
Forecasting in the presence of in and out of sample
breaks �

Jiawen Xuy

Shanghai University of Finance and Economics

Pierre Perronz

Boston University

January 30, 2017

Abstract

We present a frequentist-based approach to forecast time series in the presence of
in-sample and out-of-sample breaks in the parameters of the forecasting model. We �rst
model the parameters as following a random level shift process, with the occurrence of
a shift governed by a Bernoulli process. In order to have a structure so that changes in
the parameters be forecastable, we introduce two modi�cations. The �rst models the
probability of shifts according to some covariates that can be forecasted. The second
incorporates a built-in mean reversion mechanism to the time path of the parameters.
Similar modi�cations can also be made to model changes in the variance of the error
process. Our full model can be cast into a conditional linear and Gaussian state
space framework. To estimate it, we use the mixture Kalman �lter and a Monte
Carlo expectation maximization algorithm. Simulation results show that our proposed
forecasting model provides improved forecasts over standard forecasting models that are
robust to model misspeci�cations. We provide two empirical applications and compare
the forecasting performance of our approach with a variety of alternative methods.
These show that substantial gains in forecasting accuracy are obtained.
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1 Introduction

Forecasting is obviously of paramount importance in time series analyses. The theory of

constructing and evaluating forecasting models is well established in the case of stable rela-

tionships. However, there is growing evidence that forecasting models are subject to instabil-

ities, leading to imprecise and unreliable forecasts. This is so in a variety of �elds including

macroeconomics and �nance. Indeed, Stock and Watson (1996) documented widespread

prevalence of instabilities in macroeconomic time series relationships. A prominent example

is forecasting in�ation; see, e.g., Stock and Watson (2007). This problem is also prevalent in

�nance. Pastor and Stambaugh (2001) document structural breaks in the conditional mean

of the equity premium using long time return series. Paye and Timmermann (2006) exam-

ined model instability in the coe¢ cients of ex post predictable components of stock returns.

See also Pesaran and Timmermann (2002), Rapach and Wohar (2006) and Pettenuzzo and

Timmermann (2011).

There is a vast literature on testing for and estimating structural changes within a given

sample of data; see, e.g., Andrews (1993), Bai and Perron (1998, 2003) and Perron (2006)

for a survey. Much of the literature does not model the breaks as being stochastic. Hence,

the scope for improving forecasts is limited. There can be improvements by relying on the

estimates of the last regime (or at least putting more weights on them) but even then such

improvements are possible if there are no out-of-sample breaks. In the presence of out-of-

sample breaks the limitation imposed by treating the breaks as deterministic mitigates the

forecasting ability of models corrected for in-sample breaks. This renders forecasting in the

presence of structural breaks quite a challenge; see, e.g., Clements and Hendry (2006).

Some Bayesian models have been proposed to address this problem; see, e.g., Pesaran et

al. (2006), Koop and Porter (2007), Maheu and Gordon (2008), Maheu and McCurdy (2009)

and Hauwe et al. (2011). The advantage of the Bayesian approach steams from the fact that

it treats the parameters as random and by imposing a prior (or meta-prior) distribution one

can model the breaks and allow them to occur out-of-sample with some probability. Such

methods can, however, be sensitive to the exact prior distributions used.

We propose a frequentist-type approach with a forecasting model in which the changes in

the parameters have a probabilistic structure so that the estimates can help forecast future

out-of-sample breaks. Our approach is best suited to the case for which breaks occur both

in and out-of-sample, which in particular avoids the problematic use of a trimming window

assumed to have a stable structure. The method will work best indeed if there are many
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in-sample breaks, so that a long span of data is bene�cial. This is unavoidable since good out-

of-sample forecasts of breaks require in-sample information about the process generating such

breaks, the more so the more e¢ cient the forecasts will be. The same applies to previously

proposed Bayesian methods, though the use of tight priors can partially substitute for the

lack of precise in-sample information. Having said that, our method still yields considerable

improvements even if relatively few breaks are present in-sample.

Our approach is similar in spirit to unobserved components models in which the para-

meters are modeled as random walk processes. There are, however, important departures.

Most importantly, a shift need not occur every period. It does so with some probability

dictated by a Bernoulli process for the occurrence of shifts and a normal random variable

for its magnitude. This leads to a speci�cation in which the parameters evolve according to

a random level shift process. Some or all of the parameters of the model can be allowed to

change and the latent variables that dictate the changes can be common or di¤erent for each

parameters. Also, the variance of the errors may change in a similar manner.

The basic random level shift model has been used previously to model changes in the

mean of a time series, whether stationary or long-memory, in particular to try to assess

whether a seemingly long-memory model is actually a random level shift process or a genuine

long-memory one; see Ray and Tsay (2002), Perron and Qu (2010), Lu and Perron (2010),

Qu and Perron (2013), Xu and Perron (2014), Li et al. (2016) and Varneskov and Perron

(2016). It has been shown to provide improved forecasts over commonly used short or long-

memory models. Our basic framework is a generalization in which any or all parameters of

a forecasting model are modeled as random level shift processes.

To improve the forecasting performance we augment the basic model in two directions.

First, we model the probability of shifts as a function of some covariates which can be

forecasted. Second, we allow a mean-reversion mechanism such that the parameters tend to

revert back to the pre-forecast average. This last feature is especially in�uential in providing

improvements in forecasting performance at long horizons. Functional forms for these two

modi�cations are suggested for which the parameters can be estimated and incorporated in

the forecast scheme to model the future path of the parameters.

Modeling parameters as random level shifts has been suggested previously but, to our

knowledge, only in a Bayesian framework. McCulloch and Tsay (1993) considered an autore-

gression in which the intercept is subject to random level shifts, though the autoregressive

parameters are held �xed. They also allow the probability of shifts to depend on some co-

variates and changes in the variance of the errors (though using a di¤erent speci�cation than
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ours). Gerlach, Carter and Kohn (2000) consider a class of conditionally linear Gaussian

state-space models with a vector of latent variables indicating the occurrence of changes in

the coe¢ cients that follow a Markov process. Pesaran, Pettenuzzo and Timmerman (2006)

extend the Markovian structure of Chib (1998) with a �xed number of regimes by adopting

a hierarchical prior with a constant transition probability matrix out of sample, thereby

allowing breaks to occur at each date in the post-sample period. Koop and Potter (2007)

consider models with a random number of regimes with the transitions from one regime to

another being dictated by a Markov process and the durations of the regimes following a

Poisson distribution. Giordani and Kohn (2008) extend their analysis, and that of Gerlach,

Carter and Kohn (2000) to allow an arbitrary number of shifts occurring independently for

the coe¢ cients and error variance using a random level shift process with constant probabil-

ity of shifts. Giordani, Kohn and van Dijk (2007) consider a class of conditionally linear and

Gaussian state-space models which allows nonlinearity, structural change and outliers that

can accommodate a �xed number of regimes with Markov transitions probabilities or random

level shift processes, though in the applications they restrict the magnitudes of change and

impose restrictive structures on the latent variables indicating the occurrence of changes.

Groen, Paap and Ravazzolo (2013) use a model with random level shifts in the coe¢ cients

and error variance with constant probabilities to model and forecast in�ation. Smith (2012)

consider a Markov breaks regression model akin to a random coe¢ cient model with all para-

meters changing at the same time and the probability of shifts being Markovian. As noted in

some of the applications, the results can be quite sensitive to the prior used. Our approach

is closest to that of McCulloch and Tsay (1993) except that we consider a general forecasting

linear model with the same type of changes in coe¢ cients and variance of the errors, allowing

the probabilities of shifts to depend on some covariate. We also incorporate a mean-reversion

mechanism. More importantly, we do not adopt a Bayesian approach and thereby bypass the

need to specify priors and have the results in�uenced by them. Also, our focus is explicitly

on providing improved forecasts. As stated in the previous review of the literature, the basic

ingredient of the structure adopted has been considered previously, though not advanced

as a widely applicable forecasting framework. Our aim is to generalized it and provide a

�general purpose�forecasting model that performs well for diverse scenarios with or without

breaks. We believe this will be useful for empirical work related to forecasting.

Our model can be cast into a non-linear non-Gaussian state space framework for which

standard Kalman �lter type algorithms cannot be used. The state space representation of our

model is actually a linear dynamic mixture model in the sense that it is linear and Gaussian
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conditional on some latent random variables. Chen and Liu (2000) propose a special se-

quential Monte Carlo method, the mixture Kalman �lter, which uses a random mixture of

Gaussian distributions to approximate a target distribution. Giordani et al. (2007) discuss

the advantages of the class of conditionally linear and Gaussian state space models. The

EM (Expectation Maximization) algorithm is used to obtain the maximum likelihood esti-

mates of the parameters. This allows treating the latent state variables as missing data (see

Bilmes, 1998) and using a complete or data-augmented likelihood function which is easier to

evaluate than the original likelihood. Since the missing information is random, the complete-

data likelihood function is a random variable and we end up maximizing the expectation of

the complete-data log-likelihood with respect to the missing data. Wei and Tanner (1990)

introduced the Monte Carlo EM algorithm where the evaluation step is executed by Monte

Carlo methods. Random samples from the conditional distribution of the missing data (state

variables) can be obtained via a particle smoothing algorithm. The forecasting procedure is

then relatively simple and can be carried out in a straightforward fashion once the model

has been estimated.

Simulations show that the estimation method provides very reliable results in �nite sam-

ples. The parameters are estimated precisely and the �ltered estimates of the time path

of the parameters follow closely the true process. To show the robustness of our forecast-

ing model, we design simulations comparing the forecasting performances of various popular

models (various form of the RLS models, historical average, rolling average, ARMA, ARIMA,

Markov Switching, Time Varying Parameters) when the Data Generating Process (DGP) is

one of the forecasting models considered. The results show that our random level shift model

with built-in mean reversion always performs nearly as well as the model corresponding to

the true DGP, and can even be better (e.g., when the true DGP is ARIMA or Markov

Switching). All other forecasting methods perform very poorly in one or more of the cases

considered. Hence, our method provides reliable results that are robust to a wide range of

processes.

We apply our forecasting model to two series which have been the object of considerable

attention from a forecasting point of view. The emphasis is on the equity premium. We com-

pare the forecast accuracy of our model relative to the most important forecasting methods

applicable for this variable. We also consider di¤erent forecasting sub-samples or periods.

The results show clear gains in forecasting accuracy, sometimes by a very wide margin; e.g.,

over 90% reduction in mean squared forecast error relative to popular contenders. For this

particular series, it turns out that the Time Varying Parameter Model performs quite well
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being a close second best. To show the robustness of our forecasting model, we also consider

the Treasury bill rate. Our method continues to provide the best forecasts overall, while

the Time Varying Parameter Model lead to very poor forecasts in most samples considered

Other applications can be found in the working paper version and in Xu (2017).

Finally, note that given the availability of the proper code for estimation and forecasting,

the method is very �exible and easy to implement. For a given forecasting model, all that

is required by the users are: 1) which parameters (including the variance of the errors if

desired) are subject to change; 2) whether the same or di¤erent latent Bernoulli processes

dictates the timing of the changes in each parameters; 3) which covariates are potential

explanatory variables to model the probability of shifts.

The rest of the paper is organized as follows. Section 2 describes the basic model with

random level shifts in the parameters. Section 3 discusses the modi�cations introduced

to improve forecasting: the modeling of the probability of shifts and the allowance for a

mean-reverting mechanism. Section 4 presents the estimation methodology: the mixture

Kalman �ltering algorithm in Section 4.1, the particle smoothing algorithm in Section 4.2,

the Monte Carlo Expectation Maximization method to evaluate the likelihood function in

Section 4.3. Section 5 introduces the construction of in-sample con�dence bands and out-of-

sample forecast bands. Section 6 provides forecasting simulations of various models to show

the reliability and robustness of our proposed method. Section 7 contains the applications

and comparisons with other forecasting methods. Section 8 o¤ers brief concluding remarks.

Detailed estimation algorithms are included in an appendix.

2 Model setup

We consider a basic forecasting model speci�ed by

yt = Xt�t + et (1)

where yt is a scalar variable to be forecasted, Xt is a k-vector of covariates and, in the base

case, et � i:i:d. N(0; �2e). It is assumed that some or all of the parameters are time-varying

and exhibit structural changes at some unknown time. The speci�cation adopted for the

time-variation in the parameters is the following:

�t = �t�1 +K�
t �t

where K�
t = diag(K�

1;t; : : : ; K
�
k;t) and �t = (�1;t; : : : ; �k;t)

0 � i:i:d. N(0;�). The latent

variables K�
j;t � Ber(p(j)) and are independent across j. Hence, each parameter evolves
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according to a Random Level Shift (RLS) process such that the shifts are dictated by the

outcomes of the Bernoulli random variables K�
j;t. When K

�
j;t = 1, a shift �j;t occurs drawn

from a N(0; �2�;j) distribution, otherwise when K
�
j;t = 0 the parameter does not change. The

shifts can be rare (small values of p(j)) or frequent (larger values of p(j)).

This speci�cation is ideally suited to model changes in the parameters occurring at un-

known dates. Many speci�cations are possible depending on the assumptions imposed on

K�
t and �. First, when K

�
1;t = : : : = K�

k;t, we can interpret the model as one in which all pa-

rameters are subject to change at the same times, akin to the pure structural change model

of Bai and Perron (1998). A partial structural model, can be obtained by setting p(j) = 0

for the parameters not allowed to change, or equivalently by setting the corresponding rows

and columns of � to 0. The case with K�
1;t = : : : = K�

k;t is arguably the most interesting for

a variety of applications. However, it is also possible not to impose equality for the di¤erent

K�
j;t. This allows the timing of the changes in the di¤erent parameters to be governed by

di¤erent independent latent processes. This may be desirable in some cases. For instance,

it is reasonable to expect changes in the constant to be related to low frequency variations

of the random level shifts type, while changes in the coe¢ cients associated with random

regressors to be related to business-cycle type variations. In such cases, it would therefore

be desirable to allow the timing of the changes to be di¤erent for the constant and the other

parameters. Of course, many di¤erent speci�cations are possible, and the exact structure

needs to be tailored to the speci�c application under study.

The assumption that the latent Bernoulli processes K�
j;t are independent across j may

seem strong. It implies that the timing of the changes are independent across parameters.

As stated above, this can be relaxed by imposing a perfect correlation, i.e., setting some

latent variables to be the same. Ideally, one may wish to have a more �exible structure that

would allow imperfect though non-zero correlation. This generalization is not feasible in our

framework. In many cases, it may also be sensible to impose that � is a diagonal matrix.

This implies that the magnitudes of the changes in the various parameters are independent.

In our applications, we follow this approach as it appears the most relevant case in practice

and also considerably reduces the complexity of the estimation algorithm to be discussed in

Section 4. Hence, for the jth parameter �j (j = 1; : : : ; k), we have

�j;t = �j;t�1 +K�
j;t�j;t (2)

where �j;t � N(0; �2�;j) and K
�
j;t � Ber(p(j)).

In some cases, it may also be of interest to allow for changes in the variance of the errors.
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The speci�cation for the distribution is then et = ��;t�t with

ln�2�;t = �ln�2�;t�1 +K�
t v�;t (3)

where �t � N(0; 1), K�
t � Ber(p�) and v�;t � N(0; �2v).

Remark 1 When p(j) = p� = 0 for all j, the model reduces to the classic regression model

with time invariant parameters. When p(j) = 1 for all j and p� = 0, it becomes the standard

time varying parameter model; e.g., Rosenberg (1973), Chow (1984), Nicholls and Pagan

(1985) and Harvey (2006).

Remark 2 In equation (3), if � = 1, we have a random level shift model for volatility. And

if we add that K�
t = 1, we have the stochastic volatility modeled as a random walk. If j�j < 1

and K�
t = 1, we have the commonly used stochastic volatility as an approximation to the

stochastic volatility di¤usion of Hull and White (1987). Stock and Watson (2007) used a

similar unobserved component stochastic volatility (UC-SV) model to forecast in�ation, in

which the stochastic volatility equation is speci�ed with � = 1 and K�
t = 1.

3 Modi�cations useful for forecasting improvements

The framework laid out in the previous section is well tailored to model in-sample breaks in

the parameters. However, as such it does not allow future breaks to play a role in forecasting.

In order to be able to do so, we incorporate some modi�cations. Two features that are likely

to improve the �t and the forecasting performance is to allow for changes in the probability

of shifts and model explicitly a mean-reverting mechanism for the level shift component. In

the �rst step, we specify the jump probability to be

p
(j)
t = f(; wt)

where  is a m-vector of parameters, wt are m covariates that would allow to better predict

the probability of shifts and f is a function that ensures pt 2 [0; 1]. Note that wt needs to be
in the information set at time t in order for the model to be useful for forecasting. We shall

adopt a linear speci�cation with the standard normal cumulative distribution function �(�),
so that K�

j;t � Ber(p
(j)
t ) with p

(j)
t = �(r0+ r

0
1wt), where r0 is a scalar and r1 and m-vector of

parameters. As similar speci�cation can be made for the probability of the Bernoulli random

variable K�
t a¤ecting the shifts in the variance of the errors.

The second step involves allowing a mean reverting mechanism to the level shift model.

The motivation for doing so is that we often observe evidence that parameters do not jump
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arbitrarily and that large upward movements tend to be followed by a decrease. This fea-

ture can be bene�cial to improve the forecasting performance if explicitly modeled. The

speci�cation we adopt is the following:

�j;t � N(��;j;t; �
2
�;j)

��;j;t = �(�j;t�1 � ��
(t�1)
j )

where �j;t�1 is the �ltered estimate of the parameter subject to change at time t � 1 and
��
(t�1)
j is the mean of all the �ltered estimates of the jump component from the beginning of

the sample up to time t� 1. This implies a mean-reverting mechanism provided � < 0. The
magnitude of � then dictates the speed of reversion. If � = 0, there is no mean reversion.

Note that the speci�cation involves using data only up to time t in order to be useful for

forecasting purposes. Also, it will have an impact on forecasts since being in a high (low)

values state implies that in future periods the values will be lower (higher), and more so as

the forecasting horizon increases. Hence, this speci�cation has an e¤ect on the forecasts of

both the sign and size of future jumps in the parameters. Similar speci�cations can be made

to p� and v�;t for the changes in the variance of the errors.

4 Estimation methodology

The model described is within the class of conditional linear Gaussian State Space models

of the form

yt = Xt�t + et (4)

�t = �t�1 +K�
t �t (5)

ln�2�;t = �ln�2�;t�1 + v�;t

where yt is the variable to be forecasted and (�t; K
�
t ; ln�

2
�;t) is the state vector. The mea-

surement equation is (4) and the transition equations are (5). Conditional on (K�
t ; ln�

2
�;t);

the resulting system is a linear and Gaussian state space model and p(�tjK
�
t ; ln�

2
�;t; Y ; �),

where Y = (y1; :::; yT ) and � is the vector of parameters, can be evaluated by the Kalman

�lter. The particle �lters used are due to Chen and Liu (2000) who named them the mixture

Kalman �lters.

Remark 3 In equation (5), we can add random level shifts in the stochastic volatility process
as in (3). See the appendix for details.
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4.1 Mixture Kalman �ltering

In this section, we use the conventional notation xt to denote the state variable, while

�t � (K�
t ; ln�

2
�;t) are the latent variables. Let y

t = (y1; :::; yt), �t = (�1; :::; �t), and let �
t be

realizations of �t. The �ltering distribution of xt can be written as

p(xtjyt) =
Z
p(xtjyt; �t)p(�tjyt)d�t

where p(xtjyt; �t) � N
�
�t(�

t);�t(�
t)
�
, in which

�
�t(�

t);�t(�
t)
�
can be obtained by running

the Kalman �lter with a given trajectory �t. The main idea of the mixture Kalman �lter is

to use a weighted sample of the indicators St = f(�t;(1); w(1)t ); :::; (�t;(M); w
(M)
t )g to represent

the distribution p(�tjyt), where w(i)t are some weights to be de�ned below and �t;(i) are

simulated latent variables; e.g., in the basic model �t;(i) � (K�;(i)
1 ; :::; K

�;(i)
t ), so that given a

jump probability p, �t;(i) can be generated as random draws from the Bernoulli distribution

with probability p. One then uses a random mixture of Gaussian distributions

1

Wt

XM

i=1
w
(i)
t N

�
�t(�

t;(i));�t(�
t;(i))

�
where Wt =

PM
i=1w

(i)
t , to represent the target distribution p(xtjyt): The detailed mixture

Kalman �ltering algorithm is provided both for the basic model (equations (1) and (2)) and

the extended model with stochastic volatility (equations (4) and (5)) with or without RLS

in the appendix. To illustrate the adequacy of this method, we present simple illustrative

examples. First, the true process for �t is generated using equations (1) and (2) with

mean reversion and time varying probability with the parameters (r0, r1, �e, ��, �) =

(�1:96; 4; 0:2; 0:2;�0:1). The number of observations is 1000. Figure 1 presents a plot the
true path of �t along with the �ltered estimates of �t. One can see a close agreement

between the two. Figure 2 considers the more general case with stochastic volatility, where

the true processes for �t and the stochastic volatility are generated using equations (4) and

(5) with mean reversion and time varying probability with the parameters (r0, r1, �, �v,

��, �) = (�1:96; 4; 0:95; 0:2; 0:2;�0:1). A plot the true path of �t along with the �ltered

estimates of �t are presented in Panel A. The corresponding values for the volatility process

are presented in Panel B. Again, the �ltered values closely follow the true paths in both

cases. While obviously limited, the cases reported are representative of what one can expect

in most cases (from unreported additional simulations performed), showing the adequacy of

the �ltering method adopted.
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4.2 Particle smoothing

The particle smoothing algorithm is designed to obtain particle smothers fs(i)t gMi=1 with
certain weights fw(i)t gMi=1 from p(xtjyT ). Godsill et al. (2004) provide a forward-�ltering and
backward-simulation smoothing procedure. It allows drawing random samples from the joint

density p(x0; x1; : : : xT jyT ), not only the individual marginal smoothing densities p(xtjyT ).
The smoothing algorithm relies on a pre-�ltering procedure and a previously obtained set

of �lters fw(i)t ; x
(i)
t gMi=1 for each time period. The main ingredients behind the smoothing

algorithm are the relations:

p(x1; : : : ; xT jyT ) = p(xT jyT )
T�1Y
t=1

p(xtjxt+1; : : : ; xT ; yT )

and

p(xtjxt+1; : : : ; xT ; yT ) = p(xtjxt+1; yt)

=
p(xtjyt)p(xt+1jxt)

p(xt+1jyt)
/ p(xtjyt)p(xt+1jxt)

The �rst equality follows from the Markov property of the model and the second from Bayes�

rule. Since random samples fx(i)t gMi=1 from p(xtjyt) can be obtained from the mixture Kalman
�ltering algorithm, p(xtjxt+1; : : : ; xT ; yT ) can be approximated as

PM
i=1w

(i)
tjt+1�x(i)t

(xt) with

modi�ed weights

w
(i)
tjt+1 =

w
(i)
t p(xt+1jx

(i)
t )PM

i=1w
(i)
t p(xt+1jx

(i)
t )
.

where �
x
(i)
t
(xt) is the Dirac delta function. This procedure is performed in a reverse-time

direction conditioning on future states. Given a random sample fst+1; : : : ; sTg drawn from
p(xt+1; : : : ; xT jyT ), we take one step back and sample st from p(xtjst+1; : : : ; sT ; yT ). The
smoothing algorithm is summarized in the appendix in the context of the various versions

of our model.

4.3 MCEM algorithm

Frequentist likelihood-based parameter estimation of conditional linear and Gaussian state

space models using the mixture Kalman �lters and smoothers is not straightforward. The

gradient-based optimizer su¤ers from a discontinuity problem caused by the resampling.

Here, we follow the Monte Carlo Expectation Maximization (MCEM) method proposed by
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Olsson et al. (2008). The Basic EM algorithm is a general method to obtain the maximum-

likelihood estimates of the parameters of an underlying distribution from a given data set

with missing values. Suppose the complete data set is Z = (Y;X), in which Y is observed but

X is unobserved, and � is the parameter vector. For the joint density p(zj�) = p(y; xj�) =
p(yj�)p(xjy;�), we de�ne the complete-data likelihood function by L(�jY;X) = p(Y;Xj�).
The original likelihood L(�jY ) is the incomplete-data likelihood. Since X is unobserved

and may be generated from an underlying distribution, e.g., the transition equation in a

state space model, L(�jY;X) is indeed a random variable. Therefore, we maximize the

expectation of logL(�jY;X) with respect to X, with the expectation, conditional on Y and

some input value for the parameters �(k�1), de�ned by:

Q(�;�(k�1)) = E[logL(�jY;X)jY;�(k�1)] =
Z
logp(Y; xj�)p(xjY;�(k�1))dx

which will permit an iterative procedure to update the values of the parameters �. The

di¤erence between the MCEM algorithm and the basic EM algorithm is that when evaluating

Q(�;�(k�1)), the MCEM uses a Monte-Carlo based sample average to approximate the

expectation. The Monte Carlo Expectation or E-step is:

Q�(�;�(k�1)) =
1

M

MX
i=1

log(p(Y; x(i)j�))

where fx(i)gMi=1 are random samples from p(xjY;�(k�1)). Given current parameter estimates,
random samples from p(xjY;�(k�1)) are simply the particle smoothers fs(i)t gMi=1 obtained as
described above. The Maximization or M-step is:

�(k) = argmax
�

Q(�;�(k�1))

These two steps are repeated until �(k) converges. The rate of convergence has been studied

by many researchers; e.g., Dempster et al. (1977), Wu (1983) and Xu and Jordan (1996).

In the context of the simple version of our model, the speci�cs of the algorithm are in the

appendix.

Overall, the estimation procedure is summarized as the following steps: Let �(0) be a

vector of initial parameter values

1. (Mixture Kalman �ltering): obtain mixture Kalman �lters fx(i)t gMi=1 from p(xtjyt;�(k�1)),
i = 1; 2; :::;M , t = 1; 2; :::; T ;
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2. (Particle smoothing): obtain particle smoothers fs(i)t gMi=1 from p(xtjyT ;�(k�1)), i =
1; 2; :::;M , t = 1; 2; :::; T ;

3. (Estimation): evaluate Q(�;�(k�1)) using fs(i)t gMi=1 from the previous step and maxi-

mize it to obtain updated parameter estimates �(k);

4. Repeat steps 1-3 with k updated to k + 1 until the parameter estimates converge.

5 In-sample con�dence bands and out-of-sample forecast bands

In this section, we propose a simulation based method to construct in-sample con�dence

bands and out-of-sample forecast bands following a modi�cation of the method proposed by

Blasques et al. (2016) who dealt with observation-driven time varying parameter models, for

which the observations fytgTt=1 are given by yt � p(ytj�t; �). In this case, the time-varying
parameter �t follows the updating equation:

�t+1 = �(�t; yt; �)

where �(:) is a di¤erentiable recurrence function and � is the static parameter. The frame-

work of this paper does not �t in their analysis since it is a parameter-driven time varying

model. Perron and Xu (2016) pointed out that the updating equation (process) for the

time-varying parameters in parameter-driven models can be written as:

�t+1 = h(�t; �t; )

where �t � g�( ) is the idiosyncratic innovation and  is the static parameter. The time-

varying parameter �t follows a recurrence process with its own innovations. Therefore, the

in-sample con�dence bands need to incorporate both parameter uncertainty and innovation

uncertainty. The parameter estimate  ̂ is constructed via Monte Carlo maximum likelihood

estimation. Let the estimate of the asymptotic covariance matrix of  ̂ be de�ned by �̂ =

�f@2 log L̂( ̂)=@ @ 0g�1, where L̂( ̂) is the Monte Carlo estimate of the likelihood function
evaluated at  ̂: The estimate �̂ can be computed numerically. Once an estimate of the

asymptotic distribution of  ̂ is obtained, the in-sample con�dence bands for �̂t+1 can be

constructed using simulation methods similar to the �ltering forecast band method proposed

in Blasques et al. (2016). The procedure can be described as follows:

1. Draw M parameter values  ̂
(i)
from the asymptotic distribution  ̂

(i) � N( ̂; T�1�̂);

see Olson and Ryden (2008);
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2. Given  ̂
(i)
; and for each time t, draw S sequences �(1)t ; :::; �

(S)
t from the estimated

density �(s)t � g�( ̂
(i)
) for s = 1; :::; S and t = 1; :::; T ;

3. Given the observations �(1)t ; :::; �
(S)
t , the �ltered sequence �̂

(s)

1 ; :::; �̂
(s)

T can be determined

using the updating function �̂
(s)

t+1 = h(�̂
(s)

t ; �
(s)
t ;  ̂

(i)
);

4. Repeat steps 2-3 for i = 1; :::;M to obtain M � S �ltered paths of �̂
(i);(s)

t ;

5. Calculate the appropriate percentiles for each t over the M � S draws of �̂
(i);(s)

t to

obtain the in-sample con�dence bands for �̂t.

The procedure to construct the out-of-sample forecast bands for �̂t+h is actually the

same as described above. We simply need to obtain M � S extrapolated paths of �̂
(i);(s)

t+h to

compute the percentiles. To illustrate, we again use a simple example. The true process for

�t is generated using equations (1) and (2) with mean reversion and time varying probability

with the parameters (r0, r1, �e, ��, �) = (�1:96; 4; 0:2; 0:2;�0:1). The computation of the
in-sample and out-of-sample bands are based on M = 1000 and S = 1000 simulations. The

number of observations is 1000 when considering in-sample bands and 500 for out-of sample

bands (given the higher computational burden). Panel A of Figure 3 presents the true process

�t, the �ltered estimates and the 2.5% ad 97.5% quantiles of the simulated distribution.

The con�dence bands are quite narrow around the true process showing precisely estimated

parameters. Panel B presents the results for the out-of-sample con�dence bands. We use

the �rst 300 observations to obtain the parameter estimates. The out-of-sample forecasting

starts from the 301th observation. The forecasting horizon is set to be 100 steps. The �gure

shows the forecasts and the 2.5% ad 97.5% quantiles of the simulated distribution.

6 Simulations

This section aims to demonstrate the reliability and robustness of RLS type models in

forecasting even when the model is misspeci�ed. In the simulation setup, we consider eight

Data Generating Processes (DGPs).

1. RLS basic model: yt = �t + et, with �t = �t�1 + Kt�t, where Kt � Ber(p); et �
N(0; �2e); �t � N(0; �2�). We set the true parameters to be � = (p; �e; ��) = (0:05; 0:2; 0:2).

2. RLS with mean reversion: The model is the same as in (1), except that the probability

of shifts is now a function of some covariate wt and �t follows a mean reverting process;

i.e., pt = �(r0+r1wt), �t � N(��t ; �
2
�), ��t = �(�t�1� ��

(t�1)
). The true parameters are

� = (r0; r1; �e; ��; �) = (�1:96; 4; 0:2; 0:2;�0:1): The covariate wt is set to be 1 every
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50 observations, 0 otherwise. Doing so, we intentionally set the probability of level

shifts to be small most of the time and close to 1 every 50 periods.

3. RLS without mean reversion: The model is that same as in (2), except that the mean

reversion parameter � is set to be 0.

4. RLS_SV: The model is the same as in (2), except that we add stochastic volatility

to the error term of the form et = �";t"t, "t � N(0; 1), with ln�2";t = �ln�2";t�1 + v";t,

where v";t � N(0; �2v) and independent of "t and et. The true parameters are � =

(r0; r1; �; �v; ��; �) = (�1:96; 4; 0:95; 0:2; 0:2;�0:1).

5. ARMA(1,1) (Autoregressive and Moving Average process): (1 � �L)yt = (1 + �L)"t,

� = 0:95, � = �0:5 and "t � N(0; 1).

6. ARIMA(1,1,1) (Autoregressive Integrated and Moving Average process): (1� L)(1�
�L)yt = (1 + �L)"t, � = 0:1, � = �0:5 and "t � N(0; 1).

7. TVP (Time Varying Parameter Model): yt = �t + et with �t = �t�1 + �t, where

et � N(0; �2e) and �t � N(0; �2�) independent of each other. The true parameters are

set to be (�e; ��) = (0:2; 0:2).

8. Markov Switching (MS): We apply a two states regime switching model (e.g., Hamilton,

1994): yt = �St + et, where et � N(0; �2St), St = 1; 2. Here we assume [�1; �2] =

[0:5;�0:5], [�21; �22] = [1; 2] and the transition matrix from state i to state j for i; j = 1; 2
is given by:

P =

24 0:95 0:1

0:05 0:9

35 :
In each case, we generate 100 true data paths and 1000 observations for each path. We

use the �rst 800 observations for in-sample estimation and the rest to evaluate out-of-sample

forecasting accuracy. The forecasting horizon is up to 60 periods. The forecasting mod-

els considered are: the �RLS_m�: the RLS model with mean reversion and time varying

probability; �RLS_SV�: the RLS model with mean reversion, time varying probability and

stochastic volatility; �Average�: the historical average, namely the average over all observa-

tions in the expanding in-sample period; �Rolling�: the average of the last 50 observations of

the in-sample period; �ARMA�: an ARMA(1,1) model; �ARIMA�: an ARIMA(1,1,1) model;

�MS�: a Markov switching model as described in DGP 8; �TVP�a Time Varying Parameter
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Model as speci�ed in DGP 7. For DGP (1), we also consider the basic RLS model without

mean reversion, nor time varying probability, which acts as the benchmark model. For each

DGP, we report the relative MSFEs of some other misspeci�ed models with respect to the

benchmark model, which is, in all cases, the true model with estimated parameters. The

results are summarized in Table 1. Numbers smaller than 1 indicate a better forecasting

performance than that obtained with the corresponding true model. Bold numbers indicate

the smallest relative cumulative MSFEs for a given DGP and forecast horizon.

Consider �rst the results in Panels 1-4, for which some type of RLS model is the true

DGP. With few exceptions, the best performing forecasting model is the �RLS_m�. In the

few cases for which it is not the best, the preferred one is the �RLS_SV�for long forecast

horizons for DGP-2. The di¤erence are, however, minor between the two. What is especially

interesting is that introducing a mean reverting component even when not present leads to

better forecasts, see Panels 1 and 3. The �TVP�and �Markov Switching�models perform

poorly, especially at long-horizons. The �ARMA�and �ARIMA�models perform quite well

but still produce inferior forecasts compared to the �RLS_m�. The �historical average� is

prone to severe de�ciencies; e.g Panel 1. The �rolling average�has about twice the RMSE of

�RLS_m�in most cases.

From panels 5-8, even when the true DGP is not RLS, the RLS type models still have

robust or even better performance compared to the benchmark model. The �RLS_m�or

�RLS_SV�are second best (relative to the benchmark model) in most cases. As seen in

panel 8, when the true DGP is a two states Markov switching process, the forecasting

performances of the RLS models are much better than those of the true model. In cases of

model misspeci�cations, the performances of the various alternative models considered can

be very poor; e.g. DGPs 5 and 7 for the �historical average�and the �rolling window average�,

DGP 8 for �TVP�and DGP 6 for �Markov Switching�. As for the �ARMA�and �ARIMA�

models, the performances are considerably robust but still worse than the RLS type models

especially under model misspeci�cation.

The results show that our random level shift model with built-in mean reversion always

performs nearly as well as the model corresponding to the true DGP, and can even be better

(e.g., when the true DGP is ARIMA or Markov Switching). All other forecasting methods

perform very poorly in one or more of the cases considered. Hence, our method provides

reliable results that are robust to a wide range of processes.
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7 Forecasting applications

We consider two forecasting applications pertaining to variables which have been the object

of intense attention in the literature: the equity premium and the Treasury Bill rates. The

emphasis is on the equity premium. We compare the forecast accuracy of our model relative

to the most important forecasting methods applicable for this variable. For this particular

series, it turns out that the Time Varying Parameter Model (TVP) performs quite well being

a close second best. As shown in the simulations, the TVP model is not robust to a variety

of DGPs, while our method is. To illustrate this feature, we also consider the Treasury Bill

rate. Our method continues to provide the best forecasts overall, while the TVP model leads

to very poor forecasts in most samples considered.

The out-of-sample forecasts are constructed in two steps. The �rst involves forecasting

the covariates wt using a preliminary model; e.g., using an AR(k) or the random level shift

model with a �xed probability of shift. The h-step ahead forecast of the jump probability

is then pt+hjt = �(r̂0 + r̂1wt+hjt) where wt+hjt is the h-step ahead forecast of wt+h at time t

and (r̂0; r̂1) are the parameter estimates. Note that one can also forecast the regressors Xt

to obtain predicted values denoted by Xt+hjt. In the applications, we use forecast values for

Xt+h and wt+h using an AR(p) model with p selected using the Akaike Information Criterion

(AIC) with a maximal value of 4.

The second step is to forecast f�t+sghs=1: The 1-step-ahead forecast is calculated as
�t+1jt = E[�t+1jIt] =

PM
i=1w

(i)
t f(�

(i)
t+1jt), where �

(i)
t+1jt is obtained via the Kalman �ltering

steps. For s step-ahead forecasts, �t+hjt = E[�t+hjIt] can be calculated recursively by repeat-
ing the �ltering algorithm from time t+ 1 to t+ h; and treating the observations fyt+sghs=1
as missing values. We can continue to apply the above algorithm setting vt = 0; Kt = 0 for

t = t+ 1; :::; t+ h:

Throughout, the out-of-sample forecasting experiments aim at evaluating the experience

of a real-time forecaster by performing all model speci�cations and estimations using data

through date t, making a h-step ahead forecast for date t+h, then moving forward to date t+1

and repeating this through the sub-sample used to construct the forecasts. Unless otherwise

indicated, the estimation of each model is recursive, using an increasing data window starting

with the same initial observations. The forecasting performance is evaluated using the mean

square forecast error (MSFE) criterion de�ned as

MSFE(h) =
1

Tout

ToutX
t=1

(�yt;h � �yt+hjt)2
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where Tout is the number of forecasts produced, h is the forecasting horizon, �yt;h =
Ph

k=1 yt+k

and �yt+hjt =
Ph

k=1 yt+kjt with yt+k the actual observation at time t+ k and yt+kjt its forecast

conditional at time t. To ease presentation, the MSFE are reported relative to some bench-

mark model, usually the most popular forecasting model in the literature. In all cases, we

allow mean reversion in the parameters when constructing forecasts using our RLS model.

Remark 4 The cumulative MSFE de�ned above gives the same relative measure of forecast
performance as root mean squared errors. Our interest is not in the absolute level, so it

makes no di¤erence.

7.1 Equity premium

Forecasts of excess returns at both short and long-horizons are important for many economic

decisions. Much of the existing literature has focused on the conditional return dynamics and

studied the implications of structural breaks in regression coe¢ cients including the lagged

dividend yield, short-term interest rate, term spread and the default premium. However,

most of the research has focused on modeling the equity premium assuming a certain num-

ber of structural breaks in-sample while ignoring potential out-of-sample structural breaks.

Recently, Maheu and McCurdy (2009) studied the e¤ect of structural breaks on forecasts of

the unconditional distribution of returns, focusing on the long-run unconditional distribution

in order to avoid model misspeci�cation problems. Their empirical evidence strongly argue

against ignoring structural breaks for out-of-sample forecasting. We consider using our fore-

casting model with di¤erent speci�cations. One models the unconditional mean of excess

returns incorporating random level shifts in mean, with the time varying jump probabilities

in�uenced by the lagged value of the absolute rate of growth in the earning price (EP) ra-

tio. We also consider a conditional mean model using the dividend yield as the explanatory

variable.

Following Jagannathan et al. (2000), we approximate the equity premium of S&P 500

returns as the di¤erence between stock yield and bond yield. The data were obtained from

Robert Shiller�s website (http://www.econ.yale.edu/~shiller/data.htm). According to Gor-

don�s valuation model, stock returns are the sum of the dividend yields and the expected

future growth rate in stock dividends. We use the average dividend growth rate (over the

pre-forecasting sample) to proxy for the expected future growth rate. The data consist of

monthly series and cover the period from 1871:1 to 2012.5. High quality monthly data are

available after 1927, before 1927 the monthly data are interpolated from lower frequency

data. We use the 10-years Treasury constant maturity rate (GS10) as the risk free rate.
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We start with a simple random level shift model without explanatory variables given by:

yt = �t + et (6)

�t = �t�1 +K�
t �t

where et � i:i:d.N(0; �2e), �t � i:i:d.N(��t ; �
2
�), ��t = �(�t�1 � ��

(t�1)
), K�

t � Ber(pt) with

pt = �(r0 + r1wt). The covariate wt used to model the time variation in the probability

of shifts is the lagged absolute value of the rate of change in the EP ratio. The rational

for doing so is that it is expected that large �uctuations in the EP ratio induce a higher

probability that excess stock returns will experience a level shift in the unconditional mean.

We also consider a conditional forecasting model that uses the lagged dividend price ratio

as the regressor. The speci�cations are

yt = �1t + �2tdpt�1 + et (7)

where, with �t = (�1t; �2t), �t = �t�1+K
�
t �t, and dpt is the dividend-price ratio. Lettau and

van Nieuwerburgh (2008) analyzed the implications of structural breaks in the mean of the

dividend price ratio for conditional return predictability. Xia (2001) studied model instability

using a continuous time model relating excess stock returns to dividend yields. They specify

�t to follow an Ornstein�Uhlenbeck process and the ensuing estimates of the time varying

coe¢ cient �2t revealed instability of the forecasting relationship. Hence, instabilities have

been shown to be of concern when using this conditional forecasting model, which motivates

the use of our forecasting model. Besides the addition of the lagged dividend price ratio as

regressors, the speci�cations are the same as for the unconditional mean model (6).

We consider various versions depending on which coe¢ cients are allowed to change and

if so whether they change at the same time. These are: 1) the unconditional mean model

(6) with level shifts, 2) the conditional mean model (7) with the constant allowed to change

(K�
1t 6= 0; K�

2t = 0), 3) the conditional mean model (7) with the coe¢ cient on the lagged

dividend yield allowed to change (K�
1t = 0; K�

2t 6= 0): We compare our forecasting model

with the most popular forecasting models used in the literature. These are: 1) the historical

average (used as the benchmark model); 2) a rolling ten-years average; 3) the conditional

model with the lagged dividend price ratio as the regressor without changes in the parameter;

4) a rolling version over ten years of the model previously stated in 3); 5) a TVP model with

the unconditional mean following a random walk; 6) a two-states regime switching model.

We �rst consider 1998-2012 as the forecasting period, with forecasting horizons 1, 6, 12,

18, 24, 30 and 36 months. The results are presented in Table 2.1. The �rst thing to note is
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that all three versions involving random level shifts perform very well and are comparable.

The best model for short horizons less than 6 months is the conditional mean model (7) with

the constant allowed to change (K�
1t 6= 0; K

�
2t = 0), though the di¤erence are quite minor. For

longer horizons, the conditional mean model (7) with the coe¢ cient on the lagged dividend

yield allowed to change (K�
1t = 0; K

�
2t 6= 0) is the best. What is noteworthy is that our model

performs much better than any competing forecasting models except the TVP model. This

is especially the case at short-horizons, for which the gain in forecasting accuracy translates

into a reduction in MSFE of up to 90% when compared to the conditional model with no

breaks (and even more so when compared to the rolling 10 years average or the historical

average, the latter performing especially badly). At longer horizons, the conditional mean

model (7) with level shifts still perform better than the conditional model with constant

coe¢ cients but to a lesser extent. The rolling version of the dividend price ratio model

performs better than the one using the full sample for short horizons but less so at long

horizons. In no case is it better than any of the versions with random level shifts. We

also provide p-values from the Model Con�dence Set (MCS) of Hansen et al (2011) with

p-values greater than 0.1 indicating that the corresponding model belongs to the 10% model

con�dence set. The conditional mean model with the coe¢ cient on the lagged dividend yield

allowed to change (K�
1t = 0; K

�
2t 6= 0) belongs to the MCS for all forecasting horizons. Other

RLS type models and the TVP model belong to the MCS for 1-step-ahead forecasts. This

can be viewed as strong evidence that the performance of our RLS model is superior and

dominant in forecasting the equity premium compared to most popular candidates in the

literature.

To assess the robustness of the results we also consider the forecasting period 1988-

1996, given that it o¤ers an historical episode with di¤erent features; see Table 2.2. What

is noteworthy is that the conditional mean model with constant parameters now performs

very poorly with MSFEs more than four times those of the rolling 10 years average. The

benchmark historical average performs even worse during this time period. On the other

hand, the models with random level shifts continue to perform very well, with MSFEs around

0.2% of the historical average at short horizons, and around 2.5% at longer horizons up to 60

months (i.e., �ve years). All models with random level shifts have comparable performance

at short horizons, but the unconditional mean model (6) with level shifts is best at longer

horizons. Meanwhile, the TVP model is also a strong candidate being the best at very short

horizons and remaining in the 10% con�dence set for all horizons. The conditional mean

model with the coe¢ cient on the lagged dividend yield allowed to change also belongs to the
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10% MCS for horizons longer than 6 steps.

Given that the results show very impressive improvements in forecast accuracy using

our forecasting method and the fact that forecasting the equity premium is important,

we performed further sensitivity analyses using a di¤erent data set. The data are the

same as used in Welch and Goyal (2008) and were downloaded from Amit Goyal�s web-

site (http://www.hec.unil.ch/agoyal/). It is also the same dataset used by Pettenuzzo et

al. (2014). As we will show, the improvements in forecast accuracy using our framework

continue to be large whatever the sampling intervals used (yearly or monthly). We follow the

common practice of simply calculating the equity premium as the historical average di¤er-

ence between returns on stocks and returns on risk-free assets. Annualized equity premiums

are calculated from monthly data as compounded excess returns. Goyal�s data set goes back

to 1871 and includes monthly and annual data. The most recent updated dataset ends in

2014. One advantage of using Goyal�s dataset is that there are also many other economic

variables available for a long span of time. Here, we use the book-to-market ratio as the

regressor to help predict the equity premium, which is one of the three factors in Fama and

French (1993) three factors model. The Book-to-Market Ratio (BM) is the ratio of book

value to market value for the Dow Jones Industrial Average. The covariate used to forecast

the level shift probability is the absolute change in the earning-price ratio. In all cases,

we use the historical average as the benchmark model, which is claimed as a competitive

candidate to beat when forecasting equity premium. To analyze the e¤ect of the oil shock,

the forecast period is from 1975 to 2009 for both annual and monthly data.

The results are presented in Tables 3.1 (annual) and 3.2 (monthly). The results show

that all three models we propose beat the benchmark for all sampling intervals. We obtain

80% reduction in cumulative MSFE for one-step-ahead forecasts and 58% for longer horizon

forecasts. The improvement in forecast accuracy becomes larger when higher frequency data

are used. For monthly data, we get 98% reduction in MSFE for short horizon forecasts and

almost 74% reduction for long horizon forecasts. We notice that in Table 3.1 (annual data)

almost all competing models belong to the 10% model con�dence set except for the rolling 10

years average and the constant parameter model with the BM ratio as a regressor for longer

horizons forecasts. On the other hand, as seen in Table 3.2 (monthly data) the TVP model

for short horizons forecasts and the constant parameter model with a rolling estimation

window for longer horizons forecasts are the only competing models that remain in the 10%

MCS. With annual data, the total number of observations for out-of-sample forecasting is 34,

which is considerably less than for the monthly case. The small samples available for MCS
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testing is likely the reason which makes it more di¢ cult to select the �competing�models.

Nevertheless, looking at the relative MSFEs indicates relative performances similar to those

in Tables 2.1 and 2.2

In addition, we also looked for other regressors such as �nancial variables with the purpose

of further improving forecasting accuracy. Due to the short span of the �nancial data, we

use monthly data from 1990/01/31 to 2008/12/31 for in-sample estimation and forecast from

2009 to 2015 at horizons up to 24 months. The �nancial variables are the VIX index from the

Chicago Board Options Exchange (CBOE) and the returns on the monthly S&P 500 index

option. The results are reported in Table 4, which indicate a gradually improving forecasting

performance for horizons longer than 12 months with these two additional regressors. For

a forecasting horizon of 24 months, the cumulative MSFE of the conditional mean model

including �nancial variables is only half of the MSFE of the conditional mean model with

only the dividend-price ratio.

In summary, the evidence provides strong evidence that our forecasting model o¤ers

marked improvements in forecast accuracy. It does so at all horizons with results that are

robust to di¤erent forecasting periods and di¤erent data sets. It remains that the TVPmodel

is a close second best forecasting model for the equity premium series analyzed. According to

the simulations, the TVP model is much less robust to model mispeci�cation than the RLS-

type models. To illustrate this issue, we next consider the issue of forecasting the interest

rate.

7.2 Interest rate

Another variable of interest, which has attracted attention from a forecasting perspective,

is the U.S. T-bill rate. Various studies have shown that it exhibits structural instability in

both mean and variance, see, e.g., Garcia and Perron (1996), Gray (1996), Ang and Bekaert

(2002) and Pesaran et al. (2006). We use monthly data on the 3-months Treasury Bill rate

from 1947:07-2002:12, obtained from the Federal Bank of St. Louis database. Our data is

the same as used in Pesaran et al. (2006). The period prior to 1968:12 is used for in-sample

estimation, and we consider forecasting horizons of 12, 24, 36, 48 and 60 months. The basic

model adopted is a simple AR(1) process given by:

yt = �1t + �2tyt�1 + �t

In all cases, we allow mean-reversion in the parameters and the covariate wt used to model

the time-varying probabilities of shifts is the lagged value of the growth rate of GDP when a
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single latent Bernoulli variable is present. When two are present, the additional covariate is

the lagged value of the absolute change in stock returns (S&P 500). We consider two possible

speci�cations: 1) �AR_K2t�(K
�
1t = 0); 2) �AR_K1t; K2t�with K

�
1t and K

�
2t allowed to be

di¤erent latent Bernoulli processes. The performance of the models is assessed relative to

four competing forecasting methods1: 1) �Recursive OLS�: a recursively estimated �rst-order

autoregression with �xed parameters, used as the benchmark model; 2) �Rolling 5 years�:

a �rst-order autoregression with �xed parameters estimated using a 5-year rolling window;

3) �Rolling 10 years�: a �rst-order autoregression with �xed parameters estimated using a

10-year rolling window; 4) �TVP�: a time-varying probability model in which �t = (�1t; �2t)

is modelled as a random walk.

The results are presented in Table 5 for various forecast periods and forecast horizons

h = 12; 24; 36; 48; 60 months. Consider �rst the results for the longest forecasting period

1968-2002. Here, the best forecasting model for all horizons is the �AR_K1t; K2t�with both

the constant term and the AR coe¢ cient allowed to follow a random level shift process.

The gains in forecast accuracy vary between 3% and 8% and increase as the forecasting

horizon increases. We then separate the forecasting period into three decades: the 70s, the

80s and the 90s. In the 70s, the 5 years rolling-average is overall the best predictor, though

the �AR_K1t; K2t�model catches up and and is superior at h = 60. For the 80s and 90s,

the best forecasting model is again the �AR_K1t; K2t�with both the constant term and

the AR coe¢ cient in the AR regression allowed to follow a random level shift process. The

improvements in forecast accuracy are on average 5% reduction in MSFE. The �AR_K1t; K2t�

performs the best in 16 out of 20 cases and is in the 10% MCS for 17 out of 20 cases. Note,

however, that all models with random level shifts in parameters perform much better than

the �TVP�model in di¤erent time periods and di¤erent horizons. The gains in forecast

accuracy when using the RLS-type models over the �TVP�model are substantial. For the

full sample, they range from a (roughly) 50% reduction at the shortest horizon to a 90%

reduction at the longest one. For the 90s sub-sample, the corresponding reductions are of

the order of 65% to 96%. The only period in which the �TVP�model does not perform badly

is the 70�s, but it is still inferior to the RLS models and not within the 10% MCS. These

1We also compared the forecasting performance using Pesaran et al. (2006)�s composite and last regime
model proposed in their paper. Our RLS model performs better in most cases for forecasts computed every
12 months as in their paper. We do not include their model in our comparisons set due to computational
constraints. Their method is highly computationally intensive and we could not apply it to forecasts com-
puted every months. The sample obtained using forecasts computed every 12 months makes is too small for
a valid MCS testing.
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results are consistent with the simulations reported in Section 6, which show the RLS-type

model to be robust to a wide range of DGPs, while the other forecasting methods are not

and can produce very poor forecasts for some DGPs. Overall, the evidence again indicates

that important gains in forecast accuracy can be obtained using our forecasting models and

that they are robust in the sense that in no case do they perform substantially worse than

popular forecasting methods.

8 Conclusion

We proposed a forecasting framework based on modeling the parameters as random level

shift processes dictated by a Bernoulli process for the occurrence of shifts and a normal

random variable for its magnitude. Some or all of the parameters of the model can be

allowed to change and the latent variables that dictate the changes can be common or

di¤erent for each parameters. Also, the variance of the errors may change in a similar

manner. To improve the forecasting performance we augmented the basic model to allow

the probability of shifts to be a function of some covariates which can be forecasted and

to incorporate a mean-reversion mechanism such that the parameters tend to revert back

to the pre-forecast average. Our model can be cast into a conditional linear and Gaussian

state space framework for which standard Kalman �lter type algorithms cannot be used. To

provide a computationally e¢ cient method of estimation, we rely on recent developments on

mixture Kalman �ltering methods. Simulations show that the proposed model has robust

forecasting performance even under model misspeci�cation.

We applied our forecasting model to the equity premium and the Treasury bill interest

rates. In each case, we compare the forecast accuracy of our model relative to the most

important forecasting methods used applicable for each variable. We also consider di¤erent

forecasting sub-samples or periods. The results show clear gains in forecasting accuracy,

sometimes by a very wide margin.

Finally, note that given the availability of the proper code for estimation and forecasting,

the method is very �exible and easy to implement. For a given forecasting model, all that is

required by the users are: 1) which parameters (including the variance of the errors if desired)

are subject to change; 2) whether the same or di¤erent latent Bernoulli processes dictate

the timing of the changes in each parameters; 3) which covariates are potential explanatory

variables to model the probability of shifts.
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Appendix

A.1 Mixture Kalman �ltering algorithm

A.1.1 The basic model: equations (1)-(2)

At t = 0, for i = 1; :::;M , given initial parameters �0 = (r0; r1; �e; ��; �), draw K
(i)
0 s

Ber(p0), �
(i)
0 , P

(i)
0 s f(�0; �0) and set w

(i)
0 = 1=M . For t = 1; :::; T and i = 1; :::;M :

1. Construct the Kalman predictions:

�
(i)
tjt�1 = �

(i)
t�1jt�1 +K

(i)
t�1�

(i)
�;tjt�1

P
(i)
tjt�1 = P

(i)
t�1jt�1 +K

(i)
t�1�

2
�

where �(i)�;tjt�1 = �(�
(i)
t�1jt�1 �

_

�
t�1;(i)

).

2. Compute the forecast of yt: E[f(�tjt�1)] =
PM

i=1w
(i)
t�1f(�

(i)
tjt�1).

3. Compute the importance weights w(i)t � N(v
(i)
t ; F

(i)
t ), where

v
(i)
t = yt �Xt�

(i)
tjt�1

F
(i)
t = XtP

(i)
t�1jt�1X

0
t + �2u

and set the normalized importance weights as ŵ(i)t = w
(i)
t =

PM
j=1w

(j)
t .

4. Resample M samplers f�(i)t�1jt�1; P
(i)
t�1jt�1; K

(i)
t�1gMi=1 with probabilities fŵ

(i)
t gMi=1 and for

i = 1; :::;M set w(i)t = 1=M .

5. Draw K
(i)
t s Ber(pt) and construct the following steps of the Kalman �lter:

�
(i)
tjt�1 = �

(i)
t�1jt�1 +K

(i)
t �

(i)
�;tjt�1

P
(i)
tjt�1 = P

(i)
t�1jt�1 +K

(i)
t �

2
�

v
(i)
t = yt �Xt�

(i)
tjt�1

F
(i)
t = XtP

(i)
t�1jt�1X

0
t + �2u

�
(i)
tjt = �

(i)
tjt�1 + P

(i)
tjt�1X

0
tF

�1;(i)
t v

(i)
t

P
(i)
tjt = P

(i)
tjt�1 � P

(i)
tjt�1X

0
tF

�1;(i)
t P

(i)
tjt�1

6. Compute the �ltered estimate: E[f(�t)] =
PM

i=1 ŵ
(i)
t�1f(�

(i)
tjt ).

A-1



A.1.2 The stochastic volatility model: equations (1)-(3), K�
t = 1

At t = 0, for i = 1; :::;M , given initial parameters �0 = (r0; r1; �; �v; ��; �), let ln�2�;t = zt,
draw K

(i)
0 � Ber(p0), z

(i)
0 s f(z0; �0), �

(i)
0 , P

(i)
0 s f(�0; �0) and set w

(i)
0 = 1=M . The

procedure is then the same as described above, escept that in step 3, we have

F
(i)
t = XtP

(i)
t�1jt�1X

0
t + exp(z

(i)
t�1)

and in step 5, one also draws z(i)t s N(�z
(i)
t�1; �

2
v) and use

F
(i)
t = XtP

(i)
t�1jt�1X

0
t + exp(z

(i)
t ):

A.2 Particle smoothing algorithm: basic model

Consider the weighted samplers obtained from the �ltering algorithm fw(i)t ; �
(i)
t ; K

�(i)
t gMi=1 for

i = 1; : : : ;M , and t = 1; : : : ; T . Let fs(j)�;t; s
(j)
K1;t
gMj=1 be a set of particle smoothers. First set

s
(j)
�;T = �

(i)
T and s(j)K1;T

= K
�(i)
T with probability (1=M). Then, for t = T � 1; T � 2; : : : ; 1,

compute

w
(i)
tjt+1 / w

(i)
t p(s

(j)
�;t+1j�

(i)
t ) / fpt+1exp(�

(s
(j)
�;t+1 � �

(i)
t � ��)

2

2�2�
)gs

(j)
K1;t+1f1� pt+1g1�s

(j)
K1;t+1

for i = 1; : : : ;M , and let s(j)�;t = �
(i)
t and s(j)K1;t+1

= K
�(i)
t with probability w(i)tjt+1. Repeat

the steps above decreasing from t � 1 until 1 to obtain fs(j)�;t; s
(j)

K�
t ;t+1

g as approximations to
p(�t; K

�
t jy(T )), for j = 1; : : : ;M .

A.3 The stochastic volatility model: equations (1)-(3), K�
t unrestricted.

1. For i = 1; : : : ;M , given initial parameters �0 = (p1; p2; �; ��:�v; �), generate K
�;(i)
0 �

Ber(p1), then �
(i)
0 � K

�(i)
0 N(0; �2�). Also generate K

�;(i)
0 � Ber(p2), then with ln�2�;t �

zt; z
(i)
0 = K

�;(i)
0 N(0; �2v): Set the initial weights to w

(i)
0 = (1=M).

2. For t = 1; : : : ; T , generate K�;(i)
t � Ber(p1) and �

(i)
t = �

(i)
t�1 +K

�;(i)
t N(��;t; �

2
�); ��;t =

�(�
(i)
t�1� ��

(i);(t�1)
), where ��(i);(t�1) is the average of all the particle �lters from t = 1 to

time t� 1. Also generate K�;(i)
t � Ber(p2) and zt = �zt�1 +K

�;(i)
t N(0; �2v).

3. Compute

w
(i)
t / p(ytjx(i)t )w

(i)
t�1 /

1p
2� exp(zt)

exp

(
�(yt �Xt�

(i)
t )

2

2 exp(zt)

)
,

for i = 1; : : : ;M , and set the normalized importance weights as ŵ(i)t = w
(i)
t =

PM
i=1w

(i)
t .
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4. Resample f�(i)t ; K
�;(i)
t ; z

(i)
t ; K

�;(i)
t gMi=1 with probability ŵ

(i)
t , and set w

(i)
t = (1=M).

5. Repeat steps 1-4 increasing from t+ 1 until T .

A.4 MCEM: basic model

For the E-step, the complete likelihood of f�1; : : : ; �T ; K
�
1 ; : : : ; K

�
T ; y1; : : : ; yTg is

f(�;K1; Y ) =
TY
t=1

f(�tj�t�1; K
�
t )

TY
t=1

f(K�
t )

TY
t=1

f(ytj�t; K
�
t )

= f
TY
t=1

1p
2��2�

exp(�
(�t � �t�1 � ��t)

2

2�2�
)gK

�
t

TY
t=1

p
K�
t

t (1�pt)1�K
�
t

TY
t=1

1p
2��2e

exp(�(yt �Xt�t)
2

2�2e
)

The log-likelihood function is:

�2logf(�;K�; Y ) =
TX
t=1

K�
t [log(�

2
�) +

(�t � �t�1 � ��t)
2

�2�
]

�2
TX
t=1

[K�
t log(pt) + (1�K�

t )log(1� pt)]

+
TX
t=1

[log(�2e) +
(yt �Xt�t)

2

�2e
]

The expectation of the complete log-likelihood function with respect to the unknown state
variables �;K� given Y and the current parameter estimates �(k�1) is the objective function
to be maximized. For the Monte Carlo EM algorithm, we approximate the expectation by
Monte Carlo sample average with random samples drawn from p(�t; K

�
t jyT ) obtained using

the particle smoothing algorithm. Then,

Q(�;�(k�1)) = E[�2logf(�;K�; Y )jY;�(k�1)]

=
1

M

MX
i=1

f
TX
t=1

K
�(i)
t [log(�2�) +

(�
(i)
t � �

(i)
t�1 � ��t)

2

�2�
]

�2
TX
t=1

[K
�(i)
t log(pt) + (1�K

�(i)
t )log(1� pt)]

+

TX
t=1

[log(�2e) +
(yt �Xt�

(i)
t )

2

�2e
]g

For the M-step, the objective function becomes the usual log-likelihood function of �. Hence,
standard maximum likelihood estimates are obtained by solving the �rst order conditions.
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Remark 5 For the full model with stochastic volatility, the estimation methodology is the
same. The di¤erence is that instead of having two state variables, we now have three, namely
f�t; K

�
t ; ln�

2
�;tg. Similarly, if di¤erent parameters are allowed to vary independently, we

simply add the additional latent variables (�jt; K
�
jt).

A.5 Selection of the initial values and construction of the standard errors

In order to speed up the convergence of the estimation algorithm, we can use information
from the data to provide better initial parameter values. Consider the simple model

yt = �t + et

�t = �t�1 +K�
t �t

where �t � N(0; �2�), et � N(0; �2e) and K
�
t � Ber(p). The initial parameter values are set

to p(0), �2
(0)

� = jvar(y� y�2)� var(y� y�1)j and �2
(0)

e = (var(y� y�1)� p(0)�2
(0)

� )=2. We set
p(0) according to prior judgment about the frequency of the jumps.
To construct the standard errors of the estimates, Louis (1982) provides a way of obtaining

the information matrix when using the EM algorithm. It is given by

I =
TX
t=1

E[B(�t; �̂)j�t]�
TX
t=1

E[S(�t; �̂)S
T (�t; �̂)j�]

�2
TX
t<k

E[S(�t; �̂)j�]E[S(�k; �̂)j�]0

where S(�t; �̂) and B(�t; �̂) are the �rst and second order derivatives, respectively, and �
refers to the complete data set including observed data and unobserved state variables. Since
simulations are used in the EM algorithm, this may cause discontinuities, in which case this
method is unstable and cannot always provide a positive de�nite covariance matrix. Duan
and Fulop (2011) proposed a stable estimator of the information matrix applicable to the
EM algorithm. They estimate the variance using the smoothed individual scores. De�ne
at(�) = E[@logf(xtj�t�1;�)=@�jY;�], then the estimate of the information matrix is

Î = 
0 +

lX
j=1

w(l)(
j + 

0
j)

where 
j =
PT�j

t�1 at(�̂)at+j(�̂)
0 and w(j) = 1� j=(l + 1). This method is easy to compute

and does not require evaluations of the second-order derivatives of the complete data log-
likelihood.
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      Table 1: Forecasting Comparisons from Simulated Models 

Panel 1: RLS Basic 

 
h=1 h=4 h=8 h=12 h=18 h=24 h=36 h=48 h=60 

RLS_m 0.93  0.87  0.85  0.84  0.87  0.89  0.92  0.94  0.95  

RLS_SV 0.97  1.04  1.06  1.07  1.07  1.08  1.06  1.05  1.05  

Average 6.66  13.92  15.67  15.50  14.47  12.92  10.04  8.07  6.71  

Rolling 1.22  1.57  1.71  1.74  1.76  1.71  1.58  1.47  1.40  

ARMA 0.95  0.95  0.99  1.05  1.16  1.25  1.42  1.54  1.65  

ARIMA 0.93  0.87  0.86  0.86  0.91  0.94  1.01  1.06  1.11  

MS 2.92  5.42  6.05  6.02  5.71  5.21  4.25  3.58  3.12  

TVP 2.58  4.72  5.30  5.39  5.23  4.90  4.20  3.73  3.41  

Panel 2: RLS mean reverting 

RLS_SV 1.03  1.03  1.02  1.01  1.01  0.98  0.93  0.91  0.90  

Average 1.52  2.04  2.00  1.91  1.75  1.56  1.31  1.16  1.16  

Rolling 1.45  2.05  2.21  2.14  1.97  1.75  1.41  1.24  1.12  

ARMA 1.32  1.78  1.96  1.97  1.94  1.86  1.73  1.69  1.67  

ARIMA 1.02  1.07  1.11  1.11  1.09  1.07  1.00  0.95  0.92  

MS 1.02  1.06  1.12  1.17  1.25  1.32  1.45  1.62  1.82  

TVP 1.43  2.04  2.28  2.44  2.59  2.68  2.93  3.21  3.57  

Panel 3: RLS no mean reverting 

RLS_m 0.98  0.93  0.87  0.88  0.91  0.95  1.00  1.01  1.01  

RLS_SV 1.52  2.33  2.60  2.82  2.67  2.49  2.16  1.94  1.77  

Average 2.39  4.38  4.92  5.23  4.61  4.00  3.04  2.46  2.06  

Rolling 1.61  2.54  2.86  3.11  2.93  2.72  2.31  2.04  1.84  

ARMA 0.98  0.94  0.89  0.91  0.95  0.99  1.05  1.06  1.06  

ARIMA 0.98  0.94  0.87  0.88  0.92  0.96  1.02  1.04  1.05  

MS 2.40  4.40  4.93  5.23  4.59  3.97  3.00  2.42  2.02  

TVP 3.18  6.35  7.29  7.77  6.88  6.01  4.63  3.79  3.21  

Panel 4: RLS_SV 

RLS_m 1.00  0.99  0.98  0.98  0.99  0.96  0.94  0.92  0.95  

Average 1.07  1.19  1.34  1.48  1.50  1.50  1.42  1.27  1.10  

Rolling 1.01  1.04  1.09  1.14  1.14  1.15  1.24  1.31  1.35  

ARMA 1.09  1.20  1.34  1.46  1.47  1.46  1.36  1.20  1.03  

ARIMA 1.04  1.02  1.04  1.09  1.12  1.14  1.17  1.20  1.24  

MS 1.07  1.18  1.33  1.45  1.47  1.46  1.38  1.23  1.06  

TVP 1.75  3.95  6.70  8.67  9.80  10.09  9.76  8.49  7.64  

continued 

 

 



Panel 5: ARMA (AR=0.95,MA=-0.5) 

RLS_m 1.06  1.12  1.08  1.07  1.05  1.04  1.02  1.04  1.08  

RLS_SV 1.09  1.15  1.11  1.09  1.08  1.06  1.02  1.03  1.09  

Average 4.23  4.30  3.06  2.47  2.14  2.15  2.66  2.98  3.08  

Rolling 4.88  5.01  3.52  2.76  2.22  2.02  2.05  1.94  1.71  

ARIMA 1.03  1.10  1.18  1.28  1.44  1.62  2.11  2.64  3.00  

MS 3.50  3.64  2.68  2.21  1.89  1.83  2.14  2.46  2.66  

TVP 1.01  1.05  1.13  1.22  1.39  1.59  1.90  2.27  2.76  

Panel 6: ARIMA (AR=0.1,MA=-0.5,d=1) 

RLS_m 1.01  1.02  1.03  1.04  1.05  1.07  1.10  1.12  1.14  

RLS_SV 1.05  0.99  0.94  0.95  0.93  0.92  0.90  0.89  0.88  

Average 48.84  47.96  44.16  41.30  34.31  31.08  26.62  22.56  18.59  

Rolling 3.69  3.31  3.09  3.02  2.61  2.45  2.27  2.07  1.81  

ARMA 1.01  1.04  1.08  1.11  1.18  1.23  1.29  1.28  1.23  

MS 8.78  8.56  8.11  7.88  6.78  6.27  5.50  4.80  4.05  

TVP 1.14  1.19  1.27  1.23  1.20  1.18  1.16  1.12  1.09  

Panel 7: Time Varying Parameter Model 

RLS_m 1.00  1.01  1.01  1.01  1.01  1.01  1.01  1.01  1.01  

RLS_SV 1.62  1.65  1.45  1.35  1.28  1.24  1.19  1.16  1.14  

Average 47.60  47.49  33.11  25.85  19.49  15.47  10.96  8.65  7.17  

Rolling 7.09  7.18  5.31  4.37  3.55  3.02  2.41  2.10  1.87  

ARMA 1.03  1.10  1.19  1.27  1.39  1.49  1.64  1.78  1.87  

ARIMA 1.00  1.01  1.01  1.01  1.01  1.02  1.02  1.02  1.02  

MS 37.44  37.25  25.92  20.18  15.16  11.99  8.44  6.60  5.43  

Panel 8: Markov Switching Model 

RLS_m 0.92  0.76  0.66  0.66  0.75  0.82  0.89  0.86  0.88  

RLS_SV 0.93  0.80  0.72  0.68  0.64  0.60  0.53  0.48  0.46  

Average 0.95  0.84  0.78  0.74  0.71  0.68  0.62  0.58  0.55  

Rolling 0.95  0.86  0.82  0.82  0.79  0.77  0.71  0.64  0.63  

ARMA 0.93  0.78  0.71  0.69  0.69  0.67  0.63  0.59  0.56  

ARIMA 0.91  0.75  0.66  0.66  0.72  0.77  0.80  0.76  0.77  

TVP 1.82  3.04  4.10  4.35  4.82  5.16  6.06  6.59  6.95  

Note: This table reports the relative cumulative MSFEs with respect to the true model. In each case, we generate 

100 true data paths and 1000 observations for each path. We use the first 800 observations for in-sample 

estimation and leave the rest of the data to evaluate out-of-sample forecasting accuracy. The forecasting horizon 

is 60. In panel A, the true model is the basic random level shift model with three parameters (p, 𝜎𝑒 , 𝜎𝜂). In panel 

B, the true model is the RLS model with mean reversion with five parameters (𝑟0, 𝑟1, 𝜎𝑒 , 𝜎𝜂 , 𝜌). Detailed 

explanation for each parameter is introduced in the simulation setup. In panel C, the true model is the same as 

the one in panel B except that the mean reverting parameter ρ is set to be 0. In panel D, the true model is the 

RLS model with stochastic volatility. The benchmark model for each panel is the one with correct model 

specification. Numbers smaller than 1 indicate better forecasting performance than the corresponding 

benchmark model. The bold numbers in each panel stand for the smallest relative cumulative MSFEs. 

 

 



Table 2.1: Equity Premium Forecasting Comparisons for the Period 1998-2012  

 (Monthly Data; Shiller Dataset) 

Note: This table reports the relative MSFEs with respect to the benchmark model, which is the historical 

average. Numbers in the parentheses are p-values of the model confidence set of Hansen et al. (2011). 

Numbers with superscript “a” indicate the models which belong to the 10% model confidence set using all 

comparisons. Numbers with an asterisk refer to the model with the smallest MSFE amongst all models. 

‘Rolling 10 years’ refers to forecasting using historical averaged data with a window size fixed at 10 years. 

‘Dividend_no break’ refers to the fixed parameter OLS regression of the equity premium on a constant and 

the lagged dividend-price ratio with full in-sample data. ‘Dividend_rolling’ is the same OLS regression 

using rolling 10 years in-sample data. ‘TVP’ stands for the time varying parameter model in which the 

unconditional mean of the equity premium is modelled as a random walk. ‘Regime switching’ is the 

two-state Markov regime switching model. ‘Level shift’ is the unconditional mean model with level shifts 

and mean reversion; ‘Dividend_K1t’ is the conditional mean model with a constant term and the lagged 

dividend-price ratio as regressor and the constant term follows a level shift process with mean reversion; 

‘Dividend_K2t’ is the conditional mean model with a constant term and the lagged dividend-price ratio as 

regressor and the coefficient of the lagged dividend-price ratio follows a level shift process with mean 

reversion. 

 

 

Cumulative MSFE 

 
h=1 h=6 h=12 h=18 h=24 h=30 h=36 

Historical average  10.27 356 1364 2955 5010 7390 9981 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Relative Cumulative MSFE 

Rolling 10 years 0.14 0.16 0.18 0.19 0.20 0.23 0.25 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Dividend_no break 0.12 0.13 0.14 0.15 0.16 0.18 0.21 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Dividend_rolling 0.09 0.10 0.11 0.11 0.12 0.12 0.13 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

TVP 0.01
a
 0.03 0.04 0.06 0.08 0.10 0.12 

 
(0.69) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) 

Regime Switching 0.26 0.30 0.33 0.35 0.38 0.42 0.47 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

 
Level Shift 0.01

a
 0.03 0.04 0.06 0.08 0.10 0.12 

 
(0.38) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) 

Dividend_K1t 0.01
a,
* 0.01 0.02 0.03 0.03 0.04 0.05 

 
(1.00) (0.07) (0.01) (0.00) (0.00) (0.00) (0.00) 

Dividend_K2t 0.01
a
 0.01

a,
* 0.02

a,
* 0.02

a,
* 0.03

a,
* 0.03

a,
* 0.04

a,
* 

 
(0.38) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) 



 

  Table 2.2: Equity Premium Forecasting Comparisons for the Period 1988-1996 

(Monthly Data; Shiller Dataset) 

 

See Notes to Table 2.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cumulative MSFE 

 
h=1 h=12 h=24 h=36 h=48 h=60 

Historical average  22.86 3228 12445 27030 47108 72598 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Relative Cumulative MSFE 

Rolling 10 years 0.076 0.081 0.090 0.102 0.110 0.115 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Dividend_no break 0.303 0.272 0.235 0.205 0.171 0.143 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Dividend_rolling 0.019 0.021 0.028 0.036 0.049 0.060 

 
(0.00) (0.07) (0.01) (0.00) (0.00) (0.00) 

TVP 0.002
a,
* 0.013

a
 0.018

a
 0.021

a
 0.027

a
 0.031

a
 

 
(1.00) (0.72) (0.37) (0.17) (0.19) (0.25) 

Regime Switching 0.626 0.622 0.615 0.608 0.605 0.602 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

       
Level Shift 0.002 0.013

a,
* 0.016

a,
* 0.018

a,
* 0.022

a,
* 0.025

a,
* 

 
(0.00) (1.00) (1.00) (1.00) (1.00) (1.00) 

Dividend_K1t 0.005 0.021 0.027 0.037 0.049 0.060 

 
(0.00) (0.07) (0.01) (0.00) (0.00) (0.00) 

Dividend_K2t 0.004 0.015
a
 0.018

a
 0.022

a
 0.027

a
 0.029

a
 

 
(0.00) (0.22) (0.48) (0.28) (0.37) (0.44) 



    Table 3.1: Equity Premium Forecasting Comparisons for the Period 1975-2009  

(Post Oil Shock; Annual Data; Welch & Goyal Dataset) 

Cumulative MSFE 

 
h=1 h=2 h=3 h=4 h=5 

Historical average 29.37 109.43 224.08 363.85 522.17
a
 

 
(0.01) (0.05) (0.01) (0.01) (0.19) 

Relative Cumulative MSFE 

Rolling 10 years 0.67 0.76 0.87 0.99 1.11 

 
(0.02) (0.05) (0.06) (0.01) (0.00) 

BM_no break 0.92 0.94 0.99 1.07 1.16 

 
(0.01) (0.05) (0.02) (0.01) (0.00) 

BM_rolling 0.38 0.39
a
 0.43

a
 0.50

a
 0.57

a
 

 
(0.08) (0.35) (0.27) (0.47) (0.33) 

TVP 0.19
a,
* 0.27

a
 0.36

a
 0.46

a
 0.58

a
 

 
(1.00) (0.85) (0.81) (0.47) (0.29) 

Regime Switching 0.78 0.77 0.77
a
 0.77

a
 0.77

a
 

 
(0.01) (0.05) (0.12) (0.28) (0.28) 

Level Shift 0.19
a
 0.27

a,
* 0.35

a
 0.45

a
 0.56

a
 

 
(0.52) (1.00) (0.81) (0.47) (0.37) 

BM_K1t 0.27
a
 0.29

a
 0.32

a,
* 0.37

a,
* 0.42

a,
* 

 
(0.14) (0.85) (1.00) (1.00) (1.00) 

BM_K2t 0.35 0.35
a
 0.37

a
 0.41

a
 0.46

a
 

 
(0.08) (0.35) (0.48) (0.47) (0.37) 

Note: The models are the same as in Tables 2.1-2.2, except that ‘BM’ replaces “dividend’. We use 

annual data from 1947-2014. Data before 1975 are used for in-sample estimation and the forecasting 

horizon is 5 years ahead. The Book-to-Market Ratio (BM) is the ratio of book value to market value 

for the Dow Jones Industrial Average. The covariate used to forecast level shift probability is the 

absolute changes in the earning-price ratio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3.2: Equity Premium Forecasting Comparisons for the Period 1975-2009  

(Post Oil Shock; Monthly Data; Welch & Goyal Dataset) 

Cumulative MSFE 

 
h=1 h=12 h=24 h=36 h=48 h=60 

Historical average 29.19 4112 15895 34205 56932 82170 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Relative Cumulative MSFE 

Rolling 10 years 0.526 0.597 0.674 0.751 0.837 0.934 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

BM_nobreak 0.857 0.904 0.945 0.985 1.030 1.084 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

BM_rolling 0.201 0.226 0.236 0.243 0.252 0.264
a
 

 
(0.00) (0.00) (0.00) (0.00) (0.09) (0.78) 

TVP 0.014
a,
* 0.065

a
 0.132 0.196 0.270 0.353 

 
(1.00) (0.16) (0.00) (0.00) (0.00) (0.00) 

Regime Switching 0.699 0.691 0.680 0.669 0.659 0.651 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Level Shift 0.014
a
 0.065

a
 0.132 0.196 0.270 0.353 

 
(0.94) (0.16) (0.00) (0.00) (0.00) (0.00) 

BM_K1t 0.014
a
 0.054

a,
* 0.106

a,
* 0.155

a,
* 0.207

a,
* 0.257

a,
* 

 
(0.94) (1.00) (1.00) (1.00) (1.00) (1.00) 

BM_K2t 0.015
a
 0.067

a
 0.127

a
 0.192

a
 0.262 0.324 

 
(0.92) (0.16) (0.20) (0.10) (0.09) (0.07) 

Note: The models are the same as in Tables 2.1-2.2, except that ‘BM’ replaces “dividend’. We use 

monthly data from 1921/03/31-2014/12/31. Data before 1975 are used for in-sample estimation and the 

forecasting horizon is 60 months ahead. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 4: Equity Premium Forecasting Comparisons for the Period 2009-2015 

(Monthly Data; Welch & Goyal Dataset) 

Cumulative MSFE 

 
h=1 h=4 h=8 h=12 h=16 h=20 h=24 

Historical average 54.45 800 2859 5794 9244 12843 16176 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Relative Cumulative MSFE 

Rolling 10 years 0.67 0.67 0.68 0.69 0.70 0.72 0.74 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Dividend_no break 0.91 0.93 0.96 0.97 0.98 0.99 0.99 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Dividend_rolling 0.25 0.28 0.32 0.35 0.37 0.40 0.42 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

TVP 0.01
a 

(0.02
a
 0.04

a
 0.07

a
 0.10

a
 0.16

a
 0.24 

 
(0.38) (0.51) (0.65) (0.96) (0.66) (0.17) (0.00) 

Regime Switching 0.64 0.63 0.61 0.60 0.58 0.57 0.55 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

        

Level Shift 0.02 0.03 0.06 0.10 0.16 0.24 0.36 

 
(0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

DP_LS 0.01
a,
* 0.02

a,
* 0.04

a,
* 0.06

a,
* 0.10

a
 0.16

a
 0.24 

 
(1.00) (1.00) (1.00) (1.00) (0.66) (0.17) (0.01) 

DP_VIX_SPX_LS 0.03 0.05 0.06
a
 0.07

a
 0.08

a,
* 0.10

a,
* 0.12

a,
* 

 
(0.02) (0.07) (0.44) (0.96) (1.00) (1.00) (1.00) 

Note: We use monthly data from 1990/01/31-2015/07/31. Data before 2009 are used for in-sample estimation 

and the forecasting horizon is 24 months ahead. ‘Level Shift’ is the unconditional mean model with level shifts 

and mean reversion; ‘DP_LS’ is the conditional mean model with a constant term and the lagged 

dividend-price ratio as regressors with the constant term following a level shift process with mean reversion; 

‘DP_VIX_SPX_LS’ is the conditional mean model with a constant term, the lagged dividend-price ratio, the 

VIX index and the returns on the monthly S&P 500 index option as regressors with the constant term 

following a level shift process with mean reversion. 

 

 

 

 

 

 

 

 

 



 

 

Table 5: Treasury Bill Rate Forecasting Comparisons 

MSFE 1968-2002 

 

h=12 

 

h=24 

 

h=36 

 

h=48 

 

h=60 

 Recursive OLS 2.07 (0.06) 2.67
a
 (0.13) 3.10

a
 (0.11) 3.32

a
 (0.12) 3.44 (0.08) 

Relative MSFE 

Rolling 5 years 1.12 (0.06) 1.38 (0.00) 2.22 (0.00) 4.06 (0.00) 8.35 (0.00) 

Rolling 10 years 1.04 (0.06) 1.03 (0.00) 1.06 (0.00) 1.10 (0.00) 1.23 (0.01) 

TVP 1.72 (0.00) 3.44 (0.00) 5.06 (0.00) 6.79 (0.00) 8.68 (0.00) 

AR_K2t 1.02 (0.06) 1.01
a
 (0.13) 1.00

a
 (0.11) 1.00

a
 (0.12) 0.99

a
 (0.10) 

AR_K1t,K2t 0.97
a,
* (1.00) 0.97

a,
* (1.00) 0.95

a,
* (1.00) 0.94

a,
* (1.00) 0.92

a,
* (1.00) 

MSFE 1970s 

Recursive OLS 2.05 (0.01) 2.99 (0.00) 3.11 (0.00) 2.77 (0.00) 2.43 (0.00) 

Relative MSFE 

Rolling 5 years 0.93
a,
* (1.00) 0.78

a,
* (1.00) 0.76

 a,
* (1.00) 0.78

a,
* (1.00) 0.85

a
 (0.65) 

Rolling 10 years 0.97 (0.35) 0.84 (0.00) 0.80 (0.00) 0.80 (0.04) 0.93 (0.02) 

TVP 0.98 (0.01) 1.21 (0.00) 1.58 (0.00) 1.89 (0.00) 1.58 (0.00) 

AR_K2t 1.03 (0.00) 1.01 (0.00) 1.00 (0.00) 1.00 (0.00) 1.02 (0.00) 

AR_K1t,K2t 0.97
a
 (0.35) 0.98 (0.00) 0.96 (0.00) 0.89 (0.00) 0.82

a,
* (1.00) 

MSFE 1980s 

Recursive OLS 2.76
a
 (0.55) 3.32

a
 (0.66) 4.17

a
 (0.13) 4.84

a
 (0.17) 5.23

a
 (0.20) 

Relative MSFE 

Rolling 5 years 1.20
a
 (0.22) 1.73

a
 (0.43) 2.76 (0.02) 4.71 (0.01) 9.20 (0.00) 

Rolling 10 years 1.02
a
 (0.53) 1.06

a
 (0.66) 1.07 (0.06) 1.05 (0.06) 1.15 (0.09) 

TVP 1.75 (0.00) 3.68 (0.00) 4.80 (0.00) 5.56 (0.00) 6.21 (0.00) 

AR_K2t 1.01
a
 (0.55) 1.00

a
 (0.66) 1.00

a
 (0.26) 0.99

a
 (0.63) 0.99

a
 (0.64) 

AR_K1t,K2t 0.98
a,
* (1.00) 0.98

a,
* (1.00) 0.95

a,
* (1.00) 0.95

a,
* (1.00) 0.93

a,
* (1.00) 

MSFE 1990s 

Recursive OLS 1.23 (0.04) 1.59 (0.00) 1.74 (0.00) 1.63 (0.04) 1.39
a
 (0.52) 

Relative MSFE 

Rolling 5 years 1.17 (0.00) 1.23 (0.00) 1.17 (0.00) 1.28 (0.00) 1.63 (0.00) 

Rolling 10 years 1.25 (0.00) 1.36 (0.00) 1.44 (0.00) 1.74 (0.00) 2.20 (0.00) 

TVP 2.69 (0.00) 5.78 (0.00) 9.33 (0.00) 15.12 (0.00) 24.91 (0.00) 

AR_K2t 1.02 (0.01) 1.01 (0.00) 1.01 (0.00) 1.01 (0.04) 0.99
a
 (0.95) 

AR_K1t,K2t 0.94
a,
* (1.00) 0.89

a,
* (1.00) 0.92

a,
* (1.00) 0.95

a,
* (1.00) 0.99

a,
* (1.00) 

Note: This table reports the relative MSFEs with respect to the benchmark model, which is the recursive OLS. ‘Recursive 

OLS’ refers to the OLS model with an expanding estimation window; ‘Rolling 5 years and 10 years’ refer to OLS models 

with window lengths set at 5 years and 10 years; ‘TVP’ stands for the time varying parameter model; ‘AR_LS’ is the AR(1) 

model allowing for level shifts in the constant term; ‘AR_LS_SV’ incorporates stochastic volatility into the error term. 

‘AR_K1t,K2t’ allows for both the constant term and the AR coefficient to follow a level shift process with two different 

latent variables and mean reversion.   

 



Figure 1: Mixture Kalman Filtered Estimates and True Parameter Process  

 
Note: The true process for β

t
 is generated using equations (1) and (2) with mean 

reversion and time varying probability with the parameters (r0, r1,σe,ση, ρ) =

(−1.96, 4, 0.2, 0.2,−0.1). The number of observations is 1000. The red solid line is 

the true β
t
 parameter process; the blue solid line is the corresponding filtered 

estimates of β
t
 using the mixture Kalman filter. 
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Figure 2: Mixture Kalman Filtered Estimates and True Parameter and 

Stochastic Volatility Processes  

Panel A: True and Filtered Estimates of the Parameter Process 

 

Panel B: True and Filtered Estimates of the Stochastic Volatility Process 

 

Note: The true β
t
 and the stochastic volatility processes are generated using 

equations (4) and (5) with mean reversion and time varying probability with the 

parameters (r0, r1, ϕ,σv, ση, ρ) = (−1.96, 4, 0.95, 0.2, 0.2,−0.1) . The number of 

observations is 1000. 

0 100 200 300 400 500 600 700 800 900 1000
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

 

 

true 

filtered estimates

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

 

 

true volatility

filtered estimates



Figure 3: In-Sample Confidence Bands and Forecast Bands for the 

Parameter Process 

 

 

 

Panel A: In-Sample Confidence Bands for the Parameter Process 

 

Note: The true β
t
 process is generated using equations (1) and (2) with mean 

reversion and time varying probability with the parameters (r0, r1,σe,ση, ρ) =

(−1.96, 4, 0.2, 0.2,−1). The number of observations is 1000. The blue solid line is 

the true β
t
 parameter process; while the red solid line is the filtered estimates of the 

true β
t
 parameter process. The two dashed lines represent the 2.5% and 97.5% 

percentiles of the simulated parameter paths. The computation of the in-sample 

bands are based on M=1000 and S=1000 simulations.  

 

 

 

 

 

 

 

 

 

 

0 100 200 300 400 500 600 700 800 900 1000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

 

 

True

Filtered

2.5% in-sample bands

97.5% in-sample bands



 

     Panel B: Out-of-Sample Forecast Bands for the Parameter Process 

 

Note: The true β
t
 process is generated using equation (1) and (2) with mean 

reversion and time varying probability with the parameters (r0, r1,σe,ση, ρ) =

(−1.96, 4, 0.2, 0.2,−1). The number of observations is 500. We use the first 300 

observations to obtain the parameter estimates. The out-of-sample forecasts start 

from the 301
th
 observation. The forecasting horizon is set to be 100 steps. The blue 

solid line is the true data. The two dashed lines represent the 2.5% and 97.5% 

percentiles of the extrapolated paths. The computation of the out-of-sample bands 

are based on M=1000 and S=1000 simulations.  
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