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1 Introduction

The literature on asset return volatility modeling has surged since the introduction of the ARCH model

by Engle (1982) due to numerous potential applications in financial economics such as asset and deriva-

tive pricing, risk management and portfolio selection. In addition, various volatility-linked derivatives

are nowadays being actively traded on the Chicago Board of Options Exchange and in over-the-counter

markets. Recently, Andersen, Bollerslev, Diebold & Ebens (2001), Andersen, Bollerslev, Diebold &

Labys (2001, 2003), Koopman, Jungbacker & Hol (2005), Deo, Hurvich & Lu (2006), Andersen, Boller-

slev & Diebold (2007), Corsi (2009), Chiriac & Voev (2011) and Varneskov & Voev (2013), among others,

demonstrate that various realized volatility time series display characteristics compatible with fraction-

ally integrated, or I(d), processes, and that the modeling of such “long memory” features significantly

improves the precision of out-of-sample forecasts of future return volatility.

We may formally define fractional integration or, as we will label it throughout, genuine long memory

as follows; let et = C(L)εt with εt ∼ i.i.d.(0, σ2ε ) and E[|εt|r] < ∞ for some r > 2 be a short memory

process with lag polynomial C(L) =
∑∞

i=0 ciL
i satisfying

∑∞
i=0 i|ci| < ∞ and C(1) 6= 0, then ht =

(1− L)det for t = 1, 2, . . . is fractionally integrated of order d, or I(d), with autocovariance function

Rh(τ) = g(τ)τ2d−1, as τ →∞, (1)

where g(τ) is a slowly varying function as τ increases. The properties of such processes depend critically

on the magnitude of the fractional integration order, d. In this paper, we shall mainly be concerned with

the case 0 ≤ d < 1/2, that is, with a stationary process that exhibits genuine long memory whenever

d > 0, and which is characterized by having hyperbolically decaying autocovariances. However, we will

also make references to the non-stationary case d ≥ 1/2. The fractional ARIMA, or ARFIMA, model,

independently introduced by Granger & Joyeux (1980) and Hosking (1981), is a flexible time series

specification that captures genuine long memory and, as a result, has become popular for volatility

modeling and forecasting, e.g., Andersen, Bollerslev, Diebold & Labys (2003).

Recently, however, a parallel literature has studied the possibility of genuine long memory being

confused with a short memory process contaminated by random level shifts, spurred by the expositions

in Perron (1989, 1990), who show that unit roots (d = 1) and structural changes are easily confused in

the sense that the sum of the autoregressive coefficients is biased towards one if a stationary process is

contaminated by level shifts. Applying this concept to the context of genuine long memory modeling,

Lobato & Savin (1998), Diebold & Inoue (2001), Granger & Hyung (2004), and Perron & Qu (2007,

2010), among others, show theoretically and through simulations that if a short memory process is con-

taminated by random level shifts, the resulting time series will display many of the same characteristics

as one of genuine long memory; for example, hyperbolically decaying autocovariances.1 Motivated by

these findings, Lu & Perron (2010) and Qu & Perron (2013), extending earlier work by Chen & Tiao

1Related findings are made by Bhattacharya, Gupta & Waymire (1983), Mikosch & Stărică (2004), Stărică & Granger
(2005), Ohanissian, Russell & Tsay (2008), and Christensen & Varneskov (2016).

1



(1990) and McCulloch & Tsay (1993), propose parametric models of asset return volatility, which allow

for both random level shifts and short memory dynamics. They perform empirical analyses using daily

stock index returns and argue that the (genuine) long memory properties of the volatility in such series

are, indeed, spurious. These findings are corroborated in Xu & Perron (2014). Similar conclusions arise

from another branch of the literature, which consider semi-parametric estimation and testing for genuine

long memory; see, e.g., Smith (2005), Perron & Qu (2010), Qu (2011), McCloskey & Perron (2013), and

McCloskey & Hill (2015). However, the proposed semi-parametric frameworks have a disadvantage in

that random level shifts are not identified, making them unsuitable for forecasting.

As such, we face a dual problem. The presence of random level shifts may bias the parameter

estimates for genuine long memory models and, consequently, lead to misspecified dynamics of asset

return volatility. However, the presence of genuine long memory may also cause spurious detection of

random level shifts in the series; see, e.g., Nunes, Newbold & Kuan (1995) and Granger & Hyung (2004).

As a solution to this problem, we propose a parametric framework for asset return volatility modeling,

which allows volatility to exhibit both random level shifts and ARFIMA dynamics. Furthermore, we allow

for measurement errors in the observable volatility proxies such that we may analyze series constructed

from daily as well as high-frequency data. The idea of combining random level shifts with a fractionally

integrated component for time series modeling resembles the strategy in Ray & Tsay (2002). However,

we introduce a framework that augments their Bayesian approach in four different directions; by allowing

for a short memory ARMA component, by allowing for measurement errors, by allowing random level

shifts to occur at each time t, and not in larger blocks, and, finally, we extend their analysis by providing

a forecasting framework for the general class of models considered.

In particular, we propose a parametric state space framework to estimate the class of models and

perform out-of-sample forecasting. The estimation procedure is similar to the one introduced by Perron

& Wada (2009) and Lu & Perron (2010) where the basic principle is to augment the probability of states

by the realizations of a mixture of normally distributed processes and apply the Kalman filter to construct

the likelihood function conditional on the realization of states. However, an additional challenge arises

since there exists no exact finite state space representation if the underlying process contains a genuine

long memory component. We argue and show through simulations that this problem may be solved by

using a relatively smaller order truncation of lags, which makes estimation feasible in practice, largely

without loss of precision in the parameter estimates.2 In addition to analyzing the truncation order,

our simulation study demonstrates the adequacy of the estimation methodology as well as compares

the estimated memory parameters from our random level shift ARFIMA, or RLS-ARFIMA, model with

standard ARFIMA parameter estimates, which, as we illustrate, are severely affected by random level

shifts. The recursive structure of the Kalman filter allows us to introduce a new forecasting framework

for general parametric random level shift models, which utilizes the information in the Kalman recursions

to generate forecasts for a given state and, then, weight them with the probability of being on a given

2In principle, one always needs to truncate the number of included lags when estimating models with ARFIMA dynamics.
Our contribution comes from showing that this truncation order can be relatively small for autoregressive representations
of the latter in a state space context with level shifts. This eases the computational burden considerably.
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transition path. Hence, the forecasts are both mean and path-corrected.

We apply the proposed reduced form modeling framework to eight daily asset return volatility series,

which differ, not only with respect to the sampling frequency with which they are constructed, using

either daily or high-frequency data, but also according to time span and asset class. We compare

the full sample parameter estimates and out-of-sample forecasting performance of our RLS-ARFIMA

model to six popular models in the literature and uncover some novel empirical findings. First, the

random level shift component is important for all series, delivering more frequent shifts for all volatility

proxies constructed from high-frequency data, but with less variability for most compared to those

associated with the daily return series. Second, once level shifts are taken into account, most high-

frequency volatility measures are characterized by a large genuine long memory component, whereas the

remaining dynamics of the volatility proxies, constructed as log-absolute returns, may be described as

a combination of short memory dynamics and measurement errors. As such, it is not surprising that

the measurement errors are larger for the log-absolute return series than for the volatility measures

constructed from high-frequency data, which are known to be more efficient, but the differences in terms

of persistence of the remaining dynamics are striking. Third, we show that if one fails to take both

genuine long memory and random level shifts into account, the resulting parameter estimates will reflect

either spurious long memory or spurious breaks. Most importantly, however, from our out-of-sample

forecasting analysis, we show that the RLS-ARFIMA model is, by far, the most frequent member of

the 10% Model Confidence Set (MCS) proposed by Hansen, Lunde & Nason (2011). It delivers good

out-of-sample performance across various forecast periods, forecast horizons, asset classes, and volatility

measures. The forecast gains can be very pronounced, especially at longer horizons.

The outline of the paper is as follows. Section 2 introduces the discrete time volatility model,

and Section 3 describes the data as well as provides motivational evidence. Section 4 re-casts the

model in a state space framework and introduces the forecasting procedure. The simulation study

is presented in Section 5, while Section 6 has the empirical analysis and robustness checks. Finally,

Section 7 concludes. The appendix in Section A details our treatment of measurement errors, and the

web appendix, Varneskov & Perron (2017), contains additional theory, evidence, and proofs.

2 A Discrete Time Volatility Model

We aim to provide a unified discrete time framework for capturing the dynamics of daily volatility

measures, constructed from either daily or high-frequency data. Hence, we need to specify a general

time series model that not only accommodates some of the extensively documented empirical regularities

of such processes such as volatility clustering, genuine long memory and/or random level shifts, but also

allows for measurement errors in the volatility proxies. The inclusion of such features will allow us to

assess which components are the most important contributors to the variation in different volatility series

without taking a stance on modeling paradigm, and we will, thus, nest them within the same parametric

framework. Specifically, let xt ∈ R denote the latent, univariate logarithmic volatility process, then we
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assume that the observable log-volatility proxy, yt ∈ R, follows the signal-plus-noise model:

xt = a+ ht + vt, (2)

yt = xt + ut where ut ∼ i.i.d.N
(
0, σ2u

)
(3)

is the measurement error in the volatility proxy, a is a constant, ht is a stationary long memory process,

and vt is the random level shift component.3 The simple decomposition of the model (2)-(3) encom-

passes many parametric volatility models in the extant literature as well as nests all subsequent models

developed in this paper. Next, we impose a parametric structure on both vt and ht. First, we assume

that the random level shift process is given by

vt =

t∑
j=1

δT,j where δT,j = πT,jηj , ηj ∼ i.i.d.N(0, σ2η), πT,j ∼ i.i.d.Bernoulli(γ/T ),

for some γ ∈ [0, T ], that is, the process is modeled as the sum of level shifts of magnitudes ηj , drawn

from a Gaussian distribution, and whose frequency are determined by πT,j . Second, the genuine long

memory component of the model, ht, is assumed to obey ARFIMA dynamics,

Φ(L)(1− L)dht = Θ(L)εt, where εt ∼ i.i.d.N(0, σ2ε ),

and Φ(L) = (1 − φ1L − ... − φpLp) and Θ(L) = (1 − θ1L − ... − θqLq) are autoregressive and moving

average lag (Lht = ht−1) polynomials of orders p and q, respectively. The component ht captures the

transitory part of the model. Moreover, its stationarity and uniqueness, thus allowing identification of

the parameters, are assured by assuming 0 ≤ d < 0.5 and that the roots of Φ(x)=0 and Θ(x) = 0 are

outside the unit circle and distinct; see, e.g., Brockwell & Davis (1991, p. 525). Last, we assume that

the components πT,t, ηt, ut and ht are mutually independent.4

Before proceeding, several features of the model should be highlighted. First, by imposing either

γ = 0 or ση = 0, we recover the long memory stochastic volatility (LMSV) model and, if σu = 0 is

additionally imposed, the stationary ARFIMA model, which are advanced by Deo et al. (2006) and

Andersen et al. (2003) in the context of realized volatility modeling and forecasting. This implies that

if either γ = 0 or ση = 0, the other parameter affecting the random level shift process is not identified.

This feature is evident in our simulation study in Section 5. However, and as we will elaborate upon

in later sections, the likelihood function for the ARFIMA parameters are unaffected by this boundary

case. Also, since we find both γ > 0 and ση > 0 for all series considered, and the main emphasis is on

forecasting, the possibility of non-identified parameters is innocuous for the present analysis.

3In the supplementary appendix, Varneskov & Perron (2017), we briefly discuss how the volatility in discrete time return
models relate to the quadratic variation from continuous time return models. Moreover, we make a direct comparison of
the discrete signal-plus-noise model in (2)-(3) to a contemporaneous continuous time stochastic volatility model.

4Following a previously circulated draft of this paper, Grassi & de Magistris (2014) study the small sample properties of
estimators of the integration order, d, using a simplified version of the proposed model (2)-(3) in a simulation setup.
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Second, if we impose d = 0, we recover a short memory stochastic volatility model with ARMA

dynamics and random level shifts in the mean. We note that even this restricted version of the model

generalizes the corresponding model in Qu & Perron (2013) by allowing for an MA component and,

similarly, Lu & Perron (2010) by accommodating both an MA component and measurement errors in

the series. Hence, our framework in (2)-(3) offers substantial flexibility when modeling the dynamics of

various daily log-volatility measures. In particular, it allows us to remain agnostic as to whether the

persistent features of the series are better described by genuine long memory, random level shifts, or

both, and it may be applied to daily as well as high-frequency measures of volatility.

Third, we impose normality on εt and ut, which may be restrictive considering that measurement

errors for daily volatility proxies, in particular, can be highly non-Gaussian. The assumption, however,

should be interpreted in a quasi-maximum likelihood (QML) sense. That is, we use it to derive the

predictive likelihood function via the Kalman filter to estimate different versions of the model, similarly

to the strategy devised by, e.g., Harvey & Shephard (1996) for short memory stochastic volatility models

who show that consistency and asymptotic normality still hold when the measurement errors deviate

from Gaussianity for a related QML estimator based on the Kalman filter. Moreover, as we analyze

logarithmic transformations of the volatility proxies, we do not expect to see dramatic violations of

Gaussianity, cf. the distributional results in Andersen, Bollerslev, Diebold & Ebens (2001), Andersen,

Bollerslev, Diebold & Labys (2001) as well as the summary statistics provided below.

Fourth, the accommodation of measurement errors in the signal-plus-noise model has implications

for the reduced form dynamics of the observable log-volatility proxy, yt. In particular, and similarly to

the analyses in Meddahi (2003) and Hansen & Lunde (2014), who assume that realized volatility proxies

obey ARMA dynamics, we may reformulate the model as

(1− L)dΦ(L)(yt − a− vt) = Θ(L)εt + (1− L)dΦ(L)ut. (4)

This representation has implications for how we treat measurement errors and interpret the estimated

MA parameters. A detailed discussion of these issues is deferred to Section 4 and Appendix A.

Finally, we stress that the Bernoulli probability of a random level shift is dependent on the sample

size, T , to make the expected number of shifts constant and equal to γ. This is needed to model

structural changes in mean (or rare events), which affect the properties of the series until the next shift

(event) occurs. The long memory component allows the process to have transitory shocks that are

long-lasting in periods between structural changes. For example, in the context of volatility modeling,

this may potentially capture volatility clustering between financial crises (which may be seen as rare

events). If only one persistent component is present in the log-volatility series, our model is able to assess

whether it is better described by genuine long memory or random level shifts. If level shifts are present,

however, as clearly seen from equation (4), our model is non-stationary with level a+ vt, thus devoid of

long-run mean reversion (recall, the breaks are i.i.d.). While the latter is generally not accepted when

volatility hits extreme levels, our model should be viewed as a (better) finite sample approximation to

the log-volatility dynamics. In our model, “mean reversion” from extreme levels will be captured by
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another (downward) level shift when the volatility level has decreased sufficiently.

Remark 1. The local level model yt = xt + ut, xt = xt−1 + εt put forth in, e.g., Harvey (1989), is

embedded in our framework by imposing a level shift in each period, i.e., γ = T . However, in general,

we require γ ∈ (0, T ) fixed such that γ/T → 0 as T → ∞ for the level shift component to generate

autocorrelations akin to genuine long memory, see, e.g., Perron & Qu (2010). Furthermore, we find

that γ = T is strongly rejected for all series in our empirical analysis.

Remark 2. For many applications in economics and finance, it is the volatility in either its standard

deviation or variance form (and its corresponding forecast) that is of interest to researchers. We focus

on the log-volatility process in (2)-(3) to allow for both positive and negative breaks of unknown and

random magnitudes as well as to alleviate the parameter biases, which often plague estimation techniques

when the innovations are highly non-Gaussian, as found for the alternative volatility transformations.

For example, Haldrup & Nielsen (2007) find that outliers cause a substantial negative bias in different

estimators of the fractional integration order, d. We will, however, discuss how to extrapolate volatility

and variance forecasts from our log-volatility model in Section 6.4 and give an empirical illustration.

3 Empirical Volatility Measures and Preliminary Evidence

This section describes the data, the empirical volatility proxies, and it provides preliminary summary

statistics as well as some initial tests of particular dynamic features of the series to motivate the proposed

volatility modeling framework.

3.1 Data and Empirical Volatility Measures

We consider eight daily log-volatility series in our empirical analysis, which differ, not only according

to the sampling frequency of the data with which they are constructed, but also according to time span

and asset class: (1) For three stocks, Bank of America Corp. (BAC), Merck & Co., Inc. (MRK), and the

Standard & Poor’s Depository Receipts (SPY), we have tick-by-tick trades available with observations

stamped to the nearest second from January 1997 through July 2008; (2) For futures contracts on the

S&P 500 and 10-year Treasury bonds, we have one-minute observations available for every trading day

from January 1983 through May 2009; (3) For the three exchange rates, USD-AUD, USD-CHF, and

USD-JPY, we have daily observations available from January 4th 1971 through April 10th 2009.5

The number of trading days, hence the time span, is considerably smaller for the volatility mea-

sures constructed from intra-daily data than for the daily volatility proxies. However, from the theory

of quadratic variation, it is well-known that, under mild conditions on the efficient price process, we

may utilize high-frequency data to get a precise estimate of the whole return variance trajectory over

a (trading) day. In particular, if the applied estimator is able to account for an array of market fric-

tions that are inherent to observable intra-daily log-prices, then high-frequency data-based estimates

5We are grateful to Asger Lunde for providing cleaned tick data.
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of quadratic variation make unbiased and efficient proxies, thus having measurement errors that are

vanishingly small, which has been shown to improve out-of-sample forecasting in, e.g., Andersen et al.

(2003), Koopman et al. (2005), Deo et al. (2006), and Varneskov & Voev (2013).

The volatility for the three daily exchange rate series is proxied by log-absolute returns.6 The daily

quadratic variation, on the other hand, for the remaining series with high-frequency data available

is estimated using the flat-top realized kernel approach, put forth in Varneskov (2016a, 2016b), since

it is robust to general forms of market microstructure noise and has optimal asymptotic, as well as

good finite sample, properties.7 Each flat-top realized kernel estimate is subsequently square-root and

log-transformed such that its unit is comparable to that of log-absolute returns.8 We provide a few

unconditional and conditional summary statistics of the eight volatility proxies in Table 1.

From the unconditional summary statistics, we see that the three exchange rate volatility series dis-

play slightly more left-skewed distributions with slightly higher excess kurtosis relative to the remaining

series based on high-frequency data. However, it is clear that the logarithmic transformation has re-

moved the pronounced right-skew and excess kurtosis, which usually characterize volatility proxies in

their standard deviation or variance form. These distributional results are in line with prior findings,

e.g., Andersen, Bollerslev, Diebold & Ebens (2001) and Andersen, Bollerslev, Diebold & Labys (2001).

3.2 Preliminary Evidence on Volatility Dynamics

As an initial gauge of the conditional properties of the series, we present log-periodogram (LP) and local

Whittle (LW) estimates of the fractional integration order using a bandwidth m = bT 1/2c. Furthermore,

we include results from the testing procedure of Perron & Qu (2010) for the null hypothesis that the

volatility series have genuine long memory against the alternative of being comprised of level shifts and

short memory dynamics, and a similar test by Qu (2011), which shares the same null hypothesis, but

also allows the alternative to be a combination of genuine long memory and level shifts.9

The point estimates of the fractional integration order, d, from the LP and LW estimators suggest

that all volatility series have d > 1/2, that is, are fractionally integrated within the non-stationary

range. At first glance, this make our assumption that 0 ≤ d < 1/2 seem erroneous. However, if the

series contain level shifts, these will dominate the periodogram behavior at the very lowest frequencies,

causing an upward bias in the LP and LW estimators. Moreover, in the supplementary appendix, we

show that the two estimators are very sensitive to the number of frequency ordinates included, showing

almost monotonically declining d estimates as m increases, in addition to a steep pole near the origin,

and we argue that this can be interpreted as evidence of level shifts (see the web appendix for details).

6Strictly speaking, we use ln(|rt|+0.001), rt being the daily log-return, to bound zero daily returns away from minus infinity.
This follows, e.g., Hurvich & Ray (2003), Stărică & Granger (2005), Perron & Qu (2010) and references therein.

7We provide details on the flat-top realized kernel estimator and its implementation in the supplementary appendix.
8Note that the measures based on high-frequency data account for the quadratic variation over one trading day. As a result,
they differ from the daily exchange rate series, which include holiday, overnight, and weekend effects.

9We detail the testing procedures and the LP and LW estimators in the supplementary appendix, where we also provide a
more in-depth analysis of the conditional properties of the volatility series. This includes theoretical and empirical results
on the autocorrelation function for time series with genuine long memory, random level shifts, and measurement errors.
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As a more formal check of whether the seemingly non-stationary fractional integration in the series is

generated (exclusively) by a genuine long memory component, we apply the tests of Perron & Qu (2010)

and Qu (2011). From these results in Table 1, we find clear evidence against the null hypothesis of

no level shifts for the USD-AUD and USD-JPY series, no significant evidence against it for the MRK

and SPY series, and mixed evidence against it for the remaining series. Hence, since we are unable

to make definitive statements about the underlying data generating process for the eight log-volatility

series using these semi-parametric tests, this suggest to incorporate both genuine long memory and

random level shift components to capture the low-frequency variation in the daily volatility measures

and, subsequently, for generating competitive volatility forecasts.

4 Econometric Methodology

In this section, we re-cast the reduced form model (4) in state space form to provide a feasible estimation

and forecasting framework, generalizing the estimation methods in Perron & Wada (2009) and Lu &

Perron (2010) by allowing for genuine long memory. Additionally, we provide a forecasting procedure,

which is easy to implement and may also be used for previously proposed short memory random level

shift models. From (4), we see that an RLS-ARFIMA(p, d,∞) structure is generally needed to describe

the reduced form dynamics of the log-volatility, yt. Going forward, however, yt is treated as having

an MA component of (finite) order q. As such, this may be seen as restricting yt = xt. However,

we emphasize that since an ARMA(p, q) process plus noise has ARMA(p,max(p, q)) representation,

the procedures developed here do, indeed, accommodate measurement errors. To further support this

claim, we provide empirical evidence and a detailed discussion in Appendix A, arguing that all series are

appropriately described by an RLS-ARFIMA(1, d, 1) parameterization. Hence, with a slight abuse of

notation, we use Θ(L) to describe the MA lag structure in (4) in the remaining part of the paper, despite

encompassing both the case with and without measurement errors in the volatility proxy. Moreover,

we are careful when interpreting the estimated MA parameters, which may reflect either measurement

errors, an MA component, or a combination of the two.

4.1 State Space Representation

First, redefine the random level shift component, vt, as a random walk with innovations that obey a

mixture of two normally distributed processes,

vt = vt−1 + δT,t where δT,t = πT,tη1t + (1− πT,t)η0t

and ηjt ∼ i.i.d.N(0, σ2ηj) for j = (0, 1). We impose the restrictions σ2η1 = σ2η and σ2η0 = 0 to recover the

representation in (2). The intuition for reducing the two components of the model to one is the following;

if a structural change occur, it will have a long-lasting impact on the volatility level, at least until the

next structural change. However, writing vt using this “two-component-form” allows us to adopt a state
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space representation that resembles the corresponding one for Markov regime switching models see,

among others, Hamilton (1994b), and this is helpful in developing the estimation procedure. Moreover,

this specification also highlights that level shifts are modeled as independent random events, which are

invariant to past realizations of the data. Next, under the conditions of Section 2, the ARFIMA long

memory component, ht, in (2)-(3) may be written as an AR(∞) process,

ht =
∞∑
i=1

ψiht−i + εt, where
∞∑
i=0

ψiL
i =

Φ(L)

Θ(L)
(1− L)d, (5)

and for which the contribution of the fractional difference filter may be written as a binomial expansion

(1−L)d =
∑∞

i=0 πiL
i with πi = Γ(i− d)/(Γ(i+ 1)Γ(−d)) where Γ(·) is the gamma function. Using this

representation, we may rewrite yt in first differences as ∆yt = ht−ht−1 + δT,t for t = 2, . . . , T . Similarly

to the frameworks for ARFIMA models in Chan & Palma (1998) and Beran (1995), ∆yt does not have

an exact finite dimensional state space representation unless d = 0 and p, q < ∞. Hence, we follow

the literature and approximate the AR(∞) process by an AR(M) where M must be chosen suitably.

We discuss theoretical as well as finite sample guidance for M in Sections 4.2 and 5 below. Now, by

combining the mixture of normals formulation for vt above with (5), the approximate state space matrix

representation of ∆yt is given by

∆yt = FHt + δT,t, Ht = GHt−1 + Et (6)

where F = (1,−1, 0, . . . , 0)′, Ht = (ht, ht−1, . . . , ht−M+1), and Et = (εt, 0, . . . , 0) are M × 1 vectors,

Et ∼ i.i.d.N (0M×1,Q) and 0M×1 denotes a M × 1 vector of zeros. Here, G and Q are both M ×M
matrices of parameters and identifying terms,

G =

(
ΨM−1 ψM

IM−1 0(M−1)×1

)
, Q =

(
σ2ε 01×(M−1)

0(M−1)×1 0(M−1)×(M−1)

)
,

where ΨM = (ψ1, . . . , ψM ) is 1×M and IM is an M -dimensional identity matrix. The added challenge

relative to the genuine long memory state space framework of Chan & Palma (1998) is due to the state-

dependent error in the measurement equation, whereas relative to Lu & Perron (2010), it is the presence

of (1− L)d/Θ(L) in the representation of ht such that no finite state space representation exists.

4.2 Maximum Likelihood Estimation

The basic principle behind the estimation procedure is to augment the probability of states (or different

level regimes) by the realizations of a mixture of normally distributed processes at time t and apply

the Kalman filter to construct the likelihood function conditional on the realization of states. Since

we truncate the AR(∞) representation of ht in (5) at lag M , the resulting estimation method becomes

similar to the corresponding procedures in Perron & Wada (2009) and Lu & Perron (2010), despite

significantly generalizing their modeling frameworks. Hence, details on the construction of the log-
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likelihood function are deferred to the supplementary appendix.

It is important to note, however, that if either γ = 0 or ση = 0, the other parameter affecting the

level shift process is not identified, and the maximum estimation procedure collapses to the genuine

long memory state space framework analyzed by Chan & Palma (1998). In this case, and if defining

the parameter vector Σ = (ση, γ, σε, d, φ1, . . . , φp, θ1, . . . , θq)
′, then we know from their Theorems 3.1

and 3.2 that the estimates of the ARFIMA parameters Π = Σ \ {γ, ση}, denoted Π̂, are consistent

when M = T β with β > 0, and when β ≥ 1/2,
√
T (Π̂ − Π)

D−→ N(0,Λ−1(Π)) where Λ(Π) is the

usual information matrix. In other words, the ARFIMA parameter estimates have the usual maximum

likelihood properties and are unaffected by the possible event of non-identification of the level shift

parameters. These asymptotic results, thus, provide theoretical guidance for the selection of M , and we

compare and discuss the choice M = T 1/2 to other rule-of-thumb selections in Section 5.

While the ARFIMA parameter estimates have the usual maximum likelihood properties in the event

of non-identification of the level shift parameters, the constant, a, will not be identified by our estimation

procedure irrespective of whether random level shifts occur in the series, or not. If level shifts are present,

that is, if we have γ > 0 and ση > 0, the constant a may simply be absorbed into the initial value of the

level shift process, v0, without loss of generality. If there are no level shifts in the series, however, the

proposed estimation procedure will not identify a since we consider ∆yt. Hence, we suggest to estimate

the model parameters using the following 2-step procedure:

(1) Estimate Σ using the Kalman filter maximum likelihood procedure discussed above and in the

supplementary appendix. If the estimates have γ̂ > 0 and σ̂η > 0 and are significant, stop here.

(2) If either of the estimates γ̂ or σ̂η is insignificantly different from 0, estimate an ARFIMA(p, d, q)

model with non-zero mean, a, using the conditional sum-of-squares (CSS) estimator, cf. Beran

(1995) and Nielsen (2015), and the first-stage estimates Π̂ as initial values.

Whereas this 2-step procedure is, indeed, applied to all RLS-ARFIMA specifications considered in the

empirical analysis below, we note that all models stop after the first step. That is, we find significant

level shifts in all series. When considering ARFIMA specifications without modeling random level shifts

in the empirical analysis, we use the CSS estimator directly, as this not only allows for the inclusion

of a constant, but this estimator is also valid for stationary as well as non-stationary values of d. The

latter is important since failure to model random level shifts may bias the estimate of the fractional

integration order into the non-stationary range, as for the LP and LW estimators.

4.3 Forecasting with the RLS-ARFIMA Model

In addition to a unified framework for model parameter estimation, covering both the case with and

without random level shifts in Steps 1 and 2 above, respectively, two corresponding forecast procedures

are needed. For the case without random level shifts in Step 2, we apply standard ARFIMA forecasts;

see (8) below and, among others, Brockwell & Davis (1991) and Doornik & Ooms (2004).10 However,

10This forecasting method is also applied to all ARFIMA(p, d, q) specifications that does not model random level shifts.
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as mentioned above, since we find evidence of random level shifts in all series, it is important to develop

a forecasting procedure for Step 1, i.e., for the proposed state space model in (6).

Hence, let us first define Yt = (∆y2,∆y3, . . . ,∆yt)
′, and denote the filtered state vector and its

associated covariance matrix by H ij
t|t and P ij

t|t, respectively, both of which depend on whether a random

level shift occurs at either time t − 1, time t, neither, or both, as indexed by the (ij) superscript.

Specifically, they signify that πT,t−1 = i and πT,t = j for (i, j) ∈ {0, 1}2. The dependence on only

one transition between regimes arises naturally from the Kalman predictions.11 Since level shifts are

modeled as independent events, thus invariant to past realizations of the data, one may apply standard

rules for conditional probabilities in each time period to construct the most likely path of the state

vector. Hence, at time t− 1, the Kalman filter constructs the prediction,

H i
t|t−1 = GH i

t−1|t−1, H i
t−1|t−1 =

∑1
k=0 Pr(πT,t−2 = k, πT,t−1 = i|Yt−1; Σ)Hki

t−1|t−1

Pr(πT,t−1 = i|Yt−1; Σ)
(7)

where H i
t−1|t−1 is the probability weighted value of the state vector based on the likelihood of a level shift

having occurred in time t−2, and conditional on being in regime i at time t−1. Hence, as this predictive

relation can be traced backwards, H i
t−1|t−1 reflects the history of the state vector, recursively weighted

to fit the most likely realization of regimes (or random level shifts). However, since a level shift may also

occur at time t, the predictive updating from H i
t|t−1 to H ij

t|t reflects this. Now, to obtain a prediction of

∆yt+1, we are interested in the value of the state vector H ij
t+1|t+1, conditional on time t information, with

(ij) referring to the same transition between regimes as above, but occurring between times t and t+ 1.

The forecasts of this state vector as well as the conditional probability of a level shift transition may

be obtained from the Kalman filter recursions and Bayesian probability updating. Multi-step-ahead

predictions may, then, be generated by applying the updating algorithm sequentially, in conjunction

with the probability of future random level shifts being invariant to past realizations.12 Hence, the state

space structure of the RLS-ARFIMA(p, d, q) model in (6) allows us to obtain τ -step-ahead forecasts, for

some integer τ > 0, which is summarized by the following proposition:

Proposition 1. Let yt satisfy the conditions of Section 2 and let Et[yt+τ ] = ŷt+τ |t denote the expected

value of the process at time t+τ , conditional on the information available at time t, then the τ -step-ahead

forecast is

ŷt+τ |t = yt + FGτ
1∑
i=0

1∑
j=0

Pr(πT,t+τ = j)Pr(πT,t = i|Yt; Σ)H ij
t|t.

Proof. See the supplementary appendix, Varneskov & Perron (2017).

Proposition 1 illustrates two key differences between forecasts from the RLS-ARFIMA model and

11We only convey the intuition behind the forecast construction here. For technical details on the Kalman recursions as well
as the estimation procedure, we refer to the supplementary appendix.

12Our forecasting procedure is related to corresponding methods from the state space and Markov regime switching forecasting
literature; see, e.g., Brockwell & Davis (1991), Hamilton (1994a), and Gabriel & Martins (2004).
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standard ARFIMA forecasts, which, using the notation in (4) and (5), may be written on the form

ỹt+τ |t = a+

∞∑
i=1

ψτi ht+1−i, where ht = yt − a (8)

when there are no random level shifts in the series. The first of these is a mean correction where the

usual unconditional mean parameter, a, is replaced by yt plus the innovations to a probability weighted

history of the state vector, as reflected by past values of H ij
t|t used in the predictive updating. Here, the

filtered history of {H ij
k|t}

t
k=1, with (ij) referring to the transition between consecutive regimes at any

given time k, captures both the dynamics of ht as well as the random level shifts. That is, the generated

forecast from ŷt+τ |t has time t updated information about which regime the process is currently in, its

transition history, whereas no such information is conveyed in a. Of course, this information is also

reflected in the lagged history {yk}tk=1 on the right-hand-side of (8), but since ỹt+τ |t is anchored by a,

this can generate large prediction errors, in particular for medium horizon forecasting where there may

be large discrepancies between the unconditional mean and the regime specific mean.

The second difference is a path correction. A τ -step-ahead forecast for the state vector realization is

computed conditional on being in regime i at time t and regime j at time t+ τ , H ij
t+τ |t = GτH ij

t|t, and

then weighted by the probability of being on a given transition path between regimes at the respective

time points, Pr(πT,t+τ = j)Pr(πT,t = i|Yt; Σ), which has been updated to reflect time t information.

Since level shifts are invariant to past data, Pr(πT,t+τ = j) = Pr(πT,t+1 = j) for integers τ ≥ 1. The

path correction may be viewed as a predictive tilt of the state vector dynamics from ht in H ij
t|t relative

to lagged ARFIMA dynamics in (8), where there are no such transitions between regimes.

Remark 3. The proposed forecasting framework encompasses multiple types of forecasting schemes;

recursive estimation using an expanding window of observations, rolling window of observations, and a

one-time estimation of the parameters, which, in conjunction with the Kalman recursions, may be used

to generate forecasts conditional on the parameter estimates.

5 Simulation Study

In this section, we investigate the accuracy of the parameter estimates from the state space estimation

methodology. To show the validity of our proposed estimation method, and to get an indication of how

to select M , the order of truncation of the AR(M) representation, we set up a simulation study to

examine whether the RLS-ARFIMA model can distinguish between time series persistence generated by

random level shifts, genuine long memory, or both. Additionally, we compare the parameter estimates

to ones obtained from fitting ARFIMA(p, d, q) models to gauge how the latter are affected by level shifts.

Finally, we analyze estimation of the (RLS-)ARFIMA(p, d, q) parameters when level shifts are absent,

since the presence of two non-identified parameters may lead to efficiency losses.
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5.1 Simulation Setup and Implementation

We consider a Monte-Carlo study with N = 100 replications, sample size T = 3000, and four different

truncation lengths M =
{

5, 10, 20, T 1/2
}

.13 The theoretically consistent selection T 1/2 ' 55 is much

larger than the remaining truncation orders, which are motivated by Chan & Palma (1998) and Martin &

Wilkins (1999), who find that smaller truncation orders suffice to capture the dynamics of an ARFIMA

process in related settings, albeit without random level shifts. The choice of sample size is motivated

by the typical length of financial time series. We examine data generating processes (DGP’s) that are

simulated from an RLS-ARFIMA(1, d, 1) model,

yt = xt, xt = ht + vt, (1− L)d(1− φL)ht = (1− θL)εt,

with φ = 0.2, θ = −0.1, σε = 0.5 as well as for (DGP 1) d = 0, γ/T = 0.02, ση = 3σε; (DGP 2)

d = 0.35, γ/T = 0, ση = 0; (DGP 3) d = 0.35, γ/T = 0.02, ση = 3σε; and for (DGP 4) d = 0.6,

γ/T = 0.02, ση = 3σε. The choice of parameters for the first three DGP’s are based on estimates

from the level shift literature for DGP 1, e.g., Qu & Perron (2013), from the long memory volatility

modeling literature for DGP 2, e.g., Andersen et al. (2003), and from one that combines them for DGP

3, e.g., this paper’s estimates for the S&P 500 series. We include DGP 4 as a robustness check to

ensure that our empirical detection of random level shifts is not spuriously caused by a non-stationary

fractionally integrated component. Moreover, note that these DGP’s also correspond well with the

discussion and motivational empirical evidence on measurement errors in Sections A.1 and A.2 of the

appendix. Specifically, DGP 1 may capture the case where the residual dynamics - the dynamics once

level shifts are taken into account - consist of a short memory process and measurement errors (again,

AR(1) plus noise has an ARMA(1, 1) representation), and DGP’s 2-4 to the case where there are no

measurement errors and the residual dynamics are of the ARFIMA(1, d, 1) form.14

The RLS-ARFIMA models are estimated as described in Section 4.2. Since all components of the state

vector in (6) are stationary, we initialize the Kalman filter updating equations using their unconditional

expected values, H ij
0|0 = 0M×1 and P ij

0|0 = Q. To start the probability weighting of the likelihood

function, we set Pr(πT,0 = 1|Y0; Σ) = γ/T . Lastly, we draw the initial values of the parameters from

a uniform distribution five times and select the optimized estimates with the highest associated log-

likelihood value. The ARFIMA(p, d, q) models in (5) are estimated using the CSS estimator (see also

Section 4.2), where the residual standard deviation is computed as σ̂ε =
√

(T − 1)−1
∑T

t=1 ε̂
2
t with ε̂t

being the model-implied residuals. For all (RLS-)ARFIMA models, we restrict attention to the (0, d, 0)

and (1, d, 1) parameterizations, in line with the discussion and empirical results in the previous section

and the appendix, and since simpler models are often advocated for out-of-sample forecasting.

13We also performed some simulations for sample sizes T = 1000 and T = 5000, which showed proportionally worse/better
results. Ideally, we would carry out the simulations for N � 100. However, this presents a computation challenge, in
particular for large M . Hence, the results should be interpreted as indicative rather than definitive.

14We have also fitted an RLS-ARFIMA(1, d, 1) model to a simulated long memory stochastic volatility model with random
level shifts, the RLS-LMSV model, which is considered in Section A.2 of the appendix. The simulation results for the key
persistence parameters are similar to the ones reported in Table 9 of the appendix and are, thus, omitted.
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5.2 Simulation Results

The bias and RMSE of the parameter estimates for all estimators and DGP’s are presented in Table

2. For DGP 1, we observe that the RLS-ARFIMA(1, d, 1) estimate of ση is slightly upward biased,

and that the model provides precise estimates of d and γ/T . The relative difference in the estimate

of d obtained from the ARFIMA(1, d, 1) model, on the other hand, is quite suggestive, and while the

evidence is provided in a stylized setup, we observe exactly the same pattern in our empirical analysis

below. As documented by Perron & Qu (2010), if random level shifts are present in the series, the

resulting estimate of d obtained from an ARFIMA(1, d, 1) model will be inflated to capture the large

estimates of d obtained from a log-periodogram regression with few frequency ordinates. In order to

capture the smaller estimates when more frequency ordinates are included, the fitted MA parameter

is biased towards a large negative value to accentuate the short-run mean reversion. Similarly, we

find the ARFIMA(0, d, 0) estimate of d to be upward biased, yet the bias is not as dramatic as for

the ARFIMA(1, d, 1) model since the former lacks an MA parameter to help fit movements at higher

frequencies. Last, for the RLS-ARFIMA(0, d, 0) model, we see that the inclusion of positive short-run

dynamics in the DGP causes d to be overestimated. This holds true for all DGP’s considered.

The results for DGP 2 verify that the ARFIMA(1, d, 1) model parameters are precisely estimated,

as expected. What is particularly interesting for the present analysis, however, is that the ARFIMA

parameters of the RLS-ARFIMA(1, d, 1) model are estimated with the same precision. As emphasized

in Section 4.2, this may be explained by the fact that when ση → 0 (which occurs in the table when

the truncation order, M , increases), the estimation procedure collapses to the genuine long memory

state space framework of Chan & Palma (1998), who show that the ARFIMA parameter estimates have

maximum likelihood properties. Hence, the non-identification of the level shift parameters has no impact

on the ARFIMA parameters. Interestingly, the results for DGP 2 show only modest efficiency losses

when using the RLS-ARFIMA(1, d, 1) model and truncation M = 20 compared to the ARFIMA(1, d, 1)

estimates using the CSS methodology, which includes the entire lag history, suggesting that a smaller-

order truncation suffices to recover the parameters of the transitory part of the RLS-ARFIMA model.

This is in line with the findings in Chan & Palma (1998) and Martin & Wilkins (1999).

For DGP 3, we observe that when the specification is tailored to the reduced form model, all the

parameter estimates are unbiased and precise, while the corresponding estimates for the ARFIMA(1, d, 1)

model display exactly the same bias as for DGP 1. The almost identical results for DGP 4 document that

the RLS-ARFIMA model does not confuse random level shifts with non-stationary fractional integration.

As such, the proposed model is able to distinguish between the proportion of persistence attributed

to random level shifts and genuine long memory. The bias in the estimates of the various memory

parameters are generally decreasing in M . However, we find only smaller gains in precision when going

from M = 20 to the theoretically consistent choice M = T 1/2. Due to the size of these gains, and

since there is a tradeoff with computational speed, especially for the longer series of daily returns, we

select M = 20 for the empirical analysis. The choice of truncation is important, however, and, as a

robustness check, we have experimented with selections M = {30, 40} in both the simulation study
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and in the empirical analysis below. The results are almost identical to those obtained for M = 20.

Similarly, we have estimated the parameters for the volatility measures based on high-frequency data

using the theoretically consistent choice M = bT 1/2c. Again, they are very similar to those reported

below. Finally, note that we will increase the number of draws of the initial values to 10 in the empirical

analysis to ensure that we do not report results from a local maximum.

6 Empirical Analysis of Asset Return Volatility

We proceed demonstrating the relevance of the proposed reduced form (log-)volatility modeling and

forecasting framework by comparing the full-sample parameter estimates and out-of-sample forecast-

ing performance of specific RLS-ARFIMA models to other widely applied models in the discrete time

volatility literature. Initially, we consider parameter estimates from the RLS-ARFIMA(0, d, 0), RLS-

ARFIMA(1, d, 1), RLS-ARMA(0, 0), RLS-ARMA(1, 1), ARFIMA(0, d, 0), and ARFIMA(1, d, 1) models

for three reasons. First, it allows us to assess whether the most persistent component in the series is

better described by random level shifts and/or genuine long memory and the impact of neglecting either

one on the parameter estimates. Second, less parameterized models are often advocated for forecasting,

see, e.g., Andersen et al. (2003). Third, as argued in the appendix, smaller order parameterizations

suffice to capture both the short-run dynamics and measurement errors in the volatility proxies.

In the forecasting exercise, we also include the six models mentioned above. The ARFIMA class of

models has recently received much attention in the volatility prediction literature. For example, it has

been shown in, among others, Andersen et al. (2003), Koopman et al. (2005), Deo et al. (2006), Chiriac

& Voev (2011), and Varneskov & Voev (2013) to outperform the popular class of GARCH models in

terms of out-of-sample forecasting when applied to high-frequency measures of volatility. Similarly,

Lu & Perron (2010) and Qu & Perron (2013) find that short memory-style random level shift models

provide forecasts, which are, at least, on par with those obtained from (FI)GARCH and discrete time SV

models when applied to volatility proxies constructed from daily data. Hence, to examine the usefulness

of the proposed RLS-ARFIMA model in different settings, we compare its out-of-sample forecasting

performance to these state-of-the-art competitors. In addition, we include the HAR model introduced

by Corsi (2009), which has been shown to provide accurate forecasts for realized volatility measures,

and a benchmark GARCH(1, 1) model in our out-of-sample analysis.

Finally, note that we will describe the results for the SPY and USD-JPY series in details throughout

since they represent two different groupings of the series (SPY: BAC, MRK, S&P 500) and (USD-JPY:

USD-AUD, USD-CHF), which share similar characteristics within each group. The T-bond series, on

the other hand, is harder to classify as it sometimes shares characteristics with the SPY group and

sometimes with the USD-JPY group. We will make the distinction clear when necessary.
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6.1 Full-Sample Parameter Estimates

We report parameter estimates for the eight log-volatility series in Tables 3-4.15 In particular, note that

the results for the SPY series are presented in Panel C of Table 3, and those for the USD-JPY series in

Panel D of Table 4. We first discuss the results for the SPY series. The estimated persistence parameters

of the RLS-ARFIMA(0, d, 0) model are d = 0.4181 and γ/T = 0.0177, which suggests a joint presence

of genuine long memory and random level shifts. The estimated probability of level shifts indicates that

they occur with an average duration of 56 days. Said duration is fairly low compared to the results in

Lu & Perron (2010) for daily log-absolute returns on the S&P 500, AMEX, Dow Jones, and NASDAQ.

We obtain similar estimates of the corresponding persistence parameters for the RLS-ARFIMA(1, d, 1)

model, in addition to large and significant estimates of the two ARMA parameters. The latter, however,

seem to characterize a common factor, they have fairly high standard errors, and their inclusion hardly

increases the log-likelihood value. This clearly suggests that the most important sources of variation are

captured by the joint modeling of genuine long memory and random level shifts. The estimation results

for the ARFIMA(0, d, 0) model, similarly, indicate the presence of a stationary genuine long memory

component, while the corresponding estimate d = 0.5965 for the ARFIMA(1, d, 1) model suggests that

the series is a non-stationary fractionally integrated process. Furthermore, we observe that the estimated

ARMA parameters of the ARFIMA(1, d, 1) model are large and distinct, however insignificant. As

explained in Section 5, this particular difference between the RLS-ARFIMA and ARFIMA parameter

estimates is exactly what we expect when a random level shift component is present; the estimate of

d is biased upwards to capture movements at the lower frequencies, while the MA parameter is biased

towards a large negative value to accentuate the short-run mean reversion. When accounting for random

level shifts, such biases are no longer present, and the genuine long-memory component is seen to be

stationary with the remaining short-run variation close to being serially uncorrelated. Finally, the

estimated probabilities of random level shifts using the RLS-ARMA(0, 0) and RLS-ARMA(1, 1) models

are γ/T = 0.2082 and γ/T = 0.0797, respectively, suggesting that level shifts, which are assumed to

be rare events, occur with very low durations. This is clearly empirical evidence of spurious breaks.

That is, when a genuine long memory component is present in the log-volatility series, the RLS-ARMA

models are attempting to fit the additional persistence by overestimating the number of shifts.

Next, consider the parameter estimates for the RLS-ARFIMA(0, d, 0) model and the USD-JPY series.

The persistence parameters are d = 0.0532 and γ/T = 0.0027, both statistically significant. The former,

however, while deemed statistically significant indicates that the genuine long memory component is

essentially irrelevant for characterizing persistent movements in the series. The estimated probability of

random level shifts suggests that they are rare (26 in 9600 days) and occur with an average duration of

370 days. However, their magnitude ση = 3.0657, in comparison with the residual standard deviation

σε = 1.2765, demonstrates that they are large contributors to the total variation in the series. The

results for the RLS-ARFIMA(1, d, 1) model are similar; the impact of random level shifts is almost

15The associated standard errors are computed using the (inverse) numerical Hessian matrix.
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identical, and the estimate of d is even smaller with a value of 0.0000.16 Moreover, we observe that

the ARMA coefficient estimates are both high and of similar magnitude, which is consistent with the

interpretation in Appendix A that the daily log-volatility measure exhibits a combination of AR(1)

residual dynamics and measurement errors. Unlike the results for the SPY series, the ARMA parameter

estimates for the USD-JPY series are seen to have small standard errors, and their inclusion increases

the log-likelihood value, especially relative to the RLS-ARMA(0, 0) case. For the latter, we observe an

estimated probability of random level shifts that is twice as high, which is, again, suggestive of positively

dependent residual dynamics, though not as strong as for the SPY series.

Given the evidence from the RLS-ARFIMA models that random level shifts describe the low-frequency

movements in the USD-JPY series, it is interesting to consider the estimated integration orders from

the ARFIMA(0, d, 0) and ARFIMA(1, d, 1) models, which are, in contrast, but as expected, much higher

and significant. Again, we observe interesting differences between the two models. The estimate of d

is much higher for the ARFIMA(1, d, 1) model since it has a large negative MA component to induce

strong mean reversion. These features are similar to the ones obtained for the SPY series, along with

those in the simulation study, and they support the findings of random level shifts in the series.

The results are similar within each of the two groups, and the T-bond series seems to be better

characterized by those obtained for the SPY group.17 Thus, we may draw some conclusions from our

analysis so far. The random level shift component is important for all series, being more frequent for all

high-frequency measures of volatility, but with less variability for most. Once this is taken into account,

the SPY group still contains a large genuine long memory component. The remaining dynamics for

the USD-JPY group, on the other hand, may be described using a positively dependent short memory

component in combination with measurement errors. The difference between the reduced form dynamics

of the return volatility series constructed from daily and high-frequency data is puzzling, and we, thus,

continue with a robustness check using high-frequency data for the USD-JPY exchange rate.

6.2 Robustness Check for the USD-JPY Series

As a gauge of whether the striking parameter differences in Tables 3-4 are either sampling frequency

or asset class specific, neither, or both, we carry out a robustness check for the USD-JPY series using

high-frequency data, which spans the period from January 2000 through April 10th 2009, correspond-

ing, approximately, to the last quarter of the daily sample. Specifically, we have one-minute observa-

tions available for each trading day from both pit and electronic trading, and we estimate the daily

quadratic variation using the flat-top realized kernel approach.18 The estimates are square-root and

16A lower bound of zero is imposed on d in the estimation.
17The d estimates from the RLS-ARFIMA models are slightly larger for the USD-AUD and USD-CHF series compared to

those for the USD-JPY series. However, their small magnitudes still make them largely irrelevant for characterizing the
low-frequency variation in the series.

18For comparability with the daily series, we add here the close-to-open squared return from the preceding trading day to
the flat-top realized kernel estimate, thereby accounting for holiday, overnight, and weekend effects. As a robustness check,
however, we also estimated an RLS-ARFIMA(1, d, 1) model without correcting for overnight returns; since the ARFIMA
parameters are very close to those reported (d = 0.19 vs. d = 0.17 below), and the level shift parameters signify slightly
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log-transformed, leaving a series with T = 2458 observations. We report the full-sample parameter

estimates using the same set of dynamic models, as in the previous section, in Table 5.

Table 5 contain some interesting results. First, for the RLS-ARFIMA(0, d, 0) model, we find γ/T =

0.0234, which, similarly to the estimates for the remaining high-frequency volatility measures, implies

that level shifts occur with a much shorter duration, on average, than what is suggested by the volatility

proxies based on daily returns. Moreover, we find d = 0.0000, that is, no evidence of genuine long memory

in the residual dynamics. Second, if we compare these estimates with the corresponding ones for the

RLS-ARFIMA(1, d, 1) model, we find similar level shift parameters, an integration order d = 0.1735,

as well as significant AR and MA components. However, the standard errors for d, φ, and θ are large,

even deeming d insignificant, and the model generates almost no additional gains in log-likelihood value.

This clearly suggests that level shifts are an important source of variation in the series, while genuine

long memory, if present, is largely irrelevant for capturing its dynamics. Lastly, the ARFIMA(0, d, 0)

and ARFIMA(1, d, 1) models find, not surprisingly, spurious evidence of genuine long memory.19

This robustness check, thus, verifies that more frequent breaks occur in the volatility measures based

on high-frequency data, but it also suggests that the lack of a genuine long memory in the daily exchange

rate series cannot be attributed to the sampling period nor the sampling frequency, but rather seems to

be series specific. A detailed study of this result, however, is left for further research.

6.3 Forecasting Performance Evaluation

The class of RLS-ARFIMA models allows for a more flexible description of the low-frequency variation

in log-volatility series. However, whether such flexibility improves out-of-sample forecast performance

remains to be determined. Hence, we investigate the usefulness of the RLS-ARFIMA approach by com-

paring its forecasting performance to that from each of the competing dynamic models presented earlier

along with the HAR model and a GARCH(1, 1) benchmark, whose specifications and implementation

procedures are briefly described in the supplementary appendix. This section proceeds by laying out

the forecast evaluation framework before presenting the results from the out-of-sample exercise.

6.3.1 Forecast Evaluation Framework

We consider out-of-sample forecasting over the last Tout = 900 days for the eight series.20 The various

model parameters are estimated once, without the last 900 days in the sample, and the forecasts are

computed conditional on these estimates.21 The out-of-sample period spans 3.6 years (assuming 250

more frequent shifts of slightly larger magnitude than those reported, these estimates are omitted for brevity.
19As an additional robustness check, we have estimated an RLS-ARFIMA(1, d, 1) model for similar high-frequency volatility

series on the USD-CHF and USD-AUD using data from 2000-2009 and 2005-2014, respectively. Whereas the estimated
impact of random level shifts is similar to that reported for the USD-JPY series, there is slightly weaker evidence of genuine
long memory in the USD-CHF series and slightly stronger evidence of it in the USD-AUD series.

20Not including the shorter high-frequency data-based USD-JPY series, which was used as a robustness check.
21This approach is chosen due to the heavy computational task of re-estimating parameters in each step for the group of

(RLS-)ARFIMA models. As robustness checks, however, both recursive and rolling window estimation procedures have
been used for some of the series; the numerical results are similar, and the model rankings are identical. This is explained
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trading days per year) and, for each series, covers interesting and diverse market conditions such as the

calm 2006 as well as the turbulent financial crisis of 2008, or the run-up to it. Hence, we will also perform

robustness checks of the relative forecasting performance for the SPY and USD-JPY series using three

non-overlapping sub-samples to examine how the models perform under different market conditions.

As we seek to evaluate the performance of direct τ -step-ahead forecasts for three different horizons,

τ = {1, 5, 10}, let the cumulative forecast be defined as ȳt+τ,i|t =
∑τ

s=1 ŷt+s,i|t for model i ∈ M0

where M0 is the initial finite set of models and, similarly, let the cumulative log-volatility proxy be

denoted by σ̄t,τ =
∑τ

s=1 yt+s. Then, we apply the mean squared forecast error (MSFE) criterion for

the out-of-sample evaluation,MSFEτ,i = 1
Tout

∑Tout
t=1

(
σ̄t,τ − ȳt+τ,i|t

)2
, which has been shown by Hansen

& Lunde (2006) and Patton (2011) to be robust against measurement errors in the (log-)volatility

proxy. To facilitate model comparison, define the relative performance of models i, j ∈ M0 at time t

as dij,t =
(
σ̄t,τ − ȳt+τ,i|t

)2 − (σ̄t,τ − ȳt+τ,j|t)2, for which, we assume the sequence (dij,t), ∀i, j ∈ M0,

t = 1, . . . , Tout satisfies the following conditions: For some r > 2 and γ > 0, E [|dij,t|r+γ ] <∞, and (dij,t)

is strictly stationary with variance V [dij,t] > 0 and α-mixing of order −r/(r − 2).

Remark 4. These conditions impose restrictions on the sequences of relative forecast performances,

(dij,t), not directly on the loss function, which is allowed to exhibit structural breaks, genuine long

memory, etc. They seem to be satisfied by plots of the loss differentials and the robustness of our

results to the use of recursive and rolling estimation windows. Even in the event that the conditions for

the validity of the MCS evaluation procedure are violated, the numerical MSFE’s will provide a strong

indication of the relative model performance.

Under the stated conditions on the sequence of loss differentials, we may assess the relative forecast

accuracy of the models using the 10% MCS of Hansen et al. (2011), see the supplementary appendix

for a review. It is important for our application that the MCS is based on a bootstrap implementation,

which is robust against comparisons of nested models when the parameters are estimated once using

the same in-sample period for all models, see, e.g., the discussions in Giacomini & White (2006) and

Hansen et al. (2011). The MSFE’s and accompanying MCS p-values (in parentheses) are reported in

Tables 6-8, where we use boldface notation to indicate whether a model belongs to the 10% MCS. The

results for the robustness checks where the out-of-sample period is divided into three non-overlapping

sub-samples for the SPY and USD-JPY series are reported in Tables 6 and 7.

Remark 5. Whereas this forecasting framework may readily be applied to test the relative quality of log-

volatility predictions, the conclusions from this exercise do not necessarily pertain to volatility forecasts

in their standard deviation or variance form. We discuss this issue in Section 6.4.

6.3.2 Out-of-Sample Results

First, to assist interpretation of the results, we illustrate how to read Tables 6-8 by considering the

relative forecasting performance of the HAR model over the whole out-of-sample period of 900 days for

by the parameter estimates being fairly robust to the choice of estimation window.
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the SPY series, which is reported in the bottom-right panel of Table 6. In this case, we observe that the

HAR model belongs to the 10% MCS for one-step-ahead predictions, but not for five nor ten-step-ahead

forecasts, which implies that the model is significantly worse than the best set of dynamic models at

predicting log-volatility for horizons of five and ten days.

In general, we find that when considering the SPY series and the whole out-of-sample period it

is only the RLS-ARFIMA(1, d, 1) model that belongs to the 10% MCS for all forecast horizons, thus

ranking as the best overall model. The RLS-ARFIMA(0, d, 0) ranks as the second best in terms of

numerical MSFE’s. The RLS-ARMA(0, 0) and RLS-ARMA(1, 1) models also perform well for longer

horizons, whereas the ARFIMA(0, d, 0), ARFIMA(1, d, 1) and HAR models do well for one-step-ahead

predictions, but display MSFE’s of, at least, a factor three larger for ten-step-ahead predictions. This

clearly shows the value of applying the proposed forecast procedure, which leads to significant gains in

terms out-of-sample precision with the largest gains attributed to the mean correction. When the forecast

performance is decomposed into three non-overlapping sub-periods, the RLS-ARFIMA(1, d, 1) model

performs well in all cases, and its relative superiority over the remaining RLS-AR(FI)MA specifications

is driven, in part, by the last 300 days of the sample. Note, however, that the forecast errors for the RLS-

AR(FI)MA models are also the largest in this sub-period, while the discrepancy to the remaining models

is the smallest, suggesting that, not surprisingly, it is difficult to pin down the mean of the series during

the period covering the financial turmoil of late 2007 through July 2008. When the mean-behavior of

the series is slightly less erratic, as during the first 600 out-of-sample days, the RLS-ARFIMA models

performs much better than models that do not allow for random level shifts in the mean.

We proceed to evaluate the out-of-sample performance of the eight dynamic models using the USD-

JPY series in Table 7 and readily observe a similar model ranking; the RLS-ARFIMA(1, d, 1) model is

significantly the best forecasting model for all horizons, followed by the RLS-ARFIMA(0, d, 0), RLS-

ARMA(0, 0) and RLS-ARMA(1, 1) models, which comprise a clear second tier.22 If we consider the

evidence from Table 4 that the ARFIMA class of models display severely upward biased estimates

of the (fractional) integration order, it is not surprising that we find these - along with the HAR and

GARCH(1, 1) - models to display much larger forecast errors, especially for longer horizons. In particular,

this follows since they are not flexible enough to adequately describe the low-frequency variation in the

volatility series and, thus, mistakenly summarizes the persistence as determined by a large genuine long

memory component. Moreover, when decomposing the relative forecast performance into three non-

overlapping samples, we see that all models, not surprisingly, deliver the largest forecast errors during

the last 300 days, which cover most of the recent financial crises of 2008, and we observe that the

RLS-ARFIMA(1, d, 1) model consistently exhibits the smallest MSFE’s across sub-periods.

Finally, we may generalize the conclusions from the SPY and USD-JPY series by considering the

out-of-sample results for the six remaining series in Table 8. Aggregating the results across the volatility

series and forecast horizons, the RLS-ARFIMA class of models belong to the MCS in 21/24 cases, the

22The difference between the RLS-ARMA(1, 1) and RLS-ARFIMA(1, d, 1) models may, given the parameter estimates in
Table 4, seem surprising. However, when we remove the last 900 days to avoid using in-sample information for estimation
of the parameters, we observe minor differences between the parameter estimates from the two models.
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RLS-ARMA class in 16/24 cases, the HAR model in 8/24 cases, the ARFIMA class in 7/24 cases,

and the GARCH model never belongs to the MCS. Furthermore, we observe large reductions in the

MSFE’s with models that explicitly capture random level shifts. The comparatively poor out-of-sample

performance of dynamic models that do not explicitly model random level shifts, is, in itself, indirect

evidence of their presence. As discussed previously, if level shifts are present, they bias the estimate of

d upwards for the ARFIMA models (often in the non-stationary region) and the estimate of the MA

parameter towards a large negative value. Similar biases affect the HAR and GARCH models, and they

are responsible for the deterioration of the out-of-sample performance.

In general, we observe a good correspondence between in-sample fit and out-of-sample performance.

The only exception arises if we contrast the parameter estimates for the RLS-AR(FI)MA models and

the T-bond series, as shown in Table 4, with their respective out-of-sample results, where we see that

the inclusion of ARMA parameters improves the in-sample fit, but leads to deteriorating out-of-sample

performance as the forecast horizon increases. To elaborate on this observation, we depict the ten-

step-ahead out-of-sample volatility for the T-bond series in Figure 1 together with the corresponding

loss differentials from a bivariate comparison of the RLS-ARFIMA(0, d, 0) model against the RLS-

ARFIMA(1, d, 1) model and a comparison of the RLS-ARMA(0, 0) model against the RLS-ARMA(1, 1)

model. From the three series, we observe a distinct pattern; after an abrupt change around day 400, the

log-volatility level is gradually increasing until, approximately, day 750. The less parameterized RLS-

ARFIMA(0, d, 0) and RLS-ARMA(0, 0) models are better at capturing this increase, suggesting that the

inclusion of ARMA parameters, in particular a strongly mean-reverting MA component, induces over-

smoothing of the log-volatility series. This eventually leads to the deterioration in forecast performance

as the mean-reverting log-volatility level deviates from its increasing out-of-sample counterpart for 350

observations. On the other hand, the inclusion of ARMA parameters seemingly improves the forecast

performance of the models during the first part of the sample. This suggests that further out-of-

sample gains may potentially be extracted by constructing forecast combinations of the dynamics models.

However, a deeper investigation of this potential is beyond the scope of the paper.

In sum, there is overwhelming evidence in favor of using the RLS-ARFIMA class of models, which

is not only able to distinguish between the contributions from random level shifts and genuine long

memory to the low-frequency variation of the log-volatility series, but also delivers consistently good

out-of-sample performance across a variety of forecast periods, forecast horizons, asset classes, and

volatility proxies with varying degrees of measurement errors.

6.4 Log-volatility versus Volatility Forecasting

The favorable forecasting results for log-volatility series do not necessarily imply that our RLS-ARFIMA

model is better at forecasting volatility in its standard deviation or variance form. There are a number

of advantages to work with logs: (1) It reduces non-Gaussian features in the innovations, as seen by

the results in Table 1, which not only alleviate concerns about finite sample parameter biases, but also

improves the properties of forecast significance tests, e.g. Patton (2011); and (2) it allows the volatility
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process to display both positive and negative level shifts without the need to impose non-negativity

constraints. Additionally, it is important to note that the concave logarithmic transformation has likely

reduced the dispersion of the level shifts, which would suggest that models taking the latter into account

should perform equally well, if not even better, under more convex transformations.

Finally, we note that our log-volatility model may readily be used to forecast volatility in its standard

deviation and variance forms since, conditional on the realization of states, the model is Gaussian and

we may apply a log-normal-type correction. This is summarized by the following proposition:

Proposition 2. Suppose the conditions of Proposition 1. Moreover, let Yt+τ = exp(yt+τ ), then the

conditional expectation of Yt+τ at time t is given by Et [Yt+τ ] = exp
(
ŷt+τ |t + ζ̂t+τ |t/2

)
, where ŷt+τ |t is

provided by Proposition 1, and with the variance correction, ζ̂t+τ |t, defined as

ζ̂t+τ |t =
τ∑
s=1

1∑
i=0

1∑
j=0

Pr(πT,t+s = j)Pr(πT,t = i|Yt; Σ)
(
FGs−1

(
GP ij

t|tG
′ + Q

) (
FGs−1)′ + σ2ηj

)
.

Proof. See the supplementary appendix, Varneskov & Perron (2017).

Proposition 2, similarly to the forecasting procedure in Proposition 1, shows that the convexity cor-

rection when switching from log-volatility to volatility depends on the transition path between regimes.

We illustrate the use of this procedure by forecasting the cumulate volatility of the SPY series in its stan-

dard deviation form for horizons of 1, 5 and 10 days (which is equivalent to the average volatility) using

either of the RLS-ARFIMA(1, d, 1) and ARFIMA(1, d, 1) models in Figure 2. Whereas the figure shows

that both models forecast the volatility well one-step-ahead, there is a clear difference between their

respective forecasting performances at longer horizons; the RLS-ARFIMA model predicts the volatility

well, and the ARFIMA model clearly gets the volatility level and path wrong. This may be explained by

the biased MA parameter for the ARFIMA model (discussed above), inducing too strong mean reversion

to the “wrong” volatility level, especially for the first part of the sample. When evaluating whether these

differences in forecasting performance are significant using the MCS, the results are similar to those

reported in Table 6, that is, there is no significant difference between their one-step-ahead forecasts, but

the RLS-ARFIMA model is significantly better at multi-step-ahead predictions.

This illustrates that the potential forecasting gains from using the RLS-ARFIMA models are not

confined to the logarithmic transformation. A detailed study of volatility forecasts in their standard

deviation and variance forms, however, using Proposition 2 is left for further research.

7 Conclusion

We propose a reduced form framework for modeling the volatility of asset returns, which allows for

the presence of random level shifts, genuine long memory and measurement errors. In particular, we

advocate a parametric state space model where the underlying dynamics is decomposed into a simple

level shift component and ARFIMA dynamics. This allows both long and short memory parameters to
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be estimated together with the probability and magnitude of random level shifts. Measurement errors

are accounted for by careful modeling and interpretation of the ARMA parameters. We provide an

estimation procedure and a forecasting framework to construct mean and path-corrected forecasts.

We perform an empirical analysis using eight daily return volatility series, which differ, not only

according to the sampling frequency of the data with which they are constructed, but also with respect

to time span and asset class. In particular, we demonstrate the usefulness of the proposed modeling

framework by comparing the full sample parameter estimates and out-of-sample forecasting performance

of specific RLS-ARFIMA models relative to that from other popular models in the literature.

The full sample parameter estimates reveal that random level shifts are important components of all

series and that a genuine long memory component is present in most volatility series constructed using

high-frequency data. The remaining dynamics in volatility proxies constructed as log-daily absolute

returns, on the other hand, may be described as a combination of short memory dynamics and measure-

ment errors. Finally, we show that the RLS-ARFIMA model display consistently good out-of-sample

performance across forecast periods, forecast horizons, asset classes, and volatility measures, by being

the most frequent model in the 10% MCS of Hansen et al. (2011). The forecast gains can be very

pronounced at longer horizons. This shows that there is substantial statistical value in distinguishing

between random level shifts and genuine long memory for forecasting.
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Summary Statistics of the Volatility Proxies

Descriptive Statistics Fractional Integration

Max Min Skew Ekur #obs dLP dLW W0.02 W0.05 Sd(1/3) Sd(1/2)

BAC HF 2.25 -1.22 0.20 -0.39 2913 0.539
(0.100)

0.566
(0.069)

1.16∗ 1.16∗∗ 1.40 -0.90

MRK HF 2.17 -1.16 0.51 1.25 2913 0.585
(0.100)

0.590
(0.069)

0.64 0.64 1.11 1.56

SPY HF 1.64 -1.67 0.25 0.02 2914 0.548
(0.100)

0.547
(0.069)

0.76 0.76 0.84 -0.31

S&P 500 HF 3.26 -2.89 0.42 2.21 6691 0.571
(0.078)

0.604
(0.056)

0.99 0.75 1.78∗ 1.13

T-Bonds HF 0.93 -3.56 0.27 0.42 6640 0.763
(0.078)

0.731
(0.056)

0.85 0.49 4.13∗∗∗ 4.60∗∗∗

USD-AUD 2.96 -6.91 -1.35 1.44 9612 0.857
(0.070)

0.828
(0.051)

3.54∗∗∗ 3.33∗∗∗ 5.30∗∗∗ 7.76∗∗∗

USD-CHF 1.76 -6.91 -1.52 3.73 9606 0.669
(0.070)

0.623
(0.051)

1.02 1.02∗ 2.99∗∗∗ 5.32∗∗∗

USD-JPY 2.25 -6.91 -1.50 2.90 9600 0.622
(0.070)

0.622
(0.051)

1.53∗∗∗ 1.53∗∗∗ 3.87∗∗∗ 3.23∗∗∗

Table 1: The first half of this table provides some unconditional summary statistics for the eight volatility series.
For the three exchange rates, the daily volatility is proxied by ln(|rt| + 0.001). For the remaining series, the
daily quadratic variation is estimated using the flat-top realized kernel approach of Varneskov (2016a, 2016b), see
the supplementary appendix for details, and subsequently square-root and log-transformed. Here, skewness and
excess kurtosis (compared to 3) are denoted “Skew”, and “Ekur”, respectively. The number of observations after
deleting missing entries are denoted “#obs”. The second half of the table presents summary statistics describing the
conditional properties of the series. In particular, dLP and dLW denote log-periodogram and local Whittle estimates,
respectively, using a bandwidth bT 1/2c. Furthermore, Sd(a, 4/5) ≡ Sd(a) and Wε denote different implementations
of the testing procedures proposed by Perron & Qu (2010) and Qu (2011), respectively, of the null hypothesis that
the series are genuine long memory series against an alternative data generating process with level shifts and short
memory dynamics. Qu (2011) also allows for genuine long memory under the alternative. In particular, the tests
are implemented with a = {1/3, 1/2} and ε = {0.02, 0.05}, respectively. See the supplementary appendix for details.
Finally, (∗), (∗∗), and (∗∗∗) denote rejection at a 10%, 5%, and 1% significance level, respectively.
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Simulation Results

Bias RMSE

DGP 1 d φ θ σε γ/T ση d φ θ σε γ/T ση

RLS-ARFIMA(1, d, 1, 5) 0.01 -0.06 -0.04 0.00 -0.00 0.18 0.03 0.10 0.08 0.01 0.01 0.27

RLS-ARFIMA(1, d, 1, 10) 0.01 -0.05 -0.04 0.00 -0.00 0.18 0.03 0.09 0.08 0.01 0.00 0.27

RLS-ARFIMA(1, d, 1, 20) 0.01 -0.06 -0.04 0.00 -0.00 0.18 0.03 0.10 0.08 0.01 0.01 0.27

RLS-ARFIMA(1, d, 1, T 1/2) 0.01 -0.05 -0.04 0.00 -0.00 0.18 0.03 0.10 0.08 0.01 0.01 0.27

RLS-ARFIMA(0, d, 0, T 1/2) 0.29 - - 0.02 -0.01 0.26 0.29 - - 0.02 0.01 0.33

ARFIMA(1, d, 1) 1.01 0.11 0.86 0.10 - - 1.01 0.11 0.86 0.10 - -

ARFIMA(0, d, 0) 0.65 - - 0.11 - - 0.66 - - 0.11 - -

DGP 2 d φ θ σε γ/T ση d φ θ σε γ/T ση

RLS-ARFIMA(1, d, 1, 5) -0.03 -0.00 -0.02 -0.00 0.04 0.18 0.07 0.11 0.08 0.01 0.05 0.21

RLS-ARFIMA(1, d, 1, 10) -0.03 0.02 -0.01 -0.00 0.04 0.12 0.06 0.11 0.07 0.01 0.04 0.16

RLS-ARFIMA(1, d, 1, 20) -0.02 0.01 -0.01 -0.00 0.04 0.06 0.05 0.10 0.07 0.01 0.04 0.08

RLS-ARFIMA(1, d, 1, T 1/2) -0.01 0.00 -0.01 -0.00 0.03 0.02 0.04 0.09 0.07 0.01 0.04 0.04

RLS-ARFIMA(0, d, 0, T 1/2) 0.15 - - 0.01 0.04 0.00 0.15 - - 0.04 0.04 0.03

ARFIMA(1, d, 1) -0.00 -0.00 -0.01 0.00 - - 0.03 0.08 0.07 0.01

ARFIMA(0, d, 0) 0.21 - - 0.01 - - 0.21 - - 0.01 - -

DGP 3 d φ θ σε γ/T ση d φ θ σε γ/T ση

RLS-ARFIMA(1, d, 1, 5) -0.11 0.07 -0.01 -0.01 0.00 -0.02 0.13 0.14 0.07 0.01 0.01 0.22

RLS-ARFIMA(1, d, 1, 10) -0.09 0.07 0.00 -0.00 0.00 0.03 0.12 0.14 0.07 0.01 0.00 0.23

RLS-ARFIMA(1, d, 1, 20) -0.05 0.04 -0.00 -0.00 -0.00 0.05 0.10 0.14 0.08 0.01 0.00 0.25

RLS-ARFIMA(1, d, 1, T 1/2) -0.03 0.01 -0.02 -0.00 -0.00 0.06 0.08 0.12 0.08 0.00 0.00 0.25

RLS-ARFIMA(0, d, 0, T 1/2) 0.15 - - 0.01 0.00 0.01 0.15 - - 0.01 0.01 0.26

ARFIMA(1, d, 1) 0.66 0.37 0.93 0.06 - - 0.66 0.37 0.93 0.07 - -

ARFIMA(0, d, 0) 0.39 - - 0.06 - - 0.39 - - 0.07 - -

DGP 4 d φ θ σε γ/T ση d φ θ σε γ/T ση

RLS-ARFIMA(1, d, 1, 5) -0.06 0.00 -0.04 -0.01 0.01 -0.15 0.11 0.15 0.10 0.01 0.01 0.30

RLS-ARFIMA(1, d, 1, 10) -0.07 0.05 -0.01 -0.01 0.01 -0.07 0.12 0.15 0.07 0.01 0.01 0.28

RLS-ARFIMA(1, d, 1, 20) -0.05 0.03 -0.01 -0.00 0.00 -0.01 0.10 0.13 0.07 0.01 0.01 0.27

RLS-ARFIMA(1, d, 1, T 1/2) -0.02 0.00 -0.01 -0.00 0.00 0.03 0.08 0.12 0.08 0.01 0.01 0.27

RLS-ARFIMA(0, d, 0, T 1/2) 0.22 - - 0.01 -0.00 0.11 0.22 - - 0.01 0.01 0.31

ARFIMA(1, d, 1) 0.62 0.17 0.52 0.05 - - 0.65 0.38 0.75 0.05 - -

ARFIMA(0, d, 0) 0.26 - - 0.05 - - 0.26 - - 0.06 - -

Table 2: Simulation results using the following configurations: RLS-ARFIMA(1, d, 1) with φ = 0.2, θ = −0.1,
σε = 0.5 and (DGP 1) d = 0, γ/T = 0.02, ση = 3σε, (DGP 2) d = 0.35, γ/T = 0, ση = 0, (DGP 3) d = 0.35,
γ/T = 0.02, ση = 3σε, (DGP 4) d = 0.6, γ/T = 0.02, ση = 3σε. The bias and root mean squared error (RMSE)
are computed for different values of M (the last entry for RLS-ARFIMA), T = 3000 and N = 100 replications.
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Full Sample Parameter Estimates

BAC HF a φ θ d γ/T ση σε KMLE

ARFIMA(0, d, 0) 0.3111
(0.5181)

- - 0.5287
(0.0400)

- - - -

ARFIMA(1, d, 1) 0.1827
(0.7091)

0.2941
(0.4300)

0.4537
(0.5120)

0.6445
(0.1507)

- - - -

RLS-ARFIMA(0, d, 0) - - - 0.4509
(0.0223)

0.0162
(0.0091)

0.3024
(0.0877)

0.2239
(0.0037)

137.029

RLS-ARFIMA(1, d, 1) - −0.2979
(0.5959)

−0.2699
(0.6127)

0.4738
(0.0170)

0.0139
(0.0082)

0.3115
(0.0955)

0.2246
(0.0037)

137.577

RLS-ARMA(0, 0) - - - - 0.4225
(0.0861)

0.1612
(0.0176)

0.1758
(0.0039)

83.9218

RLS-ARMA(1, 1) - 0.6373
(0.0736)

0.2844
(0.0609)

- 0.0864
(0.0354)

0.2073
(0.0406)

0.2112
(0.0047)

129.527

MRK HF a φ θ d γ/T ση σε KMLE

ARFIMA(0, d, 0) 0.3357
(0.2431)

- - 0.4041
(0.0378)

- - - -

ARFIMA(1, d, 1) 0.3198
(0.3441)

0.5300
(0.2270)

0.6439
(0.2348)

0.5075
(0.1433)

- - - -

RLS-ARFIMA(0, d, 0) - - - 0.3481
(0.0207)

0.0134
(0.0040)

0.8991
(0.1492)

0.2405
(0.0041)

-186.491

RLS-ARFIMA(1, d, 1) - 0.6184
(0.1424)

0.6991
(0.1166)

0.4361
(0.0446)

0.0135
(0.0042)

0.8945
(0.1417)

0.2405
(0.0042)

-185.957

RLS-ARMA(0, 0) - - - - 0.1034
(0.0146)

0.4015
(0.0364)

0.2048
(0.0042)

-248.768

RLS-ARMA(1, 1) - 0.6217
(0.0844)

0.3074
(0.0835)

- 0.0216
(0.0055)

0.7432
(0.1063)

0.2340
(0.0045)

-193.244

SPY HF a φ θ d γ/T ση σε KMLE

ARFIMA(0, d, 0) −0.2260
(0.4263)

- - 0.4944
(0.0403)

- - - -

ARFIMA(1, d, 1) −0.3184
(0.5840)

0.3921
(0.3369)

0.5206
(0.3891)

0.5965
(0.1455)

- - - -

RLS-ARFIMA(0, d, 0) - - - 0.4181
(0.0241)

0.0177
(0.0087)

0.3864
(0.1027)

0.2272
(0.0039)

56.7714

RLS-ARFIMA(1, d, 1) - 0.5844
(0.1602)

0.6525
(0.1540)

0.4903
(0.0296)

0.0172
(0.0090)

0.3937
(0.1051)

0.2274
(0.0040)

57.1266

RLS-ARMA(0, 0) - - - - 0.2082
(0.0279)

0.2487
(0.0206)

0.1793
(0.0040)

19.7437

RLS-ARMA(1, 1) - 0.5244
(0.0967)

0.2100
(0.0799)

- 0.0797
(0.0254)

0.2454
(0.0395)

0.2128
(0.0053)

51.2194

S&P 500 HF a φ θ d γ/T ση σε KMLE

ARFIMA(0, d, 0) −0.2297
(0.2282)

- - 0.4090
(0.0189)

- - - -

ARFIMA(1, d, 1) −0.0898
(0.3758)

0.3098
(0.1305)

0.4978
(0.1551)

0.5442
(0.0640)

- - - -

RLS-ARFIMA(0, d, 0) - - - 0.2604
(0.0198)

0.0285
(0.0046)

0.8436
(0.0726)

0.2746
(0.0039)

-1620.95

RLS-ARFIMA(1, d, 1) - −0.4904
(0.5315)

−0.4700
(0.5467)

0.2800
(0.0150)

0.0273
(0.0046)

0.8586
(0.0790)

0.2755
(0.0040)

-1620.05

RLS-ARMA(0, 0) - - - - 0.0773
(0.0063)

0.5658
(0.0320)

0.2448
(0.0031)

-1675.72

RLS-ARMA(1, 1) - 0.6837
(0.0619)

0.4612
(0.0594)

- 0.0323
(0.0046)

0.8034
(0.0639)

0.2703
(0.0039)

-1624.31

Table 3: Parameter estimates of the various dynamic models with standard errors in parentheses for the high-
frequency log-volatility proxies on BAC, MRK, SPY and S&P 500. “KMLE” denotes the predictive log-likelihood
value from the Kalman filter. Here, a refers to the constant in an ARFIMA model. The standard errors are
computed using the (inverse) numerical Hessian matrix.
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Full Sample Parameter Estimates (continued)

T-Bonds HF a φ θ d γ/T ση σε KMLE

ARFIMA(0, d, 0) −1.1777
(0.0815)

- - 0.2721
(0.0142)

- - - -

ARFIMA(1, d, 1) −1.1050
(0.2589)

0.2566
(0.0487)

0.6455
(0.0659)

0.5513
(0.0648)

- - - -

RLS-ARFIMA(0, d, 0) - - - 0.0965
(0.0169)

0.0161
(0.0057)

0.2759
(0.0463)

0.3611
(0.0036)

-2905.11

RLS-ARFIMA(1, d, 1) - 0.3311
(0.0416)

0.5863
(0.0528)

0.3874
(0.0294)

0.0046
(0.0028)

0.3260
(0.0776)

0.3690
(0.0036)

-2897.65

RLS-ARMA(0, 0) - - - - 0.0332
(0.0089)

0.2479
(0.0337)

0.3527
(0.0034)

-2919.84

RLS-ARMA(1, 1) - 0.9429
(0.0203)

0.8409
(0.0214)

- 0.0053
(0.0034)

0.3132
(0.0721)

0.3689
(0.0038)

-2904.26

USD-AUD a φ θ d γ/T ση σε KMLE

ARFIMA(0, d, 0) −2.2685
(0.0610)

- - 0.2469
(0.0026)

- - - -

ARFIMA(1, d, 1) −3.3750
(0.1954)

0.2924
(0.0100)

0.7511
(0.0122)

0.5520
(0.0151)

- - - -

RLS-ARFIMA(0, d, 0) - - - 0.0414
(0.0111)

0.0025
(0.0006)

1.0443
(0.0420)

1.3842
(0.0104)

-16932.5

RLS-ARFIMA(1, d, 1) - 0.4494
(0.1136)

0.5043
(0.1368)

0.0983
(0.0290)

0.0021
(0.0007)

1.0408
(0.0332)

1.3878
(0.0110)

-16931.7

RLS-ARMA(0, 0) - - - - 0.0041
(0.0008)

0.9795
(0.0090)

1.3758
(0.0101)

-16939.3

RLS-ARMA(1, 1) - 0.8135
(0.1103)

0.7806
(0.1121)

- 0.0024
(0.0007)

1.0305
(0.0158)

1.3852
(0.0108)

-16931.5

USD-CHF a φ θ d γ/T ση σε KMLE

ARFIMA(0, d, 0) −1.3256
(0.0298)

- - 0.1624
(0.0035)

- - - -

ARFIMA(1, d, 1) −2.2695
(0.1797)

0.3296
(0.0126)

0.7099
(0.0181)

0.4507
(0.0203)

- - - -

RLS-ARFIMA(0, d, 0) - - - 0.0448
(0.0110)

0.0032
(0.0017)

0.6209
(0.0927)

1.2481
(0.0094)

-15872.7

RLS-ARFIMA(1, d, 1) - 0.3611
(0.0919)

0.4799
(0.1135)

0.1615
(0.0210)

0.0012
(0.0007)

0.6960
(0.0850)

1.2542
(0.0092)

-15866.9

RLS-ARMA(0, 0) - - - - 0.0078
(0.0031)

0.5492
(0.0780)

1.2400
(0.0093)

-15880.1

RLS-ARMA(1, 1) - 0.9444
(0.0214)

0.9059
(0.0243)

- 0.0010
(0.0007)

0.6996
(0.1004)

1.2547
(0.0093)

-15866.2

USD-JPY a φ θ d γ/T ση σε KMLE

ARFIMA(0, d, 0) −1.7860
(0.0522)

- - 0.2280
(0.0032)

- - - -

ARFIMA(1, d, 1) −2.7731
(0.1810)

0.2785
(0.0145)

0.6034
(0.0190)

0.4490
(0.0134)

- - - -

RLS-ARFIMA(0, d, 0) - - - 0.0532
(0.0117)

0.0027
(0.0006)

3.0657
(0.5819)

1.2765
(0.0096)

-16297.2

RLS-ARFIMA(1, d, 1) - 0.7776
(0.0783)

0.7281
(0.0793)

0.0000
(0.0002)

0.0024
(0.0007)

3.1717
(0.6447)

1.2786
(0.0101)

-16295.4

RLS-ARMA(0, 0) - - - - 0.0049
(0.0010)

2.3171
(0.3802)

1.2641
(0.0098)

-16306.4

RLS-ARMA(1, 1) - 0.7778
(0.0635)

0.7282
(0.0646)

- 0.0024
(0.0007)

3.1715
(0.6472)

1.2786
(0.0099)

-16295.4

Table 4:Parameter estimates of the various dynamic models with standard errors in parentheses for the log-volatility
proxies on the T-bonds, USD-AUD, USD-CHF and USD-JPY. “KMLE” denotes the predictive log-likelihood value
from the Kalman filter. Here, a refers to the constant in an ARFIMA model. The standard errors are computed
using the (inverse) numerical Hessian matrix.
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Robustness Check for the USD-JPY

USD-JPY HF a φ θ d γ/T ση σε KMLE

ARFIMA(0, d, 0) −0.6287
(0.0413)

- - 0.2019
(0.0137)

- - - -

ARFIMA(1, d, 1) −0.5825
(0.1572)

0.2385
(0.0545)

0.7610
(0.0646)

0.6108
(0.1069)

- - - -

RLS-ARFIMA(0, d, 0) - - - 0.0000
(0.0001)

0.0234
(0.0042)

1.9009
(0.2084)

0.3964
(0.0081)

-1592.22

RLS-ARFIMA(1, d, 1) - 0.5121
(0.2165)

0.6848
(0.1163)

0.1735
(0.0975)

0.0236
(0.0066)

1.8783
(0.2541)

0.3972
(0.0134)

-1590.97

RLS-ARMA(0, 0) - - - - 0.0234
(0.0042)

1.9008
(0.2071)

0.3964
(0.0081)

-1592.22

RLS-ARMA(1, 1) - 0.7737
(0.1683)

0.8065
(0.1761)

- 0.0264
(0.0055)

1.8115
(0.2064)

0.3903
(0.0108)

-1591.68

Table 5: Parameter estimates of the various dynamic models with standard errors in parentheses for the high-
frequency log-volatility series on the USD-JPY.“KMLE”denotes the predictive log-likelihood value from the Kalman
filter. Here, a refers to the constant in an ARFIMA model. The standard errors are computed using the (inverse)
numerical Hessian matrix.
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Forecast Evaluations for SPY

tout ∈ [1, 300] tout ∈ [301, 600]

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 0.0306
(0.96)

0.4693
(0.13)

1.7937
(0.02)

0.0553
(0.57)

1.0168
(1.00)

3.7569
(1.00)

RLS-ARFIMA(1, d, 1) 0.0306
(1.00)

0.4607
(1.00)

1.7389
(1.00)

0.0557
(0.16)

1.0326
(0.16)

3.8333
(0.11)

RLS-ARMA(0, 0) 0.0321
(0.32)

0.4878
(0.72)

1.9532
(0.34)

0.0588
(0.08)

1.2068
(0.02)

4.9780
(0.00)

RLS-ARMA(1, 1) 0.0309
(0.32)

0.4732
(0.72)

1.8978
(0.34)

0.0559
(0.32)

1.0649
(0.21)

4.1045
(0.11)

ARFIMA(0, d, 0) 0.0307
(0.96)

2.9345
(0.00)

15.697
(0.00)

0.0549
(1.00)

4.1251
(0.00)

21.030
(0.00)

ARFIMA(1, d, 1) 0.0307
(0.96)

2.6416
(0.00)

13.778
(0.00)

0.0554
(0.57)

3.8275
(0.00)

18.959
(0.00)

HAR 0.0317
(0.18)

3.1097
(0.00)

34.656
(0.00)

0.0575
(0.08)

4.3144
(0.00)

43.279
(0.00)

log-GARCH 0.0572
(0.00)

2.5295
(0.00)

18.409
(0.00)

0.0847
(0.00)

3.2677
(0.00)

21.836
(0.00)

tout ∈ [601, 900] tout ∈ [1, 900]

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 0.0618
(0.63)

1.6347
(0.00)

7.3594
(0.00)

0.0493
(0.50)

1.0370
(0.14)

4.2690
(0.01)

RLS-ARFIMA(1, d, 1) 0.0618
(0.51)

1.5992
(1.00)

7.1319
(1.00)

0.0494
(0.50)

1.0277
(1.00)

4.2021
(1.00)

RLS-ARMA(0, 0) 0.0657
(0.08)

1.5982
(1.00)

7.6520
(0.61)

0.0522
(0.00)

1.0948
(0.29)

4.8297
(0.04)

RLS-ARMA(1, 1) 0.0628
(0.06)

1.6251
(0.99)

7.6460
(0.43)

0.0499
(0.02)

1.0512
(0.44)

4.5146
(0.04)

ARFIMA(0, d, 0) 0.0606
(1.00)

2.1894
(0.00)

9.3499
(0.08)

0.0488
(1.00)

3.0880
(0.00)

15.426
(0.00)

ARFIMA(1, d, 1) 0.0613
(0.71)

2.3486
(0.00)

10.127
(0.00)

0.0492
(0.50)

2.9425
(0.00)

14.335
(0.00)

HAR 0.0608
(0.91)

1.6102
(1.00)

8.9436
(0.43)

0.0500
(0.19)

3.0192
(0.00)

29.184
(0.00)

log-GARCH 0.0636
(0.71)

1.6480
(0.99)

8.1086
(0.61)

0.0685
(0.00)

2.4864
(0.00)

16.208
(0.00)

Table 6: Forecast evaluations of the eight dynamic models. We use mean squared forecast errors (MSFE’s) and
consider MCS comparisons with all models included in the initial set. Here, boldface notation indicate whether a
model belongs to the 10% MCS. The MCS p-values are in parentheses. See the main text for details.
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Forecast Evaluations for USD-JPY

tout ∈ [1, 300] tout ∈ [301, 600]

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 1.2418
(0.26)

5.9518
(0.02)

13.781
(0.01)

1.7523
(0.06)

12.100
(0.07)

30.393
(0.01)

RLS-ARFIMA(1, d, 1) 1.2273
(1.00)

5.1191
(1.00)

10.526
(1.00)

1.6613
(1.00)

10.530
(1.00)

22.730
(1.00)

RLS-ARMA(0, 0) 1.2329
(0.67)

6.1010
(0.01)

14.548
(0.00)

1.7596
(0.05)

12.538
(0.05)

32.031
(0.01)

RLS-ARMA(1, 1) 1.2401
(0.32)

5.9229
(0.04)

13.666
(0.02)

1.7472
(0.06)

12.022
(0.07)

30.068
(0.01)

ARFIMA(0, d, 0) 1.3017
(0.00)

9.2743
(0.00)

30.938
(0.00)

1.7086
(0.20)

12.935
(0.07)

36.010
(0.00)

ARFIMA(1, d, 1) 1.2517
(0.01)

42.195
(0.00)

199.33
(0.00)

1.6895
(0.14)

43.850
(0.00)

194.57
(0.00)

HAR 1.2624
(0.01)

9.4700
(0.00)

53.660
(0.00)

1.6905
(0.20)

15.801
(0.00)

66.003
(0.00)

log-GARCH 1.9869
(0.07)

30.249
(0.00)

126.68
(0.00)

2.5164
(0.00)

38.101
(0.00)

148.62
(0.00)

tout ∈ [601, 900] tout ∈ [1, 900]

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 1.3759
(0.56)

11.051
(0.45)

31.781
(0.38)

1.4566
(0.03)

9.6937
(0.01)

25.245
(0.00)

RLS-ARFIMA(1, d, 1) 1.3155
(1.00)

10.272
(1.00)

28.001
(1.00)

1.4013
(1.00)

8.6313
(1.00)

20.334
(1.00)

RLS-ARMA(0, 0) 1.3808
(0.44)

11.202
(0.45)

32.453
(0.38)

1.4578
(0.03)

9.9401
(0.01)

26.275
(0.00)

RLS-ARMA(1, 1) 1.3770
(0.56)

11.102
(0.12)

32.006
(0.06)

1.4548
(0.03)

9.6745
(0.01)

25.171
(0.00)

ARFIMA(0, d, 0) 1.3681
(0.35)

30.555
(0.00)

128.80
(0.00)

1.4594
(0.00)

17.516
(0.00)

64.536
(0.00)

ARFIMA(1, d, 1) 1.3224
(0.88)

82.939
(0.00)

398.10
(0.00)

1.4212
(0.03)

56.179
(0.00)

262.50
(0.00)

HAR 1.3247
(0.88)

16.070
(0.00)

93.273
(0.00)

1.4258
(0.03)

13.767
(0.00)

70.728
(0.00)

log-GARCH 1.4978
(0.07)

15.351
(0.00)

50.342
(0.00)

2.0003
(0.00)

27.970
(0.00)

109.200
(0.00)

Table 7: Forecast evaluations of the eight dynamic models. We use mean squared forecast errors (MSFE’s) and
consider MCS comparisons with all models included in the initial set. Here, boldface notation indicate whether a
model belongs to the 10% MCS. The MCS p-values are in parentheses. See the main text for details.
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Forecast Evaluations for the Remaining Series, tout ∈ [1, 900]

BAC HF MRK HF

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 0.0491
(1.00)

1.2855
(0.01)

5.5562
(0.12)

0.0776
(0.01)

1.1819
(0.05)

4.3179
(0.06)

RLS-ARFIMA(1, d, 1) 0.0491
(0.66)

1.3982
(0.00)

6.0759
(0.00)

0.0775
(0.01)

1.1671
(1.00)

4.2600
(1.00)

RLS-ARMA(0, 0) 0.0509
(0.27)

1.1056
(1.00)

5.1127
(0.84)

0.0795
(0.00)

1.2315
(0.38)

4.9083
(0.02)

RLS-ARMA(1, 1) 0.0495
(0.51)

1.1276
(0.59)

5.0695
(1.00)

0.0779
(0.00)

1.2127
(0.05)

4.5891
(0.00)

ARFIMA(0, d, 0) 0.0496
(0.51)

4.8718
(0.00)

25.428
(0.00)

0.0732
(1.00)

1.4327
(0.00)

5.5504
(0.00)

ARFIMA(1, d, 1) 0.0493
(0.51)

4.5018
(0.00)

22.706
(0.00)

0.0733
(0.83)

1.3486
(0.00)

5.0752
(0.06)

HAR 0.0498
(0.39)

2.4582
(0.00)

28.671
(0.00)

0.0743
(0.07)

1.2103
(0.58)

5.0140
(0.06)

log-GARCH 0.0697
(0.00)

2.6312
(0.00)

18.741
(0.00)

0.0876
(0.00)

2.0187
(0.00)

10.621
(0.00)

S&P 500 HF T-Bonds HF

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 0.1491
(0.01)

2.4664
(0.71)

9.6852
(1.00)

0.1133
(0.37)

0.7731
(0.84)

2.3151
(1.00)

RLS-ARFIMA(1, d, 1) 0.1495
(0.01)

2.5329
(0.01)

9.9817
(0.01)

0.1155
(0.11)

1.4219
(0.00)

5.4489
(0.00)

RLS-ARMA(0, 0) 0.1538
(0.00)

2.5262
(0.68)

10.089
(0.37)

0.1127
(1.00)

0.7703
(1.00)

2.3161
(0.98)

RLS-ARMA(1, 1) 0.1502
(0.01)

2.4788
(0.71)

9.7703
(0.38)

0.1157
(0.08)

1.6141
(0.00)

6.4042
(0.00)

ARFIMA(0, d, 0) 0.1407
(0.29)

6.6100
(0.00)

31.096
(0.00)

0.1244
(0.00)

3.6058
(0.00)

16.195
(0.00)

ARFIMA(1, d, 1) 0.1391
(1.00)

6.7864
(0.00)

31.943
(0.00)

0.1147
(0.21)

3.7387
(0.00)

17.308
(0.00)

HAR 0.1394
(0.69)

2.3750
(1.00)

11.648
(0.10)

0.1151
(0.22)

1.0908
(0.00)

3.5153
(0.00)

log-GARCH 0.1833
(0.00)

5.0218
(0.00)

30.807
(0.00)

0.1682
(0.00)

2.5371
(0.00)

11.378
(0.00)

USD-AUD USD-CHF

1-step 5-step 10-step 1-step 5-step 10-step

RLS-ARFIMA(0, d, 0) 1.5891
(1.00)

9.6999
(1.00)

22.646
(1.00)

1.4567
(0.54)

7.4997
(1.00)

15.768
(1.00)

RLS-ARFIMA(1, d, 1) 1.5914
(0.64)

9.7033
(0.83)

22.657
(0.85)

1.4625
(0.49)

7.6311
(0.23)

16.478
(0.03)

RLS-ARMA(0, 0) 1.5904
(0.93)

9.7476
(0.58)

22.814
(0.56)

1.4539
(1.00)

7.5353
(0.62)

15.807
(0.87)

RLS-ARMA(1, 1) 1.6240
(0.24)

10.381
(0.03)

25.381
(0.01)

1.4616
(0.49)

7.6531
(0.05)

16.594
(0.00)

ARFIMA(0, d, 0) 1.6814
(0.00)

42.801
(0.00)

188.88
(0.00)

1.4992
(0.02)

9.3991
(0.00)

24.561
(0.00)

ARFIMA(1, d, 1) 1.5903
(0.93)

119.32
(0.00)

582.26
(0.00)

1.4632
(0.20)

135.47
(0.00)

666.52
(0.00)

HAR 0.1611
(0.38)

12.982
(0.00)

129.49
(0.00)

1.4681
(0.48)

8.7184
(0.00)

19.999
(0.00)

log-GARCH 2.0832
(0.00)

22.307
(0.00)

73.953
(0.00)

2.1949
(0.00)

28.801
(0.00)

113.70
(0.00)

Table 8: Forecast evaluations of the eight dynamic models. We use mean squared forecast errors (MSFE’s) and
consider MCS comparisons with all models included in the initial set. Here, boldface notation indicate whether a
model belongs to the 10% MCS. The MCS p-values are in parentheses. See the main text for details.
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Out-of-Sample Series: T-Bonds HF

Loss Differential: RLS-ARFIMA(0, d, 0) vs. RLS-ARFIMA(1, d, 1)

Loss Differential: RLS-ARMA(0, 0) vs. RLS-ARMA(1, 1)

Figure 1: The upper panel displays the cumulative ten-step-ahead log-volatility proxy for the T-bond series. The

middle and lower panels display the corresponding loss differentials, dij,t =
(
σ̄t,τ − ȳt+τ,i|t

)2 − (
σ̄t,τ − ȳt+τ,j|t

)2
,

from the comparisons of the RLS-ARFIMA(0, d, 0) model against the RLS-ARFIMA(1, d, 1) model and the RLS-

ARMA(0, 0) model against the RLS-ARMA(1, 1) model.
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1-day Forecasts: RLS-ARFIMA 1-day Forecasts: ARFIMA

5-day Forecasts: RLS-ARFIMA 5-day Forecasts: ARFIMA

10-day Forecasts: RLS-ARFIMA 10-day Forecasts: ARFIMA

Figure 2: The upper left panel displays the out-of-sample 1-day volatility proxy (line, black) together with the

RLS-ARFIMA(1, d, 1) forecast (dotted, blue) for the last 900 days of the SPY sample; the upper right panel displays

the corresponding plot for the ARFIMA(1, d, 1) forecast (dashed, blue). The two middle and lower panels have the

same left and right split, only the forecasts are cumulative direct 5 and 10-step-ahead, respectively.
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A Handling Measurement Errors

The econometric methodology in the main text relies on an RLS-ARFIMA(p, d, q) approximation of

the reduced form dynamics, that is, on a finite-order ARMA representation to account for both the

underlying short memory dependencies and measurement errors in the series. We discuss the validity of

our approach and provide evidence in favor of the specific parameterizations used.

A.1 Measurement Errors and the (RLS-)ARFIMA Representation

From the reduced form of yt in (4), one observes that by allowing for measurement errors in the log-

volatility proxy, it is generally necessary to have an RLS-ARFIMA(p, d,∞) structure to fully capture

its dynamics. However, we will emphasize two different cases, which empirically describe our volatility

series well (evidence will follow) and render a finite order MA structure appropriate.

First, if d = 0, then (4) illustrates that we may model the residual dynamics, that is, the dynamics

once level shifts are taken into account, by a finite ARMA(p,max(p, q)) specification, see Granger &

Morris (1976), with an MA component determined by Θ(L)εt + Φ(L)ut. Second, if d > 0 and there are

no measurement errors in the series, then an ARFIMA(p, d, q) model with MA component Θ(L)εt will

fully capture the residual dynamics. Hence, both cases allow for short memory dynamics of finite order.

It is important to emphasize, however, that we do not impose these restrictions on the parameters

from the outset. Rather, it is an empirical observation that the first case pertains to our daily FX

volatility series, and the second case to the remaining high-frequency volatility measures. In fact, we

find that AR(1) and ARMA(1, 1) specifications adequately capture the short memory dependencies of the

former, respectively, the latter. A model that encompasses both these cases is the RLS-ARFIMA(1, d, 1)

specification, which we analyze in detail in the simulation study as well as the empirical analysis of the

main text. We will below add empirical evidence from a filtered long memory stochastic volatility model

with random level shifts, or the RLS-LMSV model, to support these claims.

A.2 Motivational Evidence from an RLS-LMSV(1, d) Model

We consider an RLS-LMSV(1, d) model, that is, a SV model that allows for random level shifts, genuine

long memory, and first-order AR dynamics. This specification readily extends the respective discrete-

time SV models in Deo et al. (2006) and Qu & Perron (2013). The model is also closely related to the

reduced form RLS-ARFIMA(1, d, 1) specification considered, but allows for structural inference on the

standard deviation of the measurement error, σu, in addition to the fractional integration order and

level shifts parameters. Hence, it facilitates a direct assessment of whether d = 0 and/or σu = 0 is

appropriate, corresponding to the two cases discussed in Section A.1. Before proceeding, however, we

note that estimation of the RLS-LMSV(1, d) model is computational intensive, and the model generates

likelihood values similar to those for the RLS-ARFIMA(1, d, 1) model as well as delivers slightly worse

forecasts, on average. As a result, we use the former only to motivate the latter.
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A.2.1 RLS-LMSV: State Space Formulation and Estimation

Rather than working in first differences, as for the RLS-ARFIMA model in Section 4, let the observable

log-volatility proxy, yt = xt + ut, be written in a modified, yet still truncated, state space form as

yt = F̃ H̃t + ut, with H̃t = G̃H̃t−1 + T̃ Ẽt,π (9)

where F̃ = (1, 0, . . . , 0, 1)′ and H̃t = (Ht, vt) are (M + 1) × 1 vectors, and the 2 × 1 vector containing

the state vector innovations, Ẽt,π ∼ i.i.d.N.(02×1, Q̃π), depends on the particular regime of the process

at time t through

Q̃1 =

(
σ2ε 0

0 σ2η

)
and Q̃0 =

(
σ2ε 0

0 0

)
,

corresponding to πT,t = 1 and πT,t = 0. Furthermore, since by defining the matrices

G̃ =

(
G 0M×1

01×M 1

)
and T̃ =

(
1 0M×1

0M×1 1

)

of dimensions (M + 1)× (M + 1) and (M + 1)× 2, respectively, the model has a state space structure

that resembles the one in (6), and we can apply an estimation procedure that is very similar to the

one described in the supplementary appendix for the RLS-ARFIMA model. Before proceeding to the

empirical estimation results, however, we assess the accuracy of the RLS-LMSV parameter estimates

from the proposed state space methodology in a small simulation exercise.

A.2.2 RLS-LMSV: Preliminary Numerical Results

We assess the accuracy of the RLS-LMSV parameter estimates by simulating an RLS-LMSV(1, d) pro-

cess,

yt = xt + ut, xt = ht + vt, (1− L)d(1− φL)ht = εt,

with d = 0.35, γ/T = 0.02, σε = 0.5, ση = 3σε, φ = 0.2 and two different levels of measurement errors

specified through the noise-to-signal ratio ξ = σ2u/σ
2
ε (1 − φ)2, specifically ξ = {1, 2}. We compute the

bias and root mean squared error (RMSE) of the parameter estimates for sample sizes T = {3000, 6000},
truncations M = {20, 30, T 1/2} of the AR(M) representation, and N = 100 replications. The results of

this exercise are presented in Table 9 below. We refer to the main simulation study in Section 5 for a

discussion of the specific setup, i.e, of the choice of truncation and implementation details. Here, we are

mainly interested in whether we can identify the key parameters γ/T , ση, d, and σε for fairly high levels

of measurement noise. The latter, in particular, is chosen higher than what our empirical estimates

suggest, except for the USD-JPY series, to conservatively assess the inference procedure.

Table 9 illustrates two important points. First, we observe that the RLS-LMSV(1, d) model estimates

the random level shift parameters γ/T and ση with no or a vanishingly small bias. Second, the estimates

of the genuine long memory parameter, d, is slightly downward biased (not surprisingly, given the high
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level of measurement errors). However, this bias diminishes when increasing the sample size, truncation

length, or decreasing the noise-to-signal ratio. As stressed above, the bias is to be interpreted as a

conservative estimate. Importantly, the RLS-LMSV(1, d) model is able to reliably recover information

about the key persistence parameters in the underlying process.

A.2.3 RLS-LMSV: Empirical Estimates

To provide support for the claim that the eight log-volatility series can be categorized into the two

cases referenced in Section A.1, as well as for our RLS-ARFIMA specifications, we report the parameter

estimates from an RLS-LMSV(1, d) model for all series in Table 10 below using truncation M = 20.23

From Table 10, we make a few noteworthy observations. First, for the three log-volatility series

constructed from tick-by-tick trades, BAC, MRK, and SPY, we see that the impact of measurement

errors is negligible, and similarly for the S&P 500 series. For the three exchange rate series, on the other

hand, we observe non-negligible measurement noise. However, the estimated noise-to-signal ratios for

the USD-AUD and USD-CHF series are still (much) smaller than the corresponding simulated values,

but similar for the USD-JPY series. Moreover, note that we hardly estimate any ARFIMA dynamics

for the former two. In this case, we cannot separately identify σε and σu since the parameters will

collectively measure the noise level in the series.24 As seen in Section 5, if we simply interpret the noise

as coming from one source, here σε, the RLS-ARFIMA model precisely recovers this parameter.

In general, and as shown in Section 6, the estimated parameters in Table 10 present a striking pattern

across the volatility series. Random level shifts are present in all series, occurring more frequently for

all volatility proxies constructed from high-frequency data, but with less variability for most compared

to those associated with the daily return series. In addition, the high-frequency volatility measures

contain a large genuine long memory component, whereas there are seemingly little ARFIMA dynamics

remaining in the exchange rate volatility series once level shifts have been accounted for. Moreover, we

also observe a combination of measurement errors, random level shifts, and genuine long memory for the

high-frequency-based T-bond series. However, given equivalent representations of AR(1) plus noise and

ARMA(1, 1) dynamics and our empirical findings for the RLS-ARFIMA model in Section 6, we cannot

exclude that the former is caused by a negative MA(1) component, which appears prominently in our

empirical analysis. We refer to Sections 6.1 and 6.2 for a thorough discussion of these findings.

Finally, we have also estimated an RLS-LMSV model where we allow the latent short memory dy-

namics to follow an ARMA(1, 1) process. These results, though not reported here, provide no qualitative

changes to the conclusions emerging from Table 10, thus supporting our claim in Section A.1 that an

RLS-ARFIMA(1, d, 1) specification will encompass the two cases with d = 0 and σu = 0, respectively.

Although the RLS-ARFIMA model does not facilitate structural inference in σu, treating instead mea-

surement errors as an MA component, it is numerically much preferable to the RLS-LMSV(1, d) model,

23Our choice of a relatively smaller truncation order M = 20, rather than M = T 1/2 as the theory in Section 4.2 dictates,
reflects the conclusions from our main simulation study in Section 5, which we refer to for details. It is, however, worth
noting that we have performed robustness checks using truncations M = {30, 40}, providing similar results.

24The lack of identification in this case follows from εt + ut ∼ i.i.d.N(0, σ2
ε + σ2

u) by the assumptions in Section 2.
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and it generates slightly better forecasts, on average, with no loss in terms of in-sample fit. Hence, this

leads us to focus on the RLS-ARFIMA modeling strategy in the main text, implementing it using the

estimation and forecasting procedures developed in Sections 4.2 and 4.3, respectively.

Simulations for an RLS-LMSV(1, d) Process

Bias RMSE

γ/T ση d σε γ/T ση d σε

ξ = 2, T = 3000,M = 20 -0.00 0.11 -0.15 0.10 0.01 0.30 0.18 0.19

ξ = 2, T = 3000,M = T 1/2 0.00 0.09 -0.14 0.09 0.01 0.29 0.18 0.19

ξ = 1, T = 3000,M = 20 0.00 0.06 -0.12 0.05 0.01 0.25 0.11 0.16

ξ = 1, T = 3000,M = T 1/2 0.00 0.06 -0.09 0.06 0.01 0.26 0.12 0.13

ξ = 2, T = 6000,M = 20 -0.00 0.08 -0.14 0.03 0.00 0.18 0.16 0.18

ξ = 2, T = 6000,M = 30 -0.00 0.08 -0.11 0.08 0.00 0.18 0.16 0.18

Table 9: Simulation results for an RLS-LMSV(1, d) model fitted to an RLS-LMSV(1, d) process with parameters
d = 0.35, γ/T = 0.02, σε = 0.5, ση = 3σε, φ = 0.2 and two different levels of measurement errors specified through
the noise-to-signal ratio, ξ = σ2

u/σ
2
ε (1 − φ)2, where we, specifically, consider ξ = (1, 2). Furthermore, we vary the

sample size T = (3000, 6000), truncations M = (20, 30, T 1/2), and consider N = 100 replications.

Full Sample Parameter Estimates

RLS-LMSV(1, d) φ d γ/T ση σε σu KMLE

BAC HF -0.0329 0.4795 0.0169 0.2721 0.2248 0.0004 135.934

MRK HF 0.0470 0.3063 0.0152 0.8466 0.3063 0.0000 -188.044

SPY HF 0.0063 0.4106 0.0193 0.3794 0.2266 0.0000 57.2792

S&P 500 HF -0.0266 0.3168 0.0263 0.8738 0.2602 0.0891 -1620.01

T-Bonds HF 0.0254 0.4936 0.0051 0.3275 0.1355 0.3294 -2902.42

USD-AUD 0.0146 0.0277 0.0028 1.0459 1.3567 0.2651 -16933.4

USD-CHF -0.0492 0.0874 0.0017 0.6769 1.2413 0.1638 -15872.1

USD-JPY 0.6903 0.0000 0.0028 2.9687 0.2516 1.2301 -16297.7

Table 10: Parameter estimates of the RLS-LMSV(1, d) model for the eight log-volatility series. “KMLE” denotes
the predictive log-likelihood value from the Kalman filter.
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