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Abstract
Elliott and Müller (2006) considered the problem of testing for general types of

parameter variations, including infrequent breaks. They developed a framework that
yields optimal tests, in the sense that they nearly attain some local Gaussian power
envelop. The main ingredient in their setup is that the variance of the process gener-
ating the changes in the parameters must go to zero at a fast rate. They recommended
the so-called ^qLL test, a partial sums type test based on the residuals obtained from
the restricted model. We show that for breaks that are very small, its power is indeed
higher than other tests, including the popular sup-Wald test. However, the di¤erences
are very minor. When the magnitude of change is moderate to large, the power of
the test is very low in the context of a regression with lagged dependent variables or
when a correction is applied to account for serial correlation in the errors. In many
cases, the power goes to zero as the magnitude of change increases. The power of the
sup-Wald test does not show this non-monotonicity and its power is far superior to the
^qLL test when the break is not very small. We claim that the optimality of the ^qLL
test does not come from the properties of the test statistics but the criterion adopted,
which is not useful to analyze structural change tests. Instead, we use �xed-break size
asymptotic approximations to assess the relative e¢ ciency or power of the two tests.
When doing so, it is shown that the sup-Wald test indeed dominates the ^qLL test and,
in many cases, the latter has zero relative asymptotic e¢ ciency.
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1 Introduction

The problem of testing for structural changes has been an active area of theoretical and

applied research for over 50 years (see Perron, 2006). In the last �fteen years or so, substantial

advances have been made to cover models at a level of generality that allows a host of

interesting practical applications in the context of unknown change points. These include

models with general stationary regressors and errors that can exhibit temporal dependence

and heteroskedasticity. In this respect, Andrews (1993) considered the limit distribution

of the so-called Sup-type tests, which are based on the maximal value of some statistic

over possible break dates within a pre-speci�ed set that excludes some proportion of the

data near the beginning or the end of the sample. Bai and Perron (1998) generalized this

approach to the case of multiple structural changes in the context of the linear model.

Andrews and Ploberger (1994) developed an asymptotic analysis based on a local asymptotic

framework, whereby the parameters under the alternative hypothesis are made local to the

null value. These tests are optimal in the sense that they maximize a weighted average of

the local asymptotic power envelop. More recently, Elliott and Müller (2006) (henceforth

EM) considered the problem of testing for general types of parameter variations, including

infrequent breaks. They developed a framework that yields optimal tests, in the sense that

they (nearly) attain some local Gaussian power envelop. The main ingredient in their setup is

that the variance of the process generating the changes in parameters must go to zero at a fast

rate. This allows them to show that all small sample e¢ cient tests for parameter instability

are asymptotically equivalent. Hence, one does not need to specify the exact nature of the

alternative hypothesis to have a test that is e¢ cient and optimal against any such particular

alternative hypothesis. The dramatic implication is that one can choose any such small

sample e¢ cient test and it will be so-called optimal when some conditions are satis�ed,

the most important being that the breaks are local to zero as the sample size increases.

Accordingly, they recommend the ^qLL test, an extension of the most powerful invariant

test in a Gaussian unobserved component model as analyzed by Franzini and Harvey (1983)

and Shively (1988). They show the validity of their test under general conditions including

dynamic models and models with serially correlated errors provided it is �robusti�ed� to

account for this correlation. In the terminology of Perron (2006), the ^qLL test is a partial

sums type test, as initially proposed by Gardner (1969). It is based on the residuals obtained

from the model restricted to satisfy the null hypothesis of no change.

This result appears quite impressive as one can make a very wide class of tests to be
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�optimal�. Moreover, the literature that uses the ^qLL indeed labels it as an �optimal�test

for changes in parameters. Our claim in this paper is that the framework EM adopt to yield

an optimality criterion is rather useless, in the sense that it labels as optimal a test with

very bad �nite sample properties when confronted with practically relevant types of breaks.

The main problem is the adoption of a framework in which the breaks are local to zero.

Such a setup used to derive optimality criteria has already been shown to be inadequate in

other contexts. Deng and Perron (2008) considered the CUSUM and CUSUM of squares

tests (Brown, Durbin and Evans, 1975) and showed that the local asymptotic theoretical

framework can give a very unreliable guide to the �nite power function, especially when

dynamics are involved with the errors and a correction is applied to account for this. Kim

and Perron (2009) also criticized the local asymptotic framework used by Andrews and

Ploberger (1994). They compared the asymptotic relative e¢ ciency of the Exp, Mean, and

Sup functionals of the Wald, LM and LR tests for structural change using the criterion of

the relative approximate Bahadur slopes of the tests. They showed that tests based on the

Mean functional are inferior to those based on the Sup and Exp when the same base statistic

is used. Also, for a given functional, the Wald-based test dominates the LR-based test,

which dominates the LM-based test. They also compared tests based on the Wald and LM

statistics modi�ed with a HAC estimator. In this case, the inferiority of the LM-based tests

is especially pronounced. They assessed the relevance of these theoretical results in �nite

samples via simulations. The results are in contrast to those of Andrews and Ploberger

(1994), based on a local asymptotic framework, and revealed its potential weaknesses in the

context of structural change problems.

In this paper, we analyze the power of the ^qLL test. We show that for very small breaks,

its power is indeed higher than other tests, including the popular sup-Wald test. However,

the di¤erences are very minor. Conversely, when the magnitude of change is moderate to

large, we show that the power of the test is very low in the context of a regression with lagged

dependent variables or when a correction is applied to account for serial correlation in the

errors. In many cases, the power goes to zero as the magnitude of change increases. The

power of the sup-Wald test does not show this non-monotonicity and its power is far superior

to the ^qLL test when the break is not very small. The same can be said of the UDmax test

of Bai and Perron (1998). Overall, the results show that the ^qLL test permits very modest

gains in power in a static regression with serially uncorrelated errors and small breaks but

has serious de�ciencies in dynamic models or when a correction for serial correlation is

applied. According to the framework EM adopt to de�ne the optimality criterion used, the
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sup-Wald test is not optimal while the ^qLL test is. In this sense, the claims of optimality

do not come from the properties of the test statistics but the criterion adopted. Hence, we

argue that such a framework to analyze structural change test is inadequate 1. As in Deng

and Perron (2008), we use asymptotic approximations for �xed break sizes to assess the

relative e¢ ciency of two tests. We show that the sup-Wald test has higher power than the
^qLL test unless the break size is very small and, in many cases, the latter has zero relative

asymptotic e¢ ciency, in the sense that its power goes to zero when the break is large. An

earlier version of this paper used the concept of relative Bahadur (1960) e¢ ciency to compare

the two tests, as in Kim and Perron (2009). To simplify the exposition we resort to �xed-

break asymptotic approximations. The conclusions are identical since both tests have the

same tail behavior and the Bahadur e¢ ciency measure reduces to comparing the limit values

(properly scaled) under the alternative hypothesis. We show that the �xed-break asymptotic

framework delivers better predictions about the �nite sample properties compared to a local

asymptotic framework, and that according to this criterion the sup-Wald is more e¢ cient

(powerful) in most cases.

It is important to note that we make no claim about any optimality property for the

sup-Wald. Andrews and Ploberger (1995) showed that the sup-Wald is optimal (in some

sense) against distant alternatives. But this result is of little comfort since they also showed

the sup-LM to enjoy the same properties. As shown in Kim and Perron (2009), the power

properties of the sup-LM are dramatically inferior to those of the sup-Wald in the context

of a regression with lagged dependent variables or when a correction is applied to account

for serial correlation in the errors. This discrepancy again occurs because Andrews and

Ploberger (1995) also adopt a local asymptotic framework.

The paper is organized as follows. Section 2 presents the model and tests considered.

Section 3 motivates the problems to be analyzed with some empirical examples and we

show that the ^qLL test fails to reject while the sup-Wald test gives p-values close to zero.

Section 4 presents simulation evidence on the �nite sample properties of the tests for four

types of parameters changes including those used by EM. Section 5 provides an asymptotic

comparison of the ^qLL and sup-Wald tests using the �xed-break asymptotic approximations.

Section 6 o¤ers brief concluding remarks and an appendix contains technical derivations.

The paper is structured in this manner for the following reasons. First, we wish to

convince the readers that the power issues to be tackled are practically relevant. We then

1For an early example of the potential pitfalls of local asymptotic analyses in the context of tests with
non-monotonic power, see Nelson and Savin (1990).
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document the main qualitative features via simulations to give an overview of the main

issues, so that the readers can get a general overview of the issues, the broad features and

their implications. Subsequently, we provide in-depth theoretical explanations of the features

documented in the simulations in more general frameworks.

2 The model and tests considered

The problem of interest is the following. We have a linear regression model given by:

yt = X
0
t�t + et; (1)

for t = 1; :::; T . Under the null hypothesis, the parameter vector � of dimension k is constant

throughout the sample, i.e., H0 : �t = �� for all t. Under the alternative hypothesis, there is

at least one change in � occurring within the sample, i.e., H1 : �t 6= �� for some t.

We now describe the test statistics to be analyzed. The ^qLL test statistic of EM is

constructed as follows:

Step 1. Compute the OLS residuals fêtg from regressing fytg on fXtg.

Step 2. Construct a consistent estimator V̂X of the k�k long-run covariance matrix of
fXtetg. If et can be assumed serially uncorrelated, a natural choice is a heteroskedas-
ticity robust estimator. For the more general case of possibly autocorrelated errors,

many such estimators have been suggested; see, e.g., Newey and West (1987) and

Andrews (1991).

Step 3. For each t = 1; :::; T , compute fûtg = fV̂X
�1=2

Xtêtg and denote the k elements of
fûtg by fût;ig, i = 1; :::; k.

Step 4. For each series fût;ig, compute a new series f!̂t;ig, where !̂t;i = �r!̂t�1;i +�ût;i and
!̂1;i = û1;i, with �r = 1� c=T and c = 10.

Step 5. Compute the sum of squared residuals from OLS regressions of f!̂t;ig on f�rtg for
each i and sum these over i = 1; :::; k.

Step 6. Multiply this sum of sum of squared residuals by �r, and subtract
Pk

i=1

PT
t=1û

2
t;i to

obtain the test statistic ^qLL.

The sup-Wald test statistic is the maximal value of the Wald test statistics over the

permissible break dates, i.e., SW = sup�2��WT (�), where �� = [�; 1 � �] is the set of the

4



possible break fractions. For the linear regression model with i.i.d. errors, the Wald test

statistic is given by

WT (�) = T

�
SSRrT � SSRT (�)

SSRT (�)

�
where SSRrT and SSRT (�) are the restricted and the unrestricted sum of squared residuals,

respectively. The latter is obtained from the regression

yt = X1(�)
0
t�1 +X2(�)

0
t�2 + et(�); (2)

where X1(�)
0
t = Xt if t � [T�] and 0 otherwise, while X2(�)

0
t = Xt if t > [T�] and 0

otherwise. When correcting for possible serial correlation in the errors,

WT (�) =
1

T

�
T � 2k
k

�
�̂
0
H 0(HV̂ (�̂)H 0)�1H�̂;

where �̂ = (�̂1; �̂2) is the OLS estimate from (2), H is the conventional matrix such that

(H�̂)0 = (�̂
0
1 � �̂

0
2), and V̂ (�̂) is an estimate of the variance covariance matrix of �̂ that is

robust to serial correlation and heteroskedasticity, i.e.,

V̂ (�̂) = T ( �X 0 �X)�1V̂X( �X
0 �X)�1 (3)

where �X = [X1(�); X2(�)]. Whenever a correction for serial correlation is needed, we shall

use Andrews�(1991) method, so that

V̂X = �̂0 +
T�1X
j=1

�(j;m)[�̂j + �̂
0
j]

where �̂j = T�1
PT

t=j v̂tv̂
0
t�j and �(j;m) is a kernel function with bandwidth m, v̂t = Xtêt

for the ^qLL test and for the sup-Wald test, v̂t = Xtê(�)t, with ê(�)t the OLS residuals

from the regression (2). Below, we use the Bartlett window and choose the bandwidth using

the method of Andrews (1991) with an AR(1) approximation. The method implies that

m = 1:1447(�T )1=3, where

� =
Pk

i=1

4�̂2i �̂
4
vi

(1� �̂i)6(1 + �̂i)2
=
Pk

i=1

�̂4vi
(1� �̂i)4

and �̂i and �̂
2
vi are the OLS estimates of the coe¢ cient and error variance from a �rst-order

autoregression applied to v̂i;t, i.e. the ith element of v̂t (the results are qualitatively similar

using other windows). If only a correction for heteroskedasticity is applied, then V̂X = �̂0.
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Throughout, we use tests with a 5% nominal size so that with one coe¢ cient allowed to

change, the decision rule for the ^qLL is to reject when the statistic is less than 8.36 (see

EM) and that for the Wald test, using a trimming � = 0:15, is to reject when the statistic is

greater than 8.85 (see Andrews, 1993). The choice of the trimming is dictated by the desire

to have tests with roughly the same critical values so that the relative power properties

can be properly evaluated in the theoretical analysis given that we compare the power of

the tests with respect to the limit of the statistics for �xed values of the parameters under

the alternative. This is made for convenience in order to allow an easier evaluation of the

theoretical predictions about the relative power functions.

3 Motivation

It is useful to start with empirical examples to illustrate the main issues involved. We �rst

consider the US (ex-post) real interest rate series over the period 1961:1-1986:3 (the three-

month treasury bill rate, de�ated by the CPI in�ation rate taken from the Citibase data

bank). It is the same series analyzed by Garcia and Perron (1996) and Bai and Perron

(2003). We reproduce the series in Figure 1. Garcia and Perron (1996) argued that the

series was basically a white noise process around a mean that exhibited two changes, one

in 1972:3 and one in 1980:3. Using more sophisticated procedures, Bai and Perron (2003)

argued for the presence of a third small break in 1966:4. As can be seen from the �gure, the

change in 1980:3 is very large (7.44%), the change in 1972:3 is moderate (2.67%) and the

change in 1966:4 is small (0.95%). This series therefore �ts the framework of EM quite well,

in the sense that one can view the changes in mean occurring with some small probability

and random magnitude.

This is a simple problem of changes in mean so that the relevant regressor is a constant. It

is important �rst to check if the residuals are correlated under the null hypothesis since this

dictates the appropriate versions of the tests to use. To do so here, one must simply assess

whether the demeaned series shows evidence of autocorrelation. The Lagrange Multiplier

test statistic for serial correlation up to order four is highly signi�cant with a value of 54.42

(the �rst-order serial correlation of the estimated residuals is 0.628). We therefore need to

correct any statistic used for the presence of serial correlation in the errors. We apply non-

parametric corrections, the so-called robust versions of the tests as described in the previous

section. The value of the ^qLL test is -6.51, which is insigni�cant, even at the 10% level. On

the other hand, the value of the sup-Wald test is 74.50, which is highly signi�cant with a
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p-value 2 less than 0.001 3.

Another example of similar results can be found in Giacomini and Rossi (2006). They

considered testing for structural change in a regression of the growth rate of industrial

production on the di¤erence between long-term and short-term interest rates. Their model

implies serially correlated errors so that a correction is needed. Even though they �x the

bandwidth a priori, the results show overwhelming rejections with Wald-type tests and non-

rejections with the ^qLL and LM-type tests.

Consider now an example involving a regression with a lagged dependent variable so

that if the model is well speci�ed, the errors are uncorrelated and there is no need for a

correction. Musso, Stracca and van Dick (2009) study instability and nonlinearity in the

Euro Area Phillips curve. A speci�cation they consider is the following simple model:

�t = �+ ��t�1 + �xt + et (4)

where �t is the in�ation rate (here the GDP De�ator) and xt is a measure of the output gap
4 (the data are quarterly for the period 1970:1 and 2005:4, see Musso et al., 2009, for more

details 5). Lags of ��t and �xt can be added but the results reported below are qualitatively

similar. Using a time varying parameter model, Musso et al. (2009) argue that a large change

in the mean of in�ation � and a small change in the slope parameter � have occurred, and

that once these changes are accounted for, there is no evidence of changes in the persistence

parameter �. We applied the ^qLL and sup-Wald tests to this regression to test for a change

in �. The ^qLL test is unable to reject the null hypothesis of no change (the value is -5.255,

so that the p-value is well above 10%). On the contrary, and in accordance with the results

of Musso et al. (2009), the sup-Wald test overwhelmingly rejects the null hypothesis (the

value is 129.31, so that the p-value is well below 0.001). With the speci�cation (4), neither

of the tests are able to reject the null hypothesis of no change in �. However, if three lags of

��t are added to the regression, both reject at the 5% level despite the fact that the change

is modest (the values are -14.192 for the ^qLL and 10.57 for sup-Wald).

2Throughout, p-value refers to �asymptotic p-value�.
3The value of the sup-Wald test for two changes considered in Garcia and Perron (1996) and Bai and

Perron (1998) is 48.26, also highly signi�cant. The UDmax test of Bai and Perron (1998) is also highly
signi�cant with a value of 56.53.

4We used the �rst principle component of the following six indicators: the three versions of the output
gap estimates based on the production function approach using three varieties of unobserved components
models and the three types of �ltered real GDP estimates using three di¤erent �lters. See Musso et al.
(2007) for more details, who also use other measures. We also tried, as they suggest, a simple average of
these six indicators with no change in qualitative results.

5We are grateful to Dick van Dijk for supplying us with the data.
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The goal of this paper is to explain why in all three examples, the ^qLL test has no power

against large parameter changes while the sup-Wald has high power and why both have

similar power against small changes.

4 Some simulation results

We start with simulation experiments to illustrate the problems to be addressed. The sim-

ulations are based on a simple regression with one regressor (k = 1). The data generating

process is

yt = �+ xt�t + et, (5)

with et � N(0; �e), and where the regressor xt is a simple AR(1) process of the form

xt = zt + �;

zt = �zt�1 + �t;

with �t � i:i:d: N(0; ��). We set � = 5, � = 0, � = 0:5 and �e = �� = 1 in all cases. The
results are robust to variations in the DGP but it is important that the mean of the regressor

� be non-zero. We consider the power of the ^qLL test, the sup-Wald test, the UDmax test

of Bai and Perron (1998), as well as Nyblom�s (1989) test Ny de�ned by

Ny =
1

T 2�̂2e
tr[Q�1T

TX
t=1

StS
0
t];

where St =
PT

j=tXj êj, QT = T�1
PT

t=1XtX
0
t; and �̂

2
e = T

�1PT
t=1 ê

2
t . We consider four types

of parameter variations for the coe¢ cient �t, given by the following models:

Model A : �t = �t�1 + "t; "t � i:i:d:N(0; �); �0 = 0;

Model B : �t =

[T=20]X
j=2

�jI[20(j�1)<t�20j]; �j � i:i:d: N(0; �);

Model C : �t = �It>[T�rc ]; � �i:i:d: N(0; �);
Model D : �t = �It>[T�c];

where j = 1; :::; [T=20]; �rc is uniformly distributed on the unit interval, and �c = 0:5.

Model A speci�es a random walk behavior for the coe¢ cient; Model B, a break of random

magnitude every 20 observations; Model C, a one time break of some random magnitude

at some random date; and Model D, a one time break of �xed magnitude � at a �xed date
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[T�c]. Note that Models A, B, and C can be viewed as satisfying the conditions stated

in EM for the ^qLL test to be viewed as optimal. Here, the parameter that indexes the

magnitude of the break is �2, the variance of the shocks a¤ecting �t. Models B and C are

those used by EM to document the �nite sample performance of their test. Model D does

not satisfy the conditions for the ^qLL to be optimal given that the break is non-random, but

we include it since the sup-Wald test is especially designed for this case. Unless otherwise

indicated, T = 100 and throughout, the results are obtained from 3,000 replications. We

report size-adjusted power. The exact size of the ^qLL is, in general, close to the nominal

size. On the other hand, the sup-Wald sometimes exhibit liberal size distortion. This feature

is similar to that documented by Vogelsang (1999) who compared the properties of the sup-

LM and sup-Wald tests when testing for a change in mean. Given the power results to be

reported, this does not imply a meaningful size-power trade-o¤ between the two tests given

the non-monotonic power of the ^qLL.

We compute the power function of four tests: the ^qLL, the sup-Wald, Nyblom�s test

(5% critical value 0.461), and the UDmax test of Bai and Perron (1998) with the maximum

number of breaks set to 5 (with a 15% trimming so that the 5% critical value is 8.88). We

consider three versions for each test: a) the �static case�for which the investigator assumes

a priori that the errors are serially uncorrelated and homoskedastic and hence, the regression

is (5) and the non-robust versions of the tests are used 6; b) the �robust case�for which no

such assumption about the nature of serial correlation in the errors is made and, hence, the

robust versions of the tests are used, as described in Section 2; and c) the �dynamic case�

where a lagged dependent variable is included, either as part of the model or to account for

serial correlation in a more parametric fashion and the non-robust versions of the tests are

applied to the regression

yt = �yt�1 + xt�t + et. (6)

The fact that we set � = 0 and, hence, that the lagged dependent variable is an irrelevant

regressor is completely inconsequential. With a non-zero value, the power loss of the ^qLL

reported below would simply occur earlier and be exacerbated.

The results for Models A and B are presented in Figure 2, while those for Models C and

D are presented in Figure 3. We plot the power of the tests as a function of � for Models

A, B, and C, and as a function of � for Model D. Consider �rst the static case presented in

the top panels. For Models A, B, and C with very small breaks, the test ^qLL indeed has

6We also considered assuming a priori no serial correlation but applying a correction for heteroskedasticity.
The results are similar to those of the �static case�and, hence, are not reported.
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the highest power. For larger breaks, the power of all tests is basically the same. For Model

D, the sup-Wald is slightly more powerful, as expected. But again the di¤erences are minor

and vanish as the magnitude of the break increases. The results for Models B and C are

consistent with those reported in EM. It should be noted that the di¤erences between the
^qLL and the sup-Wald tests are very minor so one could draw the conclusion that, though

not a member of the family of optimal tests as considered by EM, the sup-Wald test is

nevertheless nearly as e¢ cient.

Things are very di¤erent when considering the robust versions of the tests, which correct

for potential serial correlation. These results are presented in the second panels. In all cases,

the power of the ^qLL test initially increases with the magnitude of the breaks but quickly

decreases (sometimes to zero) subsequently. This is also the case for Nyblom�s test. But the

power of the sup-Wald test does not show this non-monotonicity and its power is far superior

to the ^qLL test when the break is not very small. The same can be said of the UDmax test,

which has the best overall performance. Similar results are obtained when considering the

�dynamic case�in which the regression has a lagged dependent variable, given in the third

panel.

Overall, the results show that the ^qLL test permits modest gains in power in the �static

case�but has serious de�ciencies in dynamic models or when correcting for serial correlation.

Some may argue that the relevant case is that of the �static regression�. But we argue this is

not so. Indeed, a careful investigator would rarely use a static regression with no correction

for serial correlation because if breaks are present, the estimated residuals will exhibit serial

correlation. Take the simple case of a single change, random or �xed. Then the residuals

will exhibit a change in mean. As shown in Perron (1990), this change will cause an increase

in the sum of the autoregressive coe¢ cients in an autoregression �tted to the series (here

the �tted residuals). Hence, a test for serial correlation applied to the estimated residuals

will be signi�cant unless the break is very small. A similar logic applies to multiple breaks,

including a random walk process. To document this, Figures 4 and 5 present the power of the

LM test for serial correlation up to order 4 in the residuals for each of the four models when

estimating the static regression. In all cases, the power increases as the magnitude of the

breaks increases. We also present the mean of the estimates of the autoregressive coe¢ cient

in an AR(1) model applied to the �tted residuals. The results show that it increases rapidly

and �attens out at a level below one (see Perron, 1990, for an explanation in the single break

case). Thus, an investigator who has no prior knowledge about the presence or absence

of serial correlation in the residuals would, upon performing a test for serial correlation,
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conclude that the robust version is needed when the breaks are not very small. The top

panels of Figures 4 and 5 present the power of the hybrid version of the ^qLL test. By

�hybrid�, we mean that if a test for serial correlation in the residuals does not reject, the

non-robust version is used, otherwise the robust version is used. As expected, the power

initially increases but quickly drops as the magnitude of change increases. So the good �nite

sample performance of the ^qLL test as reported in EM crucially depends on prior knowledge

that the errors are not serially correlated, knowledge that is unavailable in practice.

These simulation results go a long way in explaining the empirical �ndings reported in

the previous section. For the real interest rate series, there is at least one very large change

in mean. This break contaminates the estimated residuals when �tting a restricted model

that allows only for an intercept, as required to construct the ^qLL test. Accordingly, it

biases the estimate of the long-run variance to correct for serial correlation in a way that

reduces power to a very low level. The simulation results also explain the lack of power when

the regressors include a lagged dependent variable and the break is large, as in the example

discussed in Section 3. The loss of power in the case of a model with a lagged dependent

variable is especially interesting. It shows that the problem of the ^qLL does not occur solely

because it does not get the right scaling pertaining to get the correction for serial correlation

as in the robust case. The sup-Wald does not get it right either (except for a one time break)

and yet does not su¤er from such problems in both the robust and dynamic cases.

As shown by the simulations, the break need not be �very large� for the decline in

the power of the ^qLL to occur. In general, the reversal occurs before the power obtained

assuming serially uncorrelated errors and no lagged dependent variable reaches one. But as

will be shown in the theoretical section, when applying the test for changes in the intercept

(as when testing for a change in mean), the power reversal occurs earlier and is even more

pronounced. Hence, the problem applies to an empirically relevant part of the parameter

space, as documented in the various examples discussed in Section 3.

In the next section, we provide a theoretical analysis of the properties of the ^qLL and sup-

Wald tests based on �xed-break asymptotic approximations. These will show that indeed,

in all cases, the ^qLL test has zero asymptotic e¢ ciency compared to the sup-Wald test when

a correction for serial correlation in the errors is applied or when a dynamic regression is

involved. With a static regression and the prior knowledge of no serial correlation, the two

tests have similar properties and in some cases, the sup-Wald actually dominates.
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5 Asymptotic comparisons using �xed-break asymptotic approximations

We carry the theoretical analysis for the random walk Model A, for random level shift models

of the parameters (Models B and C), and for parameters with a one-time change of non-

random magnitude at some �xed date (Model D). Throughout, we shall maintain (1) as the

data-generating process and impose the following high-level assumptions on the regressors

and errors as in Kim and Perron (2009), where as a matter of notation, kXk denotes the
L2-norm of a random matrix X, i.e., jjXjj = (

P
i

P
j E jXijj2)1=2.

Assumption 1 Let vt = Xtet, p limT!1 T
�1PT

t=j+1E(vtv
0
t�j) = �j, and � = �0+

P1
j=1(�j+

�0j). Then E(vt) = 0, supj2f0;:::;LT g supr2[0;1] jjT
�1P[Tr]

t=1 vtv
0
t�j � r�jjj = op(1) for LT =

o(T ) (��j = �0j), and the partial sums of vt satisfy the functional central limit theorem

T�1=2
P[Tr]

t=1 vt ) �1=2Wk(r), where Wk(r) is a k-dimensional Wiener process de�ned on

[0; 1]. Note that if vt is uncorrelated, then � = �0.

Assumption 2 The regressors are such that

sup
j2f0;:::;LT g

sup
r2[0;1]

jjT�1
[Tr]P
t=j+1

XtX
0
t�j � rQjjj = op(1); (7)

where LT = o(T ), Q�j = Q0j, and Qj is some non-singular �xed matrix bounded uniformly

in j, i.e., supjjj�LT jjQjjj � c <1. We denote Q0 by Q for simplicity.

Assumption 3 T�1
PT

t=1 kXtX
0
tk
2 = Op(1), and with LT = o(T ),

sup
r2[0;1]

jjT�1
[Tr]P
t=j+1

XtX
0
tXtX

0
t � rMM 0jj = op(1);

sup
j2f0;:::;LT g

sup
r2[0;1]

jjT�1
[Tr]P
t=j+1

XtX
0
tXtX

0
t�j � rMjM

0
jjj = op(1);

sup
j2f0;:::;LT g

sup
r2[0;1]

jjT�1
[Tr]P
t=j+1

XtX
0
tXt�jX

0
t�j � rMjjM

0
jjjj = op(1);

where M , Mj, and Mjj are some �xed matrices bounded uniformly in j.

5.1 The random walk model

In this �rst case, we suppose that �t is generated by a random walk process, i.e.,

�t = �t�1 + "t; (8)
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with "t is a k-dimensional i:i:d: vector process with E("t) = 0, E("t"0t) = 
 and E("tet�j) = 0

for all j. Also, "t is uniform mixing with mixing coe¢ cient � of size �r=(2r � 2) or strong
mixing with mixing coe¢ cient � of size �r=(r � 2), r > 2. We also assume that "t and Xt

are uncorrelated so that the following functional central limit theorem holds:

T�3=2
[Tr]X
t=1

XtX
0
t�t ) Q


Z r

0

W (s)ds;

where W (s) is the k-dimensional standard Wiener process and \ ) " denotes weak con-

vergence under the Skorohod topology. We also de�ne the Ornstein-Uhlenbeck process

Wc(s) � W (s) � c
R s
0
e�c(s��)W (�)d�. We start with the case of the static regression for

which the investigator has prior knowledge that the errors are serially uncorrelated. Note

that here and throughout the paper, the symbol Op(1) stands for a variable that is stochas-

tically bounded but is not op(1).

Theorem 1 Assume that the ^qLL and sup-Wald (SW ) tests are constructed from the static

regression (5) with no correction for serial correlation and that the data are generated by (1)

with �t speci�ed by the random walk (8), then:

T�1qL̂L) tr[ �V
�1=2
X Q
�
0Q0 �V

0�1=2
X ] = Op(1)

uniformly in k
k, where

�VX �M
[
R 1
0
WW 0 �

R 1
0
W
R 1
0
W 0]
0M 0

and

� �
R 1
0
WcW

0
c �

R 1
0
WW 0 +

R 1
0
W
R 1
0
W 0 � 2c

1� e�2c
R 1
0
e�crW

R 1
0
e�crW 0:

Also,

T�1SW ) SSRr� � SSR�(��)
SSR�(��)

= Op(1);

uniformly in k
k, where

SSRr� �
R 1
0
W 0
0Q
W �

R 1
0
W 0
0Q


R 1
0
W;

SSR�(�) �
R 1
0
W 0
0Q
W � 1

�

R �
0
W 0
0Q


R �
0
W � 1

1� �
R 1
�
W 0
0Q


R 1
�
W;

and �� is the value of � that minimizes SSR�(�) over the set [�; 1� �].
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Consider the case with a single regressor that is a constant. The tests then amount

to distinguishing between an i:i:d: process and a IMA(1; 1) process. The expressions in

Theorem 1 reduce to

T�1 ^qLL)
hR 1
0
W 2dr � (

R 1
0
Wdr)2

i�1
� (9)

and

T�1SW) SSRr� � SSR�(��)
SSR�(��)

; (10)

where

SSR�(�) =
R 1
0
W 2dr � 1

�
(
R 1
0
Wdr)2 +

2

�

R 1
0
Wdr

R 1
�
Wdr � 1

�(1� �)(
R 1
�
Wdr)2;

SSRr� =
R 1
0
W 2dr � (

R 1
0
Wdr)2;

and again �� is the value of � that minimizes SSR�(�) over the set [�; 1� �].
Note that, appropriately scaled, the limits of the ^qLL and sup-Wald tests are random

in this case. Also, in the case of a single regressor, they do not depend on any nuisance

parameters. This is because in the limit, the random walk component dominates. Since the

power depends on the relative variances of the shocks et and those a¤ecting �t, we should not

expect a good �nite sample approximation for small breaks. Nevertheless, it is instructive to

compare the mean of the limit random variables in both cases. To that e¤ect, we simulated

the random variables in (9) and (10) using 1,000 steps to approximate the Wiener process

and 1,000 replications. The negative of the mean of the random variable in (9) is 1.13. The

mean of the random variable in (10) depends on the trimming used to search for the break

dates that minimizes the sum of squared residuals. For � = 0:15, the value is 2.01. We

performed a similar analysis of the DGP used in the simulations of Section 4. In this case,

the mean of the limit distribution of the sup-Wald test is essentially the same, while the

mean of the limit distribution of the ^qLL test is somewhat smaller at 0.76. These values

are large enough to imply that both tests reject when T = 100 at a size of 5%. The cdf of

the limit distribution of the sup-Wald test almost uniformly dominates that of the ^qLL test

even when 
 = 1, a small value (the limiting cdf of (minus) the ^qLL test is to the right only

for the extreme left tail). But the numerical results predict that both tests will have good

(and similar) �nite sample power as documented in the simulations.

We now turn to the case where one accounts for possible serial correlation in the errors

using a non-parametric correction. In the case of the ^qLL test, this amounts to replacing the

variance estimate V̂X by ^h(0), i.e., an estimate of the spectral density function at frequency
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zero. Typically, it is obtained using a weighted sum of the autocovariances of fv̂t = Xtêtg
so that

^h(0) = �̂0 +
T�1X
j=1

�(j;m)[�̂j + �̂
0
j] (11)

where �̂j = T�1
PT

t=j v̂tv̂
0
t�j and �(�) is a kernel function with bandwidth m. We use the

Bartlett kernel for �(�) and Andrews�(1991) data dependent method for selecting the band-
width based on an AR(1) approximation. Then, the following results hold.

Theorem 2 Assume that the ^qLL and sup-Wald (SW ) tests are constructed from the static

regression (5) and that the process is generated by (1) with �t speci�ed by the random walk

(8). Suppose serial correlation in the errors is accounted for using an estimate of the form

(11) with the Bartlett kernel and the bandwidth chosen by Andrew�s (1991) data dependent

method based on an AR(1) approximation. a) If fM �M11gii = 0 for some i, where fZgii
is the ith diagonal element of the matrix Z; then

qL̂L) tr[�h(0)�1=2Q
�
0Q0�h(0)0�1=2] = Op(1)

uniformly in k
k, where � is as de�ned in Theorem 1,

�h(0) � ��0 + limT!1 T
�1PT

j=1 �(j;m)[
��j + ��

0
j];

with ��j �Mjj
[
R 1
0
WW 0 �

R 1
0
W
R 1
0
W 0]
0M 0

jj, m � 1:1447(��T )1=3, and �� �
Pk

i=1 �
�2
i with

�i �
�Wi(1)

2 � (
R 1
0
Wi)

2 +Wi(1)
R 1
0
WiR 1

0
W 2
i � (

R 1
0
Wi)2

,

for i such that fM �M11gii = 0, and 0 otherwise, where Wi (i = 1; :::; k) is the ith element

of W . Also,

SW ) (
1

��


R ��
0
W � 1

1� ��

R 1
��W )

0Q0[�h1(0) + �h2(0)]
�1Q

�( 1
��


R ��
0
W � 1

1� ��

R 1
��W ) = Op(1)

uniformly in k
k, where �� is the value of � that maximizes the limit of the Wald test over
the set [�; 1� �], �hl(0) � ��l;0 + limT!1 T

�1PT
j=1 �(j;ml)

�
��l;j + ��

0
l;j

�
(l = 1; 2), with

��1;j � Mjj
[
R ��
0
WW 0 �

R ��
0
W
R ��
0
W 0]
0M 0

jj;

��2;j � Mjj
[
R 1
��WW

0 �
R 1
��W

R 1
��W

0]
0M 0
jj;
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ml � 1:1447(��lT )1=3, ��l �
Pk

i=1 �
�2
l;i , and

�1;i �
�Wi(�

�)2 � (
R ��
0
Wi)

2 +Wi(�
�)
R ��
0
Wi

(
R ��
0
W 2
i )� (

R ��
0
Wi)2

;

�2;i �
�(Wi(1)�Wi(�

�))2 � (
R 1
��Wi)

2 + (Wi(1)�Wi(�
�))
R 1
��WiR 1

��W
2
i � (

R 1
��Wi)2

;

for i such that fM �M11gii = 0, and 0 otherwise. b) If fM �M11gii 6= 0 for all i, then

T�2=3qL̂L) tr[�h(0)�1=2Q
�
0Q0�h(0)0�1=2] = Op(1)

uniformly in k
k, where �h(0) � ��0+ limT!1 T
�1=3PT

j=1 �(j;mT )
�
��j + ��

0
j

�
, with ��j, � and

mT as de�ned in part (a), and

�� �
Pk

i=1

4��2i ��
4
vi

(1� ��i)6(1 + ��i)2
=
Pk

i=1

��4vi
(1� ��i)4

with ��i � fM11g2ii = fMg
2 and ��2vi = p limT

�1PT
t=2(v̂it � �̂iv̂it�1)2. Also,

T�2=3SW ) (
1

��


R ��
0
W � 1

1� ��

R 1
��W )

0Q0
�
�h1(0) + �h2(0)

��1
Q

�( 1
��


R ��
0
W � 1

1� ��

R 1
��W ) = Op(1)

uniformly in k
k, where �� is the value of � that maximizes the limit of the Wald test over
the set [�; 1 � �], �hl(0) � ��l;0 + limT!1 T

�1=3PT
j=1 �(j;ml)[��l;j + ��

0
l;j] (l = 1; 2), with ��l;j,

ml as de�ned in part (a), and

��l �
Pk

i=1

4��2l;i��
4
vi;l

(1� ��l;i)6(1 + ��l;i)2
=
Pk

i=1

��4vi;l
(1� ��l;i)4

;

where ��l;i, and ��
2
vi;l are as de�ned for the limit of the qL̂L test.

Though the results are quite complex, we can simulate these limit distributions. Note

that we approximate �h(0) with a scaled average where T = 100. Similarly m is evaluated

at T = 100. We ran simulations for the DGP considered in the simulations of Section 4, as

speci�ed by (5). This is a case where part (b) of Theorem 2 applies since it involves a single

regressor andM 6=M11. The means, as a function of 
, are presented in Figure 6. The �gure

shows that the limit is invariant to 
, as in the static case with i:i:d: errors. But, we can use

these limit results to see what the theory predicts about the likelihood of a rejection. For a
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given sample size T , a rejection will occur if the realization of the limit random variable is

above the critical values divided by T 2=3 (using � ^qLL). As in the simulations, we considered

5% tests. The relevant critical values are plotted as the dotted line in each panel. The

results predict that on average the ^qLL test will not reject, while the sup-Wald will. To

get a better description in terms of the probability of rejecting, the lower panels in Figure

6 present the cdfs of the limit random variables. The results clearly show that the ^qLL test

has a very small probability of rejecting when 
 = 1 and nearly none if 
 = 15, while the

sup-Wald test has large rejection probabilities in both cases. These theoretical predictions

are in accordance with the simulations. Though, these results are DGP speci�c, we found

that the same features hold for other speci�cations.

Suppose now that we use a dynamic regression of the form (6) with a lagged dependent

variable as a regressor. The results are stated in the next theorem.

Theorem 3 Assume that the ^qLL and sup-Wald (SW ) tests are constructed from a dynamic

regression of the form (6), with a lagged dependent variable as a regressor, and the process

is generated by (1), with �t speci�ed by the random walk (8). Then,

T�1qL̂L) tr[ �V
�1=2
X [Q� ��Q1]
�
0[Q� ��Q1]0 �V 0�1=2X ] = Op(1)

uniformly in jj
jj, where � is as de�ned in Theorem 1,

�� � f
R 1
0
W 0
0Q
W �

R 1
0
W 0
0Q01Q

�1Q1

R 1
0
Wg�1f

R 1
0
W 0
0Q1
W �

R 1
0
W 0
0Q1


R 1
0
Wg;

and

�VX = M
[
R 1
0
WW 0 �

R 1
0
W
R 1
0
W 0]
0M 0 + ��2MQ�1Q1


R 1
0
W
R 1
0
W 0
0Q01Q

0�1M 0

+��2M11

R 1
0
WW 0
0M 0

11 � 2��M1
[
R 1
0
WW 0 �

R 1
0
W
R 1
0
W 0]
0M 0

1

���2M1Q
�1Q1


R 1
0
W
R 1
0
W 0
0M 0

1 � ��2M1

R 1
0
W
R 1
0
W 0
0Q01Q

0�1M 0
1:

Also,

T�1SW ) SSRr� � SSR�(��)
SSR�(��)

= Op(1)

uniformly in jj
jj, where �� is the value of � that minimizes SSR�(�) over the set [�; 1� �],

SSRr� � (1 + ��2)
R 1
0
W 0
0Q
W � 2��

R 1
0
W 0
0Q1
W

�
R 1
0
W 0
0[Q� ��Q1]0Q�1[Q� ��Q1]


R 1
0
W;
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and

SSR�(�) � (1 + ��2u)
R 1
0
W 0
0Q
W � 2��u

R 1
0
W 0
0Q1
W

�1
�

R �
0
W 0
0[Q� ��uQ1]0Q�1[Q� ��uQ1]


R �
0
W

� 1

1� �
R 1
�
W 0
0[Q� ��uQ1]0Q�1[Q� ��uQ1]


R 1
�
W;

with

��u � f
R 1
0
W 0
0Q
� 1

�

R �
0
W 0
0Q01Q

�1Q1

R �
0
W � 1

1� �
R 1
�
W 0
0Q01Q

�1Q1

R 1
�
Wg�1

�f
R 1
0
W 0
0Q1
W � 1

�

R �
0
W 0
0Q1


R �
0
W � 1

1� �
R 1
�
W 0
0Q1


R 1
�
Wg:

and �� as de�ned above.

The above expressions are quite complex. Consider the mean shift model with Xt = f1g
for all t. Then,

T�1qL̂L)
c2
2

R 1
0
W 2
c � c
2 � 2c�2e � (2c
2=(1� e�2c))[Wc(1)� c

R 1
0
e�crWc]

2


2 + 2�2e
= Op(1)

and

T�1SW ) f�2(��� ��u)[
1

2

2 (W (1)� 1)� �2e] + 
2W (1)2 � 
2W (�)2 � 
2W (1� �)2

���2
2
R 1
0
W 2 + ��2u

1

�

2(
R �
0
W )2 + ��2u

1

1� �

2(
R 1
�
W )2g=(
2 + 2�2e) = Op(1);

where

�� � [(1=2)(W (1)2 � 1)� �2e=
2 �W (1)
R 1
0
W ]=[

R 1
0
W 2 � (

R 1
0
W )2]

and

��u �
(1=2)(W (1)2 � 1)� �2e=
2 �W (�)(1=�)

R �
0
W �W (1� �)

R 1
�
W=(1� �)R 1

0
W 2 � (1=�)(

R �
0
W )2 � (

R 1
�
W )2=(1� �)

We again simulated these limit distributions for the DGP speci�ed by (5). The means,

as a function of 
, are presented in the �rst panel of Figure 7 along with the critical values

pertaining to a 5% test and T = 100. The results predict that on average the ^qLL test

will not reject while the sup-Wald will. The second and third panels present the cdfs of the

limit random variables for 
 = 1 and 
 = 15. The results clearly show that the ^qLL test

has again a near-zero probability of rejecting and that this probability is not a¤ected by the

value of 
, while the sup-Wald has a large probability of rejecting for both values. These

theoretical predictions are in accordance with the simulations discussed above.
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5.2 Infrequent Breaks Model

We now consider a model that speci�es relatively rare occurrences of shifts in the parameters

that is suitable for Models B and C. The speci�cation is as follows:

�t =

tX
j=1

�T;j, �T;t = �T;t�t (12)

Here, �t � i:i:d: (0;
) and �T;t is a binomial variable that takes value 1 with probability p=T
and value 0 with probability (1� p=T ), i.e. �T;t � i:i:d: B(p=T; 1). We also assume that the
components �T;t and �t are mutually independent. Note that the parameter p is independent

of the sample size T . Hence, as T increases, the level shifts become relatively rare. This is

an important ingredient that will allow us to derive interesting results. Intuitively, we need

this speci�cation to model structural changes, i.e., relatively infrequent events that a¤ect the

time series properties of the parameters in a permanent fashion. If p=T converges to some

value in (0; 1), the model is best construed as depicting a standard unit root process. This

model is the most interesting to analyze since it bridges the gap between the two extremes

of random walk parameter variations and a single change at some known date. Also, it does

not su¤er from the discontinuity problem present in the random walk model. Finally, it is

more in line with the type of processes for which the ^qLL is especially designed.

A crucial ingredient used here is a Functional Central Limit Theorem for the cumulative

level shifts process uT;t. This has been considered by Georgiev (2002) and Leipus and Viano

(2003). The results relevant to our analysis are stated in the following lemma.

Lemma 1 (Georgiev, 2002; Leipus and Viano, 2003) Consider �t speci�ed by (12) with
0 < p < 1 and de�ne uT (s) =

P[Ts]
t=1 �T;t, then uT (s) ) 
J(s), where J(s) is a compound

Poisson process de�ned by J(s) =
PN(s)

j=0 �
�
j with N(s) being a Poisson process with jump

intensity p, independent of ��j � i:i:d: (0; Ik) for all j.

We have the following theorem for the three scenarios considered.

Theorem 4 a) Assume that the ^qLL and sup-Wald (SW ) test statistics are constructed

from the static regression (5) with no correction for serial correlation and that the process is

generated by (1) with �t speci�ed by the random level shift model (12), then

T�1qL̂L) tr[ �V
�1=2
X Q
	
0Q0 �V

0�1=2
X ] = Op(1)
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uniformly in k
k, where 	 is a function of J(r) de�ned by (A.14) in the appendix and

�VX � �2eQ+M
[
R 1
0
JJ 0 �

R 1
0
J
R 1
0
J 0]
0M 0:

Also,

T�1SW ) SSRr� � SSR�(��)
SSR�(��)

= Op(1);

where

SSRr� � �2e +
R 1
0
J 0
0Q
J �

R 1
0
J 0
0Q


R 1
0
J;

SSR�(�) � �2e +
R 1
0
J 0
0Q
J � 1

�

R �
0
J 0
0Q


R �
0
J � 1

1� �
R 1
�
J 0
0Q


R 1
�
J;

and �� is the value of � that minimizes SSR�(�) over the set [�; 1� �].

We again considered simulating the limit random variables to assess the relative e¢ ciency

of the two tests for the DGP used in Section 4. The results are presented in Figure 8, which

reports the means and cdfs of the limit random variables pertaining to the qL̂L and sup-Wald

tests for p=T = 0:05, 0:10, and 0:50 (along with the critical values corresponding to a 5%

size test with T = 100). Looking at the cdfs of the limit distributions, the sup-Wald and

qL̂L are nearly as powerful for small alternatives (
 = 1). On the other hand, the sup-Wald

dominates the qL̂L for large alternatives. For example, the theoretical approximations to

the power when T = 100, 
 = 1 and p=T = 0:05, 0:10, and 0:50 are .703, .860 and .997,

respectively, for the qL̂L, and .515, .690 and .935 for the sup-Wald, so that the theory indeed

predicts that the qL̂L is more powerful in the static case when the break is small. However,

the power becomes quickly the same as 
 increases. What transpires from these results is the

fact that both tests will perform well in the static case, with good power that is monotonic

as documented in the simulations.

Consider now the case where a correction for serial correlation is applied. We then have

the following results.

Theorem 5 Assume that the ^qLL and sup-Wald (SW ) tests are constructed from the static

regression (5) and that the process is generated by (1) with �t speci�ed by the random level

shift model (12). Suppose serial correlation in the errors is accounted for using an estimate

of the form (11) with the Bartlett kernel and the bandwidth chosen by Andrew�s (1991) data

dependent method based on an AR(1) approximation. a) If fM �M11gii = 0 for some i,

where fZgii is the ith diagonal element of the matrix Z; then

T�2=3qL̂L) tr[�h(0)�1=2Q
�
0Q0�h(0)0�1=2] = Op(k
k�4=3)
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uniformly in k
k, where �h(0) � ��0 + limT!1 T
�1=3PT

j=�T �(j;mT )[��j + ��0j] with ��j �
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0
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;

��2vi = p limT
�1PT

t=2(v̂it � �̂iv̂it�1)2 and Ji is the ith element of J . Also,

T�2=3SW ) (
1

��


R ��
0
J � 1

1� ��

R 1
��J)

0Q0[�h1(0) + �h2(0)]
�1Q

�( 1
��


R ��
0
J � 1

1� ��

R 1
��J) = Op(k
k

�4=3)

uniformly in k
k, where �� is the value of � that maximizes the limit of the Wald test over
the set [�; 1� �], �hl(0) � ��l;0 + limT!1 T

�1=3PT
j=1 �(j;mT )[��l;j + ��

0
l;j] (l = 1; 2) with
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0
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0
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0M 0

jj;
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��J
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��J

0]
0M 0
jj;

Also, ml � 1:1447(��lT )1=3, where
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4
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i=1
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0
Ji)

2
i

�2e fQgii + fMg
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0
J2i � (
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0
Ji)2
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fM11g2ii f
g
2
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R 1
��J

2
i � (

R 1
��Ji)
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�2e fQgii + fMg
2
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2
ii [
R 1
��J

2
i � (

R 1
��Ji)

2]
;

��2vi;1 = p limT
�1PT��

t=2 (v̂it � �̂1;iv̂it�1)2 and ��2vi;2 = p limT�1
PT

t=T��+1(v̂it � �̂2;iv̂it�1)2. b) If
fM �M11gii 6= 0 for all i, then

T�2=3qL̂L) tr[�h(0)�1=2Q
�
0Q0�h(0)0�1=2] = Op(1)

uniformly in k
k, where �h(0) and � are as de�ned in part (a) with

��i �
fM11g2ii f
g

2
ii [
R 1
0
J2i � (

R 1
0
Ji)
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�2e fQgii + fMg
2
ii f
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0
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R 1
0
Ji)2]
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Also,

T�2=3SW ) (
1

��


R ��
0
J � 1

1� ��

R 1
��J)

0Q0[�h1(0) + �h2(0)]
�1Q

�( 1
��


R ��
0
J � 1

1� ��

R 1
��J) = Op(1)

uniformly in k
k, where �� is the value of � that maximizes the limit of the Wald test over
the set [�; 1� �] and �hl(0) is as de�ned in part (a) with
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:

The results show that when fM �M11gii = 0 for some i, as in the mean shift case,

both tests will eventually exhibit zero power as the magnitude of the variance of the shocks

increases since the limit values tend to zero (though for a �xed k
k both tests are consistent).
Things are more interesting when fM �M11gii 6= 0 for all i, as for the DGP used in the

simulations presented in Section 4. Here, both tests are again consistent but their scaled limit

values are Op(1) uniformly in k
k. The question of interest for assessing relative e¢ ciency
is how the limit distributions compare as a function of k
k. This is too complex to do for
the general case so we again present results based on simulating the limit distributions for

the DGP considered in Section 4 (the method described in the previous section is used to

approximate �h(0)). The results are presented in Figure 9, which report the means and cdfs

of the limit random variables pertaining to the qL̂L and sup-Wald tests for p=T = 0:05, 0:10,

and 0:50. Consider �rst the results for the qL̂L test. The mean of the limit distribution

initially increases (in absolute value) as 
 increases but quickly drops down to a value below

the critical value associated with a 5% test using a sample with 100 observations. This

decrease is quicker and more pronounced as the intensity of the level shifts p=T increases.

Hence, the theory predicts that on average the qL̂L test will reject for small values of 
 but

will not for larger values especially as the level shift intensity increases. Things are similar

for the sup-Wald test but there is one important di¤erence. As 
 increases, the mean of

the limit random variable stabilizes to a value implying a rejection for all values of 
 that

are not very small. We plotted the cdf for a small (
 = 1) and large (
 = 15) value of

the variance of the shocks. The �gures make clear that the probability of rejecting the null
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hypothesis with the qL̂L test is small and shrinks as 
 increases or as the intensity of the

level shifts increases. On the other hand, the probability of rejecting with the sup-Wald test

is nearly one in all cases.

The next theorem pertains to the case with a lagged dependent variable as a regressor.

Theorem 6 Assume that the ^qLL and sup-Wald (SW ) tests are constructed from a dynamic

regression of the form (6) with a lagged dependent variable as a regressor and the process is

generated by (1) with �t speci�ed by the random level shift model (12), then

T�1qL̂L) tr[ �V
�1=2
X [Q� ��Q1]
	
0[Q� ��Q1]0 �V 0�1=2X ] = Op(1)

uniformly in k
k, where 	 is de�ned by (A.14) in the appendix,
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Also,
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Again, the theoretical expressions are quite complex and do not lend themselves easily to

allow a comparison of the tests under general conditions. So we present simulations of the

means and cdfs of the limit random variables for the DGP used in the simulations of Section

4. The results are presented in Figure 10, again for p=T = 0:05, 0:10 and 0:50. The results

are qualitatively similar to the case with no lagged dependent variable and a correction for

serial correlation. The mean of the limit random variable of the qL̂L test statistic initially

increases (in absolute value) with 
 but quickly starts decreasing as 
 increases and at a

lower value of 
 than for the case with a correction for serial correlation. The decrease in

the case of p=T = 0:50 happens so quickly that on average, the qL̂L test does not reject

for any value of 
. On the other hand, the mean of the limit value of the sup-Wald test

does not decrease as 
 increases but stabilizes to a level that implies a clear rejection. This

becomes more pronounced as the intensity of the level shifts p=T decreases. The cdfs of the

limit random variables are presented for 
 = 1 and 
 = 15. When 
 = 1 and p=T is small,

the values imply a lower probability of rejection for the qL̂L than for the sup-Wald. When


 = 1 and p=T = 0:5 or when 
 = 15, the cdf corresponding to the sup-Wald test is much

further to the right of that of (minus) the qL̂L test so that the sup-Wald test has much

higher power, in accordance with the simulations.

5.3 Single break model

We now consider the case where the parameters exhibit a single break of �xed magnitude at

some �xed date:

�t = �It>[T�c]; (13)

where � is a vector of constants representing the magnitudes of the break, I is the indicator

function and �c 2 [0; 1] represents the break fraction. The probability limits of the scaled
statistics are stated in the following theorem for the three scenarios considered. We �rst

consider the case where one imposes a priori the assumption that the errors are serially

uncorrelated.

Theorem 7 Assume that the ^qLL and sup-Wald (SW ) tests are constructed from the static

regression (5) with no correction for serial correlation and that the process is generated by

(1) with �t speci�ed by (13), then

p lim
T!1

T�1qL̂L = tr[� �V
�1=2
X Q��0Q0 �V

0�1=2
X ] = O(1)

uniformly in k�k, where
�VX � �2eQ+ �c(1� �c)M��0M 0;
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and

� = �c(�c � 1) +
1

c
(1� �c +

1

2
�2c)�

1

c
(1� �c)2e�c

� 1
2c
(1� �c)2e�2c �

1

c
(1� �c)e�c�c +

1

c
(1� �c)ec(�c�2) �

1

2c
e2c(�c�1)

� 1

2c(1� e�2c)
�
�c � 1 + (1� �c)e�2c + e�c�c � ec(�c�2)

�2
:

Also,

p lim
T!1

T�1SW =
�c(1� �c)

�2e
�0Q� = O(k�k2)

so that SW dominates qL̂L for su¢ ciently large jj�jj.

The results in this case are qualitatively di¤erent from those of the other models in that

the limit values are non-stochastic functions of k�k and other parameters of the DGP. The
results reveal that the sup-Wald test dominates the qL̂L test for large enough values of the

magnitude of the shifts k�k, irrespective of the other features of the DGP (within the class
considered). This is so because the limit value of the sup-Wald test is an increasing function

of k�k while the limit value of the qL̂L test is uniformly bounded in k�k. For most DGPs
however, the limit values of both test statistics imply a rejection of the null hypothesis when

k�k is not too small. Nonetheless, it is interesting to compare the limit values as a function of
the magnitude of change. We do so again for the DGP considered in Section 4. The results

are presented in Figure 11 for � ranging between 0 and 5. It turns out that the sup-Wald

test is far more e¢ cient than the qL̂L test unless the magnitude of change is very small

(in which case, the probability of rejection is small). In particular, the limit value of the

qL̂L test �attens out as � increases while that of the sup-Wald test increases exponentially.

The implication for the �nite sample power of the two tests is that if a 5% test is used

both tests will have good and monotonic power (as documented in the simulations), but if a

(unrealistic) very small size was used the qL̂L would have lower power than the sup-Wald.

The next theorem covers the case where a non-parametric correction for serial correlation

in the errors is applied.

Theorem 8 Assume that the ^qLL and sup-Wald (SW ) tests are constructed from the static

regression (5) and that the process is generated by (1) with �t speci�ed by (13). Suppose

serial correlation in the errors is accounted for using an estimate of the form (11) with the

Bartlett kernel and the bandwidth chosen by Andrew�s (1991) data dependent method based
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on an AR(1) approximation. a) If fM �M11gii = 0 for some i, then

p lim
T!1

T�1qL̂L = tr[��h(0)�1=2Q��0Q0�h(0)0�1=2] = O(k�k�4=3)

uniformly in k�k, where �h(0) � ��0+limT!1 T
�1=3PT

j=1 �(j;m)[
��j+��

0
j] withm � 1:1447(��T )1=3,

�� �
Pk

i=1

4��2i ��
4
vi

(1� ��i)6(1 + ��i)2
=
Pk

i=1

��4vi
(1� ��i)4

;

��j � �c(1� �c)Mjj��
0M 0

jj,

��i �
�c(1� �c) fM11g2ii f��

0gii
�2e fQgii + �c(1� �c) fMg

2
ii f��

0gii
;

and ��2vi = p limT
�1PT

t=2(v̂it � �̂iv̂it�1)2, b) If fM �M11gii 6= 0 for all i, then

p lim
T!1

T�1qL̂L = tr[��h(0)�1=2Q��0Q0�h(0)0�1=2] = O(1)

uniformly in k�k, where �h(0) is de�ned as above. For the sup-Wald test, since �̂j
p! 0 for

j 6= 0 because the test uses unrestricted residuals in the construction of ĥ(0), the results stated
in Theorem 7 continue to apply so that in both cases, SW dominates qL̂L for su¢ ciently

large jj�jj.

When fM �M11gii = 0 for some i, as is the case in the mean shift model, the limit of
the sup-Wald test is an increasing function of k�k while that of the qL̂L test is decreasing
in k�k. Hence for k�k large enough, the sup-Wald test dominates the qL̂L test. Things are
di¤erent when fM �M11gii 6= 0 for all i, as is the case in the DGP used in Section 4 with
an AR(1) process as the regressor. Here, the limit of the sup-Wald test increases as k�k
increases while the limit of the qL̂L test is uniformly bounded in k�k. To get an idea of the
implications of this, Figure 12 presents the limit values of the qL̂L and sup-Wald tests as

functions of k�k for the DGP of Section 4. It is clear that the limit value of the sup-Wald
test increases rapidly with k�k. However, the limit value of the qL̂L test initially increases
with k�k but rapidly decreases to stabilize at a low value, implying non-rejection. Hence,
the qL̂L test will only reject for small values of k�k while the sup-Wald test will reject for
any value except, of course, very small ones.

The last theorem covers the case with a lagged dependent variable as a regressor.
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Theorem 9 Assume that the ^qLL and sup-Wald (SW ) tests are constructed from a dynamic

regression of the form (6) with a lagged dependent variable as a regressor and the process is

generated by (1) with �t speci�ed by (13). Then,

p lim
T!1

T�1qL̂L = tr[� �V
�1=2
X [Q� ��Q1]��0[Q� ��Q1]0 �V 0�1=2X ] = O(1)

uniformly in k�k, where � is as de�ned in Theorem 7,

�� �
�
�2e + (1� �c)�0Q� � (1� �c)2�0Q1Q�1Q1�

��1
[�c(1� �c)�0Q1�] ;

and

�VX � (1 + ��2)�2eQ+ ��
2(1� �c)M11��

0M 0
11

+(1� �c)M [�c��0 + ��2(1� �c)Q�1Q1��0Q01Q�10]M 0

���(1� �c)M1[2�c��
0 + ��(1� �c)[Q�1Q1��0 + ��0Q01Q�10]]M 0

1:

Also,

p lim
T!1

T�1SW =

�
SSRr

� � �2e
�2e

�
= O(k�k2);

where

SSRr� � (1 + ��2)�2e + (1� �c)(1 + ��2)�0Q� � 2(1� �c)���0Q1�
�(1� �c)2�0[Q� ��Q1]0Q�1[Q� ��Q1]�

so that SW dominates qL̂L for su¢ ciently large jj�jj.

Here the results are qualitatively similar to the case with no lagged dependent variable

and a correction for serial correlation when fM �M11gii 6= 0 for all i. Both statistics diverge
at rate T but the limit value of the qL̂L is uniformly bounded in k�k while that of the sup-
Wald test is an increasing function of k�k. Hence, for large enough k�k, the sup-Wald test
dominates. Though the theoretical expressions are complex, one can easily obtain numerical

values. This is done again for the case of the DGP of Section 4. The limit values as functions

of k�k are plotted in Figure 13. Again, this function is rapidly increasing as k�k increases
for the sup-Wald test so that it rejects for all but very small values of k�k. On the other
hand, while the limit value of the qL̂L initially increases with k�k, it quickly reverts back to
stabilize at a small value implying non-rejection. Hence, the sup-Wald dominates the qL̂L,

even for relatively small values of k�k.
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6 Conclusion

The usual methodology used to analyze the power of structural change tests and suggest

tests with �optimal�properties relies on a local asymptotic framework where the magnitude

of change shrinks towards zero as the sample size increases. This approach was adopted

by Andrews and Ploberger (1994) who considered optimal tests based on maximizing some

weighted average of the local asymptotic power function. It was also the approach adopted

by EM to devise so-called optimal tests for general parameter variations. Our simulations

have shown that the ^qLL test, labelled as optimal under this criterion, has very poor �nite

sample properties. It o¤ers gains over the sup-Wald test, which is not an optimal test under

this criterion, that are trivial when the break is small and there is no evidence of serial

correlation in the residuals of the regression. This minor gain is achieved at the expense of

very large power losses when considering models with serially correlated errors or dynamic

models including a lagged dependent variable. Our simulation results are corroborated by

the use of an alternative asymptotic framwork whereby the break sizes are �xed. Under this

criterion, the sup-Wald test dominates the ^qLL test, which in some cases has zero relative

asymptotic e¢ ciency (i.e., power goes to zero as the break size increases).

The basic (though incomplete) reason for this feature is, on the one hand, the need to

estimate the long-run variance of the errors to properly scale the statistics. Since no break

is directly modelled, one needs to estimate this long-run variance using residuals that are

�contaminated�by the shifts under the alternative. As the shift gets larger, the estimate of

the scale gets in�ated with a resulting loss in power. With a lagged dependent variable, the

problem is present because the shifts induce a bias of the autoregressive coe¢ cient towards

one (Perron, 1989, 1990), making the changes appear as outliers. The sup-Wald is less

prone to this problem given that by allowing one break, it mitigates the problems to a great

extent. Further improvements are possible with the UDmax test. Methods to overcome the

non-monotonic power problem of so-called partial sums of residuals type tests have been

suggested by Altissimo and Corradi (2003) and Juhl and Xiao (2009). They suggest using

non-parametric or local averaging methods where the mean is estimated using data in a

neighborhood of a particular data point. The resulting estimates and tests are, however,

very sensitive to the bandwidth used. A large one leads to properly sized tests in �nite

samples but with low power, and a small bandwidth leads to better power but large size

distortions. There is currently no reliable method to appropriately chose this parameter in

the context of structural changes. Also, this approach has been proposed only in the context
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of a change in mean. No results are available when correcting for serial correlation with

arbitrary regressors or when dealing with models with a lagged dependent variable.

Our research, in conjunction with other work, has several implications. First, it im-

plies that, in the context of structural change tests, one should abandon the use of a local

asymptotic framework where the breaks are local to zero in delivering optimality criteria.

These type of frameworks do not yield useful predictions about the �nite sample properties

of tests. Second, as argued in Perron (2006), one should also abandon partial-sums type

tests for which only a model restricted to satisfy the null hypothesis of no change is used.

These include the CUSUM, LM and ^qLL tests, among many others. These tests are plagued

by the problem of a non-monotonic power function such that the power of the test can go

to zero as the magnitude of change increases. There is no available alternative other than

attempting to model, as best as possible, the nature of the changes present in the data. The

sup-Wald test does this to a �rst approximation by taking the largest break into account.

The UDmax test of Bai and Perron (1998) improves upon the sup-Wald test by taking more

breaks into account. It may be the case that these tests are prone to size-distortions under

the null hypothesis. Nevertheless, this is not a reason to abandon them in favor of tests with

poor power properties. On the contrary, our work and others show that research should be

directed at alleviating such size distortion problems. For progress in this direction see, e.g.,

Diebold and Chen (1996), Hansen (2000), Kejriwal (2009) and Prodan (2008).
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Appendix

Preliminaries for Theorems 1-9: Let ût = V̂
�1=2
X Xtêt and �̂t be a k�1 vector of residuals

whose ith component is the residual from a regression of f!̂t;ig on f�rtg, as de�ned in Step 5.
Then from the de�nition in Step 6 we have qL̂L = tr(Q̂), where

Q̂ = �r
TP
t=1

�̂t�̂
0
t �

TP
t=1

ûtû
0
t

= �r
TP
t=1

[!̂t � (
TP
t=1

�r2t)�1(
TP
t=1

�rt!̂t)�r
t][!̂t � (

TP
t=1

�r2t)�1(
TP
t=1

�rt!̂t)�r
t]0 �

TP
t=1

ûtû
0
t

=
TP
t=1

!̂t!̂
0
t �

TP
t=1

ûtû
0
t �

c

T

TP
t=1

!̂t!̂
0
t � (

TP
t=1

�r2t)�1(
TP
t=1

�rt!̂t)(
TP
t=1

�rt!̂t)
0; (A.1)

with �r = 1� c=T . Using the fact that !̂s = �r!̂s�1 + ûs � ûs�1, we have

!̂s = ûs �
c

T

s�1P
j=1

�rj�1ûs�j (A.2)

for s = 2; :::; T and !̂1 = û1. Summing from 1 through t� 1 gives

t�1P
s=1

!̂s =
t�1P
s=1

�rs�1ût�s: (A.3)

We can then show that the �rst two terms of (A.1) are given by

TP
t=1

!̂t!̂
0
t �

TP
t=1

ûtû
0
t =

c2

T 2

TP
t=1

[
t�1P
s=1

�rs�1ût�s][
t�1P
s=1

�rs�1ût�s]
0

� c

T

TP
t=1

ût[
t�1P
s=1

�rs�1ût�s]
0 � c

T

TP
t=1

[
t�1P
s=1

�rs�1ût�s]û
0
t: (A.4)

For the fourth term of (A.1), we have

TP
t=1

�rt!̂t =
TP
t=1

�rtût �
c

T

TP
t=1

�rt
t�1P
s=1

�rs�1ût�s: (A.5)

Since ût = V̂
�1=2
X Xtêt, it is useful to derive an expression in terms of v̂t = Xtêt, separating

V̂X from ût. By substituting (A.4) and (A.5) into (A.1) we obtain

Q̂ = V̂
�1=2
X

�
c2A1;T � c[A2;T + A02;T ]� cA3;T

�A�16;T � [A4;T � cA5;T ][A4;T � cA5;T ]0
�
V̂
0�1=2
X + � t; (A.6)

where � t is of lower order than the other terms uniformly in jj
jj, V̂X = T�1
PT

t=1 v̂tv̂
0
t,

A1;T = T
�2PT

t=1[
Pt�1

s=1 �r
s�1v̂t�s][

Pt�1
s=1 �r

s�1v̂t�s]
0, A2;T = T�1

PT
t=1 v̂t[

Pt�1
s=1 �r

s�1v̂t�s]
0, A3;T =
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T�1
PT

t=1 v̂tv̂
0
t, A4;T = T�1=2

PT
t=1 �r

tv̂t, A5;T = T�3=2
PT

t=1 �r
t
Pt�1

s=1 �r
s�1v̂t�s, and A6;T =

T�1
PT

t=1 �r
2t p! (1=2c) [1� e�2c]. Our task is then to derive the limits of V̂X and Ai;T ,

i = 1; :::; 5.

For the proofs of Theorems 2-4 we shall use the following Lemma, whose results are by
now standard (e.g., Phillips, 1988).

Lemma A.1 Let yt =
Pt

s=1 (1� (c=T ))
t�s "s and assume that "s is uniform mixing with

mixing coe¢ cient � of size �r=(2r � 2) or strong mixing with mixing coe¢ cient � of size
�r=(r � 2), r > 2. Suppose further that Ej"sj < � < 1 and E("s) = 0 for s = 1; 2:::.
If f"sg is globally covariance stationary with nonsingular global covariance matrix 
 =

limT!1 var(T
�1=2PT

t=1 "t), then a) T
�1=2y[Tr] ) 
Wc(r); b) T�3=2
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t=1 yt ) 


R 1
0
Wc(r)dr;

c) T�2
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t=1 yty
0
t ) 


R 1
0
Wc(r)Wc(r)

0dr
; and d) T�1
P[Tr]

t=1 (1� (c=T ))
sP[Tr]�s

t=1 "t )
(1=c)
[W (r)�Wc(r)], where Wc(r) =W (r)� c

R r
0
e�c&W (r � &)d&.

Proof of Theorem 1 (random walk parameters, i.i.d. errors assumed): Under H0,
the OLS estimate of � is �̂ = [T�1

PT
t=1XtX

0
t]
�1[T�1

PT
t=1XtX

0
t�t+T

�1PT
t=1Xtet], so that

T�1=2�̂ ) 

R 1
0
W (r)dr. The OLS residuals are given by

êt = et +X
0
t�t �X 0

t�̂; (A.7)

which implies that
v̂t = Xtet +XtX

0
t�t �XtX

0
t�̂: (A.8)

Using these representations, we have the following limit results for the components of Q̂:
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Collecting terms, by (A.6) we have, T�1qL̂L) trf �V �1=2X Q
�
0Q0 �V
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We now consider the limit of the sup-Wald test. The unrestricted OLS residuals allowing
for a single break at some � 2 [0; 1] are given by

ê(�)t = et +X
0
t�t �X1(�)

0
t�̂1 �X2(�)

0
t�̂2; (A.9)
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where �̂1 and �̂2 are OLS estimates of �1 and �2: It is straightforward to show that T
�1=2�̂1 )

(1=�)

R �
0
W and T�1=2�̂2 ) (1=(1��))


R 1
�
W . Using (A.9), the unrestricted sum of squared

residuals is such that
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while using (A.7), the restricted sum of squared residuals is such that
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h
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By the continuous mapping theorem, the limit of the sup-Wald test is given by

T�1SW =

�
T�2SSRrT � T�2SSRT (��T )

T�2SSRT (��T )

�
)
�
SSRr� � SSR�(��)

SSR�(��)

�
= Op(1);

where ��T is the value of � that minimizes SSRT (�) and �� minimizes SSR�(�).

Proof of Theorem 2 (random walk parameters, correction for serial correlation):
If we take into account serial correlation in the errors, we replace V̂X with the heteroskedas-
ticity and autocorrelation robust estimate given by

ĥ(0) = V̂X +
T�1P
j=1

�(j;m)
h
�̂j + �̂

0
j

i
;

where �̂j = T�1
PT

t=j+1 v̂tv̂
0
t�j. For the qL̂L test, this is constructed by using v̂t given in

(A.8). We �rst consider the limit of �̂j. We have,
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uniformly in j = o(T ). In the next step, we use Andrews�s (1991) method based on choosing
the bandwidth such that, for the Bartlett kernel m = 1:1447(�T )1=3, where
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Pk
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4
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with �̂i and �̂vi being the OLS estimates in an AR(1) regression applied to the ith variable
of v̂t. We have

�̂i =
f�̂1gii
f�̂0gii

)
fM11g2ii f
g

2
ii [
R 1
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W 2
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g
2
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If fM �M11gii = 0, the limit value of �̂i is one and
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� �i = Op(1):

Since �̂2vi is the variance estimate of the di¤erenced series and is bounded, the ith component
such that fM �M11gii = 0 dominates both the numerator and denominator of �. Hence, � =
Op(T

2) and m = Op(T
2=3T 1=3) = Op(T ). Therefore, ĥ(0) = Op(k
k2 T 2) and substituting

its limit value in �VX in the result of Theorem 1 gives the stated result. If fM �M11gii 6= 0
for all i, then any �̂i converges to a value less than one and �̂

2
vi is the variance estimate of

the AR1 �ltered series whose coe¢ cient estimate is less than one and is bounded. Hence,
� = Op(1) and m = Op(T

1=3). Therefore ĥ(0) = Op(k
k2 T 4=3) giving the result in part(b)
for the qL̂L test.
For the sup-Wald test, we use the expression
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where V̂ � ( �X 0 �X)�1V̂X( �X
0 �X)�1. First, we have,
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Second, T�1=3V̂ = diag(V̂1; V̂2), where
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with ĥ1(0) the HAC robust variance estimator using

v̂1t =

�
Xtet +XtX

0
t�t �XtX

0
t�̂1; for t � [T�];

0; otherwise

and ĥ2(0) using

v̂2t =

�
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Xtet +XtX 0
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t�̂2; otherwise.
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As in the proof for qL̂L, we can show that ĥ1(0) and ĥ2(0) are both Op(k
k2 T 2) if
fM �M11gii = 0 for some i. In this case,
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1� ��

R 1
��W ) = Op(1);

where �� is the value of � that maximizes the limit of the Wald test over the all permissible �:
If fM11�Mgii 6= 0 for all i, ĥ1(0) and ĥ2(0) are both Op(k
k2 T 4=3) and T�2=3SW = Op(1).

Proof of Theorem 3 (random walk parameters, lagged dependent variable): We
now consider the dynamic regression. Under the null hypothesis, the OLS residuals are

êt = et � �̂et�1 +X 0
t�t � �̂X 0

t�1�t�1 �X 0
t�̂; (A.10)

and
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where the OLS estimates �̂ and �̂ have the following limits:
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and T�1=2�̂ ) Q�1[Q� ��Q1]

R 1
0
W � ��. Consider �rst the qL̂L test. We take the limits of

the components of (A.6). We have, T�2A3;T ! 0k�k,
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T�2A1;T
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T�1A4;T = T�3=2
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t=1

�rtXtX
0
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�rtXtX
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T�1A5;T = T�5=2
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0
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0
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k):

Collecting terms according to (A.6) yields the stated result. We now consider the sup-Wald
test. The regression is

yt = �uyt�1 +X1(�)
0
t�1 +X2(�)

0
t�2 + et;

and the OLS estimates are24 �̂u

T�1=2[�̂1; �̂2]
0

35 =
24 T�2
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t=2 y

2
t�1 T�3=2
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t=2 yt�1

�X(�)0t

T�3=2
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�X(�)t �X(�)
0
t

35�1 24 T�2
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t=2 yt�1yt

T�3=2
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t=2
�X(�)tyt

35
where �X(�)t = [X1(�)t; X2(�)t]. After some algebra, we obtain

�̂u ) f
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�

R �
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�
Wg � ��u; (A.13)

and

T�1=2�̂1 ) 1

�

Q�1[Q� ��uQ1]

R �
0
W;

T�1=2�̂2 ) 1

1� �
Q
�1[Q� ��uQ1]

R 1
�
W:

Using these results, the limit of SSR(�)T is given by:
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where ��u is de�ned by (A.13). The limit of the restricted sum of squared residuals is

T�2SSRrT

= T�2
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t�t � �̂X 0
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W

� SSRr� = Op(k
k2);

where �� is de�ned by (A.12). By the continuous mapping theorem, the limit of the sup-Wald
test is given by

T�1SW =

�
T�2SSRrT � T�2SSRT (��T )

T�2SSRT (��T )

�
)
�
SSRr� � SSR�(��)

SSR�(��)

�
= Op(1);

with ��T the value that minimizes SSRT (�) and �� minimizes SSR�(�). We next consider
the special case of a mean shift model when xt = 1 for all t with the dynamic regression.
For the restricted model, the regression equation is

yt = �yt�1 + � + et

and the OLS estimates are such that

T (�̂� 1) =
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t=2
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T 1=2�̂ ) ���
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W + 
W (1) � ��:

For the unrestricted model, the regression equation is

yt = �uyt�1 + �1I
1
t + �2I

2
t + et;

where I1t = 1 if t < [T�] and 0 otherwise and I2t = 0 if t < [T�] and 1 otherwise. Let
It = [I

1
t ; I

2
t ]. The OLS estimates are such that
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T 1=2�̂1 ) ���u
1

�


R �
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1� �
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��2:

Therefore, we have �̂; �̂u
p! 1 and �̂; �̂1; �̂2

p! 0. Also, T (�̂��̂u)) �����u and T (�̂2��̂2u))
2(��� ��u). Consider �rst the qL̂L test. Since xt = 1 for all t, v̂t = êt and

v̂t = et � �̂et�1 + �t � �̂�t�1 � �̂:
The components in (A.6) are such that (since et and "t are uncorrelated)
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:

We next consider the sup-Wald test, Wald(�)T = (SSRrT � SSRT (�))=T�1SSRT (�). Using
the expression for the restricted and the unrestricted residuals yields

SSRrT � SSRT (�)

=
TP
t=2

[yt � �̂yt�1 � �̂]2 �
TP
t=2

[yt � �̂uyt�1 � �̂1It�[T�] � �̂2It>[T�]]2 + op(1)

= (�̂2 � �̂2u)
TP
t=2

y2t�1 + T �̂
2 � [T�]�̂21 � (T � [T�])�̂

2

2

�2(�̂� �̂u)
TP
t=2

ytyt�1 � 2(1� �̂)�̂
TP
t=2

yt�1 + 2(1� �̂u)[�̂1
[T�]P
t=2

yt�1 + �̂2
TP

t=[T�]+1

yt�1] + op(1)

) �2(��� ��u)[(1=2)
2 (W (1)� 1)� �2e] + 
2W (1)2 � 
2W (�)2 � 
2W (1� �)2

���2
2(
R 1
0
W )2 + ��2u

1

�

2(
R �
0
W )2 + ��2u

1

1� �

2(
R 1
�
W )2

� N = Op(jj
2jj)

41



and

T�1SSRT (�) =
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2jj):

Therefore by the continuous mapping theorem SW ) N=D.

Proof of Theorem 4 (infrequent break parameter; i:i:d: errors assumed): For the
qL̂L test, the OLS estimate of � is given by
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Using the expression (A.8) for v̂t, the limit of the variance is
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The components of (A.6) are such that (again, T�1A3;T ! 0k�k)
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Solving the integrals and collecting terms according to (A.6) yields

T�1qL̂L) trf �V �1=2X Q
	
0Q0 �V 0�1=2g;

where
	 = c2	1 � c(	2 +	02)�

2c

1� e�2c [	4 � c	5]
0 [	4 � c	5] : (A.14)

We next consider the sup-Wald test. The unrestricted residuals are given by (A.9) and we
have �̂1 ) (1=�)


R �
0
J and �̂2 ) (1=(1� �))


R 1
�
J . Hence, after some algebra, we get
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k2):

For the restricted regression,
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k2):

Therefore by the continuous mapping theorem,
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T�1SSRrT � T�1SSRT (��T )

T�1SSRT (��T )

�
)
�
SSRr� � SSR�(��)

SSR�(��)

�
;

where ��T is the value of � that minimizes SSRT (�) and �� is the value that minimizes
SSR�(��).

Proof of Theorem 5 (infrequent break parameter; correction for serial correla-
tion): For the qL̂L test, the limit of �̂j is given by
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uniformly in j = o(T ). The estimated bandwidth involves
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4
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(A.15)

where
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and ��4vi is bounded for the same reason as Theorem 2. In ��i, the term �
2
e fQgii is dominated

as k
k increases, and if fM �M11gii = 0, �̂i converges to 1 at rate k
k
2. Therefore, the ith

component such that fM �M11gii = 0 dominates in both the numerator and denominator
of � and yields � = Op(k
k4) and m = Op(k
k4=3 T 1=3), so that ĥ(0) = Op(k
k10=3 T 1=3).
Since V̂X = Op(k
k2), the result follows. For the sup-Wald test, we construct ĥl(0) using
the unrestricted residuals and we have,
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2
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2
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:

Using similar arguments to the qL̂L case, ĥ(0) = Op(k
k10=3 T 1=3). If fM �M11gii 6= 0 for
some i, then � = Op(1) and m = Op(T

1=3). This yields ĥ(0) = Op(k
k2 T 1=3) for both the
qL̂L and sup-Wald tests. With these orders for ĥ(0), the rest of the proof is the same as for
the random walk case.

Proof of Theorem 6 (infrequent break parameter; lagged dependent variable):
We now consider the dynamic regression. As in the static case, the OLS residuals êt and v̂t
under the null are given by (A.7) and (A.8) and the limit of the OLS estimates �̂ and �̂ are
given by

�̂) f�2e +
R 1
0
J 0
0Q
J �

R 1
0
J 0
0Q01Q

�1Q1

R 1
0
Jg�1f

R 1
0
J 0
0Q1
J �

R 1
0
J 0
0Q1


R 1
0
Jg

� �� (A.16)

and �̂ ) Q�1[Q � ��Q1]

R 1
0
J . Consider �rst the qL̂L test. The components of (A.6) will

have the following limits (again, T�1A3;T
p! 0k�k):

V̂X = T�1
TP
t=1

v̂tv̂
0
t

) (1 + ��2)�2eQ+M
[
R 1
0
JJ 0 �

R 1
0
J
R 1
0
J 0]
0M 0 + ��2M11
[

R 1
0
JJ 0]
0M 0

11

� �VX = Op(k
k2);

T�1A1;T = T�3
TP
t=1

[
t�1P
s=1

�rs�1v̂t�s][
t�1P
s=1

�rs�1v̂t�s]
0

) [Q� �Q1]

R 1
0
[
R r
0
e�c&J(r � &)d&][

R r
0
e�c&J(r � &)d&]0dr
0[Q� �Q1]0

+[Q� �Q1]

R 1
0

R r
0
e�c&d&2dr

R 1
0
J
R 1
0
J 0
0[Q� �Q1]0

�[Q� �Q1]

R 1
0

R r
0
e�c&d&

R r
0
e�c&J(r � &)d&dr

R 1
0
J 0
0[Q� �Q1]0

�[Q� �Q1]

R 1
0
J
R 1
0

R r
0
e�c&d&

R r
0
e�c&J(r � &)d&dr0
0[Q� �Q1]0 = Op(k
k2);
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T�1A2;T = T�2
TP
t=1

v̂t[
t�1P
s=1

�rs�1v̂t�s]
0

) [Q� �Q1]

R 1
0
J(r)

R r
0
e�c&J(r � &)d&dr
[Q� �Q1]0

�[Q� �Q1]

R 1
0

R r
0
e�c&d&J(r)dr

R 1
0
J 0
0[Q� �Q1]0

�[Q� �Q1]

R 1
0
J
R 1
0

R r
0
e�c&J(r � &)d&dr0
0[Q� �Q1]0

+[Q� �Q1]Q

R 1
0

R r
0
e�c&d&dr

R 1
0
J
R 1
0
J 0
0[Q� �Q1]0 = Op(k
k2);

T�1=2A4;T = T
�1

TP
t=1

�rtv̂t ) [Q� �Q1]

R 1
0
e�crJ � [Q� �Q1]


R 1
0
e�cr

R 1
0
J = Op(k
k);

T�1=2A5;T = T�2
TP
t=1

�rt
t�1P
s=1

�rs�1v̂t�s

) [Q� �Q1]

R 1
0
e�cr

R r
0
e�c&J(r � &)d&dr � [Q� �Q1]


R 1
0
e�cr

R r
0
e�c&d&dr

R 1
0
J

= Op(k
k):

Collecting terms yields the stated results for the qL̂L test. For the sup-Wald test, the
restricted sum of squared residuals is such that

T�1SSRrT = T�1
TP
t=1

h
et � �̂et�1 +X 0

t�t � �̂X 0
t�1�t�1 �Xt�̂

i2
) (1 + ��2)�2e + (1 + ��

2)
R 1
0
J 0
0Q
J � 2��

R 1
0
J 0
0Q1
J

�
R 1
0
J 0
0[Q� ��Q1]0Q�1[Q� ��Q1]


R 1
0
J � SSRr� = Op(k
k2);

where �� is given by (A.16). For the unrestricted regression the residuals are

ê(�)t = et +X
0
t�t � �̂uet�1 � �̂uX 0

t�1�t�1 �X1(�)
0
t�̂1 �X2(�)

0
t�̂2;

where the estimates of the coe¢ cients have the following limits:

�̂u ) f�2e +
R 1
0
J 0
0Q
J � 1

�

R �
0
J 0
0Q01Q

�1Q1

R �
0
J � 1

1� �
R 1
�
J 0
0Q01Q

�1Q1

R 1
�
Jg�1

�f
R 1
0
J 0
0Q1
J �

1

�

R �
0
J 0
0Q1


R �
0
J � 1

1� �

hR 1
�
J
i0

0Q1


hR 1
�
J
i
g � ��u; (A.17)

T�1=2�̂1 ) (1=�)
Q�1[Q � ��uQ1]
R �
0
J and T�1=2�̂2 ) (1=(1 � �))
Q�1[Q � ��uQ1]

R 1
�
J .

Therefore, the limit of SSR(�)T is given by

T�1SSR(�)T = T�2
TP
t=1

h
et +X

0
t�t � �̂uet�1 � �̂uX 0

t�1�t�1 �X1(�)
0
t�̂1 �X2(�)

0
t�̂2

i2
) (1 + ��2u)�

2
e + (1 + ��

2
u)
R 1
0
J 0
0Q
J � 2��u

R 1
0
J 0
0Q1
J

�1
�

R �
0
J 0
0[Q� ��uQ1]0Q�1[Q� ��uQ1]


R �
0
J

� 1

1� �
R 1
�
J 0
0[Q� ��uQ1]0Q�1[Q� ��uQ1]


R 1
�
J � SSR(�)� = Op(k
k2);
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where ��u is given by (A.17). By the continuous mapping theorem, the limit of the sup-Wald
test is given by

T�1SW =

�
T�1SSRrT � T�1SSRT (��T )

T�1SSRT (��T )

�
)
�
SSRr� � SSR�(��)

SSR�(��)

�
= Op(1);

where ��T is the value of � that minimizes SSRT (�) and �� minimizes SSR�(�).

Proof of Theorem 7 (single break parameter; i:i:d: errors assumed): The OLS
estimate of � now has the following limit:

�̂ = [T�1
TP
t=1

XtX
0
t]
�1[T�1

TP
t=1

XtX
0
t�t + T

�1
TP
t=1

Xtet]
p! (1� �c)�

and êt and v̂t are still given by (A.7) and (A.8). We now consider the limits of V̂X and Ai;T ,
i = 1; :::; 5 (again, T�1A3;T

p! 0k�k).

V̂X = T
�1

TP
t=1

v̂tv̂
0
t

p! �2eQ+ �c(1� �c)M��0M 0 � �VX = O(k�k2);

T�1A1;T = T�3
TP
t=1

[
t�1P
s=1

�rs�1v̂t�s][
t�1P
s=1

�rs�1v̂t�s]
0

p!
R 1
�c

�R r��c
0

e�c&d&
�2
drQ��0Q0 + (1� �c)2

R 1
0

�R r
0
e�c&d&

�2
drQ��0Q0

�2(1� �c)
R 1
�c

�R r��c
0

e�c&d&
� �R r

0
e�c&d&

�
drQ��0Q0 = O(k�k2);

T�1A2;T = T�2
TP
t=1

v̂t[
t�1P
s=1

�rs�1v̂t�s]
0

p!
R 1
�c

�R r��c
0

e�c&d&
�
drQ��0Q0 + (1� �c)2

R 1
0

R r
0
e�c&d&drQ��0Q0

�(1� �c)
R 1
�c

�R r
0
e�c&d&

�
drQ��0Q0 � (1� �c)

R 1
�c

R r��c
0

e�c&d&drQ��0Q0

= O(k�k2);

T�1=2A4;T = T
�1

TP
t=1

�rtv̂t
p!
R 1
�c
e�crdrQ� � (1� �c)

R 1
0
e�crdrQ� = O(k�k);

T�1=2A5;T = T�2
TX
t=1

�rt
t�1X
s=1

�rs�1v̂t�s

p!
R 1
�c
e�cr

R r��c
0

e�c&d&drQ� � (1� �c)
R 1
0
e�cr

R r
0
e�c&d&drQ� = O(k�k):
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Collecting terms and using the representation (A.6) yields the following limit for the qL̂L
statistic:

T�1qL̂L
p! �trf �V �1=2X Q��0Q0 �V 0�1=2g;

where

� = �c(�c � 1) +
1

c
(1� �c +

1

2
�2c)�

1

c
(1� �c)2e�c �

1

2c
(1� �c)2e�2c �

1

c
(1� �c)e�c�c

+
1

c
(1� �c)ec(�c�2) �

1

2c
e2c(�c�1) � 1

2c(1� e�2c) [�c � 1 + (1� �c)e
�2c + e�c�c � ec(�c�2)]2:

For the sup-Wald test, the sum of squared restricted residuals is such that

T�1SSRrT = T
�1

TX
t=1

h
et +X

0
t�t �X 0

t�̂
i2 p! �2e + �c(1� �c)�0Q�

and we can show that T�1SSRT (�)
p! �2e. Hence, by the continuous mapping theorem

T�1SW =

�
T�1SSRrT � T�1SSRT (��T )

T�1SSRT (��T )

�
p! �c(1� �c)

�2e
�0Q�;

where ��T minimizes SSRT (�).

Proof of Theorem 8 (single break parameter; i:i:d: correction for serial correla-
tion): The qL̂L test uses the restricted residuals so that the autocovariances �̂j are such
that

�̂j = T�1
TP

t=j+1

Xtetet�jX
0
t�j + T

�1
TP

t=j+1

XtX
0
t�t�

0
t�jX

0
t�jXt�j + T

�1
TP

t=j+1

XtX
0
t�̂�̂

0
X 0
t�jXt�j

�T�1
TP

t=j+1

XtX
0
t�t�̂

0
X 0
t�jXt�j � T�1

TP
t=j+1

XtX
0
t�̂�

0
t�jX

0
t�jXt�j + op(1)

p! �c(1� �c)Mjj��
0M 0

jj = O(k�k
2):

The bandwidth involves �� de�ned by (A.15) where

�̂i
p! �c(1� �c) fM11g2ii f��

0gii
�2e fQgii + �c(1� �c) fMg

2
ii f��

0gii
� ��i

and ��4vi is bounded for the same reason as Theorem 2. In ��i, the term �
2
e fQgii is dominated

as k�k increases, and if fM �M11gii = 0, �̂i converges to 1 at rate k�k
2. Hence, � = Op(k�k4)

and m = Op(k�k4=3 T 1=3). This yields ĥ(0) = Op(k�k10=3 T 1=3). Since V̂X = Op(k�k2), the
result follows. The sup-Wald test uses unrestricted residuals in the construction of ĥl(0).
Now, it is straightforward to show that when � = �c, �̂j

p! 0 for j 6= 0, since E(etet�j) = 0
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if j 6= 0. For the bandwidth, since �̂l;i
p! 0, �l = Op(1), and m = Op(T

1=3), so that
ĥl(0) = Op(T

1=3) for l = 1; 2 and the result follows.

Proof of Theorem 9 (single break parameter; lagged dependent variable): For the
model under the null hypothesis, the OLS residuals êt and v̂t are given by (A.10) and (A.11)
and the OLS estimates �̂ and �̂ have the following limits:

�̂
p! [�2e + (1� �c)�0Q� � (1� �c)2�0Q1Q�1Q1�]�1 [�c(1� �c)�0Q1�] � �� (A.18)

and
�̂

p! (1� �c)� � ��(1� �c)Q�1Q1�:
For the qL̂L test, the components of (A.6) have the following limits (again, T�1A3;T

p! 0k�k):

V̂X = T�1
TP
t=1

v̂tv̂
0
t

p! (1 + ��2)�2eQ+ (1� �c)�cM��0M 0 + ��2(1� �c)M11��
0M 0

11

�2��(1� �c)�cM1��
0M 0

1 + ��
2(1� �c)2MQ�1Q1��0Q01Q�10M 0

���2(1� �c)2M1[Q
�1Q1��

0 + ��0Q01Q
�10]M 0

1 � �VX = O(k
k2);

T�1A1;T = T�3
TP
t=1

[
t�1P
s=1

�rs�1v̂t�s][
t�1P
s=1

�rs�1v̂t�s]
0 p!

R 1
�c
(
R r��c
0

e�csds)2dr[Q� ��Q1]��0[Q� ��Q1]0

+(1� �c)2
R 1
0
(
R r
0
e�csds)2dr[Q� ��Q1]��0[Q� ��Q1]0

�2(1� �c)
R 1
�c

R r��c
0

e�csds
R r
0
e�csdsdr[Q� ��Q1]��0[Q� ��Q1]0 = O(k�k2);

T�1A2;T = T�2
TP
t=1

v̂t[
t�1P
s=1

�rs�1v̂t�s]
0 p! �c

R 1
�c

R r��c
0

e�csdsdr[Q� ��Q1]��0[Q� ��Q1]0

��c(1� �c)
R 1
�c

R r
0
e�csdsdr[Q� ��Q1]��0[Q� ��Q1]0

��c(1� �c)
R 1
�c

R r��c
0

e�csdsdr[Q� ��Q1]��0[Q� ��Q1]0 = O(k�k2);

T�1=2A4;T = T
�1

TP
t=1

�rtv̂t
p!
R 1
�c
e�crdr[Q� ��Q1]� � (1� �c)

R 1
0
e�crdr[Q� ��Q1]� = O(k�k);

T�1=2A5;T = T�2
TP
t=1

�rt
t�1P
s=1

�rs�1v̂t�s
p!
R 1
�c
e�cr

R r��c
0

e�csdsdr[Q� ��Q1]�

�(1� �c)
R 1
0
e�cr

R r��c
0

e�csdsdr[Q� ��Q1]� = O(k�k):

Then solving the integrals and collecting terms using (A.6) gives the result of the qL̂L test.
For the sup-Wald test, the restricted sum of squared residuals is such that

T�1SSRrT = T�1
TP
t=1

ê2t
p! (1 + ��2)�2e + (1� �c)(1 + ��2)�0Q� � 2(1� �c)���0Q1�

�(1� �c)2�0[Q� ��Q1]0Q�1[Q� ��Q1]� � SSRr�;
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where �� is given by (A.18). For the unrestricted regression

yt = �uyt�1 +X1(�)
0
t�1 +X2(�)

0
t�2 + et

we can show that for � � �c,

�̂u
p! [�2e + (1� �c)�0Q� �

(1� �c)2
1� � �0Q01Q

�1Q1�]
�1[1� �c)�0Q1� �

(1� �c)2
1� � �0Q01�] � ��u;

�̂1
p! 0k�1;

�̂2
p! 1� �c
1� � Q

�1[Q� ��uQ1]�:

For � > �c,

�̂u
p! [�2e + (1� �c)�0Q� �

(�� �c)2 + �(1� �)
�

�0Q01Q
�1Q1�]

�1

�[(1� �c)�0Q1� �
(�� �c)2 + �(1� �)

�
�0Q01�];

�̂1
p! �� �c

�
Q�1[Q� ��uQ1]�;

�̂2
p! Q�1[Q� ��uQ1]�:

More importantly, for � = �c, �̂u
p! 0, �̂1

p! 0k�1, and �̂2
p! �. Now, SSR(�)T will take a

minimum value at � = �c so that

T�1SSR(�c)T = T
�1

TP
t=1

ê(�c)
2
t = T

�1
TP
t=1

e2t + op(1)
p! �2e:

Therefore, by the continuous mapping theorem,

T�1SW =

�
T�1SSRrT � T�1SSRT (��)

T�1SSRT (��)

�
p!
�
SSRr

� � �2e
�2e

�
= O(k�k2);

where ��T minimizes SSRT (�). For the special case with Xt = f1g for all t; it is clear that
�� = 1 and Q� ��Q1 = 0 so that p limT!1 T

�1qL̂L = 0. For the sup-Wald test, the limit of
SSRr� reduces to 2�2e, which implies p limT!1 T

�1SW = 1.
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Figure 1 : US real interest rate
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Figure 2 : Power functions for Models A, B
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Figure 3: Power functions of Models C, D
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Figure 4 : Hybrid tests, Models A, B
Model A Model B
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Figure 5 : Hybrid tests, Models C, D
Model C Model D
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Figure 6 : Limits of �T�2=3qL̂L and T�2=3SW , HAC robust test
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Figure 7 : Limits of �T�1qL̂L and T�1SW , dynamic regression

Random walk model
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Figure 8a: Limits of �T�1qL̂L and T�1SW; non-robust test

Random level shift model with intensity p=T = 0:05
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Figure 8b: Limits of �T�1qL̂L and T�1SW; non-robust test
Random level shift model with intensity p=T = 0:1
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Figure 8c: Limits of �T�1qL̂L and T�1SW; non-robust test
Random level shift model with intensity p=T = 0:5
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Figure 9a: Limits of �T�2=3qL̂L and T�2=3SW; HAC robust test
Random level shift model with intensity p=T = 0:05
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Figure 9b : Limits of �T�2=3qL̂L and T�2=3SW , HAC robust test

Random level shift model with intensity p=T = 0:1
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Figure 9c : Limits of �T�2=3qL̂L and T�2=3SW , HAC robust test,

Random level shift model with intensity p=T = 0:5
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Figure 10a : Limits of �T�1qL̂L and T�1SW , dynamic regression

Random level shift model with intensity p=T = 0:05
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Figure 10b : Limits of �T�1qL̂L and T�1SW , dynamic regression

Random level shift model with intensity p=T = 0:1
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Figure 10c : Limits of �T�1qL̂L and T�1SW , dynamic regression

Random level shift model with intensity p=T = 0:5
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Figure 11: Limits of �T�1qL̂L and T�1SW , non-robust test

Single �xed break model
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Figure 12: Limits of �T�2=3qL̂L and T�2=3SW , HAC robust test
Single �xed break model
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Figure 13. Limits of �T�1qL̂L and T�1SW , dynamic regression
Single �xed break model
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