
High Performance Computing
for BU Economists

Marc Rysman

Boston University

November 29, 2017



Introduction

We have a fabulous super-computer facility at BU.
It is free for you and easy to gain access.
It can help you with your research and make you happy.



Why use a super-computer?

Access many processors simultaneously:
You can complete you computer jobs faster.
You can complete many jobs at once.

Access from any computer (or phone?)
Check on your jobs.
Start them with new parameters.

Super-computers don’t get restarted.
Look cool – impress friends (and potential employers)!



Outline

1 When is parallel processing helpful in economics?
2 What is the super-computer at BU?
3 How do I get an account?
4 All the Linux you need to know.
5 An example of parallel processing.



Parallel Processing

Using multiple processors simultaneously.
or multiple nodes of a processor simultaneously.

Can mean that your program splits into different threads
and then comes back together.

Also called data parallel
Or it can mean that you submit pieces of your job
simultaneously to the cluster.

Also called task parallel or embarrassingly parallel.



Matrix multiplication

Suppose you wish to do matrix multiplication Z = XY .
Break up X two parts, so:

X =

[
X1
X2

]
Now separately compute:

Z1 = X1Y Z2 = X2Y and let Z =

[
Z1
Z2

]

Compute Z1 and Z2 simultaneously to compute Z in half
the time.
This is what Gauss and Stata do automatically when you
do matrix multiplication.



Simulation

Suppose you are computing the probability of some event
as a function of a parameter P(θ):

P(θ) =

∫
ν
1{f (θ, ν) = 1}g(ν)dν.

Example: f returns whether a worker is employed, or
whether a firm enters.

You wish to simulate. That is, you draw ns values of ν from
g(ν) and compute:

︷︸︸︷
P(θ) =

1
ns

ns∑
s=1

1 {f (θ, νs) = 1} .



Parallel simulation

We can break up draws into two sets of draws of size ns/2,
and compute simultaneously:

︷ ︸︸ ︷
P1(θ) =

1
ns/2

ns/2∑
s=1

1{f (θ, νs) = 1}

︷ ︸︸ ︷
P2(θ) =

1
ns/2

ns∑
s=ns/2+1

1{f (θ, νs) = 1}

Then: ︷︸︸︷
P(θ) =

︷ ︸︸ ︷
P1(θ)+

︷ ︸︸ ︷
P2(θ)

2



Bootstrap

We have a statistic T (Z ) computed as a function of data
set Z .
We draw ns samples from Z , creating samples Zs.
We compute statistic Ts = T (Zs) from each sample, and
use the distribution of Ts to make inference on T (Z ).
With parallel processing, we compute values of Ts
simultaneously.
Amenable to embarrassingly parallel approach.



Dynamic Programming

Consider the following investment problem:
Capital k is discrete from 1 to k (set k = 40).
k depreciates each period.

Drops 0 states with prob p1, 1 state p2 and 2 states p3.
p1 + p2 + p3 = 1.

Firm makes a binary choice whether to invest or not:
a ∈ {0,1}.
a = 1 raises k by 5 next period, and then depreciation
applies.
Flow profit is π(k) and cost of investment is c.
Firms draws logit εa for each choice each period.



Bellman Equation

V (k ,−→ε ) = max
a∈{0,1}

{
π(k) + ε0 + βE

[
V (k ′,−→ε ′)|k ,a = 0,−→ε

]
,

π(k)− c + ε1 + βE
[
V (k ′,−→ε ′)|k ,a = 1,−→ε

]}

k ′ =


k + 5a with prob p1

k − 1 + 5a with prob p2

k − 2 + 5a with prob p3

Impose logit ε and integrate:

V (k) = ln

 ∑
a∈{0,1}

exp
(
π(k)− c1{a = 1}+ βE

[
V (k ′)|k ,a

])



Empirical implementation

Define transition matrices:

T0 =



1 0 0 0 0 0 . . .
p2 + p3 p1 0 0 0 0 . . .

p3 p2 p1 0 0 0 . . .
0 p3 p2 p1 0 0 . . .
0 0 p3 p2 p1 0 . . .
...



T1 =


0 0 0 p3 p2 p1 0 . . .
0 0 0 0 p3 p2 p1 . . .
0 0 0 0 0 p3 p2 . . .
0 0 0 0 0 0 p3 . . .
...





Bellman again

V (k)
40×1

= ln

 ∑
a∈{0,1}

exp

(
π(k)
40×1

− c1{a = 1}+ β Ta
40×40

V (k)
40×1

)
Break up elements of bellman equation:

V (k) =
[

V1(k1)
V2(k2)

]
π(k) =

[
π(k1)
π(k2)

]
Ta =

[
T1a
T2a

]
Then compute simultaneously:

Vi(ki) = ln

 ∑
a∈{0,1}

exp (π(ki)− c1{a = 1}+ βTiaV (k))





What is at BU?

Within the IS&T, there is the Scientific Computing and
Visualization (SCV) Group.
They manage the Scientific Computing Facility (SCF).
The SCF includes the Shared Computing Cluster (SCC).
The SCC runs Linux and has more than 7000 processors.
It has many programs such Stata, SAS, Matlab, Gauss, R,
C, Fortran.



Where are the computers?

The facilities are at the the Massachusetts Green High
Performance Computing Center (MGHPCC) in Holyoke,
MA.
MGHPCC was opened in 2013.
Building is joint with Harvard, MIT, UMass and
Northeastern, with substantial state support.



A Certificate in Computational Science

The Center for Computational Science works closely with
the SCV
The CCS offers a Certificate in Computational Science
Requirements:

Complete two courses from a pre-approved set of courses.
One must be outside of your department.
No econ courses are approved, but we can pursue this.

Complete two computational science projects. One must be
outside of your doctoral field.

I believe that this certificate would distinguish you on the
job market.
See Adam Guren if you are interested.



How do I get access?

Graduate students cannot have their own account.
You can be added to a faculty account, or to the
department account.

Faculty or department account?
Use faculty accounts for joint work or research assistance
with a faculty member.
Use the department account for your own work.

To get access: send e-mail to the faculty liaison to the SCF
with your full name, your login name (Kerberos), and the
e-mail address that you want to use.



What software do I use?

You need:
A telnet-type software to log into the SCC cluster and issue
commands.
An FTP type software to move files from your computer to
the SCC.
BU gives you this for free.

X-Win32
http://www.bu.edu/tech/desktop/
site-licensed-software/xwindows/

FileZilla
http://www.bu.edu/tech/desktop/support/
software/windows/filezilla/

MobaXterm.
Does both telnet and FTP. More powerful but a little more
complicated.
Free at http://mobaxterm.mobatek.net/

http://www.bu.edu/tech/desktop/site-licensed-software/xwindows/
http://www.bu.edu/tech/desktop/site-licensed-software/xwindows/
http://www.bu.edu/tech/desktop/support/software/windows/filezilla/
http://www.bu.edu/tech/desktop/support/software/windows/filezilla/
http://mobaxterm.mobatek.net/


Setting up X-Win

Use the wizard to create a new connection.
Name: SCC
Type: ssh
Host: scc1.bu.edu (or scc2)
login: <userID>
password: <password>
command: Linux XTERM
Accept the host server public key – first time only.
If you need to enter a port, try 22.



Linux commands
Directories

Create a directory: mkdir dirname

Switch to a sub-directory of the current directory:
cd dirname

Switch up a directory: cd ..

Switch to a sub-directory of a different directory:
cd ~\dir1\dir2\dirname

Remove a directory: rmdir dirname



Linux commands
copy and remove files

See the contents of a directory: ls
See the contents plus more information: ls -l

Copy a file from the current directory to a different
directory:
cp filename ~\dir1\dir2\

Remove a file: rm filename

Create or edit a file: pico filename



The Batch System

You can use software in interactive mode or batch mode.
Interactive mode is how you use Stata or Matlab on your
PC.

The program stops if you shut your computer, or close
X-Win32.

In batch mode, you submit the code to the batch processor.
The cluster will process jobs based on priority.

Shutting your computer does not affect the job. Great for
long jobs!



Batch commands

Submit a job: qsub plus a lot of other stuff.
See next few slides.

See the queue: qstat
See the jobs submitted under your username:
qstat -u <username>

Delete a job: qdel jobNumber.



Interactive mode

Gauss: type: gauss
Matlab: type: matlab
SAS: type: sas
Stata: type: xstata



Multiprocessor Interactive

By default, interactive mode uses a single processor.
To use multiprocessor interactive mode, type:
qsh -pe omp 4

This brings up a new interactive window that uses 4
processors.
Then type: xstata-mp
To get the large memory nodes, add -l memory=96G, as
in:
qsh -l memory=96G -pe omp 4



Submit a job in Gauss

From the directory of your file prog.g, type:
qsub -b y tgauss -b prog.g

qsub is the submission command
-b y tells that tgauss is a binary file.
tgauss is the batch version of gauss.



Submit a multi-processor job in Gauss:

Include -pe omp 4

Tells how many processors to use.
Can be up to 16 in Gauss, or 64 more generally.

Sometimes Gauss uses too many processors. This can be
controlled with
OMP_NUM_THREADS=4

as in:
qsub -v OMP_NUM_THREADS=4 -pe omp 4 -b y tgauss

-b prog.g

-v controls environment variables



Wall clock time

The job will automatically be killed after 12 hours of “wall
clock time."
Pretty annoying!
You can control this – the max is 5 days (120 hours) for
multiprocessor jobs and 30 days for single-processor jobs.
Type:
-l h_rt=120:00:00

as in:
qsub -l h_rt=120:00:00 -pe omp 4 -b y

tgauss -b prog.g



Submit a job in Stata

Create a file called stataBatch.csh with 2 lines to it:

stataBatch.csh:
#!/bin/csh

stata-mp -b do program.do

Submit the file: qsub -pe omp 4 stataBatch.csh



Submit a job in Matlab

To run program.m, create a file called
matlabBatch.csh with 2 lines to it:

matlabBatch.csh:
#!/bin/csh

matlab -nodisplay -r program

Submit the file: qsub matlabBatch.csh

Note: no .m to program in matlab command.



Processors in Matlab

If Matlab is using too many processors:
matlab -nodisplay -singleCompThread -r program

Or ask for multiple processors:
qsub -pe omp 4 matlabBatch.csh

If Matlab asks for too many processors, get help!



Hints for batch jobs.

The first time you use the batch system, your job will
probably start right away.
As you use it more, the fair use policy will lead to your
priority being degraded and you will queue longer.
Using less processors or asking for less duration improves
your job’s priority rating.
Asking for 12 hours or less is great because then you can
run on other peoples’ cluster computers that they are not
using.
It is possible for the Economics department to buy into the
SCC by purchasing computers that run our jobs first. Let
us know if you think this is important.



Parallel processing in Gauss
Gauss calls it multithreading

type threadstat in front of commands to be executed in
parallel.
type threadjoin to tell Gauss that parallel part is over.
Example: Suppose matrix B has 20 rows and you wanted
to parallelize A = B*C across 2 processors.
Single-processor:
A=B*C;

Multi-processor:
threadstat A[1:10,.]=B[1:10,.]*C;
threadstat A[11:20,.]=B[11:20,.]*C;
threadjoin;

Gauss help says to use multi-threading only if the action
takes more than 0.01 seconds.



Parallel processing commands in Matlab

I know less about this, and it seems more complicated.
There are two approaches in Matlab:
parfor processes loops in parallel.
SPMD is for everything else.
Both approaches require:

matlabpool open 4 says that we will use 4 processors.
matlabpool close says that parallel section of code is
over.

help@scc.bu.edu will help with your code.
Also, there are tutorials on the SCV web page for parallel
processing in Matlab.



An example with parfor

Do matrix multiplication row-by-row:
Single processor:
for i=1:20

A[i,.] = B[i,.]*C;
end;

Multiple processor:
matlabpool open 4
parfor i=1:20

A[i,.] = B[i,.]*C;
end;
matlabpool close

parfor will break up job into 20 pieces that will be
handled as processors become available. matlabpool
asks for 4 processors.



More in Matlab parallel processing

More complex parallel processing can be handled with the
SPMD command.
But I can’t teach that, although I do provide an SPMD
example on the web site.
In general, my understanding is:

If you were going to loop anyway, use parfor.
Example: Simulating agents.

If you are breaking up a complex problem into pieces, use
SPMD.

Example: Value function iteration.

Note: I can often avoid looping over simulated agents by
using multi-dimensional matrices (which is very fast!).



Code-tuning example

Based on real experience with a former grad student, now
professor in Beijing.
Suppose we wish to simulate a model:

Many independent markets.
In each market, K firms choose enter or not in an
exogenous order. in which firms choose enter in an
exogenous order.
Firms enter if:

πim = ximβ + δNi−1m + εim

Ni−1m is number of entrants before i .
εim ∼ N (0,1).

This was nested in an estimation algorithm so we needed
to do this many times.



First round of code

1 Loop s = 1, . . . ,S (draws)
2 Loop m = 1, . . . ,M (markets)

3 Get firms in {m, s}.
4 Sort firms in {m} by i (entry order).
5 Loop i = 1, . . . ,K (firms)

6 Compute πims = ximβ + δNi−1ms + εims

7 Set Nims = Ni−1ms + 1{πims > 0}
8 Go to 5.

9 Go to 2.
10 Go to 1.



Problems

We should sort firms only once, and we are doing it S
times.
Clever use of matrices could eliminate a loop (but not the i
loop).
Parallelize outermost loop.



Improved code

1 Sort firms by i in every market m.
2 Parallel Loop m = 1, . . . ,M (markets)

3 Loop i = 1, . . . ,K (firms)
4 Compute πim. = ximβ + δNi−1m. + εim.

for all draws at once.
5 Set Nim. = Ni−1m. + 1{πim. > 0}

6 Go to 3.
7 Go to 2.

20 times faster.



Tutorials

Self-teaching slide-sets: http://www.bu.edu/tech/
research/training/tutorials/list/

Classes (free): http://www.bu.edu/tech/training/
classroom/scv-tutorials/

Examples:
Introduction to Linux
Introduction to R
Introduction to SAS
Introduction to MATLAB
Tuning MATLAB code for better performance
MATLAB Parallel Computing Toolbox
Graphics and Images for Publication and Presentation

http://www.bu.edu/tech/research/training/tutorials/list/
http://www.bu.edu/tech/research/training/tutorials/list/
http://www.bu.edu/tech/training/classroom/scv-tutorials/
http://www.bu.edu/tech/training/classroom/scv-tutorials/


Conclusion

Happy Dissertating!


