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Abstract

This paper o¤ers an updated and extended attribution analysis based on recently published
versions of temperature and forcing datasets. It shows that both temperature and radiative
forcing variables can be best represented as trend stationary processes with structural changes
occurring in the slope of their trend functions and that they share a common secular trend
and common breaks, largely determined by the anthropogenic radiative forcing. The common
nonlinear trend is isolated and further evidence on the possible causes of the current slowdown in
warming is presented. Our analysis o¤ers interesting results in relation to the recent literature.
Changes in the anthropogenic forcings are directly responsible for the hiatus as in Estrada et al.
(2013a), while natural factors such as the Atlantic Multidecadal Oscillation, the Interdecadal
Paci�c Oscillation and the Southern Annular Mode, as well as the new temperature adjustments
in Karl et al. (2105) contribute to weaken the signal. In other words, natural variability and
data adjustments do not explain in any way the hiatus, they simply mask its presence.
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1 Introduction

The contributions of Working Groups I and II of the Intergovernmental Panel on Climate Change

exhibit an ever-growing bulk of direct and indirect scienti�c evidence regarding the warming of

the climate system during the last century and of the role anthropogenic activities (e.g., IPCC,

2013; IPCC, 2014). The detection and attribution of climate change is no longer limited to changes

in climate variables. Studies have proposed that the warming signal is strong enough to a¤ect

other physical and biological systems to the extent that it can be tracked and attributed to human

interference with the climate system as well (Zwiers and Hegerl, 2008; Rosenzweig et al., 2008;

IPCC, 2014). An important part of the evidence on attribution is based on comparing observations

to model predictions about what the state of a variety of systems would be (ranging from climate

to natural and human systems) with or without anthropogenic changes in the atmosphere. One

method that has shown to be of particularly importance for conducting attribution studies is the

�optimal �ngerprinting� (Hasselmann, 1979, 1997) which is based on a generalized multivariate

regression for the detection and attribution of changes to externally forced climate change signals

(IPCC, 2013). For this method, the dependent variable is usually an observed climate record

and the covariates are composites of General Circulation Models output intended to represent the

climate change signal. These �optimal detection analyses� that combine observed and modeled

climate data have provided important evidence for supporting IPCC�s statements such as �most of

the observed increase in global average temperatures since the mid-20th century is very likely due

to the observed increase in anthropogenic greenhouse gas concentrations� (IPCC, 2013, see also

Stott et al., 2006; Mitchell et al., 2001).

However, direct attribution of climate change to anthropogenic activities using observed climate

and forcing variables remains challenging due the limited number of statistical methods available

to investigate the existence of common long-term trends. The following is a brief background on

the time-series based attribution literature, the interested reader is referred to Estrada and Perron

(2014) for a literature review on this topic. Early examples of the application of modern statistical

techniques to address the attribution of climate change go back to the 1990s with the work of Tol

and de Vos (1993; 1998) and Stern and Kaufmann (2000), among others. The use of cointegration

techniques (e.g., Engle and Granger, 1987) constituted a breakthrough on this subject and on how

the possible presence of stochastic trends in temperature and forcing series could be interpreted.

Nevertheless, although when these studies were published they bene�ted from some of the latest

advances on the modeling of nonstationary time series, recently there have been important advances

in testing for unit roots that have signi�cantly changed econometric modeling (see Perron, 2006 for
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a review) and that are useful to address the detection and attribution of climate change (Estrada

et al., 2013a,b; Estrada and Perron, 2014; Gay et al., 2009; Estrada et al., 2010; Gil-Alana 2008).

Recent publications have shown that the assumption on which these earlier attribution studies

are based (i.e., temperatures and forcing variables being integrated processes) was not soundly

tested and that there are strong reasons from both statistical and climate physics perspectives for

questioning this assumption (Estrada et al., 2010; Gay et al., 2009; see also Triacca, 2001).

The attribution of climate change to human activities has been discussed at great length in the

literature and, regardless of the di¤erences in assumptions and methods (statistical- or physical-

based), there is a general consensus about the existence of a common secular trend between temper-

atures and radiative forcing variables. Now the relevant questions to ask are related to the existence

and causes of common features shown by the warming trend such as rapid warming, cooling periods,

slowdowns and pauses. The study of particular features of this common long-term trend is very

recent and has not yet been fully exploited (e.g., Estrada et al., 2013a). Learning from the existing

common features in temperature and radiative forcing variables can help to better understand the

drivers behind them and the impact climate policies can have. Recent developments in econometric

modeling constitute a valuable set of tools to improve what is known about the observed warming

(Estrada and Perron, 2014).

On the one hand, this paper o¤ers an updated attribution analysis based on recently published

versions of temperature and forcing datasets and state-of-the-art econometric techniques. It is

shown that both temperature and radiative forcing variables can be best represented as trend

stationary processes with structural changes occurring in the slope of their trend functions, the

trend being de�ned as secular movement in time free of stochastic transitory �uctuations. The

multivariate analysis strongly suggests that these variables share a common secular trend and

common breaks, largely determined by the anthropogenic radiative forcing. On the other hand, it

complements and extends the results in Estrada et al. (2013a) by means of a new approach based

on a principal component analysis (PCA) to separate the common long-term trend imparted by

radiative forcing from the natural variability component in global temperature series in order to

tackle the debate on the existence of the recent slowdown in warming.

The PCA approach adopted in this paper helps to further investigate the potential causes of the

reduced slowdown in the rate of increase of temperatures, the so-called hiatus. The main contenders

to explain the so-called hiatus are : natural variability, data biases, changes in anthropogenic forcing

(mostly CFC and methane reductions). Our results o¤er evidence against natural variability and

data biases and in favor of changes in anthropogenic forcings. First, there is a clear reduction

in the slope of the trend induced by anthropogenic forcings (associated with the �rst principal
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component). This is the argument advanced by Estrada et al. (2013a) who established that the

reduction was mostly due to reduced rate of increases in CFC and methane emissions. When this

anthropogenic signal is mixed with the various other components, our results indicate that, in

direct contrast to what has been advanced in the literature, the following contribute to blurring the

signal and making the statistical evidence weaker: the Atlantic Multidecadal Oscillation (AMO), an

oscillation likely related to the Interdecadal Paci�c Oscillation (IPO) and to the Southern Annular

Mode (SAM), as well as the new temperature adjustments in Karl et al. (2015). In other words,

natural variability and data adjustments do not explain in any way the hiatus, they simply mask

its presence. We believe these results are very interesting and should spur additional debates about

the causes of the hiatus. The PCA results are also able to reconcile the di¤erence in the estimates

of the break dates across various series and across global and hemispheric temperatures.

The rest of the paper is structured as follows. Section 2 describes the data used. Section 3

presents the tests and procedures for the univariate analysis, while Section 4 presents the multi-

variate ones. Section 5 presents and discusses the results of applying the Perron and Yabu (2009b)

structural change test and the Kim-Perron unit root test that allows for a structural break in the

trend function. Also, the Bierens nonlinear co-trending test is applied to investigate the existence

of a common nonlinear deterministic trend in temperatures and radiative forcing variables. Section

6 applies a rotated PCA to �lter the common trend found by the co-trending test which allows

to address the potential causes of the so-called hiatus, the recent slowdown in the rate of increase

in temperatures. The existence of breaks in the slope of the warming trend is investigated both

in observed radiative forcing and temperature series, as well as in the indices produced using the

PCA. Section 7 summarizes the main �ndings.

2 Data.

The global (G), northern and southern hemispheric temperatures (NH, SH) data used in this paper

come from the Climatic Research Unit�s HadCRUT4 (GH , NHH , SHH ; Morice et al., 2012) and

the NASA database (GN , NHN , SHN ; GISTEMP Team, 2015; Hansen et al., 2010). These data-

bases di¤er basically in two aspects: 1) the way temperatures are extrapolated (or not) into regions

without observing stations. This is particularly important since the HadCRUT4 excludes most of

the Arctic, where the warming has been very large during the past decade and; 2) the datasets and

methods used to adjust sea surface temperatures. Recently, it has been argued that some impor-

tant characteristics of the observed warming such as the current slowdown in the warming could be

artifacts due to how temperature data are processed (Karl et al., 2015). To investigate this possi-

bility and to o¤er a sensitivity analysis for our results, the global temperature series from Berkeley
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Earth (GB) and from the dataset in Karl et al. (GK ; 2015) are also considered. To represent the

most important natural sources of inter-annual global and hemispheric climate variability we use

the following indices (En�eld et al., 2001; Kerr, 2000; Hurrell, 1995; Wolter and Timlin, 1998): the

Atlantic Multidecadal Oscillation (AMO); the Southern Oscillation Index (SOI), the North Atlantic

Oscillation (NAO) and the Paci�c Multidecadal Oscillation (PDO). These series are used to �lter

out the e¤ects of natural variability oscillations on global and hemispheric temperature series. The

radiative forcing series cover the period 1880-2011 and are available from the NASA Goddard In-

stitute for Space Studies (Hansen et al., 2011). These series represent the e¤ective radiative forcing

which includes a number of rapid adjustments to the radiative imbalance (see Hansen et al., 2005).

For the purposes of this paper, we use the well mixed greenhouse gases (WMGHG; carbon dioxide

(CO2), methane (NH4), nitrous oxide (N2O) and chloro�uorocarbons (CFCs)); the total radiative

forcing (TRF) which includes WMGHG plus ozone (O3), stratospheric water vapor (H2O), solar

irradiance, land use change, snow albedo, black carbon, re�ective tropospheric aerosols and the

indirect e¤ect of aerosols; and the radiative forcing from stratospheric aerosols (STRAT). The tem-

perature and radiative forcing series are presented in Figure 1. We adopt 1880-2014 as the common

sample period 1.

3 Tests and procedures for the univariate analyses.

The two nonstationary processes that have been mainly proposed for global and hemispheric tem-

peratures are trend stationary (TS) and di¤erence stationary (DS). The work of Tol and de Vos

(1993; 1998) and Stern and Kau¤man (2000) proposed the use of cointegration techniques to rep-

resent the long-term relationship between temperature and forcing variables. Nevertheless, results

and inferences based on this technique depend on the presence of unit roots in temperature and

forcing series, a proposition that could be only tested after recent advances in econometric mod-

elling (see Perron, 2006 and Estrada and Perron, 2014) permeated the climate change literature

(Gay et al., 2009; Estrada et al., 2013a,b).

The rate of warming observed during the 20th century can hardly be considered constant. The

existence of breaks in global and hemispheric temperatures has been discussed extensively in the

1All data are available at the following links: http://www.meto¢ ce.gov.uk/hadobs/hadcrut4/;
http://data.giss.nasa.gov/gistemp; http://berkeleyearth.org/land-and-ocean-data/;
ftp://ftp.ncdc.noaa.gov/pub/data/scpub201506/; http://www.esrl.noaa.gov/psd/data/timeseries/AMO/;
http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/soi.long.data;
http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nao.long.data;
https://www.ncdc.noaa.gov/teleconnections/pdo/data.csv; http://data.giss.nasa.gov/modelforce/Fe_H11_1880-
2011.txt
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climate literature but it has been rarely formally investigated using tests that are adequate for the

time-series properties of the series being analyzed (e.g., Seidel and Lanzante, 2004; Gay et al., 2009;

Estrada et al., 2013b; IPCC, 2013). In the case of radiative forcing variables, even though it is

commonly accepted that the atmospheric concentrations of greenhouse gases show di¤erent stages of

growth during the past century, this has been only recently analyzed by means of formal structural

break tests (e.g., Estrada et al., 2013b). If a linear trend provides an inadequate representation

to describe the secular movement of temperature and forcing series, misleading results are to be

expected both when analyzing their time-series properties (e.g. by means of unit root tests; Perron,

1989) as well as when conducting multivariate analyses (e.g., cointegration tests; Gonzalo and Lee,

1998). Consequently, a logical starting point to investigate the temperature and radiative forcing

properties and the existence of shared secular trends (and other common features) is to expand the

deterministic linear trend plus stationary noise to more realistic speci�cations of the trend function

that allow the presence of nonlinearities. Below we describe the univariate tests used in this paper

to investigate the univariate time-series properties of these series.

3.1 Perron-Yabu testing procedure for structural changes in the trend function.

Perron (1989) showed that the presence of structural changes in the trend can have considerable

implications when investigating time-series properties by means of unit root tests. This creates a

circular problem given that most of the tests for structural breaks require to correctly identify if the

data generating process is stationary or integrated. Depending on whether the process is stationary

or integrated the limit distribution of these tests are di¤erent and, if the process is misidenti�ed,

the tests will have poor properties.

The Perron and Yabu (2009b) test was designed explicitly to address the problem of testing for

structural changes in the trend function of a univariate time series without any prior knowledge as

to whether the noise component is stationary, I(0), or contains an autoregressive unit root, I(1).

The approach of Perron-Yabu builds on Perron and Yabu (2009a) who analyzed the problem of

hypothesis testing on the slope coe¢ cient of a linear trend when no information about the nature,

I(0) or I(1), of the noise component is available.

We present the case of a model with a one-time structural break in the slope of the trend function

with an autoregressive noise component of order one (AR(1)). A more detailed presentation of this

case and of other structural change models and extensions can be found in Perron and Yabu (2009b).

Consider the following data generating process:

yt = x0t	+ ut (1)

ut = �ut�1 + et
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for t = 1; :::; T , et � i:i:d:
�
0; �2

�
, xt is a (r � 1) vector of deterministic components, and 	 is a

(r � 1) vector of unknown parameters which are model speci�c and described below. The initial
condition u0 is assumed to be bounded in probability. The autoregressive coe¢ cient is such that

�1 < � � 1 and therefore, both integrated and stationary errors are allowed. The interest is

in testing the null hypothesis R	 =  where R is a (q � r) full rank matrix and  is a (q � 1)
vector, where q is the number of restrictions. The restrictions are used to test for the presence of

a structural change in the trend function. For this purpose, Perron-Yabu consider three models

where a change in intercept and/or slope in the trend function occurs. In what follows, the break

date is denoted TB = [�T ] for some � 2 (0; 1), where [�] denotes the largest integer that is less than
or equal to the argument and 1 (�) is the indicator function.

The model to test for a one-time change in the slope of the trend function is speci�ed with

xt = (1; t;DTt)
0 and 	 = (�0; �0; �1)

0 where DTt = (t� TB) if t > TB and 0 otherwise so that

the trend function is joined at the time of the break. The hypothesis of interest is �1 = 0. The

testing procedure is based on a Quasi Feasible Generalized Least Squares approach that uses a

supere¢ cient estimate of � when � = 1. The estimate of � is the OLS estimate obtained from an

autoregression applied to detrended data and is truncated to take a value 1 when the estimate is

in a T�� neighborhood of 1. This makes the estimate �super-e¢ cient�when � = 1 and implies

that in the case of a known break date, inference on the slope parameter can be performed using

the standard Normal or Chi-square distribution whether � = 1 or j�j < 1. Theoretical arguments
and simulation evidence show that � = 1=2 is the appropriate choice. When the break date is

unknown, the limit distribution is nearly the same in the I(0) and I(1) cases when considering the

Exp functional of the Wald test across all permissible dates for a speci�ed equation, see Andrews

and Ploberger (1994). Hence, it is possible to have tests with nearly the same size in both cases.

To improve the �nite sample properties of the test, they also use a bias-corrected version of the

OLS estimate of � as suggested by Roy and Fuller (2001). The testing procedure suggested by

the authors is: 1) For any given break date, detrend the data by Ordinary Least Squares (OLS)

to obtain the residuals ût; 2) Estimate an AR(1) model for ût yielding the estimate �̂; 3) Use �̂

to get the Roy and Fuller (2001) biased corrected estimate �̂M (see Perron and Yabu (2009b for

the recommended speci�cations); 4) Apply the truncation �̂MS = �̂M if j�̂M � 1j > T�1=2 and 1
otherwise; 5) Apply a Generalized Least Squares (GLS) procedure with �̂MS to obtain the estimates

of the coe¢ cients of the trend and the variance of the residuals and construct the standard Wald-

statistic WFMS (�) to test for a break at date TB = [�T ]; 6) Since the break date is assumed to

be unknown, the 5 steps above must be repeated for all permissible break dates to construct the

Exp functional of the Wald test denoted by Exp-WFS = log
�
T�1

P
� exp (WFMS (�) =2)

�
where
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� = f�; � � � � 1� �g for some � > 0. We set � = 0:15 as is common the literature.
Note that the Perron-Yabu test can be performed sequentially, testing for the �rst break using

the full sample and then testing for a second break in the subsamples de�ned by the estimated

break date, and so on until a non-rejection.. This is justi�ed from the results in Kejriwal and

Perron (2010), which states that at each step of the iteration one can use the same critical value

that applies to a one-break test.

3.2 Perron and Kim-Perron unit root tests with a one-time break in the trend func-
tion

As shown in Perron (1989), the estimate of the sum of the autoregressive coe¢ cients in an au-

toregression of order p, say, is highly biased towards unity if there is a shift in the trend function

unaccounted for. In this case, the unit root null is hardly rejected even if the series is composed

of i:i:d: disturbances around the trend. Furthermore, if the break occurs in the slope of the trend

function, unit root tests are not consistent, i.e., the null hypothesis of a unit root cannot be rejected

even asymptotically.

Perron (1989) proposed an extension of the Augmented Dickey-Fuller (ADF) test (Dickey and

Fuller, 1979, Said and Dickey, 1984) that allows for a one-time break in the trend function of a

univariate time series. Three di¤erent model speci�cations were considered: the �crash�model

that allows for an exogenous change in the level of the series; the �changing growth�model that

permits an exogenous change in the rate of growth; and a third model that allows both changes.

For this test, the break dates are treated as exogenous in the sense of intervention analysis (e.g.,

Box and Tiao, 1975), separating what can and cannot be explained by the noise in a time series.

Our interest centers on the �changing growth�model, which can be brie�y described as follows.

The null hypothesis is:

yt = �1 + yt�1 + (�2 � �1)DUt + et

where DUt = 1 if t > TB, 0 otherwise; TB refers to the time of the break, and A (L) et = B (L) vt,

vt � i:i:d:
�
0; �2

�
, with A(L) and B(L) pth and qth order polynomials, respectively, in the lag

operator. The innovation series fetg are ARMA(p; q) type with possibly unknown p, q orders. The
alternative hypothesis is:

yt = �1 + �1t+ (�2 � �1)DTt + et

where DTt = t� TB; if t > TB and 0 otherwise. The �changing growth�model takes an �additive
outlier� approach in which the change is assumed to occur rapidly and the regression strategy

consists in �rst detrending the series according the following regression:

yt = �+ �1t+ �2DTt + eyt (2)
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Then an ADF regression is estimated using the residuals eyt as follows:
eyt = �eyt�1 + kX

i=1

ci�eyt�i + et (3)

where the k lagged values of �eyt�i are added as a semi-parametric correction for autocorrelation.
In the Perron (1989) test the break is assumed to occur at a known date. Later, Perron (1997)

generalized the test for the case when the date of the break is unknown and he proposed deter-

mining the break point endogenously from the data. This is done by estimating the break date by

minimizing the sum of squared residuals from regression (2). The resulting unit root test is then

the t-statistic for testing that � = 1 in regression (3) estimated by OLS. The critical values of the

limit distribution of the test are tabulated in Perron (1997). See also, Zivot and Andrews (1992).

A problem with most procedures to test for a unit root in the presence of a one-time break

that occurs at an unknown date is that the change in the trend function is allowed only under

the alternative hypothesis of a stationary noise component. As a consequence, it is possible that a

rejection occurs when the noise is I(1) and there is a large change in the slope of the trend function.

A method that avoids this problem is that of Kim and Perron (2009). Their procedure is based

on a pre-test for a change in the trend function, namely the Perron and Yabu (2009b) test. If

this pre-test rejects, the limit distribution of their modi�ed unit root test is then the same as if

the break date was known (Perron and Vogelsang, 1993). This is very advantageous since when

a break is present the test has much greater power. It was also shown in simulations to maintain

good size in �nite samples and that it o¤ers improvements over other commonly used methods.

The testing procedure under the additive outlier approach for the changing growth model consists

in the following steps:

1. Obtain an estimate of the break date T̂B by minimizing the sum of squared residuals using

regression (2). Then construct a window around that estimate de�ned by a lower bound Tl

and an upper bound Th. A window of 10 observations was used. Note that, as shown by Kim

and Perron (2009), the results are not sensitive to this choice;

2. Create a new data set fyng by removing the data from to Tl+1 to Th, and shifting down the

data after the window by S (T ) = yTh � yTl ; hence,

yn =

8<: yt if t � Tl
yt+th�tl � S (T ) if t > Tl
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3. Perform the unit root test using the break date Tl. This is the t-test statistic for testing thate� = 1 in the following regression estimated by OLS, denoted by t�(�̂AOtr ):
eynt = e�eynt + kX

i=1

ci�eynt�i + eet (4)

where �̂tr = Tl=Tr, Tr = T � (Th � Tl) and eynt is the detrended value of yn.
3.3 Perron-Zhu methodology for constructing a con�dence interval for the break date

Perron and Zhu (2005) analyzed the consistency, rate of convergence and limiting distributions

of parameter estimates in models where the trend exhibits a slope change at some unknown date

and the noise component can be either stationary or have an autoregressive unit root. Another

important practical application of deriving the limiting distribution of the estimate of the break

date is that it permits forming a con�dence interval for the break date.

Perron and Zhu (2005) considered a total of six models with deterministic and stochastic trends.

The random component was assumed to be either stationary or to contain a unit root, while for

the deterministic component three cases were considered: 1) a �rst-order linear trend with a one-

time change in the slope such that the trend function is joined at the time of the break; 2) a local

disjoint broken trend; and 3) a global disjoint broken trend. As has been proposed previously in the

literature (e.g., Gay et al., 2009; Estrada et al., 2013a,b), the �rst speci�cation with a stationary

noise component is the most relevant to characterize the temperature and forcing variables discussed

in this paper. The interested reader is referred to Perron and Zhu (2005) for the speci�cations and

limiting distributions for the other models. The deterministic part is speci�ed as:

dt = �1 + �1t+ �bDTt:

Note that at the time of the break, the slope coe¢ cient changes from �1 to �1 + �b but that the

trend function is continuous at TB. This speci�cation is therefore referred to as the �joint broken

trend�. The estimation method is simply to select the break date that minimizes the sum of squared

residuals from a regression of the series of interest yt (t = 1; :::; T ) on the regressors f1; t;DTtg, i.e.,
applying OLS to the model

yt = �1 + �1t+ �bDTt + ut

Denote the resulting estimate by T̂B and the associated estimate of the break fraction by �̂ = T̂B=T .

They showed that the limit distribution of the break fraction �̂ is:

T 3=2(�̂� �)!d N

0@0; 4�2h
�0 (1� �0)

�
�0b
�2i
1A
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where �0b is the true value of the change in the slope parameter and �
2 is the long-run variance of ut

estimated using the Bartlett kernel with Andrews�(1991) automatic bandwidth selection method

using an AR(1) approximation. Note that the limiting distribution of the estimate of the break

date does not depend on the structure of the errors (except from the long-run variance term �2).

The limiting distribution does depend on the location of the break, having smaller variance as the

break occurs closer to the middle of the sample. As expected, the variance decreases as the shift

in the slope increases.

4 Tests and procedures for multivariate analyses.

In this section, we discuss the multivariate procedures used, namely Bierens�nonparametric non-

linear co-trending test and a rotated principal component analysis to separate common trends and

natural variability.

4.1 Bierens nonparametric nonlinear co-trending test

Nonlinear co-trending is a special case of the more general �common features�concept described

by Engle and Kozicki (1993). The advantage of the test proposed by Bierens (2000) is that the non-

linear trend does not have to be parameterized. The nonlinear trend stationarity model considered

can be expressed as follows:

zt = g (t) + ut

with

g (t) = �0 + �1t+ f (t)

where zt is a k-variate time series, ut is a k-variate zero-mean stationary process and f (t) is a

deterministic k-variate general nonlinear trend function that allow, in particular, structural changes.

Nonlinear co-trending occurs when there exists a non-zero vector � such that �0f (t) = 0. Hence,

the null hypothesis of this test is that the multivariate time series zt is nonlinear co-trending,

implying that there is one or more linear combinations of the time series that are stationary around

a constant or a linear trend. Note that this test is a cointegration test in the case when it is applied

to series that contain unit roots, though the critical values would be di¤erent.

The nonparametric test for nonlinear co-trending is based on the generalized eigenvalues of the

matrices M1 and M2 de�ned by:

M1 = T
�1PT

t=1 F̂ (t=T )F̂ ((t=T ))
0

where F̂ (x) = T�1
P[Tx]
t=1 (zt � �̂0 � �̂1t) if x 2

�
T�1; 1

�
, F̂ (x) = 0 if x 2

�
0; T�1

�
with �̂0 and

�̂1 being the estimates of the vectors of intercepts and slope parameters in a regression of zt on a
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constant and a time trend; also

M2 = T
�1PT

t=m[m
�1Pm�1

j=0 (zt�j � �̂0 � �̂1 (t� j))][m
�1Pm�1

j=0 (zt�j � �̂0 � �̂1 (t� j))]
0

where m = T� with T the number of observations and � = 0:5 as suggested by Bierens (2000).

Solving jM̂1 � �M̂2j = 0 and denoting the rth largest eigenvalue by �̂r, the test statistic is

T 1���̂r. The null hypothesis is that there are r co-trending vectors against the alternative of r� 1
co-trending vectors. This test has a non-standard distribution and the critical values have been

tabulated by Bierens (2000). The existence of r co-trending vectors in r + 1 series indicates the

presence of r linear combinations of the series that are stationary around a linear trend and that

these series share a single common nonlinear deterministic trend. Such a result indicates a strong

secular co-movement in the r + 1 series.

4.2 Rotated principal component analysis (PCA) to separate common trends and
natural variability.

PCA is commonly used to extract the main variability modes of a set of n interrelated variables and

also to reduce dimensionality while retaining most of the variability present in the dataset (Jolli¤e,

2002). This technique has been applied to both stationary and trending data for a wide range

of purposes and has been extended to be applied to data with special structures. PCA has been

widely used in climate sciences to separate the main modes of variability of climate data, to �lter

out noise and to obtain clearer signals and spatial patterns (e.g., Wilks, 2011; O�Lenic and Livezey,

1988; von Storch and Zwiers, 1999; von Storch and Navarra, 1999). It has also been extended by

atmospheric scientists in various directions, notably for spatio-temporal data with evolving spatial

patterns and cyclic statistics (e.g., Jolli¤e, 2002; Kim and Wu, 1999; von Storch and Zwiers, 1999).

PCA has been also commonly use in climate reconstructions and paleoclimate (e.g., Mann et al.,

1998; Luterbacher et al., 2002; Evans et al., 2002). In econometrics, this technique has been used

to develop methods for estimating and testing for common trends, both in the cointegration and

cotrending context (e.g., Bai, 2004; Maddala and Kim, 1998; Hatanaka and Yamada, 2003; Harris,

1997; Stock and Watson, 1988, 2002).

The principal components Y1; Y2; :::; Yn are orthogonal linear combinations of the original dataset

X of the form Yi =
Pn
j=1 aijxj . The �rst principal component is the linear combination Y1 =Pn

j=1 a1jxj that maximizes var(a
0
1X) = a01�a1 subject to the constraint of a

0
1a1 = 1, where �

is the variance-covariance matrix of X. According to results on maximizing quadratic forms on

the unit sphere this is attained when a1 is equal to the �rst eigenvector (i.e., the eigenvector that

corresponds to the largest eigenvalue) of the variance-covariance matrix of X. The remaining
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principal components are those linear combinations of a0jX that maximize var(a0jX) subject to

the constraint a0jaj = 1 and cov(a0jX; a
0
kX) = 0 for all j 6= k. The PC or factor loadings L are

calculated by multiplying the entries of the eigenvectors by the squared root of the eigenvalue that

corresponds to that particular eigenvector and represent the correlation coe¤cients between the

PCs and the original variables. The loadings are useful to determine which of the original variables

are more closely associated to a particluar PC.

To simplify the interpretation of the principal components and to further separate the variability

modes in a set of data, the axis of the principal components can be rotated. Several rotation methods

have been proposed to accomplish this objective and can be grouped in two main types: orthogonal

and oblique rotation. In the case of rotated PCA, the PCs or factor scores are given by F = BZ,

where F is the matrix of factor scores, Z is the matrix of standardized values of the original data, and

B = L(L0L)�1 is the matrix of factor score coe¢ cients (Harman, 1976). In this paper, we propose

the use of rotated PCA (varimax rotation normalized) to extract the principal modes of variation of

temperature and radiative forcing variables, in particular their common trend mode. As has been

discussed in the literature, natural low-frequency oscillations such as the AMO can exaggerate or

mask the observed warming and therefore recent studies have suggested that it is convenient to

�lter out their e¤ects when analyzing the features of global and northern hemisphere trends (Wu

et al., 2011; Knudsen et al., 2011; Swanson et al., 2009; Estrada et al., 2013a). It is important

to note that PCA has been applied to nonstationary data to extract trends and variability modes

in di¤erent contexts. While Estrada et al. (2013a) �lter out the e¤ects of AMO from global and

northern hemisphere temperatures by means of an OLS regression of temperatures on AMO, here

we propose the use of rotated principal components on a set of variables composed of radiative

forcing, temperature series and the main modes of natural climate variability. The objective of the

rotated PCA analysis we present is to �nd the linear combinations that represent the estimates of

the common trend component and the physical variability modes that are known to a¤ect the noise

around that trend, and that are orthogonal to each other. As such, these PCs allow to reexpress the

original variables - which are correlated to di¤erent degrees (i.e., share common information)- as

variables that represent linearly independent modes of variability (that is, to separate the variability

modes in the set of variables). We believe that using this multivariate procedure, which considers

the most important variables a¤ecting global and hemispheric temperatures, will permit to extract

an estimate of the warming trend less distorted by the e¤ects of physical modes of variability.
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5 Full-sample features of the temperatures and forcing series.

We now present the empirical results from applying the procedures discussed in Sections 3 and

4 to the various temperature and forcing series discussed in Section 2. We begin in Section 5.1

with a univariate analysis of temperature and radiative forcing series and establish the presence of

common non-linear deterministic trends in Section 5.2. An in-depth analysis of the possible causes

of the hiatus in presented in Section 6, where we discuss common explanations that have been

advanced in the literature and how our results o¤er are very di¤erent perspective, especially with

respect to the role of the natural variability modes in temperatures.

5.1 Univariate analysis of temperature and radiative forcing series

The results obtained by applying standard unit root tests to global and hemispheric temperatures

seem to provide strong evidence for unit root processes (results not shown here). However, visual

inspection of Figure 1 suggests the presence of structural breaks in the slopes of the trends of

all temperatures series. This feature has been frequently reported in the literature (Jones et al.,

1986a,b,c; Hansen and Lebede¤, 1987; IPCC, 2013; Gay et al., 2009). Standard unit root tests can

be seriously a¤ected by the presence of such breaks and their results could be misleading (Perron

1989, 2006).

For all the following results, the changing growth model is assumed for global and hemispheric

temperature series given that global warming would imply a change in the rate of increase of these

variables without a concurrent level shift (Gay et al., 2009; Estrada et al., 2013a). To test for the

existence of such breaks we applied the testing procedure of Perron and Yabu (2009b) which is valid

whether the noise component is I(1) or I(0) and thus circumvents the problem of pretesting for a

unit root that is usually needed to implement structural change tests. According to the results of

the Perron-Yabu test (Table 1), the stability of the slope parameter of the trend function for all

temperature series is rejected at the 1% signi�cance level, providing strong arguments for the need

of unit root tests that allow for a one-time break in the trend function to investigate their time

series properties.

For G and NH temperatures the estimates of the break dates are similar for both datasets: in the

case of G the break dates are 1971 and 1978 for NASA and HadCRUT4, respectively, and 1982 for

NH regardless of the dataset considered. These break dates are broadly similar to previous estimates

in the literature (e.g., Gay et al., 2009; Estrada et al., 2013a). Note that, with the exception of

SHN , the con�dence intervals of the break dates obtained using the Perron-Zhu procedure (Table

1) in general overlap with one another. As has been reported previously (e.g., Gay et al., 2009;
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Estrada et al., 2013a), SH typically shows the largest di¤erences in break date estimates when

comparing di¤erent datasets: while for HadCRUT4 the break in the slope of G occurs in 1976,

in the case of NASA the break occurs in 1925. Previous versions of NASA�s temperature dataset

revealed the existence of a signi�cant second break occurring in 1959. However, for the current

version of NASA�s SH, although the data suggests the existence of another break in the slope in

1959, it is no longer statistically signi�cant at any conventional levels. It is important to consider

that the current version of NASA�s dataset uses the ERSST v4 sea surface reconstructions which

includes signi�cant changes in comparison to the ERSST v3 version (Huang et al., 2015; Liu et

al., 2015). The low agreement between NASA and HadCRUT4 time series in the case of SH

is remarkable. This can be illustrated by comparing the di¤erences between NH and SH across

datasets: while running an OLS regression of NH from NASA on NH from HadCRUT4 results in

a R2 value of 0.95, doing the same for SH leads to a R2 value of just 0.78.

The total warming from 1880 to 2014 is estimated to be about 30% larger with HadCRUT4

than for NASA: 1.05oC and 1.44oC for G; 1.26oC and 1.64oC for NH; 0.88oC and 1.12oC for SH.

The magnitudes of the pre- and post-break slopes reveal important di¤erences from one dataset to

the other, particularly in the case of the southern hemisphere for the pre-break period. SH from

NASA is the only time series that shows a signi�cant 46-year cooling trend (1880-1925). G and

NH from both datasets and SH from HadCRUT4 show a moderate and slow pre-break warming

of about 0.5oC per century. All temperature series experience an abrupt and large increase in the

rate of warming. For NH the increase in the rate of warming is approximately �ve-fold, four-fold in

the case of G and two-fold for SH from HadCRUT4. The post-break warming rate is considerably

higher for HadCRUT4 than for NASA. These rates (per century) are 2.48oC and 3.37oC in the case

of NH; 1.69oC and 2.55oC for G and; 0.99oC and 1.57oC for SH, respectively.

These large di¤erences in some of the characteristics of the warming trend in G, NH and SH have

been previously discussed in the literature (Gay et al., 2009; Swanson, 2009; Estrada et al., 2013a).

According to these studies, the large contrast in warming and in break dates between hemispheres

suggest that they may not be only the product of the climate system�s response to the increase in

greenhouse gases (GHG) concentrations alone but also of dominant modes of internal variability

that may mask the underlying warming trend. The next section shows that the di¤erences in the

trend functions reported here are the product of low-frequency oscillations; it also explores how

di¤erent the underlying warming trends actually are and if they can be considered to be the same.

We apply the Kim-Perron test to investigate the type of data generating processes of the tem-

perature variables. As shown in Table 1, the results provide clear evidence for trend-stationarity

once a break in the slope of the trend function is allowed. For all temperature series, the null
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hypothesis of a unit root is rejected at the 5% signi�cance level once the breaks reported in Ta-

ble 1 are taken into account. Thus, the unit root hypothesis is strongly rejected and the use of

cointegration techniques is not appropriate to investigate the existence of common secular trends.

These results suggest that there have been only a limited number of events that have altered the

long-run path of global and hemispheric temperatures. These changes have manifested themselves

at di¤erent times in global and hemispheric temperatures and have consisted in abrupt increases

of di¤erent magnitudes in the rate of warming (Gay et al., 2009). Note that Table 1 also includes

the results for the NASA southern hemisphere temperature series when choosing 1959 as the break

date. The rejection of the null of a unit root is robust to this change in the break date.

While there has been a long debate about the time-series properties of global and hemispheric

temperatures, radiative forcing variables have received less attention in this respect and have usually

been assumed to be integrated processes when conducting attribution studies (Stern and Kaufmann,

2000; Tol and de Vos, 1993, 1998). Here, we analyze the time series properties of radiative forcing

series using the same econometric techniques applied before to temperature series. According to

the Perron-Yabu test both WMGHG and TRF show a highly signi�cant break in the slope of their

trend function occurring in 1960. The con�dence intervals of these break dates are very narrow

and do not overlap with those of the temperature series, probably due to the existence of natural

variability oscillations (see the discussion in the following section). Both WMGHG and TRF show

that the Earth�s energy imbalance has been increasing since the last century and that the rate of

this increase accelerated notably since 1960 as a result of the unprecedented and continuous global

economic growth after World War II (see Estrada et al., 2013a). The post-break rate of growth

in radiative forcing is about 4 times larger compared to the pre-break estimate in these series.

Furthermore, the Kim-Perron tests strongly rejects the hypothesis of a unit root in both WMGHG

and TRF and shows that both temperature and radiative forcing series share similar time-series

properties. This enables the use of appropriate time-series models and tests to investigate the

existence of common nonlinear deterministic secular trends. The commonly used assumption of

forcing variables being integrated processes is not supported by the data. As shown in Estrada et

al. (2103a; Supplementary Material S6), a system with broken-trend stationary variables that are

co-trending is consistent with a zero dimensional energy balance model. It is also encompassing

in the sense that it can explain the �ndings obtained when neglecting the breaks, namely that

temperatures are deemed to be I(1) and the forcings, such as the WMGHG, deemed to be I(2) and

not I(1) as claimed by many studies such as Kaufmann et al. (2011); see Estrada et al. (2103a;

Supplementary Material S8).
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5.2 Common nonlinear deterministic trends

The univariate results obtained in the last section are broadly similar to those reported in the

literature although signi�cant changes have occurred in how temperature series are constructed

(e.g., the new version of the sea surface temperatures dataset used by NASA). One of the most

relevant aspect to test for is whether the conclusions regarding the existence of a common long-

term trend between temperature and radiative forcing series are robust to the updates that have

taken place in both temperature and radiative forcing datasets. To test for the existence of such

a common nonlinear deterministic trend, we use the test of Bierens (2000) described in section

4.1. Tables 2a and 2b show the results of applying the Bierens test to two sets of time series: a)

NASA�s G, NH, SH and WMGHG, TRF; b) HadCRUT4�s G, NH, SH and WMGHG, TRF. In

both cases, the results indicate the existence of four co-trending vectors (r = 4) involving G, NH,

SH, WMGHG and TRF and therefore strongly suggest the existence of one common nonlinear

deterministic trend. Furthermore, as argued in Estrada et al. (2013a) these results suggest a

dominant anthropogenic contribution to the observed warming: applying the nonlinear co-trending

test to just WMGHG and TRF indicates the existence of a common trend in both radiative forcing

variables; by construction this common trend can only come from WMGHG. Therefore, WMGHG

must contain the common nonlinear trend in the two sets of temperature and forcing series described

above. Although causality can hardly be stablished based only on statistical tests, attribution to

anthropogenic forcing is stronly suggested when the results from the cotrending tests are combined

with basic climate physics: WMGHG imparts the common nonlinear trend to TRF and in turn

this common nonlinear trend is imparted to the global and hemispheric temperatures.

6 An analysis of the causes of the hiatus and the dating of the breaks

The existence and causes of the current slowdown in the warming � and the inability of current

physical models to reproduce it� is one of the most active topics in climate change research

(Tollefson, 2014, 2016). The range of hypotheses that have been proposed to explain the behavior

of the warming trend during the recent decades can be summarized in three broad groups: the

e¤ects of natural variability; artefacts produced by temperature data biases and; changes in (or

omission of) some of the natural and anthropogenic forcings. We provide further evidence on

the existence of the recent slowdown in the warming and we confront some of the reasons in the

literature that have been put forward to explain or deny the existence of the slowdown.

16



6.1 Competing hypotheses to explain the slowdown

The leading explanations involving natural variability are related to coupled ocean-atmosphere

processes and heat exchange between oceans and atmosphere. According to Steinman et al. (2015),

the combined e¤ects of the low-frequency oscillations produced by AMO and PDO over the northern

hemisphere temperatures were able to mask the warming trend for the past decade. The 1997-98

El Niño could have led the equatorial Paci�c into a prolonged La Niña-like cold state by initially

transferring enormous quantities of heat from the oceans to the atmosphere and subsequently

cooled the Paci�c Ocean (Kosaka and Xie, 2013). This prolonged cold state could have signi�cantly

contributed to a lower warming rate in global temperature. Trenberth and Fasullo (2013) proposed

that about 30% of the heat produced by the Earth�s energy imbalance has been taken by the deep

oceans due to changes in the Paci�c surface winds and to a change to the negative phase of the

PDO. Furthermore, it has been shown that inserting PDO-type patterns to global climate models

can produce decade-long pauses in warming (Meehl et al., 2011).

The slowdown in the warming has also been explained as an artefact produced by biases in

temperature data as well as by the lack of coverage at the poles and in Africa (Karl et al., 2015;

Cowtan and Way, 2014; Curry, 2014). However, Fyfe et al. (2016) compared the trends in the bias-

corrected data and those in the climate simulations included in the Climate Models Intercomparison

Project (CMIP5) and found that the observed rate of warming since the beginning of the present

century has been considerably lower than the average simulated rate. These authors concluded that

the slowdown in the warming is a real phenomenon that cannot be discarded as a bias problem in

the data.

Lower solar activity has also been identi�ed as a possible contributor to the smaller rate of

warming during the past decade (Lean and Rind, 2009), but it has been argued that this factor

is unlikely to explain a substantial part of the reduced warming (Feulner and Rahmstorf, 2010).

Increases in the atmospheric concentrations of aerosols due to the growth of coal consumption in

Asia produced a negative radiative forcing that could partially explain the slowdown in the warming

(Kaufmann et al., 2011). Another factor that could explain the di¤erences in the observed and

simulated rates of warming is the volcanic aerosol forcing which is not well represented in CMIP5

(Andersson et al., 2015). Estrada et al. (2013a) suggest that part of the slowdown in the rate of

warming can be directly linked to the e¤ects of the Montreal Protocol and changes in agricultural

production in Asia on the atmospheric concentrations of CFCs (Velders et al., 2007) and methane

(Kai et al., 2011).

Table 3 updates some of the results in Estrada et al. (2013a) and con�rms the existence of a

slowdown in WMGHG and TRF. The methods used follows the Perron-Yabu sequential procedure
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as proposed by Kejriwal and Perron (2010). As discussed above, both WMGHG and TRF are

characterized by a highly signi�cant break in 1960 (Table 1), and also by a second break occurring

in 1994 and 1991, respectively. In both cases the second break in the slope of their trend function

is signi�cant at the 1% level (Table 3). This �nding provides strong evidence for the existence of a

slowdown in the underlying common trend and for its anthropogenic origins2. The rate of growth

of WMGHG after the break decreased about 25%, while that of TRF decreased about 56% due to

the decrease in WMGHG and the e¤ects of changes in other forcing factors such as atmospheric

aerosols.

We now turn to various observed global temperature series to test for a break in the slope

of their trend function that could be consistent with a slowdown in the warming during the last

two decades. In addition to the NASA and HadCRUT4 global temperature series, this subsection

considers also those of Berkeley Earth and of the dataset in Karl et al. (2015). These two additional

datasets are of interest to our study for the following reasons: Karl et al. (2015) claimed that the

pause in the warming is an artefact of data biases, and they produced as series labelled GK which

is arguably free of such biases; according to the Berkeley Earth project they o¤er a more complete

sampling using �ve times more data than other groups and follow an independent approach based

on modern statistical techniques. As shown in Table 3, both GH and GB (two out of four of these

global temperature series) do show a signi�cant break in their slope around the mid-2000 that is

consistent with the slowdown in the warming that has been widely discussed in the literature (the

decrease in the warming rate after the break dates is about 50%). For GN and GK no evidence

of a second break can be found. By the time of writing this paper, the GH and GB observed

temperature values for 2015 became available. Including this extra observation makes the second

break in both GH and GB no longer signi�cant. This �nding needs to be interpreted carefully as

2015 was an extraordinarily warm year due in part to one of the strongest El Niño events on record.

As such, the 2015 record temperature value may not contribute much to clarifying the features of

the underlying warming trend. A tempting conclusion would be that the slowdown never occurred.

However, this conclusion would be di¢ cult to support given the evidence about the slowdown in

the radiative forcing series discussed above and in Estrada et al. (2013a).

2A sensitivity analysis was conducted using the dataset of Mills et al. (2014) and the results are robust to this
alternative radiative forcing estimates. For both TRF and WMGHG, highly signi�cant breaks were found to occur
in the trend function. The �rst break date occurs around 1960 (1962 for TRF and 1959 for WMGHG), while other
statistically signi�cant breaks were found in the post-1960 sample in 1990 for TRF and 1991 for WMGHG.
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6.2 Filtering procedure based on a rotated principal component analysis

Observation-based attribution studies have been mainly limited to establishing the existence of a

common long-term trend between temperature and radiative forcing variables. Recent work have

proposed to advance the study of the attribution of climate change by focusing on characterizing the

common secular trend (Estrada et al., 2013a; Estrada and Perron, 2014). This allows investigating

the reasons behind periods of fast warming, slowdowns and pauses but it requires the extraction of

the underlying secular trend.

Estrada et al. (2013a) analyzed the characteristics of the common secular trend in temperature

and radiative forcing by: 1) �ltering out the low-frequency oscillations produced by AMO that could

distort the warming trend in G and NH temperatures by means of a simple OLS regression and;

2) investigating the existence of breaks in the common trend in temperatures and radiative forcing

series directly in WMGHG and TRF. The main advantage of this approach is that radiative forcing

series are considerably less noisy than temperature data and are known to be closely related to the

transient climate response. Global surface temperatures can be expressed as Tt = �+Ft+"t where

Tt is temperature, Ft is a measure of the radiative forcing, "t encompasses both short- and long-

term natural variability and  represents the transient climate sensitivity (see Estrada et al., 2013a;

Schwartz, 2012; Gregory and Forester, 2008). The structural model behind the time series models in

our paper can be described by a two-compartment model of the climate system (see Schwartz, 2012;

Estrada et al., 2013a). The upper compartment includes the atmosphere and the upper ocean and it

is characterized by a small heat capacity and a short time constant (of about a few years) for reaching

steady state following a perturbation. In contrast, the lower compartment � which represents the

deep ocean� has a large heat capacity and a long time constant (in the order of hundreds of years)

for reaching a steady state. The response of the climate system to changes in external forcing

during the observed period is determined by the time constant of the upper compartment and the

transient climate sensitivity. This simple structural model helps understanding from a physical

perspective why global and hemispheric surface temperatures follow the same nonlinear trend of

the radiative forcing and also the rapid adjustment of observed temperatures to changes in the

trend of the radiative forcing (see Estrada et al., 2013a, Supplementary Information S6).

Based on the �nding of a common nonlinear long-term trend in temperature and radiative

forcing variables and on the literature on climate variability, we propose the use of a rotated

principal component analysis to separate the warming trend from other modes of variability present

in the data. In this way, the features of the common secular trend such as the sharp increase in the

warming since the mid-20th century and the existence of the slowdown in the warming of the last

decades can be better analyzed. The set of variables selected for the rotated principal component
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analysis include: G, NH, SH, WMGHG, TRF which according to the results of the co-trending

analysis contain a common nonlinear trend; PDO (Zhang et al., 1997), AMO (En�eld et al., 2001),

SOI (Trenberth, 1984) and NAO (Hurrell, 1995) which are commonly considered as some of the

most important natural sources of inter-annual global and hemispheric climate variability (IPCC,

2013; Wolter and Timlin, 1998; Estrada et al., 2013a) and the radiative forcing from stratospheric

aerosols produced by volcanic eruptions (STRAT). Tables 4a and 4b show the factor loadings for

the sets containing G, SH and NH from the NASA and HadCRUT4 datasets, respectively.

The results presented below are based on extracting and rotating the ten possible principal

components. It is important to note that the application of PCA in this paper is not to reduce

dimensionality but to separate the modes of variability and, in particular, to obtain an estimate

of teh climate trend that is less noisy than temperatures and free of the major sources of natural

variations. Di¤erent objectives for a PCA lead to di¤erent recommendations concerning how many

PCs to retain and, in some cases, the size of the eigenvalues has no relationship with which PCs

are of interest (Jolli¤e, 2002); these could be very well beyond what some truncation rule could

suggest (see Preisendorfer and Mobley, 1982, 1988). Furthermore, for some applications such as

the regression analysis presented in this section, it is inadvisable to look only at high-variance PCs,

as the low-variance PCs can also be correlated with and thereby explain the dependent variable

(Jolli¤e, 2002). As shown below, some of the low-variance PCs contribute signi�cantly to explain

G, NH and SH and the di¤erences in break dates. When applying the rotated PCA, retaining too

few or too many PCs, underrotation or overrotation, can be problematic. In the �rst case, part of

the signal is unjusti�ably discarded, while in the second case unnecessary noise can be introduced.

In general, the e¤ects of underrotation are considered more serious than those of overrotation,

given that part of the signal is being discarded and this is often accompanied by the distortion of

patterns (e.g., O�Lenic and Livezey, 1988). The screen plot of the PCA suggests that the truncation

point should be after the 5th or 6th eigenvector. As suggested by O�Lenic and Livezey (1988) and

Richman (1981) it is preferable to retain slightly more modes in order to avoid underrotation, so

the rotation point was chosen to be the 6th PC. The results presented in this section are robust

to this truncation point: the eigenvectors entries from the untruncated/truncated rotated PCA

are essentially the same and the corresponding PCs are indistinguishable from one another (the

correlation coe¢ cients are in all cases above 0.99).

The �rst principal component (PC1) is highly correlated with G, NH, SH, WMGHG, TRF (all

correlation coe¢ cients are equal to or larger than 0.90) and has almost zero correlation with all

other variables. Figure 2 shows that PC1 is the trend mode of the series in datasets. It should

be noted that PC1 is intended to be viewed as an estimate of the underlying trend and, hence,
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as for all estimates, it is subject to errors (and, here also somewhat in�uenced by the number of

components used). What is important for our purpose is that it is trending, sowhs less noisy than

temperature series (which it is) and be free of the main modes of natural variability.

Each of the next 5 modes are highly correlated (>0.95) with one and only one of the natural

variability series included in the analysis: PC2 with PDO; PC3 with STRAT; PC4 with NAO;

PC5 with AMO; PC6 with SOI. Tables 5a and 5b show that these �rst six principal components

account for about 98% of the total variance of the dataset (the rotated �rst principal component

itself accounts for about 46% of the variability). PC8 from NASA and PC7 from HadCRUT4

are grouped together in Figure 2 since they represent the same low-frequency variability mode,

likely related to other modes such as the Interdecadal Paci�c Oscillation (IPO) and the Southern

Annular Mode (SAM). As discussed below, PC7 and PC8 obtained from NASA and HadCRUT4,

respectively, are mainly the particular variability mode that make SH from NASA and HadCRUT4

so di¤erent from each other. PC9 in both datasets recovers the solar cycle originally included

in TRF. With the exception of PC1, according to standard unit root testst (not shown here)

all principal components can be considered stationary processes around a constant which further

con�rms that PC1 represents the only trending component. Previous studies have applied PCA

to separate the main modes of variability in global temperature datasets (e.g., Mann et al., 1998).

In such studies, PCA was applied to surface temperature datasets that have a spatio-temporal

structure. Therefore, in such cases the eigenvectors refer to the spatial variability of the analyzed

variables. Here, we are dealing with a set of di¤erent but interrelated variables in which there is

only a temporal dimension. The eigenvectors in this case refer to temporal variability. The results

presented here are broadly similar to those of previous studies in terms of the relative importance

of the variability modes.

Results about the statistical evidence of a change in slope based on the Perron-Yabu test,

henceforth PY, and the estimate of the break date, are presented in Table 3 for PC1 and all

combinations of PC1 with another principal component. PC1 is characterized by highly signi�cant

breaks in its slope during the 1960s and the 1990s (the �rst break occurs in 1962 and 1968, and

the second break in 1989 and 1991 for NASA and HadCRUT4, respectively). These break dates

are not statistically di¤erent from those of TRF. The increase in the rate of warming decreased

after the second break dates about 31% and 40% in the cases of PC1 from HadCRUT4 and NASA,

respectively. As expected from climate physics and from the empirical evidence on co-trending, the

recovered warming trend is similar to the nonlinear trend in forcing once the natural variability

noise component is adequately removed. These results suggest that the proposed method is capable

of adequately separating the underlying nonlinear trend function present in both temperature and
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forcing variables from modes of natural variability. The recovered modes are also useful to better

understand the main variability factors in G, NH and SH. For example, PC1 and PC5 (AMO)

are the two most important factors dominating G and NH and explain about 95% and 92% of

their variability, respectively, for both NASA and HadCRUT4 datasets3. The variability mode

represented by PC7 and PC8 in the results for NASA and HadCRUT4, respectively, and the

warming trend (PC1) are able to explain about 95% of the variability of SH.

As discussed in what follows, these variability modes (PC5, PC7 (NASA) and PC8 (Had-

CRUT4)) are to a large extent responsible for the di¤erences in the break date estimates in G, NH

and SH and between datasets, and they are also responsible for masking features of the underlying

common trend (e.g., the current slowdown in the warming). To investigate this, regressions can

be estimated using G, NH and SH as dependent variables and di¤erent combinations of PCs as

independent variables. These regressions are used to estimate the coe¢ cients to scale the PC scores

to reconstruct the original series (e.g., G, NH, SH). By construction, if all PCs were included in

the regression the explained variance would be 100%, and the series would be exactly reproduced.

Given that PCs are orthogonal the estimated coe¢ cients are una¤ected if other PCs are excluded

(there is no �omitted variables�problem). Using the sum of PC1 and PC5, scaled by the estimated

regression coe¢ cients, changes the date of the �rst break to 1974 (NASA) and 1975 (HadCRUT4),

which are not statistically di¤erent from the ones obtained from the original NH series. Further-

more, once the e¤ects of PC5 (AMO) are added to PC1, the slowdown in the warming is no longer

detectable (PY values of 0.27 and 0.96, respectively). In the case of G, using the weighted sum of

PC1 and PC5 according to the estimated regression coe¢ cients changes the break date estimate

to 1971 (NASA) and 1975 (HadCRUT4), which are not statistically di¤erent from those estimated

for the original series (Table 1). The slowdown in the warming is not detectable anymore in either

NASA or HadCRUT4 (PY values of 0.26 and 0.98, respectively). For SH from NASA, once the

e¤ects of the variability mode PC7 are added to the warming trend, the estimated break date is

1929, which is not statistically di¤erent from the break date in the original series, and the slowdown

in the warming is not detectable (PY value of -0.13). In the case of SH from HadCRUT4, adding

the e¤ects of PC8 to the warming trend changes the estimated break date to 1967, a date that is

not statistically di¤erent from the one in the original temperature series. As in the other cases, the

addition of this variability mode makes the slowdown in the warming not detectable anymore (PY

value of -0.07). It is important to notice that while for G and NH, PC5 constitutes a clear natural

variability mode (AMO) which is similar for both datasets (the correlation coe¢ cient between PC5

3The estimates of how much of the variance of a particular variable is explained by di¤erent combinations of PCs
can be obtained by squaring the corresponding loadings given in Tables 4a and 4b and adding them. Alternatively,
these estimates can be obtained from the R2 obtained from regressing a particular variable on the PCs of interest.
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from NASA and HadCRUT4 is 0.999), this is not the case for PC7 from NASA and PC8 from

HadCRUT4. PC7 and PC8 do represent the same mode of variability in the di¤erent datasets, but

given their dissimilarities (e.g., their correlation coe¢ cient is 0.31), the question remains whether

these series are related to a real natural variability mode or if they just re�ect the di¤erences in

how SH series are constructed (e.g., di¤erences in data coverage and interpolation, di¤erences in

processing and adjusting ocean data).

These �ndings show how natural variability can substantially change the features in the es-

timated underlying warming trend and makes it seem that G, NH and SH have responded very

di¤erently to the observed changes in the radiative forcing. These di¤erences largely disappear

when these modes are included in the analysis and the warming trend becomes very similar among

G, NH and SH and consistent with the features found in TRF. That is, the results strongly suggest

that all the di¤erences in the break date estimates and other characteristics reported in the previ-

ous sections can be explained by natural variability modes and the di¤erences in how temperature

data are reconstructed. In the same way, testing for the existence of the recent slowdown in global

temperatures without taking into account the e¤ects of natural variability is likely not to provide

much information about the evolution of the underlying warming trend. This is one of the main

reasons that could explain why recent studies have not found statistical evidence for the existence of

a slowdown in warming (Karl et al., 2015; Lewandowsky et al., 2016) and why probably many more

will conclude the same after including the 2015 record value in their analyses. It is important to

recognize that the question �is there a slowdown in the warming trend?�is di¤erent from �is there

a slowdown in global temperature series?�Natural variability modes play a large role in de�ning

the evolution of the observed global temperature series (e.g., Trenberth, 2015) and ignoring this

fact can lead to erroneous conclusions regarding the warming trend and its features.

Our results show that natural variability modes such as PDO and AMO cannot account for

the current slowdown in the warming trend as has been proposed frequently in the literature.

The empirical evidence indicates that the slowdown comes from changes in the radiative forcing.

The current slowdown is driven by anthropogenic factors and illustrates how dominant human

activities can be in de�ning climate in di¤erent time-scales. In addition, the results also suggest

that large methodological di¤erences on how ocean temperatures are reconstructed and adjusted

may be important factors making it di¢ cult to �nd consistent results between SH and NH and the

di¤erent datasets that are available.

It is important to put our results in perspective within the recent literature. As discussed in

Section 6.1, the main contenders to explain the so-called hiatus are: natural variability; data bi-

ases; changes in anthropogenic forcing (mostly CFC and methane reductions). Our results provide
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evidence against natural variability and data biases and in favor of changes in anthropogenic forc-

ings. First, there is a clear reduction in the slope of PC1, associated with the estimated trend,

induced by anthropogenic forcings. This is the argument advanced by Estrada et al. (2013a) who

established that the reduction was mostly due to reduced CFC and methane radiative forcing, as

well as increases in atmospheric aerosols. Of all the various other components, only PC5 and PC7

can mask the slowdown (as well as PC3 in the case of the HadCRUT4 series). For both the NASA

and HadCRUT4 series PC5 is the AMO, while PC7 is a variability mode likely related to IPO or

SAM for HadCRUT4, while for NASA PC7 has to do with adjustments regarding the southern

hemisphere ocean temperatures (closely related to the arguments advanced in Karl et al., 2015).

Hence, in direct contrast to what has been advanced in the literature, our results indicate that the

changes in the anthropogenic forcings are directly responsible for the hiatus, while the following

contribute to blurring the signal and making the statistical evidence weaker: the AMO (the main

one), IPO or SAM, and di¤erent temperature adjustments such as those in Karl et al. (2015). In

other words, natural variability and data adjustments do not explain in any way the hiatus, they

simply mask its presence. We believe these results should spur additional debates about the causes

of the hiatus. The results are also able to reconcile the di¤erences in the estimates of the break

dates across various series and across global and hemispheric temperatures and strongly suggest

that these di¤erences are caused by natural variability as well as di¤erences in how temperature

data are reconstructed and adjusted.

7 Conclusions

The attribution of climate change to anthropogenic activities presented in this paper takes into

account natural and anthropogenic forcing variables as well as the most important natural variabil-

ity modes referred to in the literature, and uses a variety of temperature records. State-of-the-art

econometric techniques strongly suggest that both temperature and radiative forcing variables are

better represented as trend stationary variables with breaks, that they share the same order of

integration and, more importantly, that temperatures and forcing variables share the same long-

term trend which is shown to be highly in�uenced by the well-mixed greenhouse gases forcing.

The empirical evidence indicates that while the main modes of climate variability can impart low-

frequency oscillations to global and hemispheric temperatures that can mask or exaggerate the

warming, there reecently was a slowdown in the underlying warming trend that is directly related

to the slowdown in the total radiative forcing discussed in Estrada et al. (2013a). The results

presented here also o¤er a simple explanation for at least part of the discrepancy between the ob-

served rate of warming and the average rate of warming in the CMIP5 simulations. The radiative
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forcing used in the CMIP5 experiments was constructed using estimates of observed quantities

during the period 1765-2005 and projected quantities corresponding to the RCP4.5 scenario from

2006 onwards (Meinshausen et al., 2011), e¤ectively eliminating the slowdown in the observed total

radiative forcing. The results show that the slowdown is a characterstic of the underlying warming

trend that is present at least until 2011. However, observed data on radiative forcing since 2011 is

needed to assess whether the slowdown in the warming is still present.

The available literature on attribution has shown that the �nding of a common long-term trend

in temperatures and radiative forcing variables is robust to a wide variety of assumptions and

methods (both statistical and physical). Although this literature is characterized by large and

important methodological debates, the attribution of climate change to human activities seems to

be a settled issue. This paper follows Estrada et al. (2013a) in advancing attribution studies towards

the characterization of the underlying warming trend, which can provide relevant information on

how the climate system has responded to changes in radiative forcing and also on how it could

respond to international mitigation agreements. Using state-of-the-art econometric techniques, the

warming trend is isolated and some of its predominant features are characterized. This paper

contributes to a better understanding of the role of natural variability oscillations in masking the

underlying warming trend and suggests that di¤erences in how southern hemisphere temperatures

are reconstructed could be distorting this trend. Furthermore, it contributes to the debate regarding

the current slowdown in the warming and provides further evidence of its existence and origins. It

is shown that due to the e¤ects of climate variability over the warming trend, multivariate signal

extraction techniques are useful to extend current attribution studies. To that e¤ect, a rotated

principal components analysis was applied. As is common in empirical analyses of observed data,

the results may be dependent on the �ltering method and the data sample. In particular, the

radiative forcing series ends 2011 and having more recent data for this variable could help to better

characterize the warming trend.

Our analysis o¤ers some provocative results in relation to the recent literature. Changes in

the anthropogenic forcings are directly responsible for the hiatus, while the AMO (especially), the

IPO or SAM, and the new temperature adjustments in Karl et al. (2015) contribute to blurring

the signal and making the statistical evidence weaker. In other words, natural variability and data

adjustments do not explain in any way the hiatus, they simply mask its presence. As shown by

the results of the PCA, natural variability and di¤erences in temperature data reconstruction and

adjustment procedures are also able to explain the di¤erence in the estimates of the break dates

across various series and across global and hemispheric temperatures.
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Table 1. Tests for a unit root allowing for a one-time break in the trend function applied 

to G, NH, SH, WMGHG, TRF and PC1. 

Series BT  W k ̂   ̂   ̂   AO

trt 
ˆ  

G
N
 

1971 

(1962, 1980) 
14.19

a
 0 

-0.3982 

(-12.89) 

0.0035 

(9.01)) 

0.0134 

(11.00) 
-5.45

a
 

G
H
 

1978 

(1972, 1984) 
24.96

a
 0 

-0.6268 

(-15.58) 

0.0053 

(10.86) 

0.0202 

(10.43) 
-6.46

a
 

NH
N
 

1982 

(1974, 1990) 
12.91

a
 0 

-0.4568 

(-12.40) 

0.0045 

(10.41) 

0.0203 

(9.95) 
-5.75

a
 

NH
H
 

1982 

(1977, 1987) 
27.89

a
 0 

-0.6243 

(-13.32) 

0.0055 

(9.96) 

0.0281 

(10.85) 
-7.16

a
 

SH
N
(1) 

1925 

(1917, 1933) 
18.70

a
 0 

-0.0222 

(-0.46) 
-0.0045 

(-5.17) 

0.0144 

(12.60) 
-4.79

a
 

SH
N
(2) 

1959 

(1947, 1971) 
0.55 0 

-0.3036 

(-8.41) 

0.0018 

(3.72) 

0.0115 

(10.31) 
-4.65

a
 

SH
H
 

1976 

(1966, 1986) 
7.52

a
 0 

-0.6700 

(-17.32) 

0.0055 

(11.57) 

0.0102 

(5.84) 
-8.02

a
 

WMGHG 
1960 

(1959, 1961) 
20.19

a
 7 

-0.2872 

(-23.68) 

0.0105 

(64.05) 

0.0349 

(87.22) 
-3.94

c
 

TRF 
1960 

(1956, 1964) 
4.46ª 1 

-0.2401 

(-10.56) 

0.0064 

(20.89) 

0.0218 

(29.09) 
-4.25

b
 

PC1
N
 

1962 

(1957, 1967) 
51.41

a
 0 

-1.1055 

(-26.14) 

0.0112 

(14.01) 

0.0403 

(19.68) 
-5.95

a
 

PC1
H
 

1968 

(1964, 1972) 
86.72

a
 0 

-1.1997 

(-27.88) 

0.0139 

(18.10) 

0.0403 

(17.20) 
-7.55

a
 

G
B
 

1984 

(1974, 1994) 
6.40

a
 0 

-0.5962 

(-20.38) 

0.0056 

(16.39) 

0.0129 

(7.36) 
-5.99

a
 

G
K
 

1972 

(1962, 1982) 
9.70

a
 0 

-0.6418 

(-20.57) 

0.0037 

(9.56) 

0.0129 

(10.21) 
-4.98

a
 

The regression for the unit root tests is defined in regression (4). The symbols used are defined as follows BT  is the 

estimate of the break date; W is Perron-Yabu structural change test statistic; k is the number of lagged differences 

added to correct for serial autocorrelation;  ,  ̂  and  ̂  are the regression coefficients of the trend function and the 

corresponding t-statistic values are shown in parenthesis. Bold numbers denote statistical significance at the 5% 

levels.  AO

trt 
ˆ  is the Kim-Perron (Kim and Perron, 2009) unit root test statistic. a, b, c denote statistical 

significance at the 1%, 2.5% and 5% levels, respectively. 

 

Table 2a. Test for nonlinear co-trending around a linear trend amongst G, NH, SH, 

RFGHG and TRF. 
r NASA HadCRUT4 10% critical 

región 

5% critical 

región 

1 0.0349 0.03922 >0.11962 >0.15099 

2 0.06018 0.06477 >0.16918 >0.20264 

3 0.07745 0.06781 >0.21407 >0.25221 

4 0.16067 0.14257 >0.25132 >0.29475 

5 0.37723 0.38562 >0.28287 >0.33094 

Bold figures are significant at the 10% level. 

 

 

 

 

 

 

 

 



 

Table 2b. Test for nonlinear co-trending around a constant amongst G, NH, SH, 

RFGHG and TRF. 
r NASA HadCRUT4 10% critical 

region 

5% critical 

región 

1 0.0489 0.06363 >0.35183 >0.46577 

2 0.07494 0.0663 >0.53561 >0.67420 

3 0.09744 0.12934 >0.70366 >0.86038 

4 0.18129 0.20914 >0.86182 >1.03454 

5 1.58117 1.67226 >1.01416 >1.21948 

Bold figures are significant at the 10% level. 

 

Table 3. Tests for a second break in the slope of the trend function of temperature and 

radiative forcing series. 
Series 

BT  W Series 
BT  W 

WMGHG 1994 

(1990, 1998) 

[-25%] 

3.42ª PC1,7H 2004 

(1986, 2022) 

-0.25 

TRF 1991 

(1989, 1993) 

[-56%] 

18.21ª PC1,8H 1989 

(1981, 1997) 

[-29%] 

1.76b 

GN 2005 

(1994, 2016) 

-0.10 PC1,9H 1989 

(1982, 1996) 

[-31%] 

2.54b 

GH 2007 

(2002, 2012) 

[-56%] 

3.93ª PC1,10H 1989 

(1982, 1996) 

[-29%] 

2.53b 

GB 2005 

(2000, 2010) 

[-49%] 

2.84b PC1,2N 1989 

(1985, 1993) 

[-38%] 

7.56a 

GK 2004 

(1991, 2017) 

-0.10 PC1,3N 1987 

(1982, 1992) 

[-38%] 

4.59a 

PC1N 1989 

(1985, 1993) 

[-40%] 

9.92ª PC1,4N 1987 

(1982, 1992) 

[-27%] 

5.67a 

PC1H 1991 

(1984, 1998) 

[-31%] 

2.53b PC1,5N 1981 

(1976, 1986) 

0.26 

PC1,2H 1989 

(1981, 1997) 

[-25%] 

1.54c PC1,6N 1989 

(1985, 1993) 

[-47%] 

9.99a 

PC1,3H 2002 

(1995, 2009) 

 

0.10 PC1,7N 1988 

(1977, 1999) 

0.11 

PC1,4H 1989 

(1981, 1997) 

[-23%] 

2.36b PC1,8N 1989 

(1981, 1997) 

[-26%] 

2.13b 

PC1,5H 2004 

(1998, 2010) 

0.98 PC1,9N 1988 

(1984, 1992) 

[-39%] 

9.73a 

PC1,6H 1989 

(1983, 1995) 

[-33%] 

2.86b PC1,10N 1988 

(1984, 1992) 

[-39%] 

10.06a 

W is Perron-Yabu structural change test statistic. a, b, c denote statistical significance at the 1%, 5% and 10% levels, 

respectively. Figures in brackets denote the percent change in the slope coefficient after the second break.  

 

 

 



Table 4a. Factor loadings of the rotated principal component analysis of NASA's G, 

NH, SH, and WMGHG, TRF, AMO, SOI, NAO, PDO and STRAT.  
 Factor 

1 

Factor 

2 

Factor 

3 

Factor 

4 

Factor 

5 

Factor 

6 

Factor 

7 

Factor 

8 

Factor 

9 

Factor 

10 

GNASA 0.96 0.01 -0.06 0.08 -0.22 0.08 -0.09 0.11 0.00 -0.01 

NHNASA 0.90 0.01 -0.13 0.06 -0.33 0.05 0.08 0.21 0.00 0.00 

SHNASA 0.94 0.02 0.04 0.09 -0.08 0.11 -0.28 -0.03 0.00 0.00 

WMGHG 0.98 0.05 0.02 0.09 0.04 -0.01 0.12 -0.08 -0.05 0.00 

TRF 0.98 0.04 0.03 0.06 0.04 -0.01 0.10 -0.11 0.04 0.01 

AMO 0.16 0.02 -0.11 0.15 -0.97 0.02 -0.01 0.01 0.00 0.00 

SOI -0.10 0.27 -0.09 0.08 0.02 -0.95 0.01 0.00 0.00 0.00 

VOLCANO 0.02 0.08 -0.98 0.09 -0.11 -0.08 0.00 0.01 0.00 0.00 

NAO -0.16 0.02 0.10 -0.97 0.15 0.07 0.00 0.00 0.00 0.00 

PDO -0.07 -0.96 0.09 0.02 0.02 0.26 0.00 0.00 0.00 0.00 

Extraction: principal components. Rotation: varimax normalized. Correlations higher than 0.70 are shown in bold. 

 

Table 4b. Factor loadings of the rotated principal component analysis of HadCRUT4's 

G, NH, SH, and WMGHG, TRF, AMO, SOI, NAO, PDO and STRAT. 

 

Factor 

1 

Factor 

2 

Factor 

3 

Factor 

4 

Factor 

5 

Factor 

6 

Factor 

7 

Factor 

8 

Factor 

9 

Factor 

10 

GHADLEY 0.95 0.02 0.12 0.05 -0.22 0.04 0.17 -0.04 0.01 0.00 

NHHADLEY 0.93 0.04 0.14 0.03 -0.23 0.00 0.23 0.06 0.01 0.00 

SHHADLEY 0.92 -0.03 0.07 0.10 -0.16 0.13 0.00 -0.30 0.00 0.00 

WMGHG 0.98 0.06 -0.06 0.11 0.05 0.00 -0.14 0.08 -0.05 0.00 

TRF 0.97 0.05 -0.07 0.08 0.04 0.01 -0.18 0.09 0.04 0.00 

AMO 0.18 0.02 0.11 0.15 -0.97 0.02 0.01 -0.01 0.00 0.00 

SOI -0.08 0.27 0.09 0.08 0.02 -0.95 0.00 0.01 0.00 0.00 

VOLCANO 0.06 0.08 0.98 0.09 -0.11 -0.08 0.01 0.00 0.00 0.00 

NAO -0.15 0.02 -0.10 -0.97 0.15 0.07 0.00 0.00 0.00 0.00 

PDO -0.07 -0.96 -0.08 0.02 0.02 0.26 0.00 0.00 0.00 0.00 

Extraction: principal components. Rotation: varimax normalized. Correlations higher than 0.70 are shown in bold. 

 

 

 

Table 5a. Eigenvalues and percent of total variance accounted by the ith principal 

component. NASA's G, NH, SH, and WMGHG, TRF, AMO, SOI, NAO, PDO and 

STRAT. 
 Eigenvalue % Total variance Cumulative % 

1 4.88 48.82 (46.18) 48.82 (46.18) 

2 1.71 17.12 (10.04) 65.94 (56.22) 

3 1.29 12.92 (10.26) 78.86 (66.49) 

4 0.80 7.96 (10.06) 86.82 (76.55) 

5 0.71 7.10 (11.41) 93.91 (87.95) 

6 0.43 4.27 (10.06) 98.18 (98.02) 

7 0.11 1.14 (1.18) 99.32 (99.20) 

8 0.06 0.63 (0.76) 99.96 (99.96) 

9 0.00 0.04 (0.04) 100.00 (100.00) 

10 0.00 0.00 (0.00) 100.00 (100.00) 

Figures in parenthesis denote the percent of total variance accounted by the rotated ith principal component. 

 

 

 

 

 

 

 

 



Table 5b. Eigenvalues and percent of total variance accounted by the ith principal 

component. HadCRUT4's G, NH, SH, and WMGHG, TRF, AMO, SOI, NAO, PDO and 

STRAT. 
 Eigenvalue % Total variance Cumulative % 

1 4.86 48.58 (45.88) 48.58 (45.88) 

2 1.69 16.93 (10.06) 65.51 (55.94) 

3 1.28 12.75 (10.45) 78.27 (66.39) 

4 0.82 8.22 (10.12) 86.49 (76.51) 

5 0.70 7.03 (10.99) 93.51 (87.50) 

6 0.43 4.35 (10.07) 97.86 (97.57) 

7 0.12 1.18 (1.33) 99.04 (98.90) 

8 0.09 0.92 (1.06) 99.96 (99.96) 

9 0.00 0.04 (0.04) 100.00 (100.00) 

10 0.00 0.00 (0.00) 100.00 (100.00) 

Figures in parenthesis denote the percent of total variance accounted by the rotated ith principal component. 

 

  



 
Figure 1. Global and hemispheric temperatures, natural variability modes and radiative 

forcing series. G, NH and SH temperature series are shown in panels a, b and c, 

respectively. AMO, SOI, NAO and PDO are shown in panels d, e, f and g, respectively. 

WMGHG, TRF and STRAT are shown in panels h, i and j. 
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Figure 2. Rotated principal components of G, NH, SH, WMGHG, TRF, STRAT, AMO, SOI, NAO, PDO.  
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