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Abstract: This paper examines cross-validation techniques, with a particular focus on assessing the 

predictive validity of risk adjustment models as commonly estimated. We validate that K-Fold cross-

validation is more efficient than a 50-50 split sample and illustrate that overfitting with rich risk 

adjustment models remains meaningful even in samples of a million observations. A new estimation 

algorithm is described that efficiently calculates K-Fold cross-validated R-squared and other measures of 

goodness of fit using only three (XXX verify) passes through the data, and hence can be applied easily on 

sample sizes in the millions without sorting or relying on repeated split-sample techniques. Analysis of K-

fold cross-validation results using a large claims dataset is used to calculate the standard deviation and 

bias of fitted R-squares for different models and sample sizes, which have a larger bias in moderately 

large sample sizes than most researchers would realize. Programs that implement the algorithm in SAS 

and STATA are presented that can be easily used on any sample.    
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1 Introduction 

Risk adjustment models are now widely used for health plan payment, patient management, severity 

adjustment, and performance measurement and it has become the norm to estimate these models on 

extremely large samples (N > 5 million) that enable large numbers of explanatory variables to be included 

(Ellis and Layton, 2013). The rich explanatory models that are feasible with large samples are not always 

appropriate on smaller samples, or for different dependent variables where overfitting can be a serious 

concern. Assessing overfitting is particularly important when alternative specifications are compared that 

differ not only in the predictors used, but also in the in the demographics, year, country, or choice of the 

dependent variable to be predicted (e.g., Winkelman and Mehmud, 2007). Split sample validation is 

commonly used, in which a fraction of the data (usually 50 percent) is used for estimation, and the 

remainder is used for validation. We make two contributions in this paper. The first is to show that 

overfitting is still a meaningful concern even with up to a million observations with today’s sophisticated 

risk adjustment models. Second, we show that while split sample validation is useful, it is an inefficient 

approach when the goal is to simply validate existing risk adjustment models and structures and assess 

overfitting. Instead we demonstrate that K-fold cross validation, which sequentially uses all of the data for 

both estimation and validation, is meaningfully more efficient, computationally feasible (particularly for 

linear models), and easy to explain. Programs written for SAS and STATA are linked and provided in an 

appendix that make it easy to implement the algorithms on other data. (XXX put in link to web page 

here.) 

 

A classic example of split sample validation is the 2007 Society of Actuaries report (Winkelman and 

Mehmud, 2007) which evaluated 12 distinct claims-based risk assessment models and several dozen 

alternative specifications using a single 50-50 split sample validation on a standardized sample of 617,683 

individuals. Many other important methodological papers also evaluate alternative models of annual 

health spending using split sample methods (Mullahy, 1998; Manning and Mullahy, 2001; Pope et al, 

2004; Basu et al (2004), Manning et al. (2005); and Fishman et al., 2006, Dixon et al XXXX). Most of 

these papers do not explore the fact that by using only a single split of their full sample, their results are 

sensitive to the particular split sample created. An important exception is Buntin and Zaslavsky (2004) 

who evaluate eight linear and nonlinear models using the Medicare Current Beneficiary Survey data on 

10,134 individuals. Their validation uses 100 different replications of 50/50 splits of their sample for 

validation.   
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It is well known that estimating models of health care costs is problematic due to the heavily right-skewed 

nature of the distribution of non-zero annual costs (Jones, 2010). Less commonly emphasized is that the 

explanatory variables are also often highly skewed. Estimation of predictive models using OLS produces 

biased measures of statistical significance and can lead to ‘overfitting’. While many early studies 

advocated strongly for nonlinear models to reduce the overfitting problem (Duan et al 1983) this 

preference was driven heavily by the limited sample sizes used for estimation.  Several more recent 

studies (Fishman et al, 2006; Deb and Burgess, 2007; Ellis and McGuire, 2007; Ellis et al, 2013) suggest 

that the overfitting problems of OLS models largely disappear when very large samples sizes (over a 

million individuals) are used, an issue we also revisit here. Because of their ability to accommodate 

enormous numbers of covariates (in the hundreds), their computational speed for estimation, simplicity to 

use for prediction and ease of explanation, linear predictive models have reemerged as the preferred 

specification over nonlinear techniques for risk adjustment purposes. Although nonlinear models remain 

popular among academic researchers, and may be essential for hypothesis testing in small to moderate 

size samples, none of the commercially available risk adjustment models evaluated by the Society of 

Actuaries (Winkelman and Mehmud, 2007) use nonlinear models for prediction. 

 

In this paper we focus on the validation of an existing model, not validation done in the process of 

choosing regressors to use in new models. If the researcher is using data to define explanatory variables, 

choose exclusions and interactions, or evaluate diverse nonlinear structures, then the K-fold cross 

validation techniques described here can be misleading. K-fold cross validation can help identify 

overfitting that results from estimation, but it cannot easily be used to understand overfitting due to model 

design and selection. For model development, relying on validation in new samples is the preferred 

method. 

 

This paper makes two contributions. First, we show that the overfitting problem can be substantial even 

with sample sizes as large as one million, but that overfitting largely disappears in samples in the 

millions.  The magnitude of the overfitting problem even in samples over 100,000 has perhaps been 

underappreciated in studies using such “small to moderate” size samples, and such small samples cannot 

themselves be relied upon to validate the extent of the overfitting problem. Second, we describe an 

efficient algorithm for implementing K-fold cross validation in linear models. This efficient algorithm is 

applied to large empirical samples of several million records, taking approximately three to five times the 

clock time of running a single OLS regression model. The algorithm uses the K-Fold cross validation 

technique developed in the statistics literature. Although we develop the algorithm using health 
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expenditure data predicted using a linear risk adjustment framework, the method is general and could be 

applied to any data. 

 

In this paper we present results solely for the R-squared measure of predictive ability and Copas tests of 

overfitting.   The R-squared is attractive as a unit-free measure easily interpreted across models and 

samples, and the Copas test is a widely used measure of overfitting in linear models. It is straightforward 

to calculate alternative measures such as the root mean square error, mean absolute deviation, and 

predictive ratios by selected percentiles using the results from K-fold validation, and these measures are 

generated by the programs attached to this paper with further passes through the data. (XXXneed to add 

to the programs).  

 

Risk adjustment can be used for many purposes, including health plan capitation payment (Ash et al, 

1989; van de Ven and Ellis, 2000, Dixon et al XXXX), provider profiling (Thomas, et al, 2004a, 2004b), 

case management, plan rating and underwriting (Cumming and Cameron, 2002), and quality assessment 

and improvement (Iezzoni, 2013). For this paper, we examine three risk adjustment models predicting 

total spending: a simplified model that uses only 18 age and gender categories, a prospective model that 

use diagnostic information to predict subsequent year health spending, and a concurrent model that uses 

the same diagnostic information to predict health spending in the same year. For the diagnostic models, 

the diagnosis based explanatory variables are the 182 explanatory variables generated by the Hierarchical 

Condition Category (HCC) model (Pope et al, 2000) that underlies the classification system used for the 

Medicare Advantage, Medicare Part D and HHS Health Insurance Exchange risk adjustment models.3  

 

2 Model Prediction and Cross-Validation 

A common approach for choosing among competing alternative model specifications is based on their 

validated rather than within sample or fitted predictive power. One well-known early discussions cross-

validation is Stone (1974, 1977), who developed the idea of splitting a dataset and then estimating a 

model on one part of the data and evaluating it using the other part. The two most common approaches 

are data splitting and K-Fold cross-validation.  

                                                           
3 Each of these implemented risk adjustment models use 60-80 HCCs rather than the full set, while in this paper 
we use all 182.  
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2.1 Data Splitting or Split Sample Technique 

The most common form of cross-validation is data-splitting or split sample validation. In this approach, 

the researcher selects (usually randomly) from the total set of observations available a "training" or 

"estimation" sample to estimate the model and subsequently uses the model to predict the dependent 

variable for the remaining holdout or “validation” sample. Predictive validity is assessed by using some 

measure of correlation between the values from the holdout sample and the values predicted by the 

model. Alternatively, dependent variable in the validation sample can be regressed on the predicted value 

using coefficients from the estimation sample and a COPAS test (XXX need cite) of whether the 

coefficient in that regression differs from one is a test of whether there is evidence of overfitting.  

 

Traditionally, data splitting is done only once rather than several times. This makes the results dependent 

on which data points end up in the training set and which end up in the test set. Sometimes it can lead to 

unexpected results, such as when the validated R-square is larger than the estimation sample R-square. 

Following Buntin and Zaslavsky (2004), the standard practice today is to perform this exercise repeatedly 

and then take the mean of the estimates. This “repeated split sampling” is used in our analysis below. 

 

With a large number of draws the mean R-square in the training sample will be above the mean in the 

validation sample, but since split samples only use part of the data for calibration, estimates are never as 

efficient as when the entire sample is used. If overfitting is an issue, then using only a subsample to 

measure overfitting reduces statistical precision in both the training and the validation samples, and 

potentially increases the divergence between R-squares from the two samples.  

2.2 K-Fold Cross Validation 

An alternative approach called “K-fold” cross-validation makes more efficient use of the available 

information. The algorithm for this approach is as follows: 

1. Randomly split the sample into K equal parts 

2. For the kth part, fit the model to the other K-1 parts of the data, and use this model to calculate the 

prediction for each observation in the kth part. 

3. Repeat the above step for k=1, 2….K and combine the K sets of prediction to create a full sample 

of actual and predicted values 

4. Use the actual and predicted values to generate any measures of goodness of fit that are desired. 
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If K equals the sample size (N), this is called N-fold or "leave-one-out" cross-validation.  Even if K is 

two, this method differs from the "split sample" method where only a single subset (the validation set) is 

used to estimate the prediction error instead of k=2 different subsets.4  

 

One difficulty with K-fold cross-validation is that it can be computationally slow with nonlinear models 

(including L' regression, tree structured methods for classification and nonlinear regression). Even for 

OLS K-fold cross validation can be slow when millions of observations and hundreds of explanatory 

variables are used.  We describe a computationally efficient algorithm for conducting the K-fold cross 

validation below, and link computer code that implements the algorithm efficiently on the web. 

2.3 COPAS Test 

The COPAS test is a formal test of overfitting using split sample or K-fold cross validation. The 

following algorithm is used to perform this test using split samples. 

1. Randomly split sample into two groups. The selection of groups can be 50-50 or 70-30 or (K-1, 

k). Call the first group A or the training sample and the other group B, or the validation sample 

2. Estimate model on sample A and retain its coefficients A̂   

3. Forecast to sample B 

ˆ
B̂ A BY X  

4. Now regress the dependent variable from the validation sample i.e., BY  on the predicted BŶ  and 

test whether the slope is one. Hence estimate 

                   BB YY ˆ
10   and test 1 = 1 

5. If reject the null hypothesis, then overfitting may be a problem. Simplifying the model such as by 

omitting variables or constraining them (“pruning”) is the normal prescription. 

 

With split-sample validation, the convention is to repeatedly (100 or 1000 times) use different splits of the 

sample, conducting a COPAS test for each split, and then report the percentage of times the null 

hypothesis was rejected.  For K-fold cross validation, the natural extension is to calculate the COPAS test 

                                                           
4 Leave-one-out cross-validation is also easily confused with jackknifing. Both involve omitting each training case in turn and 
retraining the network on the remaining subset. But cross-validation is used to estimate generalization error, while the jackknife 
is used to estimate the within-sample bias of a statistic. In the jackknife, you compute some statistic of interest in each subset of 
the data. The average of these subset statistics is compared with the corresponding statistic computed from the entire sample in 
order to estimate the bias of the latter. You can also get a jackknife estimate of the standard error of a statistic. Jackknifing can be 
used to estimate the bias of the training error and hence to estimate the generalization error (Efron, 1982). 
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statistics once using the observed and out of sample predicted values for Y for the full sample.  In what 

follows we calculate COPAS test statistics using both repeated split sample and K-fold validation 

methods. 

3 A computationally efficient method for K-fold validation 

 

Conducting multiple split samples and the straightforward application of K-fold cross validation generally 

require multiple passes through the dataset, which can be computationally time consuming when very 

large sample sizes and very large numbers of explanatory variables are involved.  Part of the contribution 

of this paper is in verifying the usefulness of a computationally fast algorithm for conducting k-fold cross 

validation. 

 

Our approach is easily explained using matrix notation. Let A-k denote a matrix A generated while 

excluding the proper subset Ak of observations in set k.  If Y is the Nx1 array of the dependent variable 

and X is the NxM matrix of explanatory variables, let Z = {X Y}.  It is well known that the cross product 

matrix ZTZ contains all of the information needed to generate all conventional regression statistics, 

including betas, RSE and R-square.   The algorithm we implement for a sample size of N is as follows. 

 

1. Randomly sort the observations so that there is no significance to their order. 

2. Estimate the OLS model using the full data set Z, retaining Q = ZTZ. 

3. For each of k subsamples of size N/K, created without replacement, generate Qk = Zk
TZk and take 

matrix differences to generate Q-k = Q – Qk = ZTZ - Zk
TZk 

4. Use Q-k to calculate the array of OLS regression coefficients β-k(Q-k), and then generate predicted 

values k̂Y , which were not used in β-k(Q-k).  Save these fitted values of k̂Y  in an { FoldKY 
ˆ } 

5. After repeating steps 3 and 4 for all of the k samples, generate validated R-square, RSE, MAE and and 

COPAS test statistics measures for the full sample of size N using the original Y and { FoldKY 
ˆ }.  

 

Reflecting the increased precision from larger samples, we repeated steps 1 through 5 for 1000 

replications for small sample sizes of 1000, 2000, and 5000 observations; 100 replications for sample size 

of 10,000, 20,000, 50,000, 100,000, 200,000 and 500,000;  50 replications for the sample sizes of 

1,000,000; and once for the entire sample (N = 4,688,092). We also explored the sensitivity of our results 

to various values of K=10, 100, and 1000. 
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4 Data 

Data for this study came from the 2003 and 2004 MEDSTAT (now Truven Analytics) MarketScan 

Commercial Claims and Encounter Databases. These databases contain pooled and de-identified health 

information on to help its clients manage the cost and quality of healthcare they purchase on behalf of 

their employees. MarketScan is the data from these client databases. In this study we use the Commercial 

Claims and Encounters (CC&E) Database for 2003 and 2004, which contains the healthcare experience of 

approximately 10 million employees and their dependents in 2003 and 2004.5  After excluding people 

who were not continuously eligible for coverage for all of 2003 and 2004, everyone Medicare eligible at 

any time, one person with implausibly high health spending in 2003, and people not in traditional 

indemnity, a preferred provider organization, a point of service plan, or a health maintenance 

organization,  this left 4,688,092 individuals in our full sample.   

 

Using this data, we evaluate three different model specifications.  

 Age and sex model with 18 independent variables, (age/gender dummies) 

 Prospective model with 18 independent age gender dummies and 182 hierarchical condition 

categories6  

 Concurrent model with 18 independent age gender dummies and 182 hierarchical condition 

categories  

 

5 Results  

5.1 Descriptive statistics 

Summary statistics are presented in Table 1.  We see that both health spending in 2003 and health 

spending in 2004 have coefficients of variation (standard deviation divided by the sample mean) over 

300, large skewness measures (in the 30’s) and enormous kurtosis (over 2000).  Note that all of these 

measures (the CV, skewness and kurtosis) are invariant to rescaling or normalization of the variable of 

interest. Also relevant are the moments of some of the explanatory variables. Age, gender, and dummy 

                                                           
5 .  This data was not used to calibrate or revise the DCG/HCC risk adjustment classification system used 
for validation, and hence this is an appropriate sample for model validation. 
6 The DxCG HCC classification system contains 184 HCCs, however two of them never occurred in our data and 
hence are omitted. These two were HCC 129 End stage Renal Disease (Medicare program participant), and HCC 
173 Major Organ Transplant Status (e.g., heart, lung, etc.) which in the first case is impossible in our data by 
construction, and in the second case is sufficiently  rare among non-Medicare eligibles to have not occurred in our 
sample.  
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variables reflecting their interaction all have relatively low CV (less than 500), and have low skewness 

and kurtosis.  In contrast, a relatively rare HCC 1 such as HIV/AIDS, with a prevalence rate of .00075 has 

a CV that exceeds that of annual spending (CV = 3651), a skewness of 36, and a kurtosis of 1329.  Hence, 

despite having an acceptable sample size of over 3400 cases with HIV/AIDS in the full sample, this 

variable will be subject to overfitting in modest size samples. Congestive heart failure, a binary variable 

with a nearly tenfold higher prevalence (mean = .00654) still has meaningful skewness and kurtosis.   

 

5.2 Full sample results 

Table 2 presents the results of estimating our three risk adjustment models using the full sample size of N 

= 4,688,092. Our base model is a prospective model, predicting 2004 total health care spending at the 

individual level using 18 age, gender, and diagnostic information from 2003. This base “prospective 

model” has 200 parameters: a constant term plus 182 hierarchical condition categories and 17 of 18 

mutually exclusive age-gender categories. All of these explanatory variables are binary variables. We also 

estimate results for an “Age-sex model” using only the age-gender dummies and a “concurrent model”, 

predicting 2003 spending in the same year as the diagnostic information (2003).  

 

Table 2 reveals that the fitted and validated R-square measures for the prospective split sample model 

differ by only .005.  The COPAS test on overfitting has a t ratio of -15.024 indicating that with 2.2 

million records there is still some evidence of overfitting. In contrast the K-fold validation results differ at 

most by .001 when the full sample is used, and, hence, results are not overstated by overfitting.  The age-

sex model, with only 18 parameters, does not explain much of the variation in spending, but also shows 

no evidence of overfitting. The COPAS test statistic on the slope for the prospective HCC model is of 

borderline significance with a t ratio of 1.807 (p = .07 on two-tail test).   

 

5.3 K-Fold versus split sample results 

We next present results from K-Fold cross validation and compare them with split sample technique 

results. Table 3 presents these results for the prospective model. First consider the split sample results. 

For samples under 10,000, the R-square in the fitted models is grossly overstated, with highly negative 

validated R2.  For a more respectable sample size of 10,000 the fitted R-square has a mean of .359, while 

the validated R2 mean remains negative. We see that the fitted and validated R-squares diverge markedly 

for smaller samples—validating the well-known results that significant overfitting remains a concern even 

with sample sizes of 100,000 in richly predictive models using highly skewed explanatory variables. As 
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the sample size increases, this divergence gradually disappears, and the overfitting problem seems to be 

mitigated for large samples over 500,000 observations.  

 

The superiority of the K-fold cross validation over split sample validation is revealed in Figure 1, which 

highlights that the K-fold R-square means are significantly closer to the true values than the split sample 

methods. These also reveal that the simple average of the fitted and validated R-square is a better estimate 

of the asymptotic predictive power of the model then just the validated R-square.  Another feature to note 

in this figure is that for K=100, the fitted mean R-square from split sample techniques using a sample of 

N observations is statistically indistinguishable from the fitted mean R-square from K-Fold cross 

validation technique using a sample of N/2 observations. Hence the split sample validation results on 

20,000 records gives nearly identical results to the K-fold validation results on 10,000 observations. This 

makes sense since splitting a 20,000 observation dataset into two parts and estimating the model using 

one part is almost identical to taking a 10,000 observation dataset and using 99% of it to estimate the 

model.  

 

Figure 2 plots not only the means but also the 90 percent confidence intervals for the fitted and validated 

R-squares using K-fold validation on the prospective HCC model. The 90 percent confidence intervals for 

the split sample model are even wider. This figure reveals that the 90 percent confidence intervals for the 

validated and fitted values overlap considerably, so it is not unusual for the validated and fitted R-square 

values to be reversed for the split sample techniques, simply due to chance.  In contrast, with K-fold 

validation the validated measure is guaranteed to be strictly less than the fitted value, since one can never 

do better using an out of sample model than using within sample methods. (See Efron and Tibshirani, 

1998 for a demonstration.)   

 

In Table 4 we repeat this exercise using only 18 age/sex dummies as our right hand side variables. The 

first four columns of table 4 show that the fitted and validated R-square estimates are very close to each 

other for the age-sex model even with as few as 10,000 observations. However, the 90% confidence 

intervals shown in figure 3 reveal that there is still a meaningful amount of variation in estimates of the R-

square even with this simply parameterized model.  

 

Figure 4 and the second set of columns in Table 4 present the concurrent model to show that K-Fold cross 

validation is useful for concurrent models as well. Overfitting is more significant in concurrent models 

with the mean R-squares differing by .005 even with a million individuals.  
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Table 5 evaluates the impact of different choices of how many folds should be used in the K-Fold cross 

validation exercise. Each cell was generated by taking the mean and standard deviation of the validated 

R2 from 100 replications for the given sample size for K = 10, 100 and 1000. Comparing across rows, we 

see that estimates of the validated R-square using K-fold validation is relatively stable across values of K 

with a slight improvement for going from K = 10 to K = 100, but no apparent improvement going from 

100 to 1000.  In part because of the computational savings we rely on K=100 for the rest of our results. 

 

In Table 6 we show the average time it took for us to validate our model using split sample and K-fold 

techniques. It matters critically in this analysis whether the time taken generating the sample splits 

themselves are included in the estimates. Because split sample validation only estimates the model on half 

as much data, and forecasting the remaining half is very fast, split sample validation when efficiently 

programmed can take even less time than OLS. However, it is more interesting to note that the K-fold 

Cross validation only took at most 5 times longer than the OLS, despite running 100 regression models. 

Even for the full sample of 4.7 million records, K-fold validation took only 4:02 versus :43 for OLS. 

Straightforward bootstrap techniques with 100 repetitions will have taken on the order of 100 times as 

much time as OLS to generate similar results. All of the times shown here were generated on a basic Dell 

Pentium IV desktop that had only 2.8 GHZ of processor speed and 2.0 GB of RAM. Many research 

settings would typically have access to much faster machines. As a comparison, researchers at DxCG Inc. 

estimated and validated a concurrent regression model using this K-Fold algorithm with 13.65 million 

records and 835 explanatory variables. Our algorithm took only 3.3 times as much clock time (115 

minutes) as doing OLS (35 minutes), despite doing 100 regressions with 835 betas, each on over 13 

million records. The overfitting problem was also trivial, with only a .002 overstatement in the R-square. 

Bootstrap methods on this large sample could have taken multiple days to generate comparable statistics. 

 

6 Conclusions 

In this paper we have illustrated the value of using K-fold cross validation instead of split sample 

validation for validating linear models on large datasets. This technique is relevant in settings where the 

researcher is interested in comparing alternative sets of explanatory variables in a risk adjustment setting 

without exploring model specification, as in Winkelman and Mehmud (2007) and Manning et al (2008).  

If model selection tasks such as identifying which variables to include, searching among highly nonlinear 

models, or evaluating interactions and constraints are being considered, then split sample techniques will 

isolate the validation sample from contamination in ways that K-fold validation cannot.  
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This paper documents the magnitude of overstatement of the R-square using three specifications of 

common risk adjustment – age-gender, prospective and concurrent models. We have used the DCG risk 

adjustment framework for all of our estimates, but the techniques should be relevant for any setting in 

which overfitting is of concern. K-Fold cross validation is superior to split sample techniques, even when 

multiple splits are considered, since it achieves the same level of precision with half of the data. We have 

used the K-fold validation to calculate only one measure of goodness of fit – the R-square, but the 

individual level out-of-sample predictions can be used for any number of other measures – including 

mean absolute deviations, predictive ratios and grouped R-squares – with a simple modification.  

 

Our demonstration that K-fold validation is relatively robust to relatively small values of K, such as ten, 

suggests that for nonlinear models, where computation time is a critical issue, K-fold cross validation 

using only K=10 may be attractive as an alternative to split sample techniques.  Often the very large 

sample sizes available to researchers imply that the relevant choice of models is between using all of the 

data for a simple linear model versus a fraction of it for nonlinear estimation. We have not validated the 

relative attractiveness of these two competing approaches to model estimation.  

 

Part of the contribution of this paper is that we develop a computationally efficient method of calculating 

K-fold validation which requires only on the order of five times as long as the amount of time running a 

simple OLS regression in large samples.  Given that bootstrap techniques require a much larger multiple 

of time to generate comparable measures of out of sample predictive power, our hope is that this 

technique, long known in the statistical literature, will see increased use in empirical studies of large 

datasets. 
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 Table 1 Summary Statistics 

Marketscan data, 2003-2004, N = 4,688,092 

Mean
Std. 
Dev CV*100 Skewness Kurtosis Maximum

Covered total charges, 2003 2905 10859 374   32 
      
2,405  

     
1,909,854  

Covered total charges, 2004 3463 11675 337   27 2,174  2,222,606  
Age (years) 34.95 18.41 53 -0.32 -1.21          63  
Dummy if male, age = 0-5 0.048 0.21 447 4.25      16.03             1  
HCC001 HIV/AIDS 0.00075 0.027 3651   36 1,329             1  
HCC080 Congestive Heart Failure 0.00654 0.081 1233   12    148             1  

 

Table 2 Full Sample Results 

MEDSTAT Marketscan Data, 2003‐2004, N = 4,688,092

Parameters

Fitted R‐

Square

Validated 

R‐Square

COPAS T‐

Ratio

Prospective HCC 200 0.175 0.174 1.807

Prospective AgeSex 18 0.030 0.030 0.045

Concurrent HCC 200 0.398 0.397 2.028

Prospective HCC Split 

Sample Technique 200 0.177 0.172 ‐15.024  
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Table 3: R Squares generated for Prospective Model with 218 parameters, HCC+ AGE + SEX, 100-

Fold, Cross Validation Vs. 50-50 Split 

Sample Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

500 0.638 0.180 ‐0.539 0.791 0.743 0.172 ‐1.864 4.267

1000 0.547 0.175 ‐0.362 0.562 0.637 0.189 ‐1.221 2.988

2000 0.467 0.152 ‐0.219 0.408 0.554 0.172 ‐0.707 2.057

5000 0.355 0.099 ‐0.045 0.173 0.444 0.134 ‐0.319 1.405

10,000 0.287 0.072 0.062 0.089 0.359 0.103 ‐0.091 0.359

20,000 0.236 0.050 0.112 0.053 0.282 0.078 0.026 0.183

50,000 0.201 0.029 0.146 0.035 0.225 0.048 0.114 0.070

100,000 0.189 0.022 0.160 0.024 0.203 0.028 0.148 0.031

200,000 0.182 0.016 0.167 0.016 0.188 0.022 0.162 0.020

500,000 0.177 0.010 0.171 0.010 0.180 0.013 0.169 0.014

1,000,000 0.176 0.007 0.173 0.007 0.178 0.010 0.172 0.011

Fitted R2 Validated R2 Fitted R2 Validated R2

K‐Fold, K=100 50‐50 Split Sample

 

 

Table 4: R Squares generated for Age-Sex model and Concurrent Model using K-Fold Cross 

Validation 

Sample Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

500 0.072 0.036 0.004 0.044 0.893 0.069 ‐0.121 0.569

1000 0.055 0.023 0.020 0.022 0.832 0.096 ‐0.085 0.622

2000 0.043 0.016 0.026 0.016 0.780 0.097 0.059 0.449

5000 0.037 0.011 0.031 0.011 0.659 0.107 0.181 0.287

10,000 0.033 0.008 0.029 0.008 0.603 0.103 0.314 0.178

20,000 0.032 0.008 0.030 0.008 0.543 0.110 0.371 0.135

50,000 0.029 0.006 0.029 0.006 0.489 0.101 0.406 0.116

100,000 0.031 0.004 0.030 0.004 0.437 0.073 0.391 0.078

200,000 0.030 0.003 0.030 0.003 0.419 0.058 0.395 0.061

500,000 0.030 0.002 0.030 0.002 0.404 0.028 0.393 0.028

1,000,000 0.030 0.001 0.030 0.001 0.400 0.012 0.395 0.012

Age‐Sex Model Concurrent Model

Fitted R2 Validated R2 Fitted R2 Validated R2
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Table 5: Comparison of Validated R-Square Mean and Standard Deviation for various Choices of 

K and sample sizes, K-Fold Cross Validation on Prospective HCC + Age + Sex Model, and 218 

parameters 

Sample Size K=10 K=100 K=1000 K=10 K=100 K=1000

2000 ‐0.154 ‐0.219 ‐0.127 0.220 0.408 0.203

5000 ‐0.047 ‐0.045 ‐0.032 0.139 0.173 0.134

10,000 0.050 0.062 0.067 0.095 0.089 0.084

20,000 0.099 0.112 0.108 0.057 0.053 0.056

50,000 0.142 0.146 0.146 0.035 0.035 0.034

100,000 0.157 0.160 0.158 0.023 0.024 0.023

200,000 0.165 0.167 0.165 0.015 0.016 0.015

500,000 0.170 0.171 0.171 0.010 0.010 0.010

Validated R2 Mean Validated R2 Std Dev

 

 

Table 6: Comparison of Average Computer Time Utilized in validating in 100 samples of different 

sizes, Prospective Model, 218 parameters HCC + AGE +SEX 

OLS  50‐50 Split Design K‐Fold, K=100

Sample Size Time in Seconds Time in Seconds Time in Seconds

1000 0.246 0.047 20.640

2000 0.341 0.046 21.219

5000 0.276 0.078 21.984

10,000 0.288 0.109 22.796

20,000 0.411 0.187 23.063

50,000 0.737 0.391 24.640

100,000 1.588 0.750 27.266

200,000 2.463 1.609 34.407

500,000 7.382 3.375 45.297

1,000,000 17.593 8.547 69.234  
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Table 7: Average T-Ratio on Copas Test, Various Sample Sizes, 50-50 Split vs. K-Fold Cross 

Validation 

K‐Fold, K=100 50‐50 Split Design

Sample Size Mean Mean

500 15.672 16.711

1000 18.649 19.194

2000 22.007 21.078

5000 24.572 24.910

10,000 22.338 24.755

20,000 19.527 24.279

50,000 14.920 20.220

100,000 11.318 14.956

200,000 8.681 11.812

500,000 5.517 8.885

1,000,000 3.950 3.716
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Figure 1: Fitted and Validated R2 means by sample size, 200 parameters HCC + Age + Sex model, 50-50 Split Technique Vs. K-

Fold Cross Validation  
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Figure 2: Fitted and Validated R2 by sample size, 200 parameter Prospective HCC + Age + Sex model, means and 90% confidence 

intervals, K-Fold Cross Validation Method 
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Figure 3: Fitted and Validated R2 by sample size, 18 parameter Age + Sex model, means and 90% confidence intervals, K-Fold 

Cross Validation 
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Figure 4: Fitted and Validated R2 by sample size, 200 parameter Concurrent HCC + Age + Sex model, means and 90% confidence 

intervals, k-Fold Cross Validation  
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