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Low birth weight infants born to mothers with low educational attainment have a 
double hurdle to overcome in the production of human capital. We examine 
whether income transfers, in the form of Supplemental Security Income (SSI) 
payments, can help close the gap in outcomes due to this initial health and 
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grams and, using a regression discontinuity approach, produce plausibly causal 
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I.  Introduction  

Individuals born to mothers of lower socio-economic status (SES) 

experience worse outcomes than children born to mothers with greater resources.  

These differences across SES are immediate, persist over time, and contribute to 

the growing divide in the outcomes of children of high- versus low-SES mothers 

(Currie, 2011; Kalil, Ryan, and Corey, 2012; Aizer and Currie, 2014; Autor et al., 

2016; Economic Report of the President, 2016, ch. 4). Irrespective of financial 

resources, low birth weight alone contributes to diminished economic and health 

outcomes (Behrman and Rosenzweig, 2004; Black, Devereux, and Salvanes, 

2007; Oreopolous et al., 2008).  Low birth weight infants born into low-SES 

families face a particularly steep uphill climb to achieve outcome equality. 

Fortunately, prior research has shown that both public and private investment can 

improve outcomes by alleviating credit constraints, improving access to health or 

education services, and reducing home and family stress (Almond and Currie, 

2011; Aizer, 2014; Akee et al., 2015; Currie and Rossin-Slater, 2015; Jones, 

Milligan, and Stabile, 2015; Aizer et al., 2016). In this paper we study a 

population that is particularly vulnerable—infants born at very low birth weights, 

below 1200 grams, to mothers with a high school degree or less. We explore 

whether public investment in these infants in the form of Supplemental Security 

Income (SSI) mitigates the detrimental impact of being born at double 

disadvantage.  

The SSI program provides means-tested income support to individuals 

with disabilities in the United States. SSI payments make up 48% of income for 

families of child recipients, and SSI has been shown to reduce poverty among 

those families (Duggan and Kearney, 2007).  In addition to the income transfer, 

most SSI recipients also receive publicly-provided health insurance through the 
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Medicaid program.1 Although only 4% of children under 200% of the federal 

poverty line receive SSI (Wittenburg et al., 2015), the public resources allocated 

to SSI are nontrivial; eleven states have more child SSI recipients than child 

Temporary Assistance to Needy Families (TANF) and expenditures on child SSI 

currently exceed federal and state expenditures on the cash benefit portion of 

TANF (Tambornino, Crouse, and Winston, 2015; Wittenburg et al., 2015). Both 

the cash transfers and the accompanying health insurance could have important 

implications for child outcomes.  However, despite tremendous public 

expenditure on the program, little is known about the relationship between SSI 

payments and infant or early child outcomes.  

To fill this research gap, we exploit discontinuous changes in SSI 

eligibility to analyze the relationship between SSI and child outcomes. According 

to Social Security Administration (SSA) rules, a child can qualify for SSI based 

on extremely low birth weight defined as either weighing less than 1200 grams at 

birth or falling below cutoffs based on birth weight for gestational age (SSA 

Program Operations Manual System). To estimate plausibly causal effects, we use 

a regression discontinuity approach to compare outcomes for infants born just 

under the SSI eligibility cutoffs to those for infants born just above the cutoffs. 

We use the Early Childhood Longitudinal Study, Birth Cohort (ECLS-B) to show 

that the likelihood of SSI receipt increases discontinuously at the 1200g cutoff.  

Next, we estimate the relationship between SSI eligibility and a number of 

important outcomes for children including measures of health, infant mortality, 

hospitalizations, cognitive and socio-emotional development, and maternal labor 

supply using data from the Healthcare Cost and Utilization Project State Inpatient 

1 In fact, in 33 states plus the District of Columbia, receiving SSI automatically enrolls an 
individual into the state Medicaid program. 
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Database (HCUP-SID), the Vital Statistics Linked Birth-Infant Death Detail file 

(VS-L), and the ECLS-B.  

Our results suggest that SSI eligibility for low birth weight infants reduces 

length of hospital stay for infants and is associated with reduced infant mortality 

in the hospital, although we find little evidence that it affects infant mortality in 

general.  We examine child outcomes and find that SSI eligibility significantly 

improves child development of motor skills and parenting behaviors.  Finally, we 

explore labor market choices and find that SSI eligibility reduces maternal labor 

supply on the intensive margin, which could imply that parents reallocate their 

time towards investments in children.   

Our findings contribute to a growing body of evidence linking public 

investments in children to improved outcomes (e.g. Aizer, 2014; Almond and 

Currie, 2011).  SSI eligibility is shown to improve outcomes most markedly for 

children of the least educated parents -- parents who likely have the fewest private 

resources to tap into when caring for a child in a fragile health state.  Our results 

suggest that providing income to these doubly disadvantaged families improves 

non-cognitive measures, such as parenting behaviors.  Since greater non-cognitive 

ability has been shown to augment cognitive ability (Cunha and Heckman, 2008), 

our results provide additional evidence that targeted public programs such as SSI  

may be one way to mitigate the growing divide between children of high- and 

low- educated parents (Kalil, Ryan, and Corey, 2012).   The development of 

human capital in the presence of self-productivity and dynamic complementarities 

suggests that investments made at certain points in time, like these investments in 

vulnerable infants, could be particularly cost-effective (Cunha and Heckman, 

2007). 
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II. Background and Institutional Context 

A. Income Transfers and Child Outcomes 

 There are two key channels through which income transfers can improve 

child outcomes. First, income transfers alleviate credit constraints. Even when 

families realize that the benefits of investing in a child outweigh the costs, these 

investments may not be made if the family is credit constrained. Direct income 

transfers enable families to invest more optimally.  This mechanism is referred to 

as the “resource” channel (Mayer, 1997; Yeung, Linver, and Brooks-Gunn, 2002; 

Milligan and Stabile, 2011). Second, income transfers can reduce a stressful 

household environment which in turn improves outcomes.  This mechanism is 

referred to as the “family process” channel (Mayer, 1997; Yeung, Linver, Brooks-

Gunn, 2002; Milligan and Stabile, 2011).  Understanding the effects of income 

transfers, however, is difficult since exogenous variation to identify the effects is 

not easy to come by.  

In prior work, authors have identified several useful sources of variation 

to show income transfers to be effective in improving outcomes through these 

channels. For example, Aizer et al. (2016) examine the Mother’s Pension Program 

and find that it reduces the likelihood of being under weight, improves life 

expectancy, and increases education and adult earnings. Hoynes, Miller and 

Simon (2015) show that the Earned Income Tax Credit improves infant health at 

birth. Others have shown that the distribution of casino revenues to tribal 

members improves education and crime outcomes (Akee et al., 2010); behavior 

and mental health (Akee et al., 2015); and it affects body mass index (Akee et al., 

2013). Milligan and Stabile (2011) show that the Canadian Child Benefit 

improves educational attainment as well as mental and physical health of the 

affected children. In follow-up work, Jones, Milligan, and Stabile (2015) evaluate 

the same benefit to examine spending patterns and their findings suggest that the 

additional income works through both the resource and family process channels. 
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Across these studies, the evidence suggests income transfers are effective, 

particularly for families with the highest credit constraints. 

B. Supplemental Security Income for Children 

The Supplemental Security Income program was enacted in 1972 to 

provide means-tested income support to individuals with disabilities and the 

elderly in the United States.   Since its inception, SSI has paid benefits to children 

with disabilities ages 0-17.   Although relatively few children received benefits in 

the early years of the program, SSI for children has become an increasingly 

important part of the safety net (Aizer, Gordon, and Kearney, 2013; Duggan, 

Kearney, and Rennane, 2015; National Academies, 2015).   However, only a 

handful of studies have focused on the effects of the program on child and family 

outcomes. 

Through the resource channel, increases in income resulting from SSI 

could relax the budget constraint faced by low income parents of children with 

disabilities.  Duggan and Kearney (2007) show that child participation in SSI 

reduces the likelihood of family poverty.  SSI could also enable parents to 

purchase goods or services for their disabled child that they would forgo in 

absence of the transfer (Duggan, Kearney and Rennane 2015), but no causal 

evidence exists on this mechanism.2 Through the family process channel, SSI 

receipt could alleviate stress if, for example, it allows a parent to reduce time in 

the labor market in exchange for time spent with the child.  Work by Deshpande 

(2015) suggests that in response to child SSI parents adjust their labor earnings, 

presumably by reallocation of their labor market time. Additionally, stress could 

2 The Social Security Administration (SSA) requires the child SSI payments be spent exclusively 
on the child, listing medical expenses as an appropriate use (https://www.ssa.gov/pubs/EN-05-
10076.pdf), although parents may reallocate family resources, including time or monetary 
resources, when the child receives SSI. 
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also be reduced since many infants who receive SSI automatically qualify for 

Medicaid.   

In related work, Deshpande (2016) finds that removal of a child from SSI 

at age 18 significantly reduces future income and increases income volatility, and 

Levere (2015) shows that increased exposure to SSI benefits during childhood 

reduces cumulative labor earnings through age 30. While these studies point to 

effects for later outcomes, whether SSI for low birth weight infants affects early 

child development or other family outcomes during early childhood is not yet 

known. 

C. Child SSI eligibility for Low Birth Weight Infants 

The typical procedure to determine eligibility for SSI is twofold. First, the 

SSA determines a child's financial eligibility. Next, the Disability Determination 

Services (DDS) assesses the child's impairment and determines whether the child 

is classified as disabled according to the SSA rules (Wixon and Strand, 2013).3 In 

1991, SSA deemed low birth weight to be a condition “functionally equivalent” to 

meeting a listing, and infants below certain birth weight cutoffs would be 

classified as disabled.4   

The medical community defines low birth weight (LBW) as weight less 

than 2,500 grams or 5.5 pounds, and very low birth weight (VLBW) as less than 

1,500 grams or 3.25 pounds (Maternal and Child Health Bureau, 2013).5  Infants 

born below 2,500 grams are at greater risk of diminished short- and long-run 

health (e.g. Hack et al., 1995; MMWR, 2004; IOM, 2006) and worse economic 

3 See Duggan, Kearney, and Rennane (2015) for a detailed discussion of the disability 
determination process.  
4 When birth weight is used to determine disability, the individual would still face the means test 
when no longer in a medical institution. 
5 This low birth weight designation has been used since the 1930s and the very low birth weight 
designation since at least the 1980s (Almond et al., 2010). 
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outcomes (e.g. Oreopoulos et al., 2008; Aarnoudse-Moens et al., 2009). 

Furthermore, the risk increases non-linearly the lower the birth weight and/or the 

earlier the gestation. This finding suggests that interventions targeting infants in 

more precarious states at birth may have the largest effects (Alexander et al., 

2003).6 The fraction of all live births in the United States that are low birth weight 

or very low birth weight has risen over the past thirty years, suggesting a growing 

number of individuals are at risk of experiencing worse health at birth and 

beyond.7 

SSA evaluates low birth weight from birth to age one using one of two 

rules defining this condition.8 The first, 100.04A, defines low birth weight as 

weighing less than 1200 grams regardless of gestational age. The second, 

100.04B, considers gestational age together with birth weight. As shown in 

Appendix Table 1, infants light for their gestational age qualify as low birth 

weight.  SSA low birth weight criteria are more restrictive than the medical 

community's definitions for low (<2500g) and very low (<1500g) birth weight.9   

SSA included low birth weight to target infants at risk of longer term disability, 

6 The cost of treating low birth weight infants is tremendous; in 2001, while only 8% of all 
hospitalized infants had a preterm or low birth weight diagnosis, these infants accounted for 47% 
of the hospitalization costs (Russell et al., 2007). 
7 The rise in multiple births and increases in obstetric interventions (e.g. C-section births) have 
contributed to the rise in low and very low birth weight babies (Maternal and Child Health Bureau, 
2013). We note that rates of low birth weight births rose until about 2005, and have fallen since 
then (see Buckles and Guldi, 2015 for a discussion and possible explanations).   
8 In this paper, when discussing SSI birth weight eligibility we will use “low birth weight” to 
indicate that an infant falls below SSI’s low birth weight cutoffs as described below.  
9 Low birth weight is documented by an original or certified copy of the infant's birth certificate or 
by a medical record signed by a physician. Birth weight is the first weight recorded after birth. 
Gestational age is the infant's age based on the date of conception. The Childhood Disability 
Interview checklist prompts parents to bring the child's birth certificate with them when applying. 
However, getting a birth certificate may take several months. In 2009, a nationally uniform form, 
SSA Form 3830 went into use to expedite the application process for low birth weight applicants. 
SSA staff use the Form 3830 to request birth weight and other information directly from hospital 
staff. See https://www.ssa.gov/disability/professionals/bluebook/100.00-GrowthImpairment-
Childhood.htm accessed 12-4-15.   
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writing in the preamble to the final rule (SSA 1991), “[o]ur case experience has 

shown that infants who demonstrate the kinds of functional deficits that will be 

required to establish disability [as low birth weight]… are likely to continue to 

demonstrate that they are disabled when they are older.” The fraction of low birth 

weight child SSI awards has increased since then and, as of 2015, accounted for 

over 10 percent of all child SSI awards (see Figure 1).10 

We study a population particularly suited to benefit from income transfers. 

First, a given health intervention can be expected to have a higher marginal 

benefit if initial health is worse.  The infants we study are well below average in 

terms of initial infant health. The birth weight threshold we study is below the 

first percentile of the birth weight distribution.11 Second, based on prior work, the 

positive benefits of income transfers exhibit the largest effects for individuals 

from low-SES families.12 Since SSI payments are means tested, benefits will 

target families with fewer resources and we expect the effects of these transfers to 

be concentrated among lower SES families.    

  

10 Individuals who receive SSI are typically eligible for state Medicaid. While most SSI recipients 
receive publicly-provided insurance through the Medicaid program, the way in which the two 
programs are linked varies by state.  In 33 states plus the District of Columbia, qualifying for SSI 
automatically enrolls an individual into the state Medicaid program (the 1634 or “auto-enroll” 
states). In seven states, Medicaid and SSI eligibility standards are identical, but require that 
recipients file a separate application (the criteria states). (Indiana became a 1634 state in 2014.) In 
the remaining ten states Medicaid eligibility criteria are more restrictive in at least one aspect than 
those used for SSI (the 209b states).  Finally, each state determines the generosity of services 
covered by its program. 
11 Using the 2001 natality data, the 1200 gram threshold is just below the bottom 1% of the birth 
weight distribution. 
12 Above, we discuss several studies that specifically show this for income transfers. In addition, a 
number of studies examine other programs and show stronger effects for low SES groups. For 
example, the WIC program (Hoynes, Page, Stevens, 2011); the Food Stamp program (Hoynes, 
Schanzenbach, and Almond, 2016); childcare (Herbst, forthcoming); and early childhood 
education (Kearney and Levine, 2015). 
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III. Data 

A. Early Childhood Longitudinal Study, Birth Cohort (ECLS-B) 

The Early Childhood Longitudinal Study, Birth Cohort (ECLS-B) is a 

nationally representative longitudinal data set collected by the National Center for 

Education Statistics (NCES).  The ECLS-B oversamples low and very low birth 

weight children.13  Births to mothers less than age 15, or children who died or 

were adopted before the 9 month assessment are not included in the base 

sample.14 The ECLS-B follows children from birth through kindergarten with 

data collection occurring at approximately 9 months of age, 2 years of age (2003), 

4 years of age (at pre-school, Fall 2005), and at kindergarten entry. The 9-month 

data collection also includes variables from infants’ birth certificates. A sample of 

10,700 children born in 2001 participated in the first wave of the ECLS-B.15    

We also limit the sample to infants born at 32 weeks gestation or less.  The 

variation we are using is the SSI birth weight eligibility cutoff. We exclusively 

explore the 1200g cutoff in this study, since we do not have enough sample mass 

around SSA’s other thresholds for infants with longer gestations.  In addition, 

infants at higher gestations could potentially be treated by medical interventions 

aimed at very low birthweight infants (e.g. Almond et al., 2010).16  Restricting the 

13  The ECLS-B also oversamples Asian and American Indian children and twins.   
14 This leads to selection of healthier infants, on average into the ECLS-B. Our results using the 
linked birth-infant death data, discussed below, do not suggest that SSI alters infant mortality, so it 
does not appear that selection into the ECLS-B sample is related to SSI receipt. 
15 All ECLS-B reported sample sizes have been rounded to the nearest 50 per NCES restrictions 
regarding disclosure of restricted use data. However, the analyses and statistics presented in the 
tables and text are generated using all observations in each subsample. 
16 We also omit infants born at 32 weeks gestation with birth weights between 1200 and 1250 
grams. The SSI eligibility cutoff for infants at 32 weeks is birth weight of 1250 grams or less, so 
these infants would be incorrectly classified as ineligible in our current set-up. In total, this 
eliminates 7 observations from our ECLS-B sample. If we include these, our results are similar, 
likely because they represent a relatively small portion of the mass above the 1200g cutoff. See 
Appendix Table 1 for a list of the SSI birth weight–gestation eligibility cutoffs.  
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sample to infants of these gestational ages gives us the most power to identify 

effects and is also the cleanest sample to examine.   

We examine a number of different child and family outcomes from the 9-

month wave.  Importantly, our measure of SSI receipt is from the 2-year wave and 

asks “Since the last interview, has anyone in the household received SSI/SSDI?”  

This variable proxies for child SSI receipt, but with significant measurement 

error, since it includes receipt from family members other than the focal infant, 

includes Social Security Disability Insurance (SSDI) as well as SSI, and is from 

an interview taking place a full year after LBW SSI recipients must go through a 

1-year Continuing Disability Review to reestablish eligibility.  We examine 

measures of health insurance coverage (any, private, and public (Medicaid or the 

Children’s Health Insurance Program (CHIP)). We examine measures of maternal 

labor supply (whether the mother works, works part time, works full time, or is 

not in the labor force).    

We then look at a number of different child and family outcomes.  The 

Bayley Short Form Research edition (BSF-R) measures children’s cognitive 

development as well as the development of their fine and gross motor skills.  We 

include both the mental and motor scale, and use standardized t-scores (with a 

mean of 50 and a standard deviation of 10) that adjust for prematurity.  The 

Nursing Child Assessment Teaching Scale (NCATS) assesses parent-child 

interactions, and we include both the parent and child scores.   

We expect the impact of SSI to be the largest for low-SES children. For 

our analysis we define low SES by mother’s education and focus on the 

subsample of 5,350 children whose mother has a high school degree or less.17  

Panel A of Table 1 presents summary statistics for our ECLS-B sample.  These 

17 Although we could define our low SES sample by parental income in the ECLS-B, reported 
income might be endogenous to SSI receipt. 
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statistics show just how disadvantaged our sample is, as 31% of our sample report 

receipt of disability benefits.  Our sample also has near universal health insurance 

coverage (98%).  This suggests that even though the Medicaid that accompanies 

SSI receipt could be an important benefit of the program, it is unlikely to play 

much of a role in our sample.   

B. The Healthcare Cost and Utilization Project State Inpatient Databases 

(HCUP-SID) 

The HCUP-SID is a data set of inpatient discharge abstracts from 

participating states sponsored by the Agency for Healthcare Research and 

Quality.  The data are drawn from 97% of all U.S. hospital discharges.  The data 

set contains one record per hospital admission ending in discharge or death.  Each 

state-year HCUP-SID database contains a slightly different set of variables. We 

used the HCUP-SID databases that report birth weight, month of birth, year of 

birth, and unique person identifiers; therefore our data come from Arizona 2006-

2007, North Carolina 2006-2010, and New York 2006-2012.18 Our sample 

includes all children for whom we observe their birth hospitalization and whose 

gestational age was 32 weeks or less at birth.  

As with the ECLS-B, we expect the effects of the SSI program to be 

strongest for the group of individuals with the fewest resources. However, our 

HCUP-SID database does not include individual level variables that could proxy 

for household resources like mother’s education.  Instead, we restrict our sample 

to infants whose birth residence is in zip codes with low median household 

income. The HCUP-SID reports quartile classifications of the estimated median 

household income for patients’ residence zip code. We present results for infants 

18 The SID data partners are the Arizona Department of Health Services, New York State 
Department of Health, and the North Carolina Department of Health and Human Services. 
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whose birth residence is in the lowest three quartiles or who are homeless at birth. 

In 2012, for example, this includes all zip codes with median household income 

less than $63,000.19 Our final analysis sample includes 20,673 births/infants.20    

As we describe in Section II, increases in household resources due to SSI 

may alter children’s healthcare use or type of health insurance (Duggan, Kearney 

and Rennane 2015). We use the HCUP-SID databases to investigate this 

possibility.  The HCUP-SID records the primary, secondary and tertiary expected 

payer of the birth hospitalization distinguishing between Medicaid, private health 

insurance, self-pay and other federal or local programs. We also analyze the 

number of hospital readmissions (not including transfers from one hospital to 

another) after birth as children age. We look at the number of hospital 

readmissions at 1 month, at 9 months, at one year, and at two years.21  The child’s 

birth month and year are used to determine their “risk” of a hospital readmission 

over time.22 That is, the possibility they could show up in the data years available. 

We also construct the number of days spent in the hospital at birth and as 

the child ages.  For infants transferred from one hospital to another at birth, we 

include the total number of days spent in the hospital across all transfers. Finally, 

we examine what fraction of hospital readmissions for children under age two 

occur because of potentially avoidable reasons.  Table 1, Panel B presents 

summary statistics for the HCUP-SID analysis sample.   

19 We have reason to believe that even in the third quartile of the zip code by income distribution a 
non-trivial proportion of infants may be SSI eligible. While in the second quartile 52% of births in 
our HCUP sample reported Medicaid as the primary expected payer, in the 3rd quartile still 42% 
reported Medicaid. This proportion drops to 21% in the highest quartile.  
20 We create our analysis sample of people born between 2006 and 2012 and drop observations 
that cannot be followed after birth; that is infants with missing unique identifiers, who were born 
out of state, or who were transferred out of the hospital at birth but who do not have a transfer in 
record. These sample restrictions do not qualitatively change our results.  
21 These points in time correspond to standard infant mortality measures and for times represented 
in the ECLS-B data. 
22 Since, for instance, infants born in January of a state’s first year of data are more likely to be 
observed for the longer-term outcomes.   
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C. Linked Birth/infant Death Birth Cohort Data Set 
We also use the National Center for Health Statistics (NCHS) birth cohort 

linked birth/infant death files (VS-L), containing information from birth 

certificates and death certificates for infants who died within one year including: 

birth weight, gestational age, age in days at death, mother’s education at birth and 

other mother and child characteristics. We limit our sample to infants born in 

2001 and born at 32 weeks gestation or less.  

We use the VS-L dataset to assess the validity of the regression 

discontinuity design by testing whether predetermined characteristics move 

discontinuously at the 1200 gram threshold for SSI program eligibility. The 

predetermined characteristics include the mother’s level of education, mother’s 

race, mother’s age at birth, marital status, whether the mother drank or smoked 

during pregnancy or had a pregnancy risk factor, whether the child was male or a 

singleton birth. 

We also examine infant mortality in the neonatal period less than 28 days 

old, in the post-neonatal period between 28 days and one year old, and during the 

first year of life. In the analysis of infant mortality the sample is restricted to 

infants whose mother has a high school degree or less to match the ECLS-B 

analysis sample.  This sample includes 60,460 live births. Table 1, Panel C 

presents summary statistics for this sample.   

IV. Methods 

We use a regression discontinuity (RD) approach to estimate the impact of 

SSI eligibility for low birth weight infants on SSI receipt and outcomes for infants 

by comparing those born just under the 1200 gram cutoff for SSI eligibility to 

those born just above the cutoff.  Infants whose birth weight falls below the 1200 

gram cutoff are categorically eligible for SSI.  Although individuals below 1200 

grams are eligible, not everyone enrolls in the program. Furthermore, individuals 
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above the 1200 gram cutoff may be deemed eligible for SSI depending on their 

birth weight for gestational age or other qualifying medical conditions. Therefore, 

conceptually we would like to implement a fuzzy regression discontinuity design 

as the probability of SSI enrollment increases at the 1200 gram cutoff, but not 

necessarily from 0 to 1.  However, as described above, our measure of infant SSI 

enrollment is quite noisy.  As a result, we have not scaled up our estimates of the 

effect of SSI receipt on infant outcomes by the first stage, so our estimates should 

be interpreted as intention to treat effects (e.g. Ludwig and Miller, 2007).  

We use both parametric models (linear and quadratic) and a local linear 

regression model to estimate the discontinuity in SSI receipt and outcomes at the 

1200 gram birth weight cutoff.  The parametric models use ad-hoc bandwidth 

choices of 200 grams and 150 grams and bootstrapped standard errors.  The local 

linear regression model is weighted using a triangular kernel, and run within the 

optimal bandwidth chosen by the Calonico et al. (2016) procedure (CCFT 

procedure).  Using the CCFT procedure, we present bias-corrected estimates with 

robust standard errors.   Both types of specifications allow the regression slope to 

differ on either side of the 1200g cutoff.  

A key assumption of the RD design is that potential outcomes change 

smoothly at the cutoff. Although not directly testable, we believe the SSA birth 

weight eligibility thresholds provide a setting in which the RD design is likely 

valid and, to the extent possible, we test for and fail to find empirical evidence of 

violations of this assumption.  

First, birth weight itself is partially, but not precisely controlled. However, 

reported birth weight may be precisely controlled, which would call into question 

the validity of our design if those who report birth weight know the SSA cutoffs 

and strategically report weight.  We investigate this possibility by examining 

histograms of birth weights from the ECLS-B around the 1200g threshold, 

presented in Figure 2. The first graph is for the entire distribution of birth weights 
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to mothers with a high school degree or less, making clear the extent to which the 

ECLS-B oversamples very low birth weight infants.  The second ECLS-B 

histogram is for our analysis sample (births with gestational age less than or equal 

to 32 weeks and maternal education of high school or less), and zooms in on the 

smaller range of birthweights from 500g to 2000g.  Neither histogram shows 

evidence of manipulation of birth weights just below the threshold.   

However, substantial heaping of births at round numbers of ounces, and, 

to a lesser degree at 100 gram intervals, is apparent (Barreca et al., 2011).  Most 

of the mass in our sample is at round number ounce heaps.23 Our identification 

strategy might be compromised if a) those infants at the heaps were systematically 

different than those not at the heaps, or b) if the composition of infants heaping at 

ounces changes at the threshold.  Appendix Table 2 shows how summary 

statistics for the full analysis sample (Column 1) compare to those for the sample 

without infants at ounce heaps (Column 2), without those at 100-gram heaps 

(Column 3), and without those at either type of heap (Column 4).  Overall, the 

characteristics of the sample are remarkably robust across these four groups.  

Appendix Table 3 tests whether infants’ characteristics differ significantly 

between the ounce heap on the left of the threshold (1191g (42 oz)) and the ounce 

heap on the right of the threshold (1219g (43 oz)). For the ECLS-B (Appendix 

Table 3a), we show that infants born at 1191 grams do not differ statistically from 

infants born at 1219 grams along the dimensions of gender, race, mother’s marital 

status, or Apgar score.  Admittedly, these samples are tiny, so we do the same 

analysis with births from the VS-L (Appendix Table 3b), which also indicate no 

statistical difference between the two heaps.  If anything, it appears that the 

infants at the 42oz heap just below the cutoff are worse off along observable 

23 In the ECLS-B, only 250 of the 650 infants in our analysis sample are NOT at ounce heaps.  
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characteristics.  This suggests that any heaping-induced bias would make it more 

difficult to find positive effects of SSI for the outcomes we consider in this paper.   

In Figure 3, we display the results of testing the continuity of the density 

of the running variable around the threshold (McCrary, 2008).  The graph does 

show evidence of a discontinuity.  However, the heaping of the distribution 

appears to the right of the threshold, which is on the “wrong" side to indicate 

advantageous manipulation. In addition, this discontinuity in the density of the 

running variable appears to be related to the ounce heaping issue described above.  

When we run the McCrary test on only the ounce heaped data, where most of the 

mass is, we find no evidence of a discontinuity.   

Finally, we test for discontinuous changes in infants’ baseline 

characteristics around the cutoff to further probe the assumption that birth weight 

is locally as good as randomly assigned. Table 2 examines whether a wide variety 

of predetermined characteristics exhibit a discontinuity at the 1200g cutoff. We do 

this across all three data sources and characteristics include: race, child’s gender, 

child’s plurality, Apgar score, mother’s marital status, and mother’s pregnancy 

risk factors.  For most variables, we find no evidence of such a discontinuity, 

suggesting that infants born just below the cutoff are a good counterfactual for 

infants born just above the cutoff.24   

Furthermore, as far as we are aware, no other program or intervention 

begins at the 1200 gram mark. Importantly, the 1200g SSA low birth weight 

cutoff is not the same as the medical VLBW cutoff, which can involve significant 

medical interventions (Almond et al., 2010). Had the two thresholds coincided, 

24 Exceptions include mother’s marital status in the ECLS-B (infants just under the cutoff are more 
likely to have unmarried mothers), child gender in the VL-S data (infants just under the cutoff are 
less likely to be male), and state of residence in the HCUP-SID data (infants just under the cutoff 
are more likely to be from AZ).   
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we would be unable to disentangle the effect of SSI receipt on outcomes from the 

effect of medical intervention.  

V. Results 

A. SSI Eligibility and SSI Enrollment, ECLS-B  

 We first establish that a discontinuity exists in SSI receipt at the 1200g 

cutoff.  Figure 4 illustrates this graphically, and Table 3 presents estimated RD 

coefficients and robust standard errors.  For each outcome, the first two rows 

present results from the linear polynomial models and the second two rows 

present results from the quadratic polynomial models.  Within each set of 

polynomial results, we first present a bandwidth of 200g and then 150g.  Finally, 

the last row of results presents estimates from the local linear regression model 

with optimal bandwidth choice.  We present all five sets of estimates to show the 

stability of our results.   

 Column 1 shows that infants born just under the 1200g cutoff are 

significantly more likely to be in families that reported SSI or SSDI receipt in the 

2-year ECLS-B wave. Estimates from the linear polynomial model with 200g 

bandwidth imply that low birth weight SSI eligibility increases the likelihood of 

family disability benefit receipt by 25 percentage points, significant at the 5-

percent level.  The point estimates are fairly stable across the five specifications, 

ranging from 23 to 32 percentage points.  These effects are large in magnitude, 

given that the baseline rate of disability receipt in our sample is 32%.25  Columns 

2-4 present results for any health insurance coverage, private health insurance 

coverage, and public health insurance coverage (Medicaid plus CHIP).  We find 

25 In results not presented here, we estimated the effect of SSI eligibility on participation in other 
social safety net programs (TANF, Food Stamps, and WIC) and found no significant cross-
program effects.   
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no effects of SSI eligibility on overall health insurance coverage or coverage by 

type.  The lack of effects on health insurance coverage may be specific to our 

sample – with 98% of our sample reporting health insurance coverage, there may 

be no room for any measurable effect.26  These results are also consistent with 

Duggan and Kearney (2007), who find no effects of SSI for children on health 

insurance coverage.   

B. Post-Birth Hospital Outcomes, HCUP-SID 
 In Table 4 we examine the relationship between the primary expected 

payer of the birth around the SSI eligibility threshold using the HCUP-SID data. 

These infants are all born at 32 weeks gestation or less, living in lower income zip 

codes.  We expect that since SSI eligibility is tightly linked with Medicaid 

eligibility we may observe an increase in Medicaid as the primary payer for 

infants who are SSI eligible. Some hospitals record the primary expected payer at 

hospital admission (likely before SSI eligibility is known) and others report the 

payer from the hospital claims (likely after SSI eligibility is known). We find 

evidence that the SSI program reduces the likelihood that parents self-pay for 

their infant’s birth (column 4). However, as in the ECLS-B, we find no 

statistically significant effects of SSI for Medicaid as the primary payer (column 

1), Medicaid or any government program (column 2) or private (column 3). 

 Table 5 investigates the intention to treat effects of the SSI program on the 

number of days children spend in the hospital at birth and cumulatively over their 

first two years of life. Infants in our analysis sample (those born at 32 weeks 

gestation or less who live in lower income zip codes) spend on average about 40 

days in the hospital at birth.  Column 1 reports the effects of SSI eligibility on the 

length of stay at birth which includes the length of stay for infants transferred 

26 We have also estimated these regressions separately for the 1634 (auto-enroll) states and the 
209b (more restrictive states) and find no significant differences.  
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from their originating birth hospital. Columns 2-4 show the differential effect of 

being below the 1200 gram threshold on the cumulative number of days spent in 

the hospital within 27 days, 9 months, 1 year, and 2 years since birth. This 

cumulative measure captures the total number of days spent in the hospital, 

summing the length of stay at birth as well as any hospital readmissions later in 

childhood.  Taken together, the results of this table offer suggestive evidence that 

the SSI program reduces the number of days children spend in the hospital.  

Next we explore whether SSI eligibility influences the number of hospital 

readmissions. Ambulatory Care Sensitive (avoidable with proper preventative 

care) (ACS) hospitalization may be affected by the increase in household 

resources from the SSI program. Appendix Table 4 shows the top ten reasons for 

a hospital readmission in our sample of infants born at 32 weeks gestation or less 

living in lower income zip codes. These top ten reasons account for over 50 

percent of all hospital readmissions. Hospital revisits for ACS conditions such as 

asthma and dehydration are among the most common. We report estimates for 

hospital readmission in Table 6. Although we cannot rule out positive effects, 

these estimates are small in magnitude with large standard errors and seem to 

suggest that SSI does not alter readmission. Taken together with the results in 

Table 5, it appears that the reduction in length of stay comes primarily from a 

decreased number of days spent in the hospital at birth rather than for hospital 

readmissions. 

 Infants may spend fewer days in the hospital (at birth) for many reasons. 

One possibility is that parents may substitute away from in-hospital care to other 

venues for care. Table 7 examines the reasons for hospital discharge at birth. 

Column 1 explores whether infants whose birth weight falls below the 1200-gram 

threshold are more likely to have a routine discharge and Column 2 examines the 

possibility of substituting towards other venues for care such as a Home Health 

Care, Skilled Nursing Facility or Intermediate Care Facility. Finally Column 3 
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examines whether infants below the threshold are less likely to die in their 

originating birth hospital. We find no statistical support to suggest that eligible 

infants have differential routine discharges or that parents substitute other forms 

of care for hospital care. Our estimates for death suggest that SSI eligible infants 

are less likely to have death as a reason for discharge. Taken together with the 

length of stay results in Table 5, these estimates suggest that the true effect of SSI 

on length of stay may be even larger (greater reduction) since the estimated 

decrease in the length of stay at birth is likely offset by increases in stay lengths 

due to fewer infant in-hospital deaths.27 

C. Infant Mortality, VS-L 
 We examine the effects of SSI on infant mortality further using the linked 

birth and infant death data from 2001 for all states and report these estimates in 

Table 8. These results examine infant mortality (Column 1), neonatal infant 

mortality (Column 2), and post-neonatal infant mortality (Column 3). The 

direction of the estimates is mixed and only one estimate is statistically 

significant. In Appendix Table 5 we perform the analysis for a period that 

overlaps our HCUP-SID analysis and in Appendix Table 6 we report the analysis 

for 2001 on the subset of states also available for our HCUP-SID analysis. These 

estimates are similarly mixed in sign and only one estimate is statistically 

significant. Taken together these estimates offer little evidence of a relationship 

between SSI and infant mortality. Together with the HCUP-SID results, our 

findings suggest that SSI may decrease discharge due to death, but we do not find 

evidence of an effect for infant mortality overall. 

     

D. Early Child Development, ECLS-B 

27 Infants who are most likely to die presumably have the longest hospital stays.  
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 Table 9 examines the effects of SSI participation on the Bayley Mental 

and Motor tests, as well as on the NCATS parent and child scores.  We find no 

significant effects on cognitive development as measured by the Bayley Mental 

test, but we do find positive and significant effects of SSI eligibility on T-Scores 

for the Bayley Motor Test.  These results suggest an increase of between 4 and 8 

points – roughly half of a standard deviation increase.  We also find significant 

positive effect on parent-child relationships as measured by the NCATs parent 

test, with coefficients across the specifications suggesting an increase of 3-4 

points, or about a standard deviation increase.      

E. Maternal Labor Supply, ECLS-B 
The results presented above suggest that the income associated with SSI 

has positive effects on health, on early childhood development, and on parenting 

behaviors.  One possibility for these findings, (as discussed in Section II), is that 

SSI alters the time allocation of mothers. In Table 10, we examine the intention to 

treat effects of SSI receipt on maternal labor supply.  We find no significant 

effects of SSI receipt on the extensive margin of labor supply – there is no effect 

on the probability that the mother works at all, or on her probability of being out 

of the labor force.  However, mothers of infants just under the 1200g cutoff are 

significantly less likely to work full time and significantly more likely to work 

part time.  Results from the linear polynomial model with 200g bandwidth 

suggest a decrease in full time work of 21 percentage points (on a baseline 

likelihood of 23%), and an increase in part time work of 19 percentage points (on 

a baseline probability of 19%).  These results suggest that one way SSI eligibility 

could affect family outcomes is by freeing up some time for mothers of these 

particularly vulnerable infants. These results accord with Desphande (2015) who 

finds that parents increase their earnings when their child loses SSI. We offer 
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symmetric evidence that parents reduce their work time when their child receives 

SSI.  

VI. Discussion and Conclusion  

 Low birth weight infants born to mothers with low educational attainment 

have a double hurdle to overcome in the production of human capital. In this 

paper we examine whether income transfers, in the form of SSI payment, can help 

close the gap in outcomes due to this initial health and environmental 

disadvantage.  

Using a regression discontinuity approach, we find that SSI eligibility for 

low birth weight infants increases receipt of family disability benefits, but has no 

effect on health insurance coverage (perhaps unsurprising given the near universal 

coverage in our sample).  SSI eligibility reduces infants’ length of stay in the 

hospital and reduces the chance that the infant dies in the hospital. In addition, 

SSI eligibility significantly improves infant development of early motor skills and 

parenting behaviors, and reduces maternal labor supply on the intensive margin.   

Many of our key results are attributable to the ECLS-B. As such, the usual 

caveats of studies on a single cohort, in this case individuals born in 2001, apply. 

We also caution that while these results are credible for the target group, very low 

birth weight infants in families with few resources, we would not necessarily 

expect to find similar effects for individuals of higher birth weight or for 

individuals born into families with greater resources.  

Our results are important for several reasons. First, they provide credible 

estimates of the effect of SSI on child outcomes. This is an important contribution 

since a large number of public dollars are spent on SSI each year yet the benefits 

of this expenditure are not well understood. Second, they provide further evidence 

that post-birth investment made early in childhood, before age 5, can have 

meaningful effects on immediate and later outcomes. Third, they show that the 
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effects appear to be concentrated among the segment of the population with the 

fewest resources.   
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Figure 1: Percentage distribution of diagnostic group among child SSI awardees, 1983-2015 

 
Source: Social Security Administration 
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Figure 2: Heaping (Panel ECLS-B) 
ECLS-B, Full sample with high school or less
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Figure 3: McCrary Density  

  

 

 



 

 

Figure 4: First Stage/ECLS-B 

 

  

 

 



Table 1: Summary Statistics 
 

 Mean SD Min Max 
 Panel A: ECLS-Ba     
SSI/SSDI receipt 0.311 0.463 0.0 1.0 
Any health insurance coverage 0.980 0.139 0.0 1.0 
Private health insurance coverage 0.281 0.450 0.0 1.0 
Public health insurance coverage 0.772 0.420 0.0 1.0 
Child is male 0.503 0.500 0.0 1.0 
Child is nonwhite 0.651 0.477 0.0 1.0 
Mother not married 0.608 0.489 0.0 1.0 
Apgar score 7.667 1.517 1.0 10.0 
Mother works  0.356 0.479 0.0 1.0 
Mother works full time 0.234 0.424 0.0 1.0 
Mother works part time 0.121 0.326 0.0 1.0 
Mother not in labor force 0.525 0.500 0.0 1.0 
Bayley mental t-score 43.167 14.262 -16.7 92.6 
Bayley motor t-score 45.017 11.654 -9.3 80.0 
Nursing child assessment teaching scale – parent 33.010 4.503 17.0 48.0 
Nursing child assessment teaching scale – child 14.729 2.781 7.0 23.0 
     
Panel B: HCUP-SIDb 

     
Primary Expected Payer Birth: Medicaid� 0.604 0.489 0 1 
Primary Expected Payer Birth: Medicaid + Other 
Gov.� 0.623 0.485 0 1 
Primary Expected Payer Birth: Private Insurance 0.326 0.469 0 1 
Primary Expected Payer Birth: Self Pay 0.049 0.216 0 1 
Num. of Hospital Revisits: Neonatal Period 0.030 0.182 0 3 
Num. of Hospital Revisits: 9 months 0.187 0.562 0 9 
Num. of Hospital Revisits: 1 Year 0.211 0.628 0 12 
Num. of Hospital Revisits: 2 Years 0.261 0.785 0 18 
Days in Hospital: At Birth 40.970 33.620 0 354 
Days in Hospital: Neonatal Period 21.721 8.908 0 27 
Days in Hospital: 9 months 43.581 34.924 0 270 
Days in Hospital: 1 Year 43.828 35.514 0 365 
Days in Hospital: 2 Years 44.464 35.897 0 503 
Birth Discharge Reason: Routine 0.558 0.497 0 1 
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Birth Discharge Reason: Transfer 0.309 0.462 0 1 
Birth Discharge Reason: Death 0.132 0.339 0 1 
Birth weight in grams 1321.84 563.87 230 9000 
Child is male        0.522 0.500 0 1 
Child is singleton   0.786 0.410 0 1 
Child is nonwhite    0.683 0.465 0 1 
Arizona              0.097 0.296 0 1 
North Carolina       0.035 0.183 0 1 
New York             0.869 0.338 0 1 
Year                 2008.8 2.032 2006 2012 
     
Panel C: Linked Birth/infant Death Birth Cohort 
Data Setc     
Infant mortality     0.135 0.342 0 1 
Post neonatal mortality 0.020 0.141 0 1 
Neonatal mortality   0.114 0.318 0 1 
Birth weight in grams 1732.017 941.744 227 5387 
Gestational age      28.804 3.213 20 32 
Child is male        0.535 0.499 0 1 
Child is singleton   0.837 0.369 0 1 
Apgar score         7.435 2.398 0 10 
Mom is nonwhite      0.615 0.487 0 1 
Mom's age            24.836 6.550 14 45 
Mom is nonmarried    0.609 0.488 0 1 
Mom drank during pregnancy 0.018 0.133 0 1 
Mom smoked during pregnancy 0.206 0.405 0 1 
Any pregnancy risk   0.487 0.500 0 1 

Notes:  
aAll variables from the ECLS-B 9-month wave, with the exception of SSI/SSDI receipt. SSI/SSDI 
receipt asked in the 2-year wave (“Has anyone in the household received SSI/SSDI since the 9-
month wave?”) Observations rounded to the nearest 50 as per NCES confidentiality restrictions. 
Sample limited to infants with mother with a high school degree or less and gestational age <=32 
weeks.  Infants born at 32 weeks between 1200g and 1250g were dropped from the sample.  Total 
number of observations is 650.   
bAll variables from the  HCUP-SID AZ 2006-2007, NC 2006-2010 and NY 2006-2012 databases. 
Sample limited to infants living in the bottom 3 quartiles of the zip code income distribution and 
gestational age <=32 weeks.  Infants born at 32 weeks between 1200g and 1250g were dropped 
from the sample. Total number of observations is 20,673.
cAll variables from NCHS 2001 Linked Birth/infant Death Birth Cohort Data Set . Sample limited 
to infants with mother with a high school degree or less and gestational age <=32 weeks.  Infants 
born at 32 weeks between 1200g and 1250g were dropped from the sample. Total number of 
observations is 60460. 
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Table 2: Pretreatment Characteristics at the 1200g Cutoff 
Panel A: ECLS-Ba 

   (1) (2) (3) (4) 

 
Male Nonwhite Mom Unmarried 

Apgar 
score 

          
Parametric Model - within 200g window 

  Flexible linear -0.036 0.063 0.237* 0.027 

 
(0.131) (0.122) (0.124) (0.248) 

     Flexible quadratic -0.011 0.177 0.219 -0.006 

 
(0.212) (0.182) (0.186) (0.497) 

     Observations 250 250 250 200 

     Parametric Model - within 150g window 
  Flexible linear -0.010 0.109 0.213 0.152 

 
(0.153) (0.109) (0.187) (0.270) 

     Flexible quadratic -0.035 0.078 0.220 -0.233 

 
(0.252) (0.191) (0.232) (0.454) 

     Observations 150 150 150 150 

     Nonparametric - local linear within CCFT window 
 

 
-0.021 0.145 0.249* -0.069 

 
(0.150) (0.149) (0.147) (0.299) 

     Observations 650 650 650 550 
Eff obs left 200 150 150 150 
Eff obs right 150 150 150 150 
BW Local Poly 278.9 224.7 263.1 343.7 

 

 



 
Panel B: HCUP-SIDb  (1) (2) (3) (4) (5) (6) (7) 

  
Child is 

male 
Child is 

singleton 
Child is 

nonwhite Arizona 
North 

Carolina New York Year 
Parametric Model - within 200g window 

     Flexible linear -0.0447 -0.0163 0.0047 0.0332** -0.0081 -0.0251 0.0302 

 
(0.0279) (0.0257) (0.0259) (0.0154) (0.0086) (0.0192) (0.1090) 

        Flexible quadratic 
       

 
-0.0541 -0.0039 0.0305 0.0469** -0.0017 -0.0452 -0.0558 

 
(0.0465) (0.0388) (0.0400) (0.0214) (0.0149) (0.0323) (0.1688) 

        Observations 5202 4609 4903 5202 5202 5202 5202 

        Parametric Model - within 150g window 
      Flexible linear 

       
 

-0.0465 -0.0023 0.0268 0.0367** -0.0051 -0.0316 0.0586 

 
(0.0318) (0.0260) (0.0325) (0.0161) (0.0107) (0.0230) (0.1334) 

Flexible quadratic 
      

 
-0.0731 -0.0437 0.0025 0.0520* -0.0125 -0.0395 -0.1113 

 
(0.0572) (0.0430) (0.0439) (0.0297) (0.0186) (0.0351) (0.1959) 

        Observations 3847 3408 3634 3847 3847 3847 3847 

        Nonparametric - local linear within CCFT window 
    

 
-0.0441 -0.0177 0.0166 0.0356** -0.0055 -0.0358* 0.0588 

 

 



 
(0.0298) (0.0283) (0.0300) (0.0159) (0.0116) (0.0203) (0.1156) 

        Observations 20673 18532 19538 20673 20673 20673 20673 
Eff obs left 4443 3205 3761 4458 3608 3598 4448 
Eff obs right 3986 2929 3416 4008 3346 3339 3995 
BW Local Poly 321 266 291 324 269 266 321 

 
 
Panel C:VS-L c  

            (1) (2) (3) (4) (5) (6) (7) (8) (9) 

  
Mom is 

nonwhite 
Mom's 

Age 
Mom is 

unmarried 

Mom 
drank 
while 

pregnant 

Mom 
smoked 
while 

pregnant 

Any 
preg 
risk 

Child is 
male 

Child is 
single-

ton 
Apgar 
score 

Parametric Model - within 200g window 
       Flexible linear 0.0243 -0.4623** 0.0048 -0.0023 -0.0333** 0.0103 -0.0445** 0.0061 -0.0319 

 
(0.0242) (0.2355) (0.0206) (0.0057) (0.0165) (0.0239) (0.0204) (0.0143) (0.0799) 

          Flexible quadratic 0.0752** -0.4720 0.0340 -0.0094 -0.0293 -0.0258 -0.1043*** -0.0023 -0.1374 

 
(0.0313) (0.4545) (0.0314) (0.0068) (0.0283) (0.0307) (0.0317) (0.0226) (0.1220) 

          Observations 9880 9880 9880 8893 8921 9751 9880 9880 7946 

          Parametric Model - within 150g window 
        Flexible linear 0.0531** -0.6539** 0.0188 -0.0087 -0.0341* -0.0010 -0.0626*** -0.0023 -0.0804 

 
(0.0254) (0.2768) (0.0219) (0.0066) (0.0195) (0.0253) (0.0212) (0.0250) (0.0842) 
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          Flexible quadratic 0.0501 -0.0086 0.0206 -0.0011 -0.0263 -0.0319 -0.1058*** 0.0141 -0.1345 

 
(0.0344) (0.4625) (0.0370) (0.0119) (0.0308) (0.0309) (0.0332) (0.0361) (0.1503) 

          Observations 7223 7223 7223 6496 6518 7134 7223 7223 5814 

          Nonparametric - local linear within CCFT window 
      

 
0.0318 -0.5754* 0.0122 -0.0069 -0.0321* -0.0018 -0.0587*** 0.0061 -0.1163 

 
(0.0214) (0.3366) (0.0207) (0.0068) (0.0172) (0.0231) (0.0214) (0.0204) (0.1032) 

          Observations 60460 60460 60460 54042 54184 59817 60460 60460 47513 
Eff obs left 7022 4894 7939 4367 7768 5623 7069 5751 3339 
Eff obs right 7123 4997 8035 4436 7770 6233 7176 6349 3434 
BW Local Poly 275 202 316 197 334 239 280 242 170 

Notes:  
a Data from the ECLS-B.  All regressions limited to infants with mother with a high school degree or less and gestational age <=32 weeks.  
Infants born at 32 weeks between 1200 and 1250 grams were dropped from the sample. All sample sizes rounded to nearest 50 as per NCES 
confidentiality restrictions.  Parametric regressions have bootstrapped and non-parametric regressions have robust standard errors in 
parentheses.  
b Data from the HCUP-SID AZ 2006-2007, NC 2006-2010 and NY 2006-2012 databases. All regressions limited to infants living in bottom 3 
zip code income quartiles and gestational age <=32 weeks.  Infants born at 32 weeks between 1200g and 1250g were dropped from the sample. 
Parametric regressions have bootstrapped and non-parametric regressions have robust standard errors in parentheses.  
c Data from the NCHS 2001 Linked Birth/infant Death Birth Cohort Data Set.  All regression limited to infants with mother with a high school 
degree or less and gestational age <=32 weeks.  Infants born at 32 weeks between 1200g and 1250g were dropped from the sample. Parametric 
regressions have bootstrapped and non-parametric regressions have robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1.
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Table 3: First Stage, ECLS-B 
 
  (1) (2) (3) (4) 

VARIABLES 

Received 
SSI/SSDI since 
last interview 

Any Health 
Insurance 
Coverage 

Private Health 
Insurance 
Coverage 

Public Health 
Insurance 
Coverage 

          
Parametric Model - within 200g window 

  Flexible linear 0.248** 0.005 0.012 -0.044 

 
(0.126) (0.043) (0.111) (0.086) 

     Flexible quadratic 0.322 -0.042 -0.171 0.041 

 
(0.200) (0.092) (0.143) (0.145) 

     Observations 250 250 250 250 

     Parametric Model - within 150g window 
  Flexible linear 0.296** -0.021 -0.074 -0.054 

 
(0.142) (0.060) (0.108) (0.084) 

     Flexible quadratic 0.230 -0.014 -0.161 0.163 

 
(0.167) (0.110) (0.149) (0.197) 

     Observations 150 150 150 150 

     
     Nonparametric - local linear within CCFT window 

 
 

0.320** -0.005 -0.100 -0.041 

 
(0.155) (0.065) (0.144) (0.115) 

     Observations 600 650 650 650 
Eff obs left 100 150 100 200 
Eff obs right 100 150 100 200 
BW Local Poly 207 268.7 205.9 375.2 
Notes: Data source is ECLS-B 9-month wave, except SSI receipt which is measured at 2-years.  All regressions 
limited to infants with mother with a high school degree or less and gestational age <=32 weeks.  Infants born at 
32 weeks between 1200 and 1250 grams were dropped from the sample.  
All sample sizes rounded to nearest 50 as per NCES confidentiality restrictions.  Parametric regressions have 
bootstrapped and non-parametric regressions have robust standard errors in parentheses.  
 
*** p<0.01, ** p<0.05, * p<0.1 

    
  

 

 



Table 4: Primary Expected Payer of Birth, HCUP-SID 
  (1) (2) (3) (4) 

Primary Expected Payer of Birth Medicaid 
Gov. 

Program 
Private 

Insurance Self Pay 
Parametric Model - within 200g window 

  Flexible linear -0.0148 -0.0028 0.0266 -0.0241** 

 
(0.0254) (0.0285) (0.0259) (0.0111) 

     Flexible quadratic -0.0328 -0.0148 0.0533 -0.0387** 

 
(0.0437) (0.0457) (0.0332) (0.0155) 

     Observations 5202 5202 5202 5202 

     Parametric Model - within 150g window 
   Flexible linear -0.0199 -0.0034 0.0297 -0.0276** 

 
(0.0313) (0.0317) (0.0286) (0.0112) 

     Flexible quadratic 
   

 
-0.0425 -0.0335 0.0775* -0.0420*** 

 
(0.0490) (0.0457) (0.0466) (0.0148) 

     Observations 3847 3847 3847 3847 

     Nonparametric - local linear within CCFT window 
 

 
-0.0200 -0.0083 0.0389 -0.0312** 

 
(0.0302) (0.0295) (0.0268) (0.0125) 

     Observations 20672 20672 20672 20672 

Eff obs left 3983 4149 4675 2765 

Eff obs right 3629 3767 4155 2709 

BW Local Poly 292 302 335 212 
Notes: Data source is from HCUP-SID AZ 2006-2007, NC 2006-2010 and NY 2006-2012 
databases. Other government programs include Medicare, and other state and local programs like 
Indian Services or programs for the indigent. All regressions limited to infants living in bottom 3 
zip code income quartiles and gestational age <=32 weeks.  Infants born at 32 weeks between 
1200 and 1250 grams were dropped from the sample. Parametric regressions have bootstrapped 
and non-parametric regressions have robust standard errors in parentheses. *** p<0.01, ** p<0.05, 
* p<0.1 
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Table 5: Length of Stay, HCUP-SID 

  (1) (2) (3) (4) (5) 
Days in Hospital Including At Birth At Birth Neonatal 

Period 
9 months 1 Year 2 Years 

Parametric Model - within 200g window 
  Flexible linear -1.5846 0.3263 -1.4085 -1.0492 -1.0539 

 
(1.2131) (0.3137) (1.0729) (1.2940) (1.6053) 

      Flexible quadratic -3.7015** 0.3941 -3.9908** -3.5729** -3.2367* 

 
(1.5705) (0.4317) (1.8832) (1.6945) (1.8904) 

      Observations 5202 5199 4664 4451 3545 

      Parametric Model - within 150g window 
    Flexible linear -2.4099* 0.2657 -2.4888* -2.1390 -1.8961 

 
(1.3328) (0.3129) (1.4079) (1.3112) (1.7567) 

      Flexible quadratic -4.4935* 0.6917 -4.4646* -3.9266* -3.6260 

 
(2.3067) (0.4921) (2.3731) (2.3488) (2.2262) 

      Observations 3847 3845 3441 3293 2626 

      Nonparametric - local linear within CCFT window 
  

 
-3.7912* 0.5130 -3.8744** -3.3260* -3.0745 

 
(1.9653) (0.4415) (1.9758) (2.0186) (2.2243) 

      Observations 20669 20608 18346 17449 13607 
Eff obs left 1724 1927 1507 1475 1265 
Eff obs right 1760 1945 1542 1513 1259 
BW Local Poly 139 154 135 139 145 

Notes: Data source is from HCUP-SID AZ 2006-2007, NC 2006-2010 and NY 2006-2012 
databases. Length of stay at birth includes length of stay in originating hospital plus any transfers. 
Columns 2 through 5 report cumulative days spent in the hospital within the given time period. 
This cumulative measure captures the total number of days spent in the hospital, summing the 
length of stay at birth as well as any hospital readmissions later in childhood.  All regressions 
limited to infants with living in bottom 3 zip code income quartiles and gestational age <=32 
weeks.  Infants born at 32 weeks between 1200 and 1250 grams were dropped from the sample. 
Parametric regressions have bootstrapped and non-parametric regressions have robust standard 
errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 6: Hospital Readmissions, HCUP-SID 
  (1) (2) (3) (4) 

Number of Hospital Readmissions 
Neonatal 
Period 9 months 1 Year 2 Years 

Parametric Model - within 200g window 
 Flexible linear 0.0054 0.0045 0.0078 0.0114 

 
(0.0113) (0.0400) (0.0450) (0.0602) 

     Flexible quadratic 0.0108 -0.0277 -0.0234 -0.0473 

 
(0.0184) (0.0660) (0.0545) (0.0670) 

     Observations 5199 4664 4451 3545 

     Parametric Model - within 150g window 
   Flexible linear 0.0056 -0.0033 -0.0030 -0.0105 

 
(0.0122) (0.0385) (0.0459) (0.0551) 

     Flexible quadratic 0.0187 -0.0399 -0.0349 -0.0686 

 
(0.0261) (0.0632) (0.0709) (0.1010) 

     Observations 3845 3441 3293 2626 

     Nonparametric - local linear within CCFT window 

 
0.0075 -0.0078 -0.0031 -0.0218 

 
(0.0113) (0.0417) (0.0449) (0.0677) 

     Observations 20612 18350 17453 13611 
Eff obs left 4289 2878 2917 1982 
Eff obs right 3889 2752 2765 1941 
BW Local Poly 312 241 255 221 

Notes: Data source is from HCUP-SID AZ 2006-2007, NC 2006-2010 and NY 2006-2012 
databases. All regressions limited to infants living in bottom 3 zip code income quartiles with 
gestational age <=32 weeks.  Infants born at 32 weeks gestation with birth weights between 1200 
and 1250 grams were dropped from the sample. Parametric regressions have bootstrapped and 
non-parametric regressions have robust standard errors in parentheses. *** p<0.01, ** p<0.05, * 
p<0.1 
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Table 7: Discharge Reason Birth Hospitalization, HCUP-SID 

      (1) (2) (3) 

Discharge Reason Routine Transfer Death 
Parametric Model - within 200g window 

 Flexible linear 0.0380 -0.0132 -0.0258** 

 
(0.0290) (0.0265) (0.0115) 

    Flexible quadratic -0.0083 0.0286 -0.0213 

 
(0.0463) (0.0412) (0.0213) 

    Observations 5202 5202 5202 

    Parametric Model - within 150g window 
  Flexible linear 0.0132 0.0059 -0.0203 

 
(0.0272) (0.0306) (0.0147) 

    Flexible quadratic 0.0006 0.0276 -0.0287 

 
(0.0410) (0.0587) (0.0244) 

    Observations 3847 3847 3847 

    Nonparametric - local linear within CCFT window 

 
0.0211 0.0137 -0.0241 

 
(0.0360) (0.0363) (0.0181) 

    Observations 20672 20672 20672 
Eff obs left 2768 2521 1974 
Eff obs right 2712 2414 1986 
BW Local Poly 213 193 155 

Notes: Data source is from HCUP-SID AZ 2006-2007, NC 2006-2010 and NY 2006-2012 
databases. Discharge reason is discharge reason at originating birth hospitalization. All regressions 
limited to infants living in the bottom 3 zip code income quartiles with gestational age <=32 
weeks.  Infants born at 32 weeks gestation with birth weights between 1200 and 1250 grams were 
dropped from the sample. Parametric regressions have bootstrapped and non-parametric 
regressions have robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 8: Infant Mortality-VS-L 2001 Birth Cohort, All States 
  (1) (2) (3) 

  
Infant 

Mortality 

Post 
Neonatal 
Mortality 

Neonatal 
Mortality 

Parametric Model - within 200g window 
 Flexible linear -0.0036 -0.0011 -0.0020 

 
(0.0105) (0.0068) (0.0082) 

    Flexible quadratic 0.0054 0.0053 0.0019 

 
(0.0143) (0.0074) (0.0104) 

    Observations 9880 9880 9880 

    Parametric Model - within 150g window 
  Flexible linear 0.0001 0.0003 0.0008 

 
(0.0118) (0.0059) (0.0085) 

    Flexible quadratic 0.0179 0.0142* 0.0058 

 
(0.0159) (0.0085) (0.0130) 

    Observations 7223 7223 7223 

    Nonparametric - local linear within CCFT window 

 
0.0107 0.0034 0.0065 

 
(0.0140) (0.0062) (0.0118) 

    Observations 60460 60460 60460 
Eff obs left 3484 7041 3392 
Eff obs right 3629 7147 3545 
BW Local Poly 146 275 139 

Notes: Data from NCHS 2001 Linked Birth/infant Death Birth Cohort Data Set.  All regressions 
limited to infants with mother with a high school degree or less and  gestational age <=32 weeks.  
Infants at 32 weeks gestation with birth weights between 1200 and 1250 grams were dropped from 
the sample. Parametric regressions have bootstrapped and non-parametric regressions have robust 
standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 9: Child Development at 9-month wave, ECLS-B 
  (1) (2) (3) (4) 

 

Bayley  
Mental  
T-Score 

Bayley  
Motor  

T-Score 

Nursing Child 
Assessment 

Teaching Scale – 
Parent Score 

Nursing Child 
Assessment 

Teaching Scale –
Child Score 

          
Parametric Model - within 200g window 

  Flexible linear 0.768 3.688 3.313** 0.762 

 
(3.343) (3.092) (1.676) (0.829) 

     Flexible quadratic 2.305 8.402** 3.404 0.710 

 
(4.622) (3.671) (2.702) (1.118) 

     Observations 250 250 200 200 

     Parametric Model - within 150g window 
  Flexible linear 0.353 5.589* 3.270 0.629 

 
(3.633) (3.244) (2.300) (0.854) 

     Flexible quadratic 5.961 6.806 3.942 1.415 

 
(4.921) (4.270) (2.629) (1.263) 

     Observations 150 150 150 150 

     
     Nonparametric - local linear within CCFT window 

 
 

1.656 6.381** 3.555* 0.861 

 
(4.159) (3.070) (1.973) (0.971) 

     Observations 650 600 500 500 
Eff obs left 150 100 150 100 
Eff obs right 150 100 150 100 
BW Local Poly 231.7 206.1 255.8 244.9 
Notes: Data source is the ECLS-B, 9-month wave.  All regressions limited to infants with mother with education 
of high school or less and gestational age <=32 weeks.  Infants born at 32 weeks between 1200g and 1250g were 
dropped from the sample.   
Parametric regressions have bootstrapped and non-parametric regressions have robust standard errors in 
parentheses.  All sample sizes rounded to nearest 50 as per NCES confidentiality restrictions.   
*** p<0.01, ** p<0.05, * p<0.1 
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Table 10: Maternal Labor Supply at 9 month wave, ECLS-B 
  (1) (2) (3) (4) 

VARIABLES 
Mother 

Employed 
Mother Works 

Full Time 
Mother Works 

Part Time 
Mother Not  

In Labor Force 
          
Parametric Model - within 200g window 

  Flexible linear -0.028 -0.214* 0.187* 0.001 

 
(0.133) (0.126) (0.097) (0.132) 

     Flexible quadratic -0.050 -0.199 0.149 0.059 

 
(0.204) (0.159) (0.138) (0.226) 

     Observations 250 250 250 250 

     Parametric Model - within 150g window 
  Flexible linear -0.150 -0.276** 0.126 0.082 

 
(0.163) (0.123) (0.085) (0.151) 

     Flexible quadratic 0.220 -0.069 0.289* -0.152 

 
(0.209) (0.160) (0.151) (0.197) 

     Observations 150 150 150 150 

     
     Nonparametric - local linear within CCFT window 

 
 

-0.054 -0.237* 0.181* 0.018 

 
(0.155) (0.130) (0.104) (0.161) 

     Observations 650 650 650 650 
Eff obs left 150 150 150 150 
Eff obs right 150 100 150 150 
BW Local Poly 242.6 207.9 257.2 244.4 

Notes:  
Data source is the ECLS-B, 9 month wave. All regressions limited to infants with mothers with 
education of high school or less and gestational age <=32 weeks.  Infants born at 32 weeks 
between 1200g and 1250g were dropped from the sample. Parametric regressions have 
bootstrapped and non-parametric regressions have robust standard errors in parentheses.  All 
sample sizes rounded to nearest 50 as per NCES confidentiality restrictions. *** p<0.01, ** 
p<0.05, * p<0.1 
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Appendix Table 1: SSA Birth weight Cutoffs by Gestational Age 
Gestational Age (in weeks) Birth weight (in grams) Birth weight (in lbs. and oz.) 

≥ 37-40 ≤ 2000 4 lbs 6.50 oz 
≥ 36 ≤ 1875 4 lbs 2.14 oz 
≥ 35 ≤ 1700 3 lbs 11.97 oz 
≥ 34 ≤ 1500 3 lbs 4.91 oz 
≥ 33 ≤ 1325 2 lbs 14.74 oz 
≥ 32 ≤ 1250 2 lbs 12.09 oz 
Any < 1200 2 lbs 10.33 oz 

Source: SSA Program Operations Manual System (POMS) 
 

Appendix Table 2: Means of Key Variables by Heaping Type, ECLS-B 

  
Analysis 
sample 

No oz 
heaps 

No 100g 
heaps 

No oz or 
100g 
heaps 

SSI/SSDI receipt 0.311 0.297 0.315 0.307 
Any health insurance coverage 0.980 0.976 0.983 0.978 
Private health insurance coverage 0.281 0.289 0.277 0.277 
Public health insurance coverage 0.772 0.791 0.774 0.799 
Child is male 0.503 0.463 0.506 0.465 
Child is nonwhite 0.651 0.703 0.652 0.713 
Mother not married 0.608 0.614 0.610 0.622 
Apgar score 7.667 7.718 7.650 7.668 
Mother works  0.356 0.292 0.359 0.294 
Mother works full time 0.234 0.218 0.236 0.219 
Mother works part time 0.121 0.074 0.123 0.075 
Mother not in labor force 0.525 0.593 0.523 0.592 
Bayley mental t-score 43.167 43.000 43.213 43.143 
Bayley motor t-score 45.017 45.008 44.994 44.987 
Nursing child assessment teaching scale - parent 33.010 33.047 33.040 33.156 
Nursing child assessment teaching scale - child 14.729 14.766 14.727 14.729 
Observations 650 250 650 250 
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Appendix Table 3a: Characteristics of Infants at 42oz and 43oz heaps, 
ECLS-B 

  
42 oz  

(1191g) 
43 oz  

(1219 g) difference t-statistic 
Child is male 0.455 0.385 -0.070 (-0.33) 
Child is nonwhite 0.455 0.231 -0.224 (-1.14) 
Mother not married 0.636 0.462 -0.175 (-0.83) 
Apgar score 7.700 7.846 0.146 (0.36) 

 Number of Observations 
Rounds  
to zero 

Rounds  
to zero     

* p<0.10, **p<0.05, *** p<0.01 
     Number of Observations masked due to data NCES policy. See Notes to Table 3. 

Appendix Table 3b: Characteristics of Infants at 42oz and 43oz heaps, VS-L 

 42 oz (1191g) 43 oz  
(1219 g) difference t-statistic 

Child is male 0.486 0.528 0.042 1.366 
Child is nonwhite 0.390 0.345 -0.044 -1.510 
Mother not married 0.422 0.429 0.008 0.251 
Apgar score* 7.497 7.677 0.180 1.588 

Number of Observations 508 576     
* p<0.10, **p<0.05, *** p<0.01 

   Data Source: Linked Birth and Infant Health Data, 2001 
Sample limited to infants with mother with a high school degree or less and gestational age <=32 
weeks.  Infants born at 32 weeks between 1200g and 1250g were dropped from the sample.For 
Apgar, number of observations is: 376 (42 oz) and 465 (43 oz).  

48 

 



Appendix Table 4: Top Ten Hospital Revisit Primary Diagnoses, HCUP-SID 
Three 
Digit ICD-
9 Code Diagnosis Percent 
466 Acute bronchitis and bronchiolitis 15.53 
493 Asthma 7.59 
486 Pneumonia, organism unspecified 5.83 
765 Disorders relating to short gestation and low birth weight 5.11 
770 Other respiratory conditions of fetus and newborn 4.87 
530 Diseases of esophagus 4.01 
550 Inguinal hernia 3.58 
518 Other diseases of lung 2.52 
769 Respiratory distress syndrome in newborn 2.44 
276 Disorders of fluid electrolyte and acid-base balance 2.41 

     Total 53.89 
Notes: Data from the HCUP-SID AZ 2006-2007, NC 2006-2010 and NY 2006-2012 databases. 
The sample is limited to infants with living in bottom 3 zip code income quartiles and gestational 
age <=32 weeks.  Infants born at 32 weeks between 1200 and 1250g were dropped from the 
sample. 
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Appendix Table 5: Infant Mortality-VS-L 2006 to 2010 Birth Cohorts, All 
States 
  (1) (2) (3) 

  
Infant 

Mortality 
Post Neonatal 

Mortality 
Neonatal 
Mortality 

Parametric Model - within 200g window 
 Flexible linear 0.0022 0.0020 0.0005 

 
(0.0043) (0.0024) (0.0033) 

    Flexible quadratic 0.0035 0.0040 -0.0001 

 
(0.0070) (0.0039) (0.0063) 

    Observations 49605 49605 49605 

    Parametric Model - within 150g window 
   Flexible linear 0.0030 0.0028 0.0009 

 
(0.0052) (0.0035) (0.0042) 

    Flexible quadratic -0.0023 0.0046 -0.0070 

 
(0.0076) (0.0040) (0.0073) 

    Observations 36033 36033 36033 

    Nonparametric - local linear within CCFT window 

 
-0.0010 0.0041 -0.0053 

 
(0.0074) (0.0033) (0.0065) 

    Observations 298687 298687 298687 
Eff obs left 14596 21745 13714 
Eff obs right 16567 23370 13913 
BW Local Poly 130 182 113 
 Notes: Data from NCHS 2006 to 2010 Linked Birth/infant Death Birth Cohort Data Set. All 
regressions limited to infants with mother with a high school degree or less and gestational age 
<=32 weeks.  Infants at 32 weeks gestation with birth weights between 1200 and 1250 grams were 
dropped from the sample. Parametric regressions have bootstrapped and non-parametric 
regressions have robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix Table 6: Infant Mortality-VS-L 2001 Birth Cohort, AZ, NC and 
NY 
  (1) (2) (3) 

  
Infant 

Mortality 

Post 
Neonatal 
Mortality 

Neonatal 
Mortality 

Parametric Model - within 200g window 
 Flexible linear -0.0015 -0.0205 0.0190 

 
(0.0294) (0.0169) (0.0231) 

    Flexible quadratic -0.0083 -0.0444 0.0361 

 
(0.0498) (0.0303) (0.0329) 

    Observations 883 883 883 

    Parametric Model - within 150g window 
  Flexible linear -0.0117 -0.0409 0.0293 

 
(0.0329) (0.0268) (0.0317) 

    Flexible quadratic 0.0688 -0.0014 0.0702* 

 
(0.0517) (0.0408) (0.0372) 

    Observations 632 632 632 

    Nonparametric - local linear within CCFT window 

 
-0.0042 -0.0265 0.0348 

 
(0.0380) (0.0214) (0.0288) 

    Observations 5580 5580 5580 
Eff obs left 422 564 365 
Eff obs right 449 636 441 
BW Local Poly 190 265 181 

Notes: Data from NCHS 2001 Linked Birth/infant Death Birth Cohort Data Set from AZ, NC, and 
NY. All regressions limited to infants with mother with a high school degree or less and 
gestational age <=32 weeks.  Infants at 32 weeks gestation with birth weights between 1200 and 
1250 grams were dropped from the sample. Parametric regressions have bootstrapped and non-
parametric regressions have robust standard errors in parentheses. *** p<0.01, ** p<0.05, * 
p<0.10 

51 

 


	I.  Introduction
	II. Background and Institutional Context
	A. Income Transfers and Child Outcomes
	B. Supplemental Security Income for Children
	C. Child SSI eligibility for Low Birth Weight Infants

	III. Data
	A. Early Childhood Longitudinal Study, Birth Cohort (ECLS-B)
	B. The Healthcare Cost and Utilization Project State Inpatient Databases (HCUP-SID)
	C. Linked Birth/infant Death Birth Cohort Data Set

	IV. Methods
	V. Results
	A. SSI Eligibility and SSI Enrollment, ECLS-B
	B. Post-Birth Hospital Outcomes, HCUP-SID
	C. Infant Mortality, VS-L
	D. Early Child Development, ECLS-B
	E. Maternal Labor Supply, ECLS-B

	VI. Discussion and Conclusion
	References
	Figure 1: Percentage distribution of diagnostic group among child SSI awardees, 1983-2015
	Figure 2: Heaping (Panel ECLS-B)
	Figure 3: McCrary Density
	Figure 4: First Stage/ECLS-B
	Table 1: Summary Statistics
	Table 2: Pretreatment Characteristics at the 1200g Cutoff
	Table 3: First Stage, ECLS-B
	Table 4: Primary Expected Payer of Birth, HCUP-SID
	Table 5: Length of Stay, HCUP-SID
	Notes: Data source is from HCUP-SID AZ 2006-2007, NC 2006-2010 and NY 2006-2012 databases. Length of stay at birth includes length of stay in originating hospital plus any transfers. Columns 2 through 5 report cumulative days spent in the hospital wit...
	Table 7: Discharge Reason Birth Hospitalization, HCUP-SID
	Table 8: Infant Mortality-VS-L 2001 Birth Cohort, All States
	Table 9: Child Development at 9-month wave, ECLS-B
	Table 10: Maternal Labor Supply at 9 month wave, ECLS-B
	Appendix Table 1: SSA Birth weight Cutoffs by Gestational Age
	Appendix Table 2: Means of Key Variables by Heaping Type, ECLS-B
	Appendix Table 3a: Characteristics of Infants at 42oz and 43oz heaps, ECLS-B
	Appendix Table 3b: Characteristics of Infants at 42oz and 43oz heaps, VS-L
	Appendix Table 4: Top Ten Hospital Revisit Primary Diagnoses, HCUP-SID
	Appendix Table 5: Infant Mortality-VS-L 2006 to 2010 Birth Cohorts, All States


