Ec508: Econometrics
Syllabus and General Information
Professor Ani Dasgupta

Spring 2015
Boston University

Instructor: Dr. Ani Dasgupta
Office: Room 414, Economics Department, 270 Bay Street
Telephone: 358-5922
Email: AniruddhaDG@aol.com
Office Hours: T 5.00 – 6.00 PM, TTh 8.00-9.00 PM1 and also by appointment

Course Website: http://blackboard.bu.edu (Navigate to Spring 2015 -> Ec508 Section A1 site and enter BU userid and password when prompted)

INTRODUCTION: Ec508 is an entry-level graduate econometrics course, focusing mainly on cross-sectional techniques. It is entry-level in the sense that you are not presumed to have any prior acquaintance with econometrics, although you are assumed to have the required statistical and computing background at Ec507 level, and coursework in linear algebra and calculus including some optimization. You are also supposed to have basic familiarity with some statistical software such as STATA or R or SAS. Though entry level, this is very much a graduate course, which among other things, means that rigor and understanding of the techniques are very much emphasized as opposed to learning cookbook methods. It attempts to serve two types of audiences. For those who wish to pursue applied data analysis in the real world, it presents a wide array of problem instances and tools appropriate for those instances. I will expose you to a tool, show you why it works (at least in most cases) and ask you to apply the tool to solve similar problems with new datasets. The course also serves as a stepping stone for those interested in knowing the field more intimately and perhaps going on to do a Ph.D. in Economics, which it does by introducing them to a fair amount of theory and by giving them a tour of a small selection of classic and contemporary papers written in Econometrics.

REQUIREMENTS, GRADING, DATES AND GROUND RULES: For most courses, you learn only a small fraction of the material by just listening to the lectures. For econometrics, that fraction could be really small. You are expected to read the lecture material and suggested sections of the text immediately after every lecture, working through the derivations yourself (yes, we do care about derivations). Most of the time, you will be

1 I usually will hold the after-class office hour in the classroom itself with a little break after the lecture, with questions asked and answers given publicly for anyone who cares to stay back and attend these sessions. If you wish to speak with me privately, see me Tuesdays before class or let me know and we can arrange to meet after 9 pm on Thursdays.
expected to read preparatory material before a lecture, and you will need to come prepared to the lecture having read that material. When problem sets are distributed, you are expected to try out each and every problem.

Your course grade will be based on 2 quizzes, a final, problem sets and class performance. The weights for the various criteria are displayed below:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Weight (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes</td>
<td>30</td>
</tr>
<tr>
<td>Final</td>
<td>35</td>
</tr>
<tr>
<td>Problem Sets</td>
<td>25</td>
</tr>
<tr>
<td>Class Performance</td>
<td>10</td>
</tr>
</tbody>
</table>

The first quiz is an in-class exam lasting the entire class period (about 1.5 hours). The second quiz is an approximately 48-hours take-home where you will be tested on your software skills. The final is a cumulative two-hour exam and it should prepare Econ MA students for their comprehensives. Doing well in these tests will require that you have mastered the problem sets of which there will be about ten in all. The final component of grading is a subjective class performance item, where I will take into account such intangibles as attitude and effort.

Here are some important dates. The first quiz will be held on Thursday, February 26th. The second quiz (the take-home) will be distributed on Tuesday April 14th and will be due in class on Thursday April 16th (Don’t be late that day!). The final exam has been scheduled by the registrar’s office on Tuesday, May 5th (6 – 8 pm) and unless the entire class is agreeable with and keen on shifting the time, I will stick to it. Make-ups for quizzes and exams may be offered only in case of a serious medical emergency (you need to inform me before the exam about it and produce a doctor’s certificate to the effect that you were unwell enough not to be able to make it to the exam). The format of the make-up(s) will be at the instructor’s discretion. I take honesty and integrity issues very seriously. Any violation of the academic conduct code will be referred to the authorities, and if the individual concerned is found guilty, it will automatically result in an F for the course and perhaps other unpalatable actions. If you wish to know more about what constitutes a violation and what the due process is, please refer to the CAS Academic conduct code.

MEETING TIMES: Please note that we will normally meet Tuesdays and Thursdays 6.30 pm to 8.00 pm (except on holidays and official class cancellations). On Fridays I or, on occasions, the TA will hold ‘study sessions’ from 4.00 pm to 5.00 pm. (we might adjust the time of these meetings slightly later in the semester). These sessions will be used either to provide software tutorials, or to go over Problem Sets/Exams.
TEXTBOOKS AND STUDY MATERIAL: There is no textbook for the course. I have given up on finding an econometrics text suitable for the Masters level and rely on my posted/distributed notes entirely. In the past I have used the text Econometric Methods with Applications in Business by Christian Heij et. al. (Oxford University Press) for this course. This textbook is a nice introduction to econometrics and fairly modern in its coverage, although it is not quite as rigorous as I would have liked it to be. Its strength lies in the fact that it discusses numerous empirical exercises and provides useful datasets for you to try those exercises on your own.

Here are a few other texts and material that you may consider accessing. A popular and nice undergraduate text is Jeffrey Wooldridge’s Introductory Econometrics (SouthWest College Publications). This book does not use matrix notation and does not delve much into theory, but it does a great job of providing intuition and economic context. It also has numerous empirical exercises. Similar in spirit and scope is James Stock and Mark Watson’s Introduction to Econometrics (Addison Wesley). A wonderfully lucid, matrix-oriented book at this level (though mostly for classical topics) is Econometric Methods by Jack Johnston and John DiNardo (McGraw-Hill). If you can find it, I recommend the older third edition (written by Johnston alone) in addition to the current fourth (which is coauthored with John DiNardo).

A book that is not recommended as a stand-alone textbook but one that gives you an interesting perspective and overview of the classical topics in the field is Peter Kennedy’s A Guide to Econometrics (MIT Press). For those of you with an applied bend, I strongly suggest that you take a look at Ernst Berndt’s The Practice of Econometrics: Classic and Contemporary (Addison Wesley). For each chapter, the book chooses an area of interest to economists and illustrates empirical analysis in that area using a particular technique. I will use some applications from this book to illustrate the theoretical models.

Going into more advanced texts, William Greene’s Econometric Analysis (currently in its 7th edition) is probably one of the best compendium of modern econometric techniques and if you want to keep one reference econometrics book in your library, Greene will probably be the best choice. Unfortunately, its explanations are quite terse and sometime unintuitive, reflecting, over time, the consequence of incorporating newer and newer material without making the book weigh like an iron chest (it already has 1000+ pages!). I will refer you to Greene from time to time both for study material as well as exercises.

If you want to know classical econometric techniques well, an excellent choice is Paul Ruud’s An Introduction to Classical Econometric Theory (Oxford), which provides most detailed step-by-step explanations for the classical technique. Its coverage of least squares theory, in particular, is exhaustive. Two other serious Ph.D. level texts in the market are Jeff Wooldridge’s Econometric Analysis of Cross Section and Panel Data (MIT Press), and Russell Davidson and James McKinnon’s Econometric Theory and Methods (Oxford). Both these texts make the reader think beyond the theorem-proof approach. Wooldridge, although mainly a theory text, makes you really think about how to apply the theory to data with many pertinent examples. Davidson-Mackinnon is very strong in theory, particularly in the geometrical underpinning behind algebraic equations. One of the most recent entry in the graduate econometrics textbook market is Microeconometrics by A. Colin Cameron and Pravin Trivedi (Cambridge University Press) and it is a
A wonderful book for learning some of the more modern techniques in econometrics, such as simulation based methods and nonparametric methods. My personal favorite Ph.D. level text, which is more textbookish than all these books while being at the same time being modern with plenty of stimulating exercises, is Fumio Hayashi’s *Econometrics* (Princeton University Press). It may initially appear a hard read, but if you aspire to get into a Ph.D. program someday, you will need to learn the content of this book. In my lectures, I will make use of material from all the above-mentioned texts.

These days, one can learn a lot in almost any field from surfing the web; econometrics is no exception. You can download great set of lecture notes written by noted econometricians and find out what is being taught at other prestigious graduate programs. Professor Bruce Hansen (U Wisconsin Madison) has a nice set of lecture notes at http://www.ssc.wisc.edu/~bhansen/econometrics/ while Professor Herman Bierens of Penn State has another great set of notes on various topics at http://econ.la.psu.edu/~hbierens/LECNOTES.HTM.

SOFTWARE: The course places heavy emphasis on using software to analyze data, so students need to get up to speed with this aspect of the course real soon. The official software for this course is STATA; however in the past I have also worked with R, LIMDEP and SAS. Any of these software should be adequate for this course, but if you wish to use something other than STATA, please be forewarned that if you are stuck with something, you will be on your own. Also, the answers to the take-home must be done in STATA.

Students from Ec507 course should be already quite familiar with STATA, which has numerous canned packages plus a fair bit of programming capabilities. If you were not in Ec507 last semester or have not already purchased it then, note that as a BU student, you may buy a perpetual license for the standard version (the “Intercooled version”) at an academic price of $189 (go to www.stata.com and look under ‘gradplan’ for details). They also have an annual license for a reduced price of $98. Finally, you also have the option of buying a one-year license for the ‘small’ version of STATA at a price of $49. If you have small STATA, you will be able to carry out most of the assignments (I would say about 90-95%), but there may be some involving long simulations and large datasets that you may not be able to carry out. The current version is STATA 13 but if you happen to have STATA 12 (or even STATA 11), you will be able to do everything you need to do in this course.

Since, most of you have been introduced to STATA via Ec507, I will not waste class time here re-introducing you to the package; however, in case you were not a student in that course, I will post my introductory material on STATA to get you started. There are also numerous (free) tutorials that are available both online with the package and on the net some of which will be posted on our website. In this course, we will take STATA programming to somewhat higher level, and in particular, spend considerable time doing ML estimation with STATA. At the beginning of the course, some dedicated sessions will be offered on STATA to help folks who are new to it or had trouble with it last semester.
There are several free alternatives to STATA that are downloadable from the net. I mention a few here:

1. **EALIMDEP**, written by Professor William Greene (NYU), the author of “Econometric Analysis” is the baby version of the full-blown package LIMDEP and is limited in the sense that you cannot estimate more than 15 parameters in a model and data sets have to be relatively small (but still large enough for us). Here is the url for a page that has some relevant information on downloading and manuals: http://www.iona.edu/faculty/rjantzen/eco310/eco310ealimdep.htm

2. Another (totally) free software is **EASYREG** written by Professor Herman Bierens of Penn State University. This one does not have the programming flexibilities of EALIMDEP, but it has no limitations on model size (to be more accurate, it does but there is little chance that you will need to exceed those constraints). It has many canned packages that the former does not (particularly in Time Series analysis). Go to http://econ.la.psu.edu/~hbierens/EASYREG.HTM for downloading and additional information.

3. **R**, which is a clone of S/SPLUS, is also a terrific piece of software with great graphics and programming options. To download a free copy, go to: http://cran.r-project.org/. R like STATA, is very much a live software in the sense that people are all the time contributing their programs for free usage. Also, Springer has published a whole collection of books on R, some of which may be accessible online via BU library.

A fair question at this stage is if all these software are available for free why am I recommending that students purchase STATA? There are several reasons for that. First, not all packages are written with all disciplines in mind (they cannot be). STATA has a definite econometrics audience in mind, and several canned packages specifically needed by econometricians are available in STATA (and nowhere else); in fact some of the folks in charge of maintaining the repository of STATA programs (like Prof. Kit Baum of BC) are econometricians. But at the same time, STATA allows you to write your own programs which, as far as I know, among the freely available packages, only R does. Finally, note that one problem with free software is that you do not get technical support if things go wrong. I have had reasonably good experience with STATA’s technical support and I suspect that from time to time you might need it too.

TOPIC LIST: The following is a list of areas I wish to cover in this course (reference to reading material besides lecture notes being provided in parentheses²). This is indeed a wish list, for the list is long and hence, tentative; we will almost certainly skip some topics to concentrate on others. Topics 1-8 make up the core part of the course and hence, we will focus on them. Of the remaining topics, time constraints, class interests and relevance to ongoing student projects will determine which ones we will discuss. If you are very interested in a particular topic, please let me know.

² B refers to Berndt, CT refers to Cameron-Trivedi, DM to Davidson-McKinnon, H refers to Hayashi, G refers to Greene (6th ed), J refers to Johnston (3rd ed), JD refers to Johnston-Dinardo (4th ed), and R refers to Ruud, and T refers to the Heij et. al. text. You are only responsible for reading my lecture notes and any original paper I ask you to read.
Topic 0 (Introduction):
- Introduction to the course and the subject of econometrics

Topic 1 (Linear Algebra):
- Basic Linear algebra and matrices including a thorough treatment of eigenvalues and eigenvectors (G Appendix A, J Chapter 4)

Topic 2 (Statistics):
- Univariate statistics refresher (use your Ec507 text)
- Multivariate Statistics (T Chapter 1, G Appendices B and C, J Chapter 4)

Topic 3 (Classical Linear Model):
- The multiple regression model (T chapter 2 for background, H 3.1, G Chapter 2, H Chapter 1)
- Least squares geometry (T 3.1, G Chapter 3, DM Chapter 2, H Chapter 1, R Chapters 2, 3)
- Finite sample properties (T 3.2, G Chapter 4, DM Chapter 3, H Chapter 1, J Chapter 5, R Chapters 6-8)
- Inference (T 3.3-3.4, G Chapter 5, H Chapter 1, J Chapter 5, R Chapters 9-11)
- Application: Returns to scale in electricity (Marc Nerlove’s paper, H Chapter 1, B Chapter 3)
- Dummy variables (T 5.3, G Chapter 6, J Chapter 6)
- Parameter consistency and structural stability (T 5.3, G Chapter 6, J Chapter 6, 10)
- Application: Solow’s 1957 study of technical change (G Chapter 6)

Topic 4 (Model Specification):
- Consequences of Under and Over Specification (T 5.2, G Chapter 7)
- Model Selection Criteria (CT 8.5)
- The pitfalls of data mining (Lovell Paper)

Topic 5 (Large Sample Theory):
- Convergence Concepts (T 4.1, G Appendix D; H Chapter 2; R Chapter 13, B. Hansen Lecture Notes)
- Classical regression model with large samples (T 4.1, H Chapter 2, G Chapter 5, R Chapter 13)
- Application: Semiparametric inferential techniques (excerpts from Adonis Yatchew’s book on this topic)
Topic 6 (Instrumental Variables):
- Causes of Endogeneity (T 5.7, H 3.1, 3.2, G Chapter 12)
- IV and 2SLS Estimation (T 5.7, G Chapter 12)
- Tests with IVs (T 5.7, G Chapter 12, DM 8.5-8.7)
- Weak instruments and too many instruments (CT 4.9)
- Application: Returns to Schooling (Angrist and Krueger paper, Ashenfelter and Krueger paper)

Topic 7 (Nonlinear Models and More General Estimation Frameworks):
- Nonlinear models: NL regression, Maximum Likelihood Estimation and Generalized Method of Moments (T 4.2, H Chapters 4 and 7, DM Chapters 6, 9 and 10, G Chapters 11, 15 and 16, R Chapter 14)
- Testing via the trinity (T 4.3, G Chapter 16, R Chapters 17)
- Application of ML: stochastic frontier model; Aigner, Lovell and Schmidt’s study of metal industry (G Chapter 17, original article)
- Application of ML: Who wrote “And Quiet Flows the Don”? (Claeskens and Hjort book on Model selection)
- Application of GMM: Consumption and Asset Pricing Models (Hall, Hansen and Hansen-Singleton Papers)

Topic 8 (Data Problems):
- Generalized least squares (T 5.4, G Chapter 8)
- Heteroskedasticity (T 5.4, G Chapter 8; R Chapter 18)
- Application: credit card expenditures (G Chapter 8)
- Autocorrelation (T 5.5, G Chapter 19; H Chapter 2, 6; R Chapter 19)
- Application: Fama’s test of efficient market hypothesis (Original article; H Chapter 2)

Topic 9 (Multiple Equation Systems):
- System of equations and SUR (T 7.7, G Chapter 14, J Chapter 8)
- Application: estimation of interrelated factor demands (B Chapter 9)
- Identification in simultaneous equation modeling (T 7.7, G Chapter 15, J Chapter 11)
- Estimation in simultaneous equation systems (T 7.7, G Chapter 15, J Chapter 11)
- Application: Improving the efficiency of a queuing system; Study of Calcutta port (Dasgupta-Ghosh’s original article)
Topic 10 (Discrete Choice and Limited Dependent Variable Models):

- Binary choice models (T 6.1, G Chapter 21)
- Multinomial choice models (T 6.2, G Chapter 21)
- Ordered data and count data (T 6.2, G Chapter 21)
- Censoring, truncation and tobit models (T 6.3, G Chapter 22)
- Sample Selection (T 6.3, G Chapter 22)
- Application: College Choice Decision (Bridgett Long’s article)

Topic 11 (Panel Data Models):

- Fixed effects (T 7.7, G Chapter 9, H Chapter 5)
- Random effects (T 7.7, G Chapter 9, H Chapter 5)
- Dynamic panels (G Chapter 9)
- Application: Growth and convergence (Hayashi Chapter 5)