N , v1i, δ1, δ2, δ3, δ4i
and hence, δ exactly as before. This guarantees that equation (8.7) is valid with δ being replaced
by δi (since δi is at least as large as δ and hence δ1), Thus, we have

1� δi � . . .� δi
N ¥ M

v1i �∆ @i . (8.34)

Similarly, we may argue, since δi ¥ δ ¥ δ2,

δNi ¥ M

M �∆ @i. (8.35)

Define ∆i :� ∆ 1�δi
1�δ . From the previous inequality it also follows that

δNi ¥ v1i
v1i �∆ ¥ v1i �∆i

v1i �∆ @i.. (8.36)

Next, we describe the strategies which follow the standard three-phase pattern used previously.
Since δ ¥ δι, and Bpv,∆q is self-accessible for δι, via Proposition 4, we know that the ellipsoid
Epv,∆, δ, δq � Bpv,∆q is self-accessible for δ. In Phase I, it is prescribed that the players play the
sequence taptqpv, Epv,∆, δ, δqqu8t�0. Note that at anytime during this phase, the worst continuation
payoff for player i is vi � ∆i. Phase II(i)’s play does not change at all. To describe Phase III(i),
define the quantities zij and rij ’s as before except to use δj rather that δ in their expressions given
by equations (8.11) and (8.12). With these new definitions in place, now in Phase III(i), let the
players play the action sequence taptqpv1piq�zi�∆iei, Epv1piq�zi,∆, δ, δqqu8t�0. The transitions
between the phases follow the same pattern as before.

It now remains to verify the incentive-compatibility conditions which are exactly the same as
before except that each occurrence of δ is now subscripted with an i and some occurrences of ∆
are subscripted with an i.

• For unimprovability from Phase I, it suffices to have

p1� δiqM � δi
N�1pv1i �∆iq ¤ vi �∆i, (8.37)

• For unimprovability from Phase II(i) with τ periods left in the phase, it suffices to have

0� δi
N�1pv1i �∆iq ¤ 0� δi

τ pv1i �∆iq for τ � 1, . . . , N. (8.38)

• For unimprovability from Phase III(i), it suffices to have

p1� δiqM � δi
N�1pv1i �∆iq ¤ v1i �∆i. (8.39)

• Unimprovability from Phase II(j), after identical analysis undertaken before, is assured by:

p1� δiqM � δN�1
i pv1i �∆iq ¤ δNi

�
v1i �∆

�
. (8.40)
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• Lastly, for unimprovability from Phase III(j) it suffices to have:

p1� δiqM � δN�1
i v1i ¤ v1i. (8.41)

As in the previous proof, the nontrivial inequalities (8.37), (8.41) are directly guaranteed by (8.39)
while (8.40) is guaranteed by (8.39) because of (8.36). (8.39) is itself guaranteed by (8.34) and
hence.... �

Proof of Fact 1

First, we prove an analogous ‘uniform’ version of Theorem 1: Let F� be full-dimensional. Suppose
u and r ¡ 0 be such that Bpu, rq � intpF�q. Then, there exists a uniform discount factor bound
δ such that when δ P rδ, 1q, every point v P Bpu, rq is an SPNE payoff for δ � δι.

To see this, consider the set V pεq � tv1 : v1 � u1 � ει,u1 P BBpu, rqu where BBpu, rq is the
lower boundary of Bpu, rq. Clearly, there exists a ε small enough, say ε̄ such that V pε̄q is inside
intpF�q. For every point v in Bpu, rq, we can then find a v1 P V such that v1    v (here and in the
rest of this proof, we use the same notation we used in the proof of Theorem 1). In addition, there
is also a uniform ∆ ¡ 0 such that for every such pair of pair v and v1 the conditions p8.3q and p8.4q
hold. Now N , a uniform number of punishment periods can be chosen as

Q
maxv1PV pε̄q maxi M

v1
i
�∆

U
.

Having defined N , δ1 and δ2 can be defined as before. A uniform bounds can can be chosen for
δ3 as v varies over the compact set Bpu, rq since the proof of Proposition 1 plus an application of
Maximum Theorem shows that the discount factor bound found in that proposition is continuos
in the center of the relevant ball. Similarly, for each i, using the proof of Proposition 2 and the
compactness of V pε̄q over which v1 varies, a uniform bound for δ4i can be found. Choosing δ to be
maximum of δ1, δ2, and the last two uniform bounds, works as a common discount factor bound
for supporting all points in Bpu, rq.

Now Fact 1 follows from this the same way Theorem 2 follows from Theorem 1. �

Proof of Theorem 3

Step 1. Let k ¡¡ 0 and player i’s discount factor be given by δi � 1
1�kiθ where for now, θ, a

positive number, is unspecified. For a given payoff vector v, consider the problem of designing a
path such that v is realized through an m � 1 phase path described as follows. For given non-
negative numbers b1, . . . , bm, in phase 1, lasting for T1 � rpb1{θqs periods, a certain vertex cp1q

will be played, then in phase 2, lasting for the next T2 � rpb2{θqs periods some vertex cp2q will be
played, etc., and for phase m, vertex cpmq will be played for Tm � rpbm{θqs periods. In the m�1’th
phase, an action sequnce that generates a continuation payoff will be played so that the whole path
indeed realizes v. Call this continuation payoff ṽpθq. Because of Proposition 3, our strategy will
succeed if at least for small values of θ, at the end of the first m phases, the continuation payoff
enters intpF q. This suggests that we need to know what ṽ :� limθÑ0 ṽpθq is.

If xt denotes the continuation payoff during the t’th period of any path, and in the t’th period
vertex c is played, then for each i the following holds: xti � p1 � δiqci � δix

t�1
i . Since δi � 1

1�kiθ ,
we can rewrite this as

xt�1
i � ci � p1� kiθqpxti � ciq. (8.42)

Hence, reasoning recursively, if c is played for T periods in periods t, t � 1, . . . t � T � 1, then for
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each i,
xt�Ti � ci � p1� kiθqT pxti � ciq. (8.43)

If T � r bθ s, where b is some non-negative number, then as θ tends to 0, the i’th coordinate of the
limiting continuation payoff vector will satisfy

lim
θÑ0

xt�Ti � ci � ekibpxti � ciq. (8.44)

Hence, in the context of the m� 1 phase path discussed above if m � 1,

ṽi � c
p1q
i � ekib1pvi � c

p1q
i q (8.45)

and therefore using the same idea twice, if m � 2,

ṽi � c
p2q
i � ekib2pcp1qi � ekib1pvi � c

p1q
i q � c

p2q
i q

� ekib2pcp1qi � c
p2q
i q � ekipb2�b1qpvi � c

p1q
i q (8.46)

Proceeding inductively, we conclude that for arbitrary integer m, for each i we will have

ṽi�cpmq
i � ekibmpcpm�1q

i �cpmq
i q�ekipbm�bm�1qpcpm�2q

i �cpm�1q
i q�� � ��ekipbm�����b1qpvi�cp1qi q (8.47)

Step 2. Let v̂,v be any two points in intprepF qq such that for all i, v̂i � vi. We claim that for any
ε ¡ 0, there exist positive numbers k1, . . . , kn, b1, . . . , bn, and vertices cp1q, . . . , cpnq, such that the
system

v̂1 � c
pnq
1 � ek1bnpcpn�1q

1 � c
pnq
1 q � ek1pbn�bn�1qpcpn�2q

1 � c
pn�1q
1 q � � � � � ek1pbn�����b1qpv1 � c

p1q
1 q

v̂2 � c
pnq
2 � ek2bnpcpn�1q

2 � c
pnq
2 q � ek1pbn�bn�1qpcpn�2q

2 � c
pn�1q
2 q � � � � � ek1pbn�����b1qpv2 � c

p1q
2 q

...

v̂n � cpnqn � eknbnpcpn�1q
n � cpnqn q � ek1pbn�bn�1qpcpn�2q

n � cpn�1q
n q � � � � � eknpbn�����b1qpvn � cp1qn q

(8.48)

has an ε-solution, in the sense that the two sides of each equation differ by at most ε.
We give an induction-type argument to justify our claim. First, we will show that if we consider

just two players, in fact an exact solution is possible. Wlog, let these be players 1 and 2; we will
specifically show that there exist k1, k2, b1, b2 (all positive), and vertices cp1q, cp2q P C, such that
the following two equations hold:

v̂1 � c
p2q
1 � ek1b2pcp1q1 � c

p2q
1 q � ek1pb2�b1qpv1 � c

p1q
1 q (8.49)

v̂2 � c
p2q
2 � ek2b2pcp1q2 � c

p2q
2 q � ek2pb2�b1qpv2 � c

p1q
2 q (8.50)

Now choose vertices cp1q, cp2q satisfying the conditions below.

sgnpv̂1 � v1q � sgnpv1 � c
p1q
1 q (8.51)

sgnpv̂2 � v2q � sgnpv2 � c
p2q
2 q (8.52)

Note that since v̂i � vi for all i, and both v̂ and v are in intprepCqq, it is possible to find two such
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vertices (and they could be the same vertex), where none of the signum functions above return 0.
Let us set k2 � 1 and make the following substitutions: eb2 � 1 � p and eb1�b2 � 1 � p � q in
equations (8.49) and (8.50). After some cancellations, the second equation can be rewritten as

v̂2 � v2 � ppv2 � c
p2q
2 q � qpv2 � c

p1q
2 q (8.53)

while the first equation becomes

v̂1 � c
p2q
1 � p1� pqk1pcp1q1 � c

p2q
1 q � p1� p� qqk1pv1 � c

p1q
1 q. (8.54)

We are interested in positive k1, p, q that will solve this pair of equations. In (8.53), we can choose
q to be very small and strictly positive such that sgnppv̂2 � v2q � qpv2 � cp1q2 qq � sgnpv̂2 � v2q, and
then because of (8.52), we can find a positive p that solves (8.53). From p and q, b1 and b2 may be
extracted. Turning to equation (8.54), we note that if k1 Ñ 0, sgnpRHS � LHSq is the same as
sgnpv1�v̂1q. On the other hand, as k1 Ñ8, because of the positivity of p and q, sgnpRHS�LHSq
is the same as sgnpv1�cp1q1 q. Hence, by the Intermediate Value Theorem, there exists k1 ¡ 0 which
solves the equation if sgnpv1 � v̂1q � �sgnpv1 � c

p1q
1 q or sgnpv̂1 � v1q � sgnpv1 � c

p1q
1 q. But this is

just (8.51).24

Now, we show that for any m   n, and for any ε ¡ 0 if an ε-solution exists for m� 1 equation
version of (8.48), where the vertices are chosen according to the rule sgnpv̂i�viq � sgnpvi�cpiqi q for
each player i then a solution exists for the m equation version as well where the additional vertex
is chosen using the same rule (used for the additional player). To see this, consider (8.48) with n
replaced by m; suppose we set b1 � 0 in all those m equations. If we consider the second through
the m-th equation of the system, they become exactly the system for an m � 1 player scenario
(where the players are indexed 2 through m). This is because in the equation pertaining to player
i (i � 2, . . . ,m) the sum of the last two terms ekipbm�����b2qpcp1qi � c

p2q
i q � ekipbm�����b1qpvi � c

p1q
i q

collapses to the single term ekmpbm�����b2qpvi� cp2qi q on setting b1 to zero (note that cp1q disappears
from the system as a result as well). We will call this particular system the ‘revised system’.
Choose k2, . . . , km, cp2q, . . . cpmq and b2, . . . , bm, so that the left hand side and the right hand side
of each equation in this revised system differ by at most ε

2 . Next, choose b1 small enough so
that the right hand sides of the original equations for players 2 through m and right hand sides
of the corresponding revised equations differ by at most ε

2 , no matter what cp1q is, which can
indeed be ensured since the right hand sides of the original equations are continuous in b1. Thus,
we have chosen now k2, . . . , km and b1, . . . , bm and vertices cp2q, . . . , cpmq

2 such that equations 2
through m satisfy the desired property. It remains to tackle the first equation and determine k1.
Indeed k1 can now be chosen to satisfy the equation exactly. Once again, as can be easily checked,
this is an application of the Intermediate Value Theorem, as long as cp1q satisfies the condition
sgnpv̂1 � v1q � sgnpv1 � c

p1q
1 q. This proves the claim.

Step 3. Now, choose any u in intpF q such that there exists a ν-ball around u which lies fully inside
intpF q (guaranteed as a consequence of the full-dimensionality assumption). Let v̂ be such that
the distance between v̂ and u is at most ν{3, and for each i, v̂i � vi. For this v̂ and the given v,
choose the ki’s and the bi’s and the ci’s using Step 2 such that for these parameters, ṽ, the limit

24Writing equation (8.54) as a � bxk1 � cyk1 where y ¡ x ¡ 1, it is easily seen that for k1 ¥
lnp |a|�|b|

|c|
q{lnp y

x
q, sgn(RHS - LHS) =sgn(c). Now the method of bisection can be used to identify the so-

lution to an arbitrary desired degree of precision.
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point after the first n phases of the path described in Step 1 is at most ν{3 away from v̂. Let θ̄1

be such that for θ   θ̄1, the actual required continuation payoff ṽpθq is at most ν{3 away from its
limit point ṽ. This will ensure that when θ   θ̄1, for the ki’s chosen, and for δi � 1

1�kiθ , at the
end of the first n phases, the required continuation payoff ṽpθq will be within a distance of ν from
u. For the chosen ki’s let θ̄2 be the cutoff on θ that is required to make Bpu, νq self-accessible as
demonstrated in Proposition 3. Then, when θ   θ̄ � minpθ̄1, θ̄2q, we can simultaneously ensure
that ṽpθq is inside Bpv̂, νq and that there is a sequence of actions that generate ṽpθq. Combining
this last phase with the n phases described in Step 1, it follows that for discount factors given by
δi � 1

1�kiθ with θ   θ̄, the n� 1 phase path described in that step will indeed realize v. �

Proof of Theorem 4

We first demonstrate the inclusion:
�tFpδq | δ P p0, 1q2u � intprepF qq�F . Let x P F pδq for

some δ. Obviously, x R prepF qqc, for otherwise there exists a player i such that xi is either strictly
greater or strictly less than what player i can achieve in the stage game – an impossibility. Next
we show that if x is on the boundary of repF q, then x P F . In this case, there exists i such
that xi is an extremal (either maximum or minimum) payoff for player i (in the stage game). Let
taptq | t P Z�u be the sequence of actions played to realize x, and define Cei :� tpgpaptqq | t P Z�u
to denote the set of all payoff profiles earned in any period. Since xi is an extremal payoff of i, we
must have gipaptqq � xi for all t; therefore not only is it true that xi � p1 � δiq

°
δtigipaptqq, but

it is also true that xi � p1 � δjq
°
δtjgipaptqq for any δj . For player j � 3 � i, of course we have

xj � p1 � δjq
°
δtjgjpaptqq. Therefore, we can write the vector equality using j’s discount factor:

x � p1� δjq
°
δtjgpaptqq, where each gpaptqq P Cei . This implies x P copCei q � F .25

To demonstrate the other inclusion,
�tF pδq | δ P p0, 1q2u � intprepF qq�F , we appeal to

Theorem 3 (making use of the full-dimensionality assumption) and further note that for any x P F ,
Proposition 1 guarantees that x P Fpδιq for sufficiently large δ. �

Proof of Theorem 5

Let us wlog assume that wj � 0 for all j. We begin by asserting that on any path for any player, if
he is using discount factor δ, then provided all his continuation payoffs are nonnegative, increasing
the discount factor to δ̃ ¡ δ would keep all his continuation payoffs still nonnegative. To see this
let st be the continuation payoff from t onwards when δ is used, i.e.

st � p1� δqrvt � δvt�1 � δ2vt�2 � � � � s (8.55)

where vt is the player’s actual payoff in period t. Equation (8.55) implies st

1�δ � vt � δ s
t�1

1�δ and
hence,

vt � st

1� δ
� δ

st�1

1� δ
. (8.56)

25When there are more than 2 players a little thought should convince the reader that this logic will
not extend unless all players other than i have the same discount factor.
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Similarly let s̃t be the continuation payoff from t onwards with the discount factor δ̃. Using
equations (8.55) and (8.56), we can write that as

s̃t � p1� δ̃q
��

st

1� δ
� δst�1

1� δ



� δ̃

�
st�1

1� δ
� δst�2

1� δ



� δ̃2

�
st�2

1� δ
� δst�3

1� δ



� � � �

�

�
�

1� δ̃

1� δ


�
st � pδ̃ � δqst�1 � δ̃pδ̃ � δqst�2 � � � � �

¥ 0 (8.57)

Now assume for the moment that v was achieved as an equilibrium payoff vector with a discount
factor vector where δ1 ¤ δ2 ¤ . . . ¤ δn. Consider what payoff vector would realize if we stayed with
the same played path but increased each of player 1, 2, . . . , n� 1’s discount factors to δn. Since, v
is an equilibrium payoff it is weakly individual rational, and all continuation payoffs for all players
for all periods must be nonnegative as well. Hence, after this adjustment of discount factors, the
payoff vector we obtain has the first n � 1 components non-negative, the last component is the
same as vn and moreover, since with equal discounting any play must result in a payoff vector
that is in F , this particular payoff vector satisfies all the requirements of un in the WD condition
(under the natural order).

Next consider, the effect of changing all the discount factors to δn�1; this involves increasing
the first n � 2 discount factors, keeping the pn � 1q’th discount factor same and decreasing the
last discount factor. We cannot predict what happens to player n’s payoff as a result, but we can
surely claim that the first n � 2 players’ payoffs continue to remain non-negative, player n � 1’s
payoff remains at vn�1 and the whole payoff vector, taken together is in F . But then this new
payoff vector satisfies the requirements of un�1 in the WD condition. Proceeding similarly, each of
the conditions imposed in WD can be seen to be satisfied. Finally, If the ordering of the discount
factors is not ‘natural’, but it is the case that δπ1 ¤ δπ2 ¤ . . . ¤ δπn , for some permutation π, the
same argument can be easily adapted to show that v PW pπq. �

Proof of Proposition 5

Part a): In this proof we borrow notation used and results derived in the proof of Proposition
3. For a given ball Bpo, rq, let ypx, c,o,k, θq refer to the continuation point when we decompose
the current payoff vector x using the current action c while k, θ parametrize the discount factor
vector. We let dpx, c,o,k, θq :� ||y � o|| and fpx, c,o,k, θq � d2 � r2.26 The arguments used in
Proposition 3 shows that for the fixed ball Bpo, rq there exists a strictly positive-valued function
θ̄po,kq, continuous in its arguments such that if θ P p0, θ̄po,kqq, for each x P Bpo, rq there exists a
vertex c�px,o,kq with the property

°n
i�1 kipxi � c�iqpxi � oiq   0 and for that vertex, f   0 and

hence, d   r.27 Define
θ:pkq � min

o P ry,zs
θ̄po,kq (8.58)

which is well-defined and strictly positive because θ̄ is strictly positive and continuous in its argu-
ments and because ry, zs is compact. Hence, if θ P p0, θ:pkqq, for any o P ry, zs and x P Bpo, rq,

26y, d and f also depend on r, but we ignore this for brevity’s sake as r stays fixed once we fix our
capsule. This shortcut is used for other functions as well.

27Recall that c� was chosen with a view to maximize the range of θ over which f stays non-positive.
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there exists c, such that f   0 or d   r. Now define d̄pk, θq by

d̄pk, θq :� max
o P ry,zs

max
x PBpo,rq

min
cPC

dpx, c,o,k, θq (8.59)

which is well-defined and   r because of continuity of d in x and o, the Maximum Theo-
rem and compactness of the relevant feasible sets. In d̄pk, θq, we now have created a uniform
bound on the distance of the continuation payoff from the center of any ball that makes up the
capsule and any target point in the ball by choosing the current action to be ĉpx,o,k, θq :�
argmincPC dpx, c,o,k, θq (ties being broken using any arbitrary preference ordering among ver-
tices).28

Now, for θ   θ:pkq, we recursively construct the sequences tcptqu and txtu via a third se-
quence totu. Define o0 � y and x0 � u. Of course, if u is already in Bpz, rq, we can stop
immediately with T � 0, so we assume that this is not the case. Let cp0q � ĉpx0,o0,k, θq. Let
x1 � ypx0, cp0q,o0,k, θq. Again, we stop with T � 1 if x1 P Bpz, rq. Otherwise, we define
o1 � argmin xPry,zs

||x�x1||�r
||x� z||, and cp1q � ĉpx1,o1,k, θq.

In general, given xt,ot, cptq we define

xt�1 � ypxt, cptq,ot,k, θq (8.60)

ot�1 � argmin xPry,zs

||x�xt�1||�r
||x� z|| (8.61)

cpt�1q � ĉpxt�1,ot�1,k, θq (8.62)

and we stop the recurrence with T � t as soon as xt P Bpz, rq. Indeed, we are assured of stopping
in a finite number of steps because, ||ot � xt�1|| ¤ d̄pk, θq, ||xt�1 � ot�1|| � r which on applying
Triangle Inequality ensures that ||ot � ot�1|| is at least r � d̄pk, θq. This implies T ¤

Q
||y�z||
r�d̄pk,θq

U
and completes the proof of Part a).

Part b): To prove this part, we need to bound d̄pk, θq by some suitable function of θ. We start by
observing that the square of the d function

d2px, c,o,k, θq � θ2
ņ

i�1
k2
i pxi � ciq2 � 2θ

ņ

i�1
kipxi � ciqpxi � oiq �

ņ

i�1
pxi � oiq2 (8.63)

is convex in x.29 Now for any x � o in Bpo, rq, let x̄ be the point on the surface of the ball that is
intersected by the ray emanating from o and going towards x, i.e. x̄ � o� r

||x�o|| px� oq. Then,
since, x is a convex combination of x̄ and o, we have:

d2px, c,o,k, θq ¤ maxtd2px̄, c,o,k, θq, d2po, c,o,k, θqu (8.64)

This in turn implies that

d2px, ĉpx,o,k, θq,o,k, θq ¤ d2px, ĉpx̄,o,k, θq,o,k, θq
¤ maxtd2px̄, ĉpx̄,o,k, θq,o,k, θq, d2po, ĉpx̄,o,k, θq,o,k, θqu (8.65)

We will now bound each component in the max function in equation (8.65). For the first component,
28We note in passing that ĉ depends on θ and need not be the same as c�.
29This can be easily verified by checking the positive definiteness of the Hessian.
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we note that
d2pk, x̄, ĉpk, x̄,o, θq,o, θq ¤ d2pk, x̄, čpk, x̄,oq,o, θq (8.66)

where čpk, x̄,oq minimizes
°n
i�1 2kipxi � ciqpxi � oiq where the minimand, as argued before, is

strictly negative. Now by referring to equation (8.63) we see that d2pk, x̄, ĉpk, x̄,o, θq,o, θq is less
than or equal to m1pkqθ2 �m2pkqθ � r2 where

m1pkq :� max
xPCpy,z,rq,cPC

ņ

i�1
k2
i pxi � ciq2 ¡ 0 (8.67)

and
m2pkq :� max

oPry,zs
xPBpo,rq

min
cPC

ņ

i�1
2kipxi � ciqpxi � oiq   0. (8.68)

On the other hand, for the second of the two components in the right hand side of equation
(8.65), we notice that both the θ term and the constant term in (8.63) drops out and hence, it
is less than or equal to m1pkqθ2. There exists a θ;pk, θq ¤ θ:pk, θq when m2pkqθ � r2 ¥ 0, and
hence, for θ P p0, θ;pk, θqq, for all o P ry, zs, all x P Bpo, rq (including the centers of the balls),
mincPC d2pk,x, c,o, θq ¤ m1pkqθ2 �m2pkqθ � r2 and hence, d̄pk, θqq2 ¤ m1pkqθ2 �m2pkqθ � r2.
This shows r � d̄pk, θq ¥ r �a

m1pkqθ2 �m2pkqθ � r2 and the claim follows using the bound
derived on T in the proof of part a). �

Proof of Theorem 6

Wlog we assume thatw � 0 and v is strictly diagonalizable for the natural order, letting u1, . . . ,un

be as in the definition of the property. We will show that v is an SPNE payoff.
We will first specify the equilibrium path since the equilibrium strategy is based off it. The

equilibrium path will entail a ‘pre-entry path’ based on a sequence of actions lasting for T pθq
periods that will transition the (required) continuation payoff from v to a point inside a ball inside
intpF�q, with vtpθq denoting what the continuation payoff is at period t. The center of this ball
will be un which we know, resides in intpF�q. Thereafter, the equilibrium path will coincide with
the path created by playing the SPNE strategy to support vT pθqpθq. Of course, to specify this
strategy exactly, and hence the ‘post-entry path’ it leads to, we need to specify the radius of the
ball of entry, the k vector and ensure that θ will be below a certain bound - we will do all that in
due course.

As was clarified in Section 7, the pre-entry path will be broken down into n � 1 stages, each
stage witnessing an application of the Capsule Lemma. In the l’th stage (l � 1, . . . , n� 1) we will
be operating with a capsule that is situated inside the payoff space of the first l players for T lpθq
periods. We now describe these capsules. In what follows, if x is an n-dimensional vector, the
subvector consisting of its first m coordinates will be denoted as xrms.

By strict diagonalizability and Fact 3, for every l � 1, . . . , n� 1, ulrls and ul�1rls both belong
to intpF p1, . . . , lqq XRl�� (recall that F p1, . . . , lq is the convex hull of Projt1,...,luC). Hence, there
exists r̄l such that if rl   r̄l, the entire capsule Cpulrls,ul�1rls, rlq also lies in intpF p1, . . . , lqqXRl��.
This is the capsule we will work with in the l’th stage with rl to be further specified later.

The purpose of operating the l’th stage is to change the continuation payoffs of Players 1
through l (from what they were at the end of l � 1’th stage). But it is not that during stages 1
through l, the continuation payoffs of Player i, where l � 1 ¤ i ¤ n, will stay put. However, we
can make these players relatively patient so that their payoffs will not change by much and thus
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we can maintain strict individual rationality for those players (since vi was strictly positive for all
i). In particular, let ε be any number below mini vi. We will show, kl for l ¡ 1 can be chosen so
that during each of the stages 1, . . . l � 1, Player l’s continuation payoff changes by at most ε{n
(from the previous stage). This will ensure that at the beginning of stage l, his continuation payoff
stays strictly positive. From stages l onwards we do not have to worry about the strict individual
rationality of his continuation payoffs because for these stages they are in capsules within which
every vector is strictly positive. What works here is that we choose a player’s k before his payoff
becomes part of any capsule, and once done, his payoffs can be transitioned through any capsule
since capsules can handle any arbitrary k vector.

Given the vectors ul, l � 1, . . . , n, we define the following anchor vectors: z1 � v and for
l � 2, . . . , n,

zli �
$&
%u

l
i for i ¤ l � 1

vi for i ¡ l � 1

Notice that the the first z is the target payoff v is and the last z is un, which is in intpF�q.
The point behind the terminology ‘anchor’ should be clear now: until the continuation payoff
enters intpF�q, the entire on equilibrium continuation payoff path will stay close to the following
‘piecewise-linear’ path:

z1 ÝÑ z2 ÝÑ � � � ÝÑ zn

In the l’th stage, all continuation payoffs vtpθq, will be zig-zagging around the line segment joining
zl and zl�1.

We need to make sure that the ‘starting ball’ of the l � 1’th stage will accommodate the
continuation payoffs of players 1, . . . l arriving ‘transformed’ via the ‘ending ball’ of the previous
capsule as well as the continuation payoff of Player l� 1. This is ensured by the following relation
between the radii of one capsule and the next: r2

l�1 � r2
l � ε2 where ε is an upper bound on by

how much Player l� 1’s payoff can change up until period T 1pθq � � � � � T lpθq. As our rquilibrium
strategy will show, we need ‘room’ around the final ball of entry inside F� to take care of off-
equilibrium behavior; if the maximum of the absolute value of the adjustment term is ∆ and the
amount of reward for punishing players is 2∆, we need to have a ball of center un and radius
rn� 3

?
n� 1∆ fit inside intpF�q. To summarize then, we impose the following restrictions on the

sequence of capsule radii:

Bpulrls, rlq � intpF p1, . . . , lqq X Rl�� for l � 1, . . . , n� 1 (8.69)

Bpul�1rls, rlq � intpF p1, . . . , lqq X Rl�� for l � 1, . . . , n� 1 (8.70)

Bpun, rn � 3
?
n� 1∆q � intpF�q for some ∆ ¡ 0 (8.71)

r2
l�1 � r2

l � ε2 for l � 1, . . . , n� 1, (8.72)

where ε ¤ mini vi. Note that the first two constraints ensure that the capsule Cpulrls,ul�1rls, rlq
lies in intpF p1, . . . , lqq X Rl��.

Let m be the minimum any player receives in any point in any of the capsules. Hence, m is
also a lower bound on any player’s continuation payoff at any point on the pre-entry path. Now
define N , which we will use as the number of punishment periods, such that

N �
R
M

m

V
. (8.73)
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Next we turn our attention to permissible patterns of discount factor vectors. We start by
specifying the ki’s. This is done recursively using part b) of the Capsule Lemma. Set k1 � 1.
Next, for any l, assuming that we already know k1, . . . , kl we will determine kl�1. Apply the
Capsule Lemma to the j’th capsule Cpujrjs,uj�1rjs, rjqwhere j ¤ l. Using the notation from that
result let θ̄11,j be θ;pk1, . . . , kjq. With T jpθq being the number of periods needed to execute the
procedure described there, let tcp1qpj, θq, � � � , cpT jpθqqpj, θqu be the vertices in the original game
to be played to carry out the procedure.30 Now, we assert that there exists a θ̄1jl ¤ θ̄11j and a
k̄l�1, such that if kl�1   k̄l�1 and θ   θ̄1jl, the maximum absolute difference between Player l’s
continuation payoff at the beginning of the procedure compared to that at the end of the procedure
is ε{n. To see this recall that for any fixed kl�1, vt�1

l�1 pθq� cptql�1 � p1� kl�1θqpvtl�1pθq� cptql�1q where
cptq is the vertex played and vtpθq is Player l’s continuation payoff for the t’th period during the
operation. We can rewrite this as

vt�1
l�1 pθq � vtl�1pθq � pkl�1θqpvtl�1pθq � c

ptq
l�1q (8.74)

Hence,

|vt�1
l�1 pθq � vtl�1pθq| � pkl�1θq|pvtl�1pθq � c

ptq
l�1q|

¤ pkl�1θq2M (8.75)

from which it follows that the absolute difference between beginning and end payoffs during stage
j for Player l is at most 2kl�1MθT jpθq the θ-dependent part of which is bounded by the expression

θ

�
αj

rj �
a
m1jθ2 �m2jθ � rj

� 1
�
,

with αj being dpujrjs,uj�1rjsq and the m’s are constants depending on the cylinder, k1, . . . , kl

but not on kl�1. The limit of the above expression as θ tends to 0, using L’Hospital’s rule is the
constant 2αj

?
rj

�m2j
and hence choosing k̄l�1   �m2jε

4αjnM
?
rj

suffices for the assertion. From the above
it is clear if kl�1   k̄l�1 and θ   θ̄1l :� minj¤l θ̄1jl after l stages, i.e. after T 1pθq � � � � � T lpθq
periods, Player l�1’s continuation payoff could not change by more than ε from its original target
value vl. If θ̄1 :� min1¤l¤n�1 θ̄1l, then given the k vector we have chosen, for θ   θ̄1, the above
statement is true for each player.

For the chosen k vector, from Fact 1 we know that there is another positive bound θ̄2 such
that when θ   θ̄2, for any x P Bpun, rn� 3

?
n� 1∆q there is a SPNE strategy σ�pxq that realizes

x. Hence, for θ   minpθ̄1, θ̄2q we have designed a path that realizes v. This path involves playing
the following sequence of vertices along its pre-entry segment:

cp1qp1, θq, � � � , cpT 1pθqqp1, θq, cp1qp2, θq, � � � , cpT 2pθqqp2, θq, � � � , cp1qpn� 1, θq, � � � , cpTn�1pθqqpn� 1, θq

followed by the path yielded by σ�pvT pθqq with T pθq being T 1pθq�� � ��Tn�1pθq. For notational ease
we will henceforth refer to the sequence of vertices on the pre-entry path simply as c̃p1q, . . . , c̃pT pθqq.

Now, we can formally describe the equilibrium strategy in the language of automata (Rubinstein
30It is important to note that these are n-dimensional vertices. Though the capsule is in the projected

space of players’ payoffs on the first j coordinates, playing a vertex in the projected space requires the
participation of all players.
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1986) as shown below. There are three types of (common) states, each identifed by a set of state
variables:

• A[τ, i, z] where 1 ¤ τ ¤ T pθq, 0 ¤ i ¤ n, z P Rn

• B[τ, τ 1, i, ri] where 1 ¤ τ ¤ T pθq, 1 ¤ τ 1 ¤ N , 1 ¤ i ¤ n, ri P Rn

• C[x] where x P Rn

The interpretation of an A-type state is that going forward, we have τ periods left of going
through the pre-entry path, i was the last deviator (if i � 0, a deviation never took place), and
z is the adjustment vector in the ball Bpun, rn � 3

?
n� 1∆q that we will need to subtract from

the equilibrium point of entry (besides giving a ‘reward’ to Player(s) j � i) once we are done with
the pre-entry path. The interpretation of a B-type state is that we are on a punishment path
where Player i, the last deviator is being minmaxed and τ 1 periods of minmaxing still needs to
be done while τ denotes from what type of A state we have (eventually) arrived here, and the
j’th component of ri denotes the normalized payoff for j � i based on the past realizations of the
N � τ 1 periods of minmaxing i (rii � 0).31 The interpretation of a Type C state is that it is an
‘absorbing’ state where σ�pxq is played from that point onwards.

The game starts at the state A[T pθq, 0,0]. For any state A[τ, i, z], c̃pT pθq�τ�1q is to be played
next. If in the observed action profile, there is a unilateral deviation by player j, play switches to the
state B[τ,N, j,0]. Otherwise, play switches to A[τ�1, i,z] if τ ¡ 1 and to CrvT pθq�z�2∆pι�eiq]
if τ � 1. For any state B[τ, τ 1, i, ri],mi is to be played next. If j is the only player whose action is
not observed to be in support of mi

j , play switches to B[τ,N, j,0]. Otherwise, if τ 1 ¡ 1, play next
moves to B[τ, τ 1 � 1, i, r̃i] where

r̃ij �

$'&
'%
gjpaq�δjrij�����δN�τ 1

j
rij

1�δj�����δN�τ 1

j

if j � i

0 if j � i

(8.76)

with a being the last action profile observed. If on the other hand, τ 1 � 1, play switches to A[τ, i, z]
where zij �

1�δNj
δN�τ
j

r̃ij , where r̃ij is defined above. The behavior of the automaton at a C type stage
has already been described.

We need to ensure that |zij | is suitably bounded otherwise the adjustment term could take us

out of the last ball. Note that |zij | ¤ 1
δ
T pθq
j

1�δNj
δN
j

M . The limit of δjT pθq (as θ goes to 0) can be written

as limθÑ0 δj
T1pθq� � � �� limθÑ0 δj

Tn�1pθq. It may be easily checked that that if limθÑ0 θT
lpθq � bl,

then limθÑ0 δj
Tlpθq � e�kjbl , and hence, there exists a bound θ̄3, such that if θ   θ̄3, |zij |   ∆.

Given that each ‘punisher’ is rewarded by the amount 2∆, and ||vT pθq�un|| ¤ rn, this shows that
||vT pθq � z � 2∆pι� eiq � un|| ¤ rn � 3

?
n� 1∆.

Next, we examine the requirements for incentive compatibility. As σ� is an SPNE by construc-
tion, we only need to check for incentive compatibility at A and B type states.

If the current state is A[τ, 0,0] or A[τ, i, z] for some z, and Player i did not deviate, the
game will follow a certain path and he will receive a certain stage game payoff sequence. Let
his normalized payoff from this be yi. If he unileterally deviates, he receives 0 for the next N
periods and therafter, he will receive exactly the same sequence of payoffs had he not deviated at
all (note that he receives neither a reward nor an adjustment post entry). Unimprovability from

31Note: r � z. The latter will depend on τ .
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the prescription at a Type A state in this case is then ensured by

p1� δqM � δN�1yi ¤ yi (8.77)

or, since yi ¥ m by
M{m ¤ 1� δi � � � � � δNi (8.78)

which equation (8.73) assures us will hold for high enough δi and hence θ below a certain bound.
Our next bound θ̄4 is precisely this bound.

The argument for i’s unimprovability from states of the form A[τ, j,z] , pj � iq is even stronger
than the argument given in favor of the argument for unimprovability in the just argued case,
because by sticking to the equilibrium prescription, he would have received yi in normalized payoff
plus at least an extra amount of ∆ forever after τ periods.

Next consider i’s incentive to deviate from a state of the form B[τ, τ 1, i, ri]. This can’t be
profitable because it will simply postpone playing the same path that has a strictly positive (nor-
malized) payoff.

Lastly, consider the prospect of i deviating from a state of the form B[τ, τ 1, j, rj ], j � i. If
equilibrium prescription is followed, i will receive at worst,

p1� δτ
1

i q.�M � δτ
1

i pyi � δτi ∆q (8.79)

where yi is as before. if he deviates he will receive at best

p1� δiqM � δN�1
i yi (8.80)

Hence the difference in i’s payoff between conforming and deviating is

p1� δτ
1

i q.�M � p1� δiqM � pδτ 1i � δN�1
i qyi � δτ

1�τ
i ∆

¥ p1� δNi q.�M � p1� δiqM � pδNi � δN�1
i qm� δ

N�T pθq
i ∆ (8.81)

The last term in the above expression converges to the positive number e�kib∆ while other terms
go to 0 as δi goes to 1. Hence, there exists a positive bound θ̄5, such that if θ   θ̄5, there is no
incentive for i to deviate at any B[τ, τ 1, j, rj ] type state. We can now conclude that for the chosen
k vector if θ   minpθ̄1, θ̄2, θ̄3, θ̄4, θ̄5q, the prescribed strategy is an SPNE. �
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