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Abstract

We provide tests to perform inference on the coe¢ cients of a linear trend assuming
the noise to be a fractionally integrated process with memory parameter d 2 (�0:5; 1:5)
by applying a quasi-GLS procedure using d-di¤erences of the data. Doing so, the
error term is short memory, the asymptotic distribution of the OLS estimators applied
to quasi-di¤erenced data and their t-statistics are una¤ected by the value of d and
standard procedures have a limit normal distribution. No truncation or pre-test is
needed given the continuity with respect to d. To have feasible tests, we use the
Exact Local Whittle estimator of Shimotsu (2010), valid for processes with a linear
trend. The �nite sample size and power of the tests are investigated via simulations.
We also provide a comparison with the tests of Perron and Yabu (2009) valid for a
noise component that is I(0) or I(1). The results are encouraging in that our test is
valid under more general conditions, yet has similar power as those that apply to the
dichotomous cases with d either 0 or 1.
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1 Introduction

Many time series are well captured by a deterministic linear trend. With a logarithmic

transformation, the slope of the trend function represents the average growth rate of the

time series, a quantity of substantial interest. To be more precise, consider the following

model for the time series process yt:

yt = �1 + �2t+ ut; (1)

where ut are the deviations from the trend. The parameter �2 is of primary interest. If

�2 = 0, then tests about �1 pertains to the mean of the time series. Hypothesis testing on

the slope of the trend function is important for many reasons. First, assessing whether a

trend is present is of direct interest in many applications. Second, the correct speci�cation

of the trend function is important in other testing problems, such as assessing the nature

of the noise component ut. Third, tests for hypotheses about the values of �1 and �2
allow constructing con�dence intervals via inversions. There is a large literature on issues

pertaining to inference about the slope of a linear trend function, most related to the case

where the noise component is stationary, i.e., integrated of order zero, I(0). A classic result

due to Grenander and Rosenblatt (1957) states that the estimate of �2 obtained from a simple

least-squares regression of the form (1) is asymptotically as e¢ cient as that obtained from

a Generalized Least Squares (GLS) regression when the process for ut is correctly speci�ed.

However, when ut has an autoregressive unit root, i.e., integrated of order one, I(1), the

estimate of the mean of the �rst-di¤erenced series is e¢ cient in large samples.

Several papers tackled the issue of constructing tests and con�dence intervals for the para-

meter �2 when it is not known a priori if ut is I(1) or I(0). Sun and Pantula (1999) proposed

a pre-test method which �rst applies a test of the unit root hypothesis and then chooses the

critical value to be used according to the outcome of the test. Since the probability of using

the critical values from the I(0) case does not converge to zero when the errors are I(1),

the simulations reported accordingly show that substantial size distortions remain. Canjels

and Watson (1997) considered various Feasible GLS methods. Their analysis is, however,

restricted to the cases where ut is either I(1) or the autoregressive root is local to one. They

do not allow I(0) processes and, moreover, their method yields con�dence intervals that are

substantially conservative with common sample sizes. Roy et al. (2004) considered a test

based on a one-step Gauss Newton regression but its limit distribution is not the same in the

I(1) and I(0) cases (see Perron and Yabu, 2012). Vogelsang (1998), Bunzel and Vogelsang

(2005) and Harvey et al. (2007) proposed tests valid with either I(1) or I(0) errors. Their
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approach, however, uses randomly scaled versions of tests for trends so that in �nite samples

the good properties of such tests are lost, at least to some extent. Perron and Yabu (2009)

considered a Feasible Quasi GLS approach that uses a supere¢ cient estimate of the sum

of the autoregressive parameters � when � = 1. The estimate of � is the OLS estimate

obtained from an autoregression applied to detrended data and is truncated to take a value

1 when the estimate is in a T�� neighborhood of 1. This makes the estimate �super-e¢ cient�

when � = 1 and implies that inference on the slope parameter can be performed using the

standard normal or chi-square distribution whether � = 1 or j�j < 1.
Much of the literature focused on ut being I(0) or I(1), special cases of fractionally

integrated, I(d), processes with memory parameter d. Since d can take any real value

(within some interval), a long-memory process extends the classical dichotomy of I(0) and

I(1) processes. Our aim is to provide tests to perform inference on the coe¢ cients of a linear

trend function assuming the noise component to be an I(d) process with d 2 (�0:5; 1:5). The
methodology is similar to that in Perron and Yabu (2009) and applies a quasi-GLS procedure

using d-di¤erences of the data. The error term is then short memory and the asymptotic

distribution of the OLS estimators of (�1; �2) and their t-statistics are una¤ected by the

value of d and standard OLS procedures can be applied with the limit normal distribution.

No truncation or pre-test is needed given the continuity with respect to d. To make our

procedure feasible, we need an estimator of d valid with a �tted linear time trend and for

a wide range of d. After experimenting with various possible estimators, we opted to use

the Exact Local Whittle (ELW) estimator of Shimotsu (2010) who extended Shimotsu and

Phillips (2005) to cover processes with a linear trend. It is valid for values of d in the range

(�:5; 1:5) and yields tests with good �nite sample properties. A related paper is Iacone and
al. (2013) who proposed a test for a break in the slope of a linear time trend when the order

of integration is unknown, whose methodology is similar to ours. Also, Abadir, Distaso and

Giraitis (2011) considered an I(d) model with trend and cycles and derived the asymptotic

distribution of the OLS estimate of the parameter of the slope of the trend.

This note is organized as follows. Section 2 describes the model and the test statistics,

and Section 3 the estimate of d used to have feasible tests. Section 4 presents simulation

results about the size and power of the tests in �nite samples. We provide a comparison with

the tests of Perron and Yabu (2009) valid when ut is either I(0) or I(1). The results are

encouraging in the sense that our test is valid under much more general conditions, yet has

similar power as those that apply only to the dichotomous cases with d either 0 or 1. Section

5 provides brief conclusions and a mathematical appendix some technical derivations.
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2 The model and test statistics

The data-generating process is assumed to be:

yt = �1 + �2t+ ut (2)

for t = 1; :::; T , with ut a fractionally integrated process satisfying the following assumptions.

�Assumption 1: The process ut is generated by �dut = (1�L)dut = "t{ft � 1g, where �d is

the fractional di¤erence operator and {fAg is the indicator function of the event A. Also, "t
is a linear short memory process generated by "t = A(L)vt =

P1
j=0Ajvt�j with A(1)

2 > 0,P1
l=0 ljAlj <1, vt � i:i:d: (0; �2v) and Ejvtjq <1 with q > max(4; 2=(3� 2d)).

�Assumption 2: f"(�) is bounded for � 2 [0; �]; f"(�) � G0 2 (0;1) as � ! 0+ and, for

some � 2 (0; 2], f"(�) = G0(1 + O(�
�); in a neighborhood (0; �) of the origin, A(ei�) is

di¤erentiable and (d=d�)A(ei�) = O(��1) as �! 0+.

Assumptions 1-2 are mostly from Shimotsu (2010) and allow the estimate of d to be

consistent and asymptotically normally distributed. Assumption 1 strengthens some of his

conditions in order to have a functional central limit theorem for the partial sums of the ut.

The stated conditions for this to hold follow Marinucci and Robinson (2000). Applying a

d-di¤erencing transformation, the DGP can be written as:

ydt � �dyt = �1�
d{ft � 1g+ �2�dt{ft � 1g+�dut{ft � 1g; (t = 1; :::; T )

Note that �dut = "t and �dy1 = y1: We also de�ne Xt = [1; t]
0 and Xd

t � �dXt = [�
d{ft �

1g;�dt{ft � 1g]0 with �dX1 = [1; 1]
0. Hence, the GLS transformed regression is:

ydt = X
d0

t � + "t; (t = 1; :::; T )

To obtain a feasible regression, we need to replace d by some consistent estimate d̂ to be

discussed in the next section. The tests will then be based on the regression

yd̂t = X
d̂0

t � + u
d̂
t ; (t = 1; :::; T ) (3)

where ud̂ = �d̂ut1ft � 1g. Let �̂ = (X d̂0X d̂)�1X d̂0yd̂ denote the OLS estimator of [�1; �2]
0,

whereX d̂ = [X d̂0
1 ; :::; X

d̂0
T ]
0 and yd̂ = [yd̂1 ; :::; y

d̂
T ]
0. The test statistic on the time trend coe¢ cient

�2 for H0 : �2 = �
0
2 against H1 : �2 6= 0, is constructed as the usual t-statistic:

t�̂2 = R(�̂ � �
0)=[�̂2R(X d̂0X d̂)�1R0]1=2
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where R = [0 1], �0 = (�01; �
0
2) and �̂

2 is a consistent estimator of long-run variance �2 =P1
j=�1 �(j) where �(j) = E("t"t�j). Similarly, the test statistic on the constant term �1

for H0 : �1 = �
0
1 can also be constructed as usual with:

t�̂1 = R1(�̂ � �
0)=[�̂2R1(X

d̂0X d̂)�1R01]
1=2

where R1 = [1 0]. The following theorem provides the limit distribution of the test statistics.

Theorem 1 Let fytg be generated by (2) under Assumptions 1-2. Suppose that we have
estimates d̂ and �̂2 such that d̂ � d = Op(T��) for some � > 0 and �̂2 � �2 = op(1). Then,
a) under H0 : �2 = �02, t�̂2 !

d N(0; 1) for any d 2 (�0:5; 1:5); b) under H0 : �1 = �01,

t�̂1 !
d N(0; 1) for any d 2 (�0:5; 0:5).

A consistent estimate of �2 is readily available. Popular estimates are weighted sums of

autocovariances of the form �̂2 = �̂(0)+2
PT�1

j=1 �(j;m)�̂(j), where �̂(j) = T
�1PT

t=j+1 u
d̂
tu
d̂
t�j

with ud̂t the OLS residuals from the regression (3) and �(�) a kernel function with bandwidth
m. In the simulations below, we use the Bartlett kernel and Andrews�(1991) data dependent

method for selecting the bandwidth based on an AR(1) approximation. The choice of an

appropriate estimate of d is more delicate and discussed in the next section.

3 Estimate of d

The Exact Local-Whittle (ELW) estimation procedure for the order of fractional integration

of a process was studied by Shimotsu and Phillips (2005). It was subsequently extended by

Shimotsu (2010) to cover the case with an unknown trend function, a needed feature in our

context. It is also valid under a wide range of possible values for d including values greater

than 1. Accordingly, we shall adopt it as the estimator of d to be used in constructing our

test statistics. To describe the estimation procedure, de�ne the discrete Fourier transform

and the periodogram of yt evaluated at the fundamental frequencies as

!y(�j) =
1p
2�T

XT

t=1
yt exp(it�j); Iy(�j) = j!y(�j)j2

for �j = (2�j=T ), j = 1; :::; T . The ELW estimator of d is the minimizer of

Qm(G; d) =
1

m

Xm

j=1
[log(G��2dj ) +

1

G
I�dy(�j)]:

Concentrating Qm(G; d) with respect to G, the objective function is R(d) = log Ĝ(d) �
2d(m�1)

Pm
j=1 log(�j), where Ĝ(d) = m�1Pm

j=1 I�dy(�j) and, within a pre-speci�ed range
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to be de�ned below, the ELW estimator is ed = argmin d2[�1;�2]R(d). Shimotsu (2010)

extended the ELW estimation procedure to cover an unknown linear time trend via a two-

step procedure applied to detrended data. The �rst step detrends the data by an OLS

regression of yt on (1; t) with the residuals denoted ŷt. The modi�ed objective function is

then:

RF (d) = log ĜF (d)� 2d
1

m

Xm

j=1
log(�j); ĜF (d) =

1

m

Xm

j=1
I�d(ŷ�'(d))(�j)

where '(d) = (1� w(d))ŷ1 with w(d) a twice continuous di¤erentiable weight function such
that w(d) = 1 for d � 1=2 and w(d) = 0 for d � 3=4. As recommended by Shimotsu (2010),
w(d) = (1=2)[1 + cos(4�d)] for d 2 [1=2; 3=4]. A two-step procedure is applied to ensure

the global consistency of the estimate. In the �rst step, one uses the tapered local Whittle

estimator of Velasco (1999) denoted d̂T , which is
p
m-consistent and invariant to a linear

trend for d 2 (�1=2; 5=2). The second step estimator involves the following modi�cation:

d̂�ELW = d̂T �R0F (d̂T )=R
00

F (d̂T ) (4)

where R0F (d̂T ) and R
00
F (d̂T ) are the �rst and second derivatives of RF (d). Following Shimotsu

(2010), we use max[R00F (d̂T ); 2] to improve the �nite sample properties. The �nal estimator,

denoted d̂ELW , is obtained iterating (4). Now consider the following assumption.

�Assumption 3: a) �(1=2) < �1 < �2 � (7=4); b) as T !1, m�1 +m1+2�(logm)2T�2� +

m�
 log T ! 0, for any 
 > 0, with � as de�ned in Assumption 2.

From Shimotsu (2010), under Assumptions A1-A3,
p
m( d̂ELW�d)!d N(0; 1=4). Hence,

if our test statistics are constructed using d̂ELW , Theorem 1 continues to hold.

4 Simulation results

In this section, we consider the size and power of the test t�̂2 for the slope of the trend via

simulations, using 1,000 replications throughout (the results for the test t�̂1for the mean are

qualitatively similar for the range d 2 (�0:5; 0:5)). The data are generated by (2) with ut
an ARFIMA(p; d; q) of the form (1 � L)dut = "t{ft � 1g with A(L)"t = B(L)et, where

A(L) = 1�a1L� :::�apLp and B(L) = 1+b1L+ :::+bqLq are the autoregressive and moving
average lag polynomials, respectively, and et � i:i:d N(0; 1). Assumptions A1 and A2 are

satis�ed if the roots of A(L) = 0 and B(L) = 0 are outside the unit circle. In all cases, we set

�1 = �2 = 0 under the null hypothesis without loss of generality. Also, the estimate d̂ELW is

constructed with m = T :65. We consider two-sided tests at the 5% signi�cance level and for
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d = 0 or 1, the results are compared to those obtained with the two versions of the Perron

and Yabu (2009) tests, tFS� (MU) or t
FS
� (UB), which use di¤erent autoregressive estimates

before applying the truncation (MU stands for Median Unbiased and UB for Upper Biased).

We start with the case of pure fractional processes with A(L) = B(L) = 1. We consider

the range d 2 [�0:4; 1:4] and T = 500; 1000 and 2000. The results, presented in Table 1,

show that the exact sizes of the test t�̂2are close to the nominal size in all cases. On the

other hand, tFS� (MU) and t
FS
� (UB) show substantial size distortions unless d = 0; 1. When

d is negative the tests are very conservative, while when 0 < d < 1, the tests are liberal. The

liberal size distortions are especially pronounced when d = 1:4. The power functions for a

two-sided test of �2 = 0 are presented in Figure 1 for T = 500. Given the size distortions of

the Perron and Yabu (2009) tests when d is di¤erent from 0 and 1, we include them only for

the case d = 1 (we return below to the case d = 0). When d = 1, tFS� (MU) and t
FS
� (UB)

have higher power, as expected. This due to the fact that the Perron and Yabu (2009) tests

apply a truncation to 1 when the autoregressive parameter is in a neighborhood of 1 leading

to a smaller bias when d = 1. However, the di¤erences are not large and decrease as T

increases (from unreported simulations). As expected, the power of t�̂2 is highest when d is

small with the power decreasing monotonically as d increases (note the di¤erent scaling on

the horizontal axis).

Table 2 presents results about the size of the tests for processes with short-run dynamics

of the autoregressive form with an AR(1) so that A(L) = 1 � aL with d = 0, cases for

which the Perron and Yabu tests were designed. We consider values of a ranging from 0 to

0:95. The results show that the exact size remains close to the nominal 5% level, unless a

is close to 1, in which case the exact size of t�̂2 is below nominal size. It is well known that

in the presence of a short-run component that has strong correlation, most estimates of d

are biased. Accordingly, it is of some comfort to see that our test retains decent size and

exhibits no liberal size distortions. The power functions for a two-sided test of �2 = 0 are

presented in Figure 2 for T = 500. When a = 0, 0:3 or 0:5, all tests have essentially the

same power. When a = 0:7 or 0:9, the Perron and Yabu tests have slightly higher power.

When a = 0:95, t�̂2has much higher power, despite being conservative, unless the alternative

is close to the null value.

We next consider the size and power of the tests using �ve di¤erent DGPs used in Qu

(2011), which were motivated by �nancial applications of interest. These are given by:

DGP 1. ARFIMA(1; d; 0): (1� a1L)(1� L)0:4"t = et, where a1 = 0:4 and �0:4:
DGP 2. ARFIMA(0; d; 1): (1� L)0:4"t = (1 + b1L)et, where b1 = 0:4 and �0:4:
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DGP 3. ARFIMA(2; d; 0): (1� a1L)(1� a2L)(1� L)0:4"t = et, with a1 = 0:3, a2 = 0:5:
DGP 4. "t = zt + �t, where (1� L)0:4zt = et and �t � i:i:d N(0; var(zt)):
DGP 5. (1� L)0:4"t = �t with �t = �tet; �2t = 1 + 0:1�2t�1 + 0:85�2t�1:
In all cases, et � i:i:d: N(0; 1). DGPs 1-3 are di¤erent cases of ARFIMA processes, DGP 4

is a fractionally integrated process with measurement errors and DGP 5 is a GARCH process.

Note that DGPs 4 and 5 do not satisfy the conditions of Assumptions 1-2. We nevertheless

include them to assess the robustness of the results given that conditional heteroskedasticity

and measurement errors are prevalent features of many time series. Given the size distortions

of the Perron and Yabu (2009) tests when d is di¤erent from 0 or 1, we only present results

for the test t�̂2.

Table 3 presents the exact sizes of the tests. In all cases, the exact size of t�̂2 is near

5%, except for DGPs 2 and 5 for which the test has slight liberal size distortions when

T = 500, which decrease as T increases. The power functions of the test for T = 500 are

presented in Figure 3. In all cases, power increases rapidly to 1 as �2 deviates from 0, with

the exception perhaps of the case with GARCH errors. Comparing the results across DGPs,

power decreases when additional short-run dynamics is present. The e¤ect of measurement

errors on the power is minor.

5 Conclusion

We provided tests to perform inference on the coe¢ cients of a linear trend function assuming

the noise to be a fractionally integrated process with memory parameter in the interval

(�0:5; 1:5). The results are encouraging in the sense that our test is valid under much more
general conditions, yet has power similar to the Perron and Yabu (2009) tests that apply

only to the dichotomous cases with d either 0 or 1. When d is di¤erent from 0 or 1, its exact

size is close to the nominal size and power is good. Our procedure provides a useful tool

for inference about the coe¢ cients of a linear trend under general conditions on the noise

component. Though we assumed the errors to follow a Type II long-memory process, we

conjecture that our results remain valid with a Type I process as de�ned by Marinucci and

Robinson (1999). First, as Shimotsu (2010) argues, his results remain valid for both types

of processes. Also, the conditions for a functional central limit theorem for Type I processes

are very similar, see e.g., Wang et al. (2003) and could be slightly modi�ed accordingly.

7



References

Abadir, K. M., Distaso, W. and Giraitis, L. (2011) An I(d) model with trend and cycles.
Journal of Econometrics 163, 186-199.

Andrews, D. W. K. (1991) Heteroskedasticity and autocorrelation consistent covariance ma-
trix estimation. Econometrica 59, 817-858.

Bunzel, H. and Vogelsang, T. J. (2005) Powerful trend function tests that are robust to
strong serial correlation with an application to the Prebish-Singer hypothesis. Journal of
Business and Economic Statistics 23, 381-394.

Canjels, E. and Watson, M. W. (1997) Estimating deterministic trends in the presence of
serially correlated errors. Review of Economics and Statistics 79, 184-200.

Grenander, U. and Rosenblatt, M. (1957) Statistical Analysis of Stationary Time Series,
New York: John Wiley.

Harvey, D. I., Leybourne, S. J. and Taylor, A. M. R. (2007) A simple, robust and powerful
test of the trend hypothesis. Journal of Econometrics 141, 1302-1330.

Iacone, F., Leybourne, S. J. and Taylor, A. M. R. (2013) Testing for a break in trend when
the order of integration is unknown. Journal of Econometrics 176, 3045.

Marinucci, D. and Robinson, P. M. (1999) Alternative forms of fractional Brownian motion.
Journal of Statistical Planning and Inference 80, 111-122.

Marinucci, D. and Robinson, P. M. (2000) Weak convergence of multivariate fractional
Brownian motion. Stochastic Processes and their Applications 86, 103-120.

Perron, P. and Yabu, T. (2009) Estimating deterministic trends with an integrated or sta-
tionary noise component. Journal of Econometrics 151, 56-69.

Perron, P. and Yabu, T. (2012) Testing for trend in the presence of autoregressive error: a
comment. Journal of the American Statistical Association 107, 844.

Qu, Z. (2011) A test against spurious long memory. Journal of Business & Economic Sta-
tistics 29, 423-438.

Robinson, P. M. (2005) E¢ ciency improvements in inference on stationary and nonstationary
fractional time series. Annals of Statistics 33, 1800-1842.

Robinson, P. M. and Iacone, F. (2005) Cointegration in fractional systems with deterministic
trends. Journal of Econometrics 129, 263-298.

Roy, A., Falk, B. and Fuller, W. A. (2004) Testing for trend in the presence of autoregressive
errors. Journal of the American Statistical Association 99, 1082-1091.

Shimotsu, K. (2010) Exact local Whittle estimation of fractional integration with unknown
mean and time trend. Econometric Theory 26, 501-540.

8



Shimotsu, K. and Phillips, P. C. B. (2005) Exact local Whittle estimation of fractional
integration. Annals of Statistics 33, 1890-1933.

Sun, H. and Pantula, S. G. (1999) Testing for trends in correlated data. Statistics and
Probability Letters 41, 87-95.

Velasco, C. (1999) Gaussian semiparametric estimation of non-stationary time series. Journal
of Time Series Analysis 20, 87�127.

Vogelsang, T. J. (1998) Trend function hypothesis testing in the presence of serial correlation.
Econometrica 66, 123-148.

Wang, Q., Lin, Y.-X. and Gulati, C. M. (2003) Asymptotics for general fractionally integrated
processes with applications to unit root tests. Econometric Theory 19, 143-164.

9



Appendix

Proof of Theorem 1: We start by assuming that d and �2 are known and then show
that the results remain the same under the condition stated. Consider �rst part (a). Let
KT = diagfT 1=2�d; T 3=2�dg, Xd = [Xd0

1 ; :::; X
d0
T ]
0, Xd

t = [�0;t �1;t]
0, �i;t = �dti{ft � 1g for

i = f0; 1g and " = ["1; :::; "T ]0 then:

t�̂2 =
R(�̂ � �0)

[�2R(Xd0Xd)�1R0]1=2
=
R(K�1

T X
d0XdK�1

T )
�1(K�1

T X
d0")

[�2R(K�1
T X

d0XdK�1
T )

�1R0]1=2

Lemma A.1 (1) for �0:5 < d < 0:5: t�̂2
d! RC�1L=[RC�1R0]1=2 � A1, where

C =

24 1
f�(1�d)}2(1�2d)

1
�(1�d)�(2�d)(2�2d)

1
�(1�d)�(2�d)(2�2d)

1
{�(2�d)}2(3�2d)

35 , L =

24 1
�(1�d)

R 1
0
r�ddW (r)

1
�(2�d)

R 1
0
r1�ddW (r)

35
and

A1 =
p
3� 2d

�
(2� 2d)

Z 1

0

r1�ddW (r)� (1� 2d)
Z 1

0

r�ddW (r)

�
(2) for 0:5 � d < 1:5:

t�̂2 =
R( eK�1

T X
d0Xd eK�1

T )
�1( eK�1

T X
d0")

[�2( eK�1
T X

d0Xd eK�1
T )

�1]1=2
d! �R eC�1eL
[�2R eC�1R0]1=2

= C
�1=2
22 L2 =

p
3� 2d

Z 1

0

r1�ddW (r) � A2

where eKT = diagf1; T 3=2�dg with C22 and L2 the relevant sub-matrices of C and L:

Proof : From Lemma 1 of Robinson (2005), as t ! 1, for d 2 (0; 1), �d{ft � 0g =
�(1 � d)�1t�d + O(t�1) and �dt{ft � 0g = �(2 � d)�2t1�d + O(1). For d 2 (1; 1:5);
�dt{ft � 0g = �(2 � d)�1t1�d + O(t�1). From (A.34) of Robinson and Iacone (2005), for
any r 2 (0; 1], we have a) for d 2 (0; 0:5): T�d�d{f[rT ] � 0g ! �(1 � d)�1r�d; b) for
d 2 (0; 1:5), T�d�d[rT ]{f[rT ] � 0g ! �(2� d)�1r1�d. The facts that K�1

T X
d0XdK�1

T ! C
and K�1

T X
d0" ! L are proved in (A.36) of Robinson and Iacone (2005). For part (2), the

result follows given that, when 0:5 � d < 1:5;

eK�1
T X

d0Xd eK�1
T !

24 0 0

0 C22

35 and eK�1
T X

d0"! eL � � 0
�L2

�

Lemma A.2 A1 and A2 have a N(0; 1) distribution:
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Note that A2 can be approximated by the sum of functions of normal random variablesp
3� 2dT d�3=2

PT
j=1 j

1�dej, with ej � i:i:d: N(0; 1) so that
PT

j=1 j
1�dej isN(0;

PT
j=1 j

2(1�d)).

According to Faulhaber�s formula,
PT

j=1 j
p = [(B+T )p+1�Bp+1]=(p+1), withB the Bernoulli

number. Also,
PT

j=1 j
2(1�d) ' T 3�2d=(3� 2d), so that

p
3� 2dT d�3=2

PT
j=1 j

1�dej is N(0; 1).
Similarly, A1 can be approximated by

(2� 2d)
p
3� 2dT d�3=2

TX
j=1

j1�dej �
p
3� 2d(1� 2d)T d�1=2

TX
j=1

j�dej:

The �rst term is N(0; (2� 2d)2) and the second is N(0; (3� 2d)(1� 2d)). The covariance of
the two terms is (3 � 2d)(1 � 2d), so that A1 is N(0; 1), since (2 � 2d)2 + (3 � 2d)(1 � 2d)
�2(3� 2d)(1� 2d) = 1.
For part (b), we have t�̂1

d! �R1C
�1L=[�2R1C

�1R01]
1=2� B1, where

B1 =
p
1� 2d[(2� 2d)

Z 1

0

r�ddW (r)� (3� 2d)
Z 1

0

r1�ddW (r)]:

Now, B1 can be approximated by

(2� 2d)
p
1� 2dT d�1=2

PT
j=1 j

�dej �
p
1� 2d(3� 2d)T d�3=2

PT
j=1 j

1�dej:

The �rst term is N(0; (2� 2d)2) and the second is N(0; (3� 2d)(1� 2d)): Their covariance is
(3�2d)(1�2d), so that B1 is N(0; 1), since (2�2d)2+(3�2d)(1�2d)�2(3�2d)(1�2d) = 1.
It remains to show that the results remain the same with estimates of d and �2. The fact

that the results remain the same when using a consistent estimate of �2 is trivial, hence we
concentrate on using an estimate of d. We need to show that if d̂ � d = Op(T

��) for any
� > 0; then (a) for jdj < 0:5;

K�1
T X

d̂0X d̂K�1
T �K�1

T X
d0XdK�1

T

d! 0 (A.1)

and
K�1
T X

d̂0ud̂ �K�1
T X

d0"
d! 0 (A.2)

where X d̂ = [X d̂0
1 ; :::; X

d̂0
T ]
0, ud̂ = [ud̂1; :::; u

d̂
T ]
0, X d̂

t = [�̂0;t �̂1;t]
0, ud̂t = �d̂ut{ft � 1g, and

�̂i;t = �
d̂ti{ft � 1g for i = f0; 1g; (b) for 0:5 � d < 1:5;

eK�1
T X

d̂0X d̂ eK�1
T � eK�1

T X
d0Xd eK�1

T

d! 0 (A.3)

and

eK�1
T X

d̂0ud̂ � eK�1
T X

d0"
d! 0 (A.4)

Note that from Iacone et al. (2013, A.22),

�̂i;t � �i;t = op(ti�d) (A.5)
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if d̂� d = Op(T��) for some � > 0. Consider �rst the case jdj < 0:5. We need to show that

T 2d�1�i�j(

TX
t=1

�̂i;t�̂j;t �
TX
t=1

�i;t�j;t)
d! 0

for i; j = f0; 1g, or equivalently, that

T 2d�1�i�j[

TX
t=1

(�̂i;t � �i;t)�j;t +
TX
t=1

�i;t(�̂j;t � �j;t) +
TX
t=1

(�̂i;t � �i;t)(�̂j;t � �j;t)]
d! 0 (A.6)

We have

T 2d�1�i�j
TX
t=1

(�̂i;t � �i;t)�j;t � T 2d�1�i�j[
TX
t=1

(�̂i;t � �i;t)2
TX
t=1

�2j;t]
1=2 (A.7)

Using (A.5) and the fact that j�i;tj � Cti�d for d 2 (�0:5; 1:5) from Lemma 1 of Robinson
(2005), (A.7) is op(T 2d�1�i�j+i�d+1=2+j�d+1=2) = op(1). Using similar arguments, the other
terms in (A.6) are op(1), which establishes (A.1). For d 2 (�0:5; 1:5), we want to show that

T d�3=2
TX
t=1

�̂1;tu
d̂ � T d�3=2

TX
t=1

�1;t"t
d! 0

or, equivalently,

T d�3=2[
TX
t=1

(�̂1;t � �1;t)"t +
TX
t=1

�1;t(u
d̂ � "t) +

TX
t=1

(�̂1;t � �1;t)(ud̂ � "t)]
d! 0

According to (A.29) and (A.30) in Iacone et al. (2013),

T d�3=2
TX
t=1

�1;t(u
d̂ � "t) = T d�3=2

TX
t=1

�1;t

B�1X
r=1

1

r!
(d̂� d)rg(r)("t; 0)

+T d�3=2
TX
t=1

�1;t
1

B!
(d̂� d)Bg(B)("t; ed� d)

where jed � dj � jd̂ � dj, g(r)("t; v) =
Pt�1

s=1 a
(r)
s (v)"t�s and a

(r)
s (v) = @r�

(v)
s =@vr. Also

j
PT

t=1 g
(r)("t; 0)j = Op(T 1=2) and j�1;t+1 � �1;tj � Ct�d, hence

T d�3=2�r�
TX
t=1

�1;tg
(r)("t; 0) � T d�3=2�r�

TX
t=1

j�1;t+1 � �1;tjj
TX
s=t

g(r)("s; 0)j

= op(T
d�3=2�r��d+1=2+1) = op(1)
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T d�3=2�B�
TX
t=1

�1;tg
(B)("t; ed� d) � T d�3=2�B�[

TX
t=1

�21;t

TX
t=1

(g(B)("t; ed� d))2]1=2
= Op(T

d�3=2�B�+1�d+ 1
2
+1) = Op(T

1�B�) = op(1)

for B > 1=�. According to Lemma 4 of Robinson (2005),

�̂i;t � �i;t =
B�1X
r=1

1

r!
(d̂� d)r�(r)i;t +

1

B!
(d̂� d)Be�(B)i;t (A.8)

with �(r)i;t = (ln�)
r�dti{ft � 1g and e�(B)i;t = (ln�)

B�
edti{ft � 1g. Hence,

T d�3=2
TX
t=1

(�̂1;t � �1;t)"t = T d�3=2
TX
t=1

"t

B�1X
r=1

1

r!
(d̂� d)r�(r)1;t + T d�3=2

TX
t=1

"t
1

B!
(d̂� d)Be�(B)1;t

and

T d�3=2�r�
TX
t=1

�
(r)
1;t"t � T d�3=2�r�

TX
t=1

j�(r)1;t+1 � �
(r)
1;t jj

TX
s=t

"sj = op(1)

since j
PT

s=t "sj = Op(T 1=2) and j�
(r)
1;t+1��

(r)
1;t j = O((lnT )rt�d). Also, T d�3=2�B�

PT
t=1 "te�(B)1;t =

op(1) using similar arguments. Hence, T d�3=2
PT

t=1(�̂1;t � �1;t)"t = op(1). Similarly, we can
sow that T d�3=2

PT
t=1(�̂1;t��1;t)(ud̂�"t) = op(1). It remains to show that for d 2 (�0:5; 0:5)

T d�1=2
TX
t=1

�̂0;tu
d̂ � T d�1=2

TX
t=1

�0;t"t
d! 0

or, equivalently,

T d�1=2[
TX
t=1

(�̂0;t � �0;t)"t +
TX
t=1

�0;t(u
d̂ � "t) +

TX
t=1

(�̂0;t � �0;t)(ud̂ � "t)]
d! 0 (A.9)

From (A.8),

T d�1=2
TX
t=1

(�̂0;t��0;t)"t = T d�1=2
TX
t=1

"t

B�1X
r=1

1

r!
(d̂�d)r�(r)0;t+T d�1=2

TX
t=1

"t
1

B!
(d̂�d)Be�(B)0;t = op(1)

since,

T d�1=2�r�
TX
t=1

"t�
(r)
0;t � T d�1=2�r�j�

(r)
0;t jj

TX
s=1

"sj = Op(T d�1=2�r��d+1=2) = op(1)

and j�(r)0;t j = O((ln t)r(t�d + (ln t)�1t�1)). Using similar arguments, the other two terms in
(A.9) are also op(1). This completes the proof of (A.1)-(A.4).
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Table 1: Finite Sample Size; Pure Fractional Processes. 

T d -0.4 0.2 0.4 0.8 1 1.4 
500 ELW 0.054  0.056  0.057  0.047  0.062  0.051  

 
MU 0.000  0.098 0.157 0.155 0.053 0.462 

 
UB 0.000  0.093 0.139 0.100 0.052 0.462 

1000 ELW 0.047  0.051  0.059  0.034  0.043  0.049  

 
MU 0.000  0.138 0.173 0.134 0.049 0.495 

 
UB 0.000  0.138 0.163 0.099 0.049 0.495 

2000 ELW 0.054  0.047  0.044  0.051  0.043  0.039  

 
MU 0.000  0.178 0.277 0.108 0.046 0.559 

 
UB 0.000  0.178 0.277 0.097 0.046 0.559 

 

 

Table 2: Finite Sample Size; AR(1) Processes with d=0. 

T AR 0 0.3 0.5 0.7 0.9 0.95 
500 ELW 0.074  0.068  0.049  0.018  0.017  0.005  

 
MU 0.051  0.059  0.030  0.037  0.049  0.045  

 
UB 0.051  0.059  0.030  0.037  0.047  0.034  

1000 ELW 0.085  0.068  0.057  0.008  0.017  0.005  

 
MU 0.057 0.031 0.046 0.046 0.042 0.053 

 
UB 0.057 0.031 0.046 0.046 0.042 0.051 

2000 ELW 0.064  0.067  0.069  0.017  0.029  0.005  

 
MU 0.066 0.045 0.058 0.041 0.044 0.049 

 
UB 0.066 0.045 0.058 0.041 0.044 0.049 

 

 

Table 3 Finite Sample Sizes; DGP 1-5 with d=0.4 

 
DGP-1 DGP-1 DGP-2 DGP-2 DGP-3 DGP-4 DGP-5 

T AR=0.4 AR=-0.4 MA=0.4 MA=-0.4 
AR1=0.3, 

AR2=0.5 

Measurement 

error 
GARCH 

500 0.061 0.059 0.084 0.107 0.033 0.052 0.084 

1000 0.057 0.058 0.076 0.094 0.056 0.031 0.074 

2000 0.048 0.065 0.08 0.069 0.045 0.052 0.069 

 



Figure 1: Unadjusted power for pure fractional processes
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Figure 2: Unadjusted power for AR(1) processes
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Figure 3: Unadjusted power for DGP 1-5
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