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Abstract

We propose a modi�ed local-Whittle estimator of the memory parameter of a long
memory time series process which has good properties under an almost complete col-
lection of contamination processes that have been discussed in the literature, mostly
separately. These contaminations include processes whose spectral density functions
dominate at low frequencies such as random level shifts, deterministic level shifts and
deterministic trends. We show that our modi�ed estimator has the usual asymptotic
distribution applicable for the standard local Whittle estimator in the absence of such
contaminations. We also show how the estimator can be modi�ed to further account
for additive noise and that our modi�cation for low frequency contamination reduces
the bias due to short-memory dynamics. Through extensive simulations, we show that
the proposed estimator provides substantial e¢ ciency gains compared to existing semi-
parametric estimators in the presence of contaminations, with little loss of e¢ ciency
when these are absent.
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1 Introduction

Processes that are persistent in the sense that the serial correlation between distant obser-

vations decay hyperbolically are called long memory processes. They have found extensive

use in capturing the behavior of many observed series since their introduction by Hurst

(1951). A long memory process is also characterized in the frequency domain by a spectral

density function proportional to ��2d as the frequency � approaches zero at a rate dictated

by the the memory parameter d. In terms of parametric modeling, Granger and Joyeux

(1980) and Hosking (1981) introduced the fractionally integrated ARFIMA(p; d; q) model,

a long-memory generalization of the short-memory ARMA(p; q) process.

The estimators of the memory parameter are divided into parametric and semi-parametric

ones. The theory of parametric estimators was developed by Fox and Taqqu (1986) and

Dahlhaus (1989), among others. Semiparametric estimators of the memory parameter have

become popular since they do not require knowing the speci�c form of the short memory

structure. They are based on the periodograms of the series, and can be categorized into

two types: the log-periodogram (LP) estimator �rst proposed by Geweke and Porter-Hudak

(1983) and the local-Whittle (LW) estimator which is credited to Kunsch (1987). The LP

estimator is akin to OLS and the LW estimator to the MLE in the frequency domain.

Robinson (1995a,b) analyzed the asymptotic properties of these two types of estimators. He

showed that they are asymptotically normal, have the same convergence rate and that the

asymptotic variance of the LW estimator is smaller than that of the LP estimator.

There are, however, so-called contaminations that have an e¤ect on the bias and e¢ ciency

of these semi-parametric estimators, either in �nite samples or even asymptotically. Much

of the literature so far has focused on providing methods to mitigate the e¤ect of additive

noise and/or short-memory dynamics, which have only a �nite sample e¤ect. In the case

of additive noise or so-called perturbed fractional processes, although both the LW and LP

estimators preserve consistency and asymptotic normality, as shown by Deo and Hurvich

(2001) and Arteche (2004), they can be severely biased. Hurvich and Ray (2003), Hurvich et

al. (2005) and Arteche (2006), among others, have proposed estimators that can reduce the

e¤ect of noise by introducing an additive constant or polynomial term in the spectral density

function. These methods are all based on local Whittle estimators, given their �exibility in

accommodating more structures in the speci�ed data-generating process. The estimators are

also strongly biased when substantial short-memory dynamics are present. Among others,

Andrews and Sun (2004) considered an adaptive local polynomial Whittle estimator. By
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substituting a polynomial structure for the constant term used to approximate the behavior

of the short memory component near frequency zero in the local Whittle estimator, they

showed that their estimator has considerable e¢ ciency gains compared to classic LW and

LP estimators under the presence of short memory dynamics. Recently, Frederiksen et al.

(2012) combined the two methods and proposed estimators that can simultaneously reduce

the bias and mean squared error caused by short memory dynamics and noise perturbation.

There are other low frequency contaminations (denoted as LFC) that can have a more

serious e¤ect causing outright inconsistent estimates. They may be important enough to

induce researchers to mistakenly conclude that a short memory process with low frequency

contaminations is actually a long memory process. Such an e¤ect is often called �spurious

long memory�. These low frequency contaminations include, but are not con�ned to, random

level shifts, deterministic level shifts and deterministic trends. A short-memory process

contaminated by those components will exhibit hyperbolically decaying autocorrelations as

well as a pole in its spectral density function at frequency zero, which are characteristics of a

long memory process. Among others, Diebold and Inoue (2001), Granger and Hyung (2004),

Mikosch and St¼aric¼a (2004) and Perron and Qu (2010) provide theoretical explanations

for and simulation evidence of this spurious long memory e¤ect. It has also been argued

that models incorporating a short memory process with such low frequency contaminations

provide a better in-sample �t and, in particular, forecast better compared to models assuming

a pure long memory process. Various studies reported evidence that these forms of data

contaminations are in fact very likely present in the volatility of asset prices and considerably

weakens the evidence of pure long-memory; see, e.g., Granger and Hyung (2004), Mikosch

and St¼aric¼a (2004), St¼aric¼a and Granger (2005), Perron and Qu (2010), Lu and Perron

(2010), Qu and Perron (2013), Varneskov and Perron (2013) and Xu and Perron (2013).

Recent work by Dolado et al. (2005), Ohanissian et al. (2008), Perron and Qu (2010)

and Qu (2011) proposed tests in both the time and frequency domain with varying degrees

of success. Many have argued that the long-memory properties of many economic time

series are indeed spurious. These tests focus on distinguishing between a short memory

process a¤ected by low frequency contaminations from a true long memory process. So they

do not o¤er methods to estimate the memory parameter in the presence of low frequency

contaminations when the true signal may be of long or short memory.

Recently, attention focused on providing modi�ed LP or LW estimators to account for

low frequency contaminations. McCloskey and Perron (2013) proposed trimmed LP esti-

mators that have desirable asymptotic and �nite sample properties in the presence of low
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frequency contaminations. Using a similar trimming technique, McCloskey and Hill (2013)

proposed trimmed frequency domain quasi maximum likelihood estimator estimators for

short-memory time series models (e.g., ARMA, GARCH and stochastic volatility models)

that may be contaminated by low frequency movements. McCloskey (2013) considered a

trimmed frequency domain quasi maximum likelihood estimator that can be used to consis-

tently estimate the parameters of a long-memory stochastic volatility model in the presence

of low frequency contamination assuming the signal to be an ARFIMA(p; d; q) process.

Iacone (2010) considered trimmed LW estimators.

We propose modi�ed LW estimators that work under all kinds of contaminations: low

frequency, additive noise and short memory dynamics. Our emphasis is on accounting for

low frequency contaminations and we show how to further modify the estimator to account

for the other types. It adopts techniques used in Andrews and Sun (2004), Hurvich et al.

(2005) and Frederiksen et al. (2012) to introduce additive terms in the frequency domain

quasi maximum likelihood function to capture the e¤ect of the low frequency contaminations,

based on results of Perron and Qu (2010) and McCloskey and Perron (2013) showing the

spectral density function of low frequency contaminations to be of order Op(T�1�
�2
k ) near

frequency zero. To account for additive noise, we follow Hurvich et al. (2005). Interestingly,

our modi�cation for low frequency contaminations also reduces the �nite sample bias induced

by short-memory dynamics, so that no further modi�cation is necessary for this case.

Our modi�ed estimators have the following advantages: being semiparametric, they do

not require knowing the structure of the short memory process; they do not require trim-

ming so all data is used; unlike the trimmed LP estimator, they do not require the un-

derlying process to be Gaussian; they have the same asymptotic variance as the standard

LW estimator when no contamination is present; without low frequency contaminations,

they are asymptotically equivalent to the standard LW estimator that does not account

for low frequency contaminations so that no e¢ ciency loss is incurred by incorporating our

modi�cations; they can easily be extended to a full parametric case. When low frequency

contaminations are present, it has, in most cases, the smallest bias and mean-squared er-

ror amongst all existing estimators designed to control for low frequency contaminations,

whether or not other types of contaminations are present. To our knowledge, our contribu-

tion is the �rst to provide an estimator with good properties under all previously considered

contaminations: low frequency, additive noise and short-memory dynamics.

The structure of the paper is as follows. Section 2 presents the model and some prelimi-

nary results. Section 3 motivates and introduces our modi�ed LW estimator that accounts
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for possible low frequency contaminations. Section 4 presents results about the consistency

and limit distribution. Section 5 discusses how to extend the estimator to account for addi-

tive noise and short-memory dynamics. Section 6 presents the results of simulations to assess

the �nite sample properties under a variety of possible scenarios. Section 7 provides brief

concluding remarks. All technical derivations are collected in a mathematical appendix.

The following notation is used throughout: � d!�stands for convergence in distribution,
�
p!�for convergence in probability, �!�for the limit as T !1 (unless otherwise stated),

�ag b�denotes the maximum of a and b, �x � y�means that x=y p! 1.

2 The model and preliminary results

We start with some basic de�nitions of a long memory process. Let fytgTt=1 be a stationary
time series with spectral density function fy(�) at frequency � given by

fy(�) = G(�)�
�2d as �! 0+ (1)

with G(�) a slowly varying function as � ! 0+ (i.e., for any real t, G(t�)=G(�) ! 1 as

� ! 0+). When d > 0, yt is a long-memory process with a spectral density function

that increases for frequencies that get close to zero. The rate of divergence to in�nity

depends on the parameter d. Under some general conditions, this low-frequency de�nition

is equivalent to the following long-lag autocorrelation de�nition (Beran, 1994). Let 
y(�)

be the autocorrelation function of yt. If 
y(�) = c(�)� 2d�1 as � ! 1, with c(�) a slowly
varying function as � ! 1, the process is said to have long memory. For 0 < d < 1=2,

this implies that the autocorrelations decreases to zero at a slow hyperbolic rate which

depends on the parameter d, in contrast to the fast geometric rate of decay that applies

to a short-memory process. Examples of long-memory processes include the popular class

of fractionally integrated autoregressive moving average models, though in what follows we

shall remain agnostic about the nature of the short-memory component imposing only high

level assumptions. When d = 0, yt is a short-memory process.

The Data Generating Process (DGP) considered is one where the series of interest, zt, is

a long or short-memory process plus some low frequency contamination, viz.,

zt = c+ yt + ut (2)

where yt is a process with memory parameter d 2 [0; 1=2) and c a constant. Note that

the value d = 0 is allowed so the DGP includes a short-memory process contaminated by
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some low frequency component. The process ut is the low frequency contamination which

will be de�ned below. We suppose that a sample of size T is available. We de�ne the

periodograms of the processes fzt; yt; utg to be, for some frequency ordinate �k, Iz;k = Ik =
Iz(�k), Iy;k = Iy(�k) and Iu;k = Iu(�k) where Iw(�) = (2�T )�1j�Tt=1wteit�j2 for w = z; y; u,
and their spectral density functions by fz;k = fk = fz(�k), fy;k = fy(�k) and fu;k = fu(�k).

Semiparameteric frequency domain estimators for non-contaminated fractional processes are

all based on the local approximation (1) and are robust to the nature of the short memory

dynamics since they only use information from periodogram ordinates near the origin.

The local Whittle (LW) estimation method of Kunsch (1987) and Robinson (1995a) has

become popular because of its likelihood interpretation, nice asymptotic properties (smaller

asymptotic variance compared to log-periodogram estimators), mild assumptions (e.g., no

need for a normality assumption) and most importantly in our case, the possibility to easily

modify it to accommodate the presence of contaminations. It is de�ned as the minimizer of

the (negative) local Whittle likelihood function in the frequency domain

Q(G0; d) =
1

m

mX
j=1

[log(G0�
�2d
j ) + Iz(�j)=(G0�

�2d
j )]

where G0 = G(0), m = m(T ) is the bandwidth which goes to in�nity as T ! 1 but at

a slower rate than T , �j = 2�j=T are the Fourier frequencies. Concentrating with respect

to G0, the estimator of d is d̂LW = argmind [log Ĝ0(d)� 2dm
�1Pm

j=1 log �j], where Ĝ0(d) =

m�1Pm
j=1 �

2d
j Iz(�j). The types of processes considered for the low frequency contamination

(LFC) component ut are laid out in the following de�nition.

De�nition 1 The low frequency contamination component ut is generated by one of the
following processes. 1) Random level shifts (RLS): ut = �Tt=1�T;t where �T;t = �T;t�t with

�t � i:i:d: N(0; �2�) and �T;t � i:i:d: Bernoulli(p=T; 1) for some p � 0. The components

�T;t, �t are mutually independent. 2) Deterministic level shifts: ut = �
B
i=1ci�(Ti�1 < t � Ti)

where B is the (�xed) number of regimes (B � 1 is the number of breaks), 0 < jcij < 1,
�(�) is the indicator function, 0 = T0 < T1 < ::: < TB�1 < TB = T and Ti=T ! � i

with 0 <.� 1 < ::: < �B�1 < 1. 3) Deterministic trends: ut = h(t=T ) where h(�) is a
deterministic nonconstant function on [0; 1] that is either Lipschitz continuous or monotone

with h(1) = 0 1. 4) Fractional trends: ut = O((t + 1)��1=2), u0 = 0; jut+1 � utj = O(jutj=t)
where � 2 (�1=2; 1=2).

1This includes all cases for which h(�) is monotonic and bounded because we can simply substract h(1)
from h(�) and add h(1) to c in (2) to have the same DGP.
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Note that the probability of a level shift in the RLS model is sample size dependent. If

this were not the case, ut would have properties similar to that of a random walk. A de�ning

characteristic of the RLS model is that the average number of level shifts p remains constant

as the sample size grows. Note that p can be zero so that the assumption nests the no level

shift or no contamination case as well. Perron and Qu (2010) considered the asymptotic

properties of the periodogram of this type of process contaminating a short memory process

and showed that, for any k = 1; :::; [T=2], (k2=T )E(Iu;k)! (p�2�)=(4�
3) as T !1. Mikosch

and St¼aric¼a (2004) considered the asymptotic properties of the periodogram for a determin-

istic level shift component when B = 2 (one level shift), with the addition of a short-memory

component, and showed that E(Iu;k) = O(T=k2). Kunsch (1987, Lemma 2) considered the

asymptotic properties of the periodogram of a short-memory process contaminated by a

bounded monotone trend. Qu (2011, Lemma 1) extended Kunsch�s results to the Lipschitz

continuous case and showed that E(Iu;k) = O(T=k2). Iacone (2010) discussed the order of

the periodogram of in the case of a fractional trend and showed that E(Iu;k) = Op(T=k2).

The common feature of these contaminating processes is that the mean of their peri-

odogram near frequency zero is of order O(T=k2), or equivalently of order O(T�1��2k ) since

�k = 2�k=T (note that the O term could be o since it is possible that E[(Iu;k)=(T=k2)]! 0,

a case we shall discuss further later). Processes with such LFC as additive components

are non-stationary so they do not have the traditionally de�ned spectral density function.

Following common practice in such cases, we de�ne their spectral density function to be

the expectation of their periodogram. Since the spectral density function of a long memory

process near frequency zero is of order O(��2dk ), in general the spectral density function of

such contaminating components dominates that of a long memory process at low frequencies

and vice-versa at high frequencies. Note that in the representation (1), when the process is

contaminated by such LFC, we have Gu � Gu(0) = limT!1(k
2=T )E(Iu;k).

Remark 1 De�nition 1 could be replaced by the condition E(Iu;k) = Gu(k)(T=k2)(1+O(1))
with Gu(k) � B where B is a �xed bounded positive constant. Hence, E(Iu;k)=(T=k2) need

not converge to a constant, it only needs to be bounded as T !1. All LFC in De�nition 1
satisfy this property and all results to be presented remain valid under this general condition.

Unlike short memory dynamics or contaminating noise, which cause only �nite sam-

ple biases to the memory parameter estimator, the bias caused by LFC usually remains

asymptotically. To see when this applies, let Ak = (k2=T )E(Iu;k), then one can show
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that �2dk Ik = �2dk Iy;k + AkOp(T
1�2d=k2�2d). So the bias introduced by LFC is of order

Op(m
�1T 1�2d

Pm
k=1(Ak=k

2�2d)). The following de�nition will be useful.

De�nition 2 A LFC is said to be non-degenerate if limT!1f(k2=T )E(Iu;k)g > 0 for every
k. Otherwise it is said to be degenerate.

An example of a non-degenerate LFC is a RLSmodel, in which case limT!1(k
2=T )E(Iu;k) =

(p�2�)=(4�
3). An example of a degenerate LFC is a monotone deterministic trend. The bias

caused by a non-degenerate LFC remains asymptotically while the bias caused by a degen-

erate LFC can either remain or vanish asymptotically, with the degree of the (potentially

asymptotic or �nite sample) bias depending on d and the bandwidth m.

3 The modi�ed local Whittle estimator

Let the Fourier transform of the process zt be hz(�j) = (2�T )�1=2(
PT

t=1 zje
�it�j) so that

fz(�k) = E(Iz(�k)) = E(hz(�k)hz(�k)
�), where ���denotes the complex conjugate value.

One may then de�ne the frequency domain pseudo Quasi Maximum Likelihood Function

(QMLF) for hz(�k) as 'k = log(fz(�k)) + Iz(�k)=fz(�k). When there is no contamination in

the data, fz(�k) reduces to fy(�k) and the standard LW estimator is the minimizer of the

pseudo-QMLF. With low frequency contamination given by ut, a problem is how to construct

a useful approximation to fz(�k) in such cases. Because the periodogram of ut is of order

Op(T
�1��2k ), a sensible strategy is to add a term (Gu=T )�

�2
k to the spectral density function

of yt to control for the low frequency contamination. Accordingly, we consider the pseudo

spectral density function fk , fz(�k) = G0��2dk +Gu�
�2
k =T . Let � = (Gu=G0) be the signal

to noise ratio, the pseudo spectral density function of the observed process is then:

fk , fz(�k) = G0��2dk +Gu�
�2
k =T = G0(�

�2d
k +(Gu=G0)�

�2
k =T ) = G0(�

�2d
k +���2k =T ) = G0gk

where gk = (�
�2d
k + ���2k =T ).

Remark 2 fk is the �pseudo spectral density function� in the sense that it is not the true
spectral density function of the data, but an arti�cial construct aimed at providing a good

approximation to the behavior of the generalized spectral density function (i.e., the expectation

of the periodogram) and an extended LW type estimator with desirable properties.

This pseudo spectral density function can then be used to approximate E(Iz;k) and the

pseudo frequency domain QMLF is '(G; d; �) = m�1Pm
k=1 'k(G; d; �). Using the same
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technique as in Robinson (1995a), we can concentrate G out of the QMLF using Ĝ =

m�1Pm
k=1(Ik=gk). Hence, the local Whittle (frequency domain QMLE) estimator applicable

under LFC, denoted as the LWLFC estimator, is (d̂m; �̂m) = argmin(d;�) Jm(d; �), where

Jm(d; �) = log(m
�1

mX
k=1

(Ik=gk) +m
�1

mX
k=1

log(gk)

Remark 3 The component � is an �auxiliary variable� in the sense that it is not a pa-
rameter of primary interest but is introduced as a tool used to control the in�uence of the

contaminations at low frequencies. Intuitively, � is the appropriate signal to noise ratio to

use as it measures the average of the relative magnitude of the contaminations across all

frequencies. For the case of RLS contamination, we have an expression for � in terms of the

parameters of the model, given by � = (Gu=G0) � (2��2�=�2"); see Perron and Qu (2010).

Remark 4 The method can be extended to the case with a parametric speci�cation for the
long-memory process. For example, if yt is assumed to follow the ARFIMA(p; d; q) process

(1 � L)dyt = eyt, where A(L)eyt = B(L)"t and "t � i:i:d: N(0; �2"), then we simply replace

G0�
�2d
k by �2"(jB(e�i�)j2=jA(e�i�)j2)[2�j1� e�i�j2d]�1 in the objective function Jm(d; �).

4 Asymptotic properties

We start by introducing the assumptions required to obtain the consistency result for the

LWLFC estimator. Many are the same as in Robinson (1995a), but some are added or

modi�ed to accommodate the LFC components. Henceforth, we shall denote the true value

of the long-memory parameter by d0 and the true value of the signal-to-noise ratio by �0.

�Assumption A1. As �! 0+, fy(�) � G0��2d0 where G0 2 (0;1) and d0 2 [0; 1=2).
�Assumption A2. For � in a neighborhood of 0, fy(�) is di¤erentiable and d log(fy(�))
=d� = O(��1).

�Assumption A3. yt is stationary and admits an in�nite MA representation: yt � E(yt) =P1
j=0 �j"t�j with

P1
j=0 �

2
j <1 where f"tg is a martingale di¤erence sequence withE("tjFt�1) =

0, E("2t jFt�1) = �2", E("3t jFt�1) = �3, and E("4t ) = �4 where Ft is the �-�eld generated by
f"s; s � tg. Also, there exists a random variable " such that E("2) < 1 and for all � > 0

and some K > 0, P (j"tj > �) � KP (j"j > �).

Remark 5 We require "t to have �nite fourth moment even to establish consistency to invoke
a strong law of large numbers for m�1Pm

k=1(Ik=gk(d; �)) and show that the convergence of

the memory parameter estimate does not depend on the signal to noise ratio.
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�Assumption A4. As T !1, T (1�(d20�3d0+9=4)�1)g(1=2)=m+m=T ! 0.

Remark 6 The requirement on the bandwidth to establish consistency departs from Robinson
(1995a) who only requires that (1=m) + (m=T )! 0. This is due to the need to suppress the

impact of (Ik=gk) at low frequencies, k < T [(1�2d0)=(2�d0)], in which case the periodogram of

the LFC dominates that of the long memory process. With the addition of the term (�=T )��2k
in the QMLF, we can then bound jIk=gkj. However, to control the e¤ect of fIk=gkg at high
frequencies where the periodogram of the long memory process dominates that of the LFC,

we need a larger bandwidth to suppress the cumulative impact from the low frequencies. The

closer is d0 to 0, the higher is the required bandwidth because the contamination will then

dominate at higher frequencies. The quantity (1 � (d20 � 3d0 + 9=4)�1) g (1=2) achieves its
maximum value 5=9 when d0 = 0. Hence, in practice with an unknown memory parameter

d0, we need to choose a bandwidth of order greater than T 5=9.

�Assumption A5. ut is one of the LFC as stated in De�nition 1.
It will be useful to �rst establish a limit result pertaining to the estimate �̂m of the signal

to noise ratio. This will be used in the proof of the consistency of d̂m.

Lemma 1 Under A1-A5, if a non-degenerate LFC is present, �̂m is bounded above by zero.

We now consider the consistency result and a preliminary bound on the convergence rate

that will be used to establish the limit distribution of our estimator.

Theorem 1 Under A1-A5: a) d̂m
p! d0 as T !1; b) jd̂m � d0j = op((log(m))�3).

Note that this result does not require �̂m to be a consistent estimate, all that is required

is that if LFC components are present the probability limit of the estimate of �̂m is bounded

above by zero, which is guaranteed by Lemma 1. This implies that with probability arbi-

trarily close to one, �̂m will be in a the set (0;1) and we can consider analyzing the limit of
d̂m for any value or sequences of �m in the set (0;1).
Before proceeding further, we need to discuss a property of the estimate of the signal-to-

noise ratio �̂m when there is no LFC present. This, in conjunction with Lemma 1, will allow

us to derive the limit distribution of d̂m for both cases with and without LFC. The required

result is stated in the next lemma, which is of independent interest.

Lemma 2 Suppose no LFC is present and that A1-A4 hold, then, as T ! 1: �̂m =

Op(T
�(1�2d0)=(2�2d0))! 0.
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To prove the asymptotic normality of d̂m, further assumptions are needed, some of which

are strengthened versions of Assumptions A1-A3.

�Assumption A6. For some � 2 (0; 2], fy(�) � G0�
�2d0(1 + O(�� )) as � ! 0+, where

G0 2 (0;1) and d0 2 [0; 1=2).
�Assumption A7. In a neighborhood of the origin, fy(�) is di¤erentiable and dfy(�)=d� =
O(fy(�)=�) as �! 0+.

�Assumption A8. As T !1, m�1 + T�2�m1+2� (logm)2 ! 0.

The following theorem states the asymptotic distribution of the estimate d̂m.

Theorem 2 Under A1-A8: m1=2(d̂m � d0)
d! N(0; 1=4) as T !1.

Note that the asymptotic variance of our estimator is the same as that of the standard

LW estimator of Robinson (1995a) applicable with no LFC. The intuitive reason is that,

asymptotically, the additional term Gu(�
�2
k =T ) controls the e¤ect of LFC on the spectral

density function well enough so that no e¢ ciency loss ensues.

When the magnitude of the LFC is weak, the asymptotic distribution of Theorem 2 pro-

vides a good approximation to the �nite sample distribution. However, when the magnitude

of the LFC is substantial, 2m1=2(d̂m � d0) does converge to a normal distribution rapidly
as T increases (even with T as small as 512) but the approach to a standard normal may

be slow, i.e., the mean and variance of 2m1=2(d̂m � d0) may converge slowly to 0 and 1,
respectively. Some approximate formulas to compute the �nite sample bias and variance of

2m1=2(d̂m � d0) have been found in unreported simulations and they provide good approx-
imations. Unfortunately, they all depend on �0, the signal to noise ratio which cannot be

identi�ed when it is greater than zero, rendering the corrections not applicable in practice.

An important avenue of further research is to obtain a �nite-sample scaling factor, say S, to

replace m in order to obtain good �nite sample coverage rates for the LWLFC estimate. A

conjecture is that S should be a decreasing function of �0 to re�ect the impact of LFC on

the variance of the memory parameter estimate. But since �̂m is not a consistent estimator

of �0, it is unlikely that one can �nd a good applicable formula. This problem about the

coverage rate is not unique to our method, and applies to all existing methods to estimate

the memory parameter under some contamination. Alternative scaling factors have been

proposed. For the log-periodogram estimator, Geweke and Porter-Hudak (1983) suggested

using the scaling factor S(l;m)1=2, where S(l;m) =
Pm

j=1(log j � (m� l + 1)�1
Pm

�=l log �)
2

for some lower trimming l, and its use was also discussed by Deo and Hurvich (2001). For

local Whittle-type estimators, it was used by Hurvich et al. (2005) and Iacone (2010).
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5 Extension to the case of additive noise and short memory dynamics

An advantage of LW-type estimators is that, since they use the QMLF in the frequency

domain, they can easily be modi�ed to accommodate more types of structures in the DGP,

without the need to trim some of the low frequencies. We consider two extensions to account

for additive noise and short-memory dynamics. These elements do not cause an asymptotic

bias and, hence, the modi�cations are aimed solely at improving the �nite sample perfor-

mance. Consider �rst the case where both LFC and additive noise are to be accounted for.

To be precise, instead of (2), the DGP is now zt = c + yt + ut + wt, where, following As-

sumption (H2) in Hurvich et, al (2005), the additive noise wt is a zero mean white noise with

variance �2w, such that for each s 6= t, E[ws"t] = 0 and for each t, E[wt"t] = �w�w, where "t is
as de�ned in A3 and �w is the correlation between wt and "t, assumed to be constant. Also,

wt is independent of the LFC ut. Following Hurvich et al. (2005), we add a constant term

into the spectral density function, so that the modi�ed pseudo spectral density function is:

fk , fz(�k) = G0�
�2d
k +Gw +Gu(�

�2
k =T ) = G0(�

�2d
k + (Gw=G0) + (Gu=G0)(�

�2
k =T ))

= G0(�
�2d
k + �w + (�u=T )�

�2
k ) = G0gk (3)

where, with a slight abuse of notation relabeling �u = Gu=G0, gk = (�
�2d
k + �w + (�u=T )�

�2
k )

and the (approximate) frequency domain QMLF is '(G; d; �) = m�1Pm
k=1 'k(G; d; �) with

� = (�w; �u)
0. Concentrating G out of the QMLF, the estimate of G is Ĝ = m�1Pm

k=1(Ik=gk)

and the local Whittle QMLE estimator under noise perturbations and low frequency conta-

minations, denoted as the LWPLFC estimator, is (d̂m; �̂m) = argmin(d;�) Jm(d; �), where

Jm(d; �) = log(
1

m

mX
k=1

Ik
gk
) +

1

m

mX
k=1

log(gk)

For reasons discussed by Hurvich, et. al. (2005), the LWPLFC approach is expected to work

when d0 is not too close to zero. When d0 = 0, the process is short-memory. We then have a

combination of two additive short-memory processes which cannot be identi�ed separately.

For the case of short memory dynamics plus LFC, we could follow the approach of

Andrews and Sun (2004) who add a polynomial structure into G0, i.e., replace G0 in (3)

by G0 exp(�pr(�j; �)) where pr(�j; �) = �rs=1�s�2sj and � = (�1; :::; �r). However, unreported
simulations with r = 1, showed that doing so did not o¤er any gain in performance over

our LWLFC estimator with a smaller value of the bandwidth (see the simulations in Section

6). This feature can be explained as follows. From simulations to be reported in the next
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section, under strong short memory dynamics and RLS, the LWLFC estimator constructed

with a large bandwidth has substantial bias but very small variance, so that the overall MSE

is almost entirely due to the bias. When a polynomial component is added, the upward bias

is reduced but the variance is increased considerably so that the overall MSE is almost the

same or larger than that of the LWLFC estimator. With no RLS, the increased variance is

smaller so that the MSE is indeed reduced as reported by Andrews and Sun (2004). At the

root of the issue is the fact that both RLS and short memory dynamics cause upward biases

in the estimate of the memory parameter. Hence, there is a confounding e¤ect so that the

QMLF is �at with respect to the correction factors for short memory dynamics and LFC.

In unreported simulations with both RLS and short memory dynamics, it was often found

that either the coe¢ cient to correct for short memory dynamics or the coe¢ cient to account

for LFC was very close to zero, despite having the true value of both coe¢ cients greater

than zero. As will be reported in the simulations, the best way to account for short memory

dynamics and RLS is to use the LWLFC estimator with a small bandwidth.

When both additive noise and short-memory dynamics are to be accounted for, three

approaches are possible. One is to use the LWLFC estimator with a small bandwidth,

another is to use the LWPLFC with a large bandwidth, or we could follow the approach

of Frederiksen et al. (2012) who add polynomials and a constant as additive terms in the

QMLF. One drawback of the latter approach is that the increase in the number of parameters

can induce an important increase in variance resulting in increased mean-squared error.

6 Finite sample properties

The Data Generating Process (DGP) used for the simulations is zt = yt+ut+wt, where yt is

an ARFIMA(1; d; 0) process given by (1��L)(1�L)dyt = et with et � i:i:d: N(0; 1), ut is a
RLS process as described in De�nition 1 with �2� = 1, and wt � i:i:d: N(0; �2w) is the additive
noise component. The values used are: d = 0; 0:2; 0:45; � = 0:0; 0:3; 0:6 and p = 0; 5; 10; 20.

The sample sizes are T = 256, 512, 1024, 2048 and 4096 in order to use of the fast Fourier

transform algorithm with the whole data set. The estimate d̂m is allowed to take values in

the set [�0:99; 0:99] when evaluating the maximizers of the objective function. The value of
the bandwidth is set to m = T � for � = 0:6; 0:7; 0:8, the choice being dictated by the fact

that � must be larger than 5=9. Throughout, 500 replications are used. These speci�cations

were also used by McCloskey and Perron (2013) so that we can make direct comparisons of

the relative performance of our estimators with theirs (the sample sizes they used are 1000

and 2000 but the minor di¤erences in T should not be of concern given the rather large

12



di¤erences in performance). The trimmed LP estimator of McCloskey and Perron (2013)

depends on a lower trimming and upper bandwidth, while ours depend on a bandwidth. We

evaluate bias and Root Mean Squared Errors (RMSE). When making comparisons, we do

so using the values of the bandwidth (and trimming for the LP estimator) that gives the

best RMSE for each of the statistics. We focus on random level shifts as the contaminating

component as this is arguably the most relevant in practice. The results are presented in

Tables 1-3 for the cases with only RLS and RLS plus short-memory dynamics, for which we

focus on the LWLFC estimator. Table 4 presents the results for the case of RLS plus additive

noise, while Table 5 presents results when all three types of contaminations are present, in

which cases we consider both the LWLFC and LWPLFC estimators. We do not make a direct

comparison with the trimmed LW estimator of Iacone (2010). McCloskey and Perron (2013)

performed a comparison between the trimmed LP and LW estimators. They concluded that

the trimmed LP has generally smaller bias and the trimmed LW generally lower variance

and concluded that the overall performance in the presence of RLS was comparable.

6.1 The case with only RLS

The results for the case with only RLS are presented in the �rst panels of Tables 1-3 corre-

sponding to the case � = 0. Note �rst that the best results in terms of RMSE are obtained

with a large bandwidth using � = 0:8, though biases are slightly smaller with a smaller

bandwidth. Second, the results show that our estimator performs better than McCloskey

and Perron�s (2013) trimmed LP estimator. When d0 = 0, there is a 30-60% reduction in

RMSE, when d0 = 0:2 the reduction is in the range 30-40% while when d0 = 0:45 it is in the

range 5-20%. Hence, overall, the LWLFC estimator with a large bandwidth � = 0:8, shows

smaller bias and RMSE than alternative estimators. When the process is uncontaminated

(p = 0), the bias and RMSE of our estimator is small and close to that of the original LW

estimator, so that very little e¢ ciency loss is incurred when no contamination is present.

6.2 The case with RLS and short-run dynamics

We now consider the case with both RLS and short-run dynamics (presented in Tables 1-3 for

non-zero values of �). In this case the best results for the LWLFC estimator are obtained with

a small bandwidth, using � = 0:6, and more so as the magnitude of � increases. Compared

to the trimmed LP estimator, the reduction in RMSE is very substantial especially for larger

values of �. For example, with no RLS the reduction is around 65% when d = 0 and

� = 0:6, while it is around 40% when d = 0:45 and � = 0:6. The LWLFC is able to reduce
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bias and variance when both RLS and short-run dynamics are present, even though it is

designed to account only for LFC contamination. As discussed in Section 5, the approach of

Andrews and Sun (2004) which adds a polynomial structure into G0 does not o¤er additional

improvement. As stated in the above discussion, the results show that the LWLFC estimator

has indeed very small variance when both RLS and short-run dynamics are present.

6.3 The case with RLS and additive noise

The results for the case with RLS and additive noise are presented in Table 4 for the LWLFC

(which accounts only for LFC) and LWPLFC estimators (which accounts for both). The

variance of the noise is set to a large value �2w = 4. The results show that the LWPLFC

estimator has very small biases irrespective of the choice of the bandwidth. The biases

are indeed orders of magnitude smaller than those of the trimmed LP estimator which is

severely a¤ected by noise. The superiority of our estimator also holds when judged by the

relative RMSE. According to the RMSE, the estimator performs best with a high bandwidth

(� = 0:8). The LWLFC estimator shows higher bias (though still much smaller than that

of the trimmed LP) but its variance is smaller. In three out of the four cases analyzed (the

exception being d = 0:2 and p = 20) the reduction in variance is not big enough so that the

LWPLFC estimator has overall a smaller RMSE when using a large bandwidth. As expected,

the performance of the LWPLFC improves as d increases, for reasons explained in Section 5.

6.4 The case with all three types of contaminations

Table 5 presents results with all three types of contaminations. We consider strong short-

memory dynamics (� = 0:6) and a medium value for the average number of level shifts

(p = 10). For the additive noise, we use �2w = 1; 4; and we set d = 0:2; 0:45. The results

show that both the LWLFC and LWPLFC perform well. In general, the LWPLFC has

better performance when a large bandwidth is used, while the LWLFC is better with a small

bandwidth. For a large value of d0 (0:45), the LWPLFC performs slightly better than the

LWLFC under the optimal bandwidth applicable to each. When d0 is small (d0 = 0:2)

the LWLFC has slightly better performance. This accords with Hurvich, et. al. (2005)

who showed that the asymptotic variance of the LW estimator increases as d0 decreases.

Overall, the results show an advantage of using the LWPLFC with a large bandwidth. From

unreported simulations, the performance of the LWLFC and LWPLFC deteriorates as �

approaches 1 or with a moving-average parameter close to -1, with or without noise. This is

a problem common to most, if not all, versions of LW or LP estimators, trimmed or not.
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6.5 Overall summary and recommendations

The results showed that our estimators have good �nite sample properties and o¤er improved

methods of inference compared to what is available in the literature. As with all existing

semiparametric estimators of this type, the results can be sensitive to the choice of the

bandwidth. In our case, a large bandwidth (e.g., � = 0:8) is preferable in most cases.

One exception is when there is a strongly positively correlated short-memory component, in

which case a smaller bandwidth (� = 0:6) is desirable. As of yet, there is no fully developed

method to choose the bandwidth. But some approaches are possible for the practioner to

assess what is the best bandwidth to use. One is to estimate a preliminary parametric LFC

model with an AR component for the noise. Upon obtaining a large estimate of the AR

coe¢ cient a smaller banddwidth is dictaded and vice versa if the coe¢ cient is small. While

somewhat ad hoc, it should provide a useful guide.

7 Conclusions

We proposed a local-Whittle estimator of the memory parameter of a long memory time series

process which has good properties under an almost complete collection of contamination

processes that have been discussed in the literature. The estimator has many advantages:

no assumption of Gaussianity is required unlike the trimmed log-periodogram estimator;

there is no trimming involved so that all information from the low frequency components are

retained; when there is no LFC, its performance is comparable to that of the standard LW

estimator so that no asymptotic e¢ ciency loss is incurred, with the loss of e¢ ciency in �nite

sample being small as revealed by the simulations; with a proper choice of the bandwidth,

the extended estimator has good �nite sample properties with short-run dynamics and/or

additive noise; it is semi-parametric so that there is no need for a full speci�cation of the

underlying short-memory structure, though it can also be extended to cover a fully speci�ed

parametric structure for the long-memory component such as an ARFIMA process.

It does, nevertheless, have some drawbacks. First, the performance of the estimator is

sensitive to the choice of the bandwidth. An adaptive, data-dependant method to select the

bandwidth is an important avenue for future research. Note, however, that all current semi-

parametric estimators exhibit sensitivity to the bandwidth choice. Also, when the estimator

is extended to account for noise, as in Hurvich et. al (2005), the RMSE is proportional to

(1=d0) so that when the true parameter d0 is close to zero the reduction in bias is o¤set by

an increase in variance and a possible increase in the overall RMSE.
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Appendix
We �rst introduce three lemmas which show that to some extent the pseudo spectral

density function controls the periodogram of the process well, in the sense that the ratio
jIk=fkj is bounded and the average of (Ik=fk � 1) is op(1).

Lemma A.1 Let Ak = (2�T )�1=2
PT

t=1 zt cos(�kt), Bk = (2�T )
�1=2PT

t=1 zt sin(�kt), so that
Ik = (Ak)

2+(Bk)
2, and de�ne the vector 
 = ((fk)�1=2Ak; (fk)�1=2Bk; (fj)�1=2Aj; (fj)�1=2Bj)0.

Let �(X1; X2; X3; X4) denote the joint cumulant of the random variables X1; X2; X3; X4 with
n1; n2; n3; n4 nonnegative integers that sum to n. Then under Assumptions A1-A5, for �0 > 0
and letting M0 = �0=(2�)

2�2d0, for any sequences of positive integers k and j such that k > j
and k=T ! 0, the following result holds for n > 2:

�(
n11 ; 

n2
2 ; 


n3
3 ; 


n4
4 )

= O((
T n=2�nd

k(n1+n3)(1�d0)j(n2+n4)(1�d0)
)=(1 +M0

T 1�2d0

k2�2d0
)(n1+n3)(1 +M0

T 1�2d0

j2�2d0
)(n2+n4))1=2

which is O(1) if j � T (1�2d0)=(2�2d0) and o(1) if j > T (1�2d0)=(2�2d0). Similarly, for n > 2, the
n-th cumulant of e
 = (Ak=(fk)

1=2; Bk=(fk)
1=2)0 are O((T n=2�nd0=kn(1�d0))=(1 +M0(T

1�2d0=
k2�2d0)n=2). When �0 = 0, M0 = 0 and the result reduces to

�(
n11 ; 

n2
2 ; 


n3
3 ; 


n4
4 ) = O(T

n=(2�nd0)=[k(n1+n3)(1�d0)j(n2+n4)(1�d0)])

Proof : This lemma is a direct consequence of Lemma A.3 in McCloskey and Perron (2013),
henceforth MP, and the de�nition of the pseudo spectral density function fk. The di¤erence
in the results is simply due to the fact that we use fk = �

�2d0
k + (�0=T )�

�2
k , while MP use

fk = �
�2d0
k . Hence, a di¤erent expression is obtained when �0 > 0.

Lemma A.2 Under A1-A5, with Ik = !k!�k and M0 = �0=(2�)
2�2d0, for 1 � j < k � m:

(i) E(Ik=fk) = 1 + [O(k�1 log k) +O(k=T )1+2d0 ]=[1 +M0(T
1�2d0=k2�2d0)]

(ii) E((!k)2=fk) = O(k�1 log k) +O(T 1�2d0=k2�2d0)=[1 +M0(T
1�2d0=k2�2d0)]

(iii) E(
!k!

�
jp

fkfj
) = O(k�1 log j) +

O(T 1�2d0=(k1�d0j1�d0))p
(1 +M0(T 1�2d0=k2�2d0))(1 +M0(T 1�2d0=j2�2d0))

(iv) E(
!k!jp
fkfj

) = O(k�1 log j) +
O(T 1�2d0=(k1�d0j1�d0))p

(1 +M0(T 1�2d0=k2�2d0))(1 +M0(T 1�2d0=j2�2d0))

Proof: For part (i), we have E(Iu;k=(T�1��2k )) = Op(1). Hence, from Theorem 1 in MP,

E(
Ik
fk
) = E(

Ik
fy;k

fy;k
fk
) =

fy;k
fk
E(

Ik
fy;k

) =
fy;k
fk
E(
Iy;k
fy;k

+
Iu;k
fy;k

+
2Iyu;k
fy;k

)

A-1



=
��2d0k

��2d0k + (�0=T )�
�2
k

(1 +O(
log k

k
+ (

k

T
)2) +M0

T 1�2d0

k2�2d0
+O(

k3

T 2
T 1�2d0

k2�2d0
))

=
1

1 +M0(T 1�2d0=k2�2d0)
(1 +M0

T 1�2d0

k2�2d0
+O(

log k

k
+ (

k

T
)2) +O(

k

T
)1+2d0)

= 1 +
O(k�1 log k) +O(k=T )1+2d0

1 +M0(T 1�2d0=k2�2d0)

For part (ii),

E(
(!k)

2

fk
) = E(

(!k)
2

fy;k

fy;k
fk
) =

fy;k
fk
E(
(!k)

2

fy;k
) =

1

1 +M0(T 1�2d0=k2�2d0)
O(
log k

k
+
T 1�2d0

k2�2d0
)

= O(
log k

k
) +

O(T 1�2d0=k2�2d0)

1 +M0(T 1�2d0=k2�2d0)

For part (iii),

E(
!k!

�
jp

fkfj
) = E(

!k!
�
jp

fy;kfy;j

p
fy;kfy;jp
fkfj

) =

p
fy;kfy;jp
fkfj

E(
!k!

�
jp

fy;kfy;j
)

= (1 +M0(T
1�2d0=k2�2d0))(1 +M0(T

1�2d0=k2�2d0))�1=2O(
log j

k
+

T 1�2d0

k1�d0j1�d0
)

= O(
log j

k
) +

O(T 1�2d0=k1�d0j1�d0)

[(1 +M0(T 1�2d0=k2�2d0))(1 +M0(T 1�2d0=j2�2d0))]1=2

and the proof is entirely analogous for part (iv).

Lemma A.3 Under A1-A5: if a) � = �m is bounded away from zero or b) there is no LFC
in data, then: 1) jIk=fkj is bounded, and 2) m�1Pm

k=1(Ik=fk � 1) = op(1).

Proof: First,
1

m

mX
k=1

(
Ik
fk
� 1) = 1

m

mX
k=1

(
Ik
fk
� Iy;k
fy;k

) +
1

m

mX
k=1

(
Iy;k
fy;k

� 1)

For the �rst term, we have:

1

m

mX
k=1

(
Ik
fk
� Iy;k
fy;k

) =
1

m

p
T�1X
k=1

(
Ik
fk
� Iy;k
fy;k

) +
1

m

mX
k=
p
T

(
Ik
fk
� Iy;k
fy;k

)

whose �rst component is such that,

1

m

p
T�1X
k=1

(
Ik
fk
� Iy;k
fy;k

) =
1

m

p
T�1X
k=1

(
Iy;k
fz;k

� Iy;k
fy;k

+
Iu;k
fz;k

+ 2
Iyu;k
fz;k

)

=
1

m

p
T�1X
k=1

(
Iy;k
fy;k

(�fu;k
fz;k

) +
Iu;k
fz;k

+ 2
Iyu;k
fz;k

) =
1

m

p
T�1X
k=1

(
Iu;k � fu;k
fz;k

� (Iy;k
fy;k

� 1)(fu;k
fz;k

) + 2
Iyu;k
fz;k

)
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Note that

EjIu;k � fu;k
fz;k

j = Ej(Iu;k
fu;k

� 1)=(fz;k
fu;k

)j = fu;k
fz;k

EjIu;k
fu;k

� 1j

From MP (Lemma A.3) with n1 = n2 = n3 = n4 = 1 and 
1 = 
2 = 
3 = 
4 = Iu;k=fy;k:

EjIu;k
fu;k

� 1j � EjIu;k
fu;k

j+ 1 � [E(jIu;k
fu;k

j2)]1=2 + 1 � C1

So

Ej 1
m

p
T�1X
k=1

(
Iu;k � fu;k
fz;k

)j � 1

m

p
T�1X
k=1

jfu;k
fz;k

jEjIu;k
fu;k

� 1j �
p
T

m
C1 ! 0

if
p
T=m! 0. We also have Ejm�1Pp

T�1
k=1 (Iy;k=fy;k � 1)(fu;k=fz;k)j ! 0, since jfu;k=fz;kj <

1. From MP, Perron and Qu (2010) and Qu (2008): Iyu(�k) = Op(T
�1=2�

�(1+d0)
k ) and

fk = fz;k = fy;k + fu;k = G�
�2d0
k +GuT

�1��2k . Hence,

jIyu;k
fz;k

j s Op(T
�1=2�

�(1+d0)
k )

Op(�
�2d0
k ) +Op(T�1�

�2
k )

s
1

Op(T 1=2�
1�d0
k ) +Op(T�1=2�

d0�1
k )

< Op(1)

and

Ej 2
m

p
T�1X
k=1

Iyu;k
fz;k

j � 2

m

p
T�1X
k=1

EjIyu;k
fz;k

j < 2

m

p
TOp(1) = Op(

p
T

m
)! 0

if
p
T=m! 0. Hence,

Ej 1
m

p
T�1X
k=1

(
Ik
fk
� Iy;k
fy;k

)j = Ej 1
m

p
T�1X
k=1

(
Iu;k � fu;k
fz;k

� (Iy;k
fy;k

� 1)(fu;k
fz;k

) + 2
Iyu;k
fz;k

)j

� Ej 1
m

p
T�1X
k=1

(
Iu;k � fu;k
fz;k

)j+ Ej 1
m

p
T�1X
k=1

(
Iy;k
fy;k

� 1)(fu;k
fz;k

)j+ Ej 2
m

p
T�1X
k=1

Iyu;k
fz;k

j ! 0

if
p
T=m ! 0. It is easy to show that Ejm�1Pm

k=
p
T (Ik=fk � Iy;k=fy;k)j ! 0, and the fact

that Ejm�1Pm
k=1(Iy;k=fy;k � 1)j ! 0 follows from Hurvich et. al. (2005). So

Ej 1
m

mX
k=1

(
Ik
fk
�1)j � Ej 1

m

p
T�1X
k=1

(
Ik
fk
� Iy;k
fy;k

)j+Ej 1
m

mX
k=
p
T

(
Ik
fk
� Iy;k
fy;k

)j+Ej 1
m

mX
k=1

(
Iy;k
fy;k

�1)j ! 0

if
p
T=m! 0. Note that during the proof we also showed that jIk=fkj � jIk=fk� Iy;k=fy;kj+

jIy;k=fy;k � 1j+ 1 is bounded.
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Proof of Lemma 1: Let Mm = �̂m=(2�)
2�2d̂m and M0 = �0=(2�)

2�2d0 . We analyze the
partial derivative of the objective function with respect to �:

@

@�
Jm(d̂m; �̂m) =

1

mT
[
mX
k=1

1

gk(d̂m; �̂m)
��2k � ( 1

m

mX
k=1

Ik

gk(d̂m; �̂m)
)�1

mX
k=1

Ik

(gk(d̂m; �̂m))2
��2k ]

=
1

mT
[

mX
k=1

(1� Ik

G0gk(d̂m; �̂m)

G0

m�1Pm
j=1(Ij=gj(d̂m; �̂m))

)
��2k

��2d̂mk + (�̂m=T )�
�2
k

]

=
1

mT
[

mX
k=1

(1� Ik
fk

G0

m�1Pm
j=1(Ij=gj(d̂m; �̂m))

gk(d0; �0)

gk(d̂m; �̂m)
)

��2k

��2d̂mk + (�̂m=T )�
�2
k

]

=
1

mT
f
mX
k=1

(
��2k

��2d̂mk + (�̂m=T )�
�2
k

)[1� (mIk
fk
(
��2d0k + (�0=T )�

�2
k

��2d̂mk + (�̂m=T )�
�2
k

) (A.1)

n
mX
j=1

Ij
fj
(
��2d0j + (�0=T )�

�2
j

��2d̂mj + (�̂m=T )�
�2
j

))]g

Using summation by parts, (A.1) becomes:

f
mX
k=1

(
��2k

��2d̂mk + (�̂m=T )�
�2
k

)[1� (mIk
fk
�2d̂m�2d0k (

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d=k2�2d)
))

n(
mX
j=1

Ij
fj
�2d̂m�2d0j (

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
))]g

= (
��2m

��2d̂mm + (�̂m=T )�
�2
m

)
mX
k=1

[1� (mIk
fk
�2d̂m�2d0k (

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
))

n(
mX
j=1

Ij
fj
�2d̂m�2d0j (

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
))]

+
m�1X
j=1

[(
��2j

��2d̂mj + (�̂m=T )�
�2
j

)� (
��2j+1

��2d̂mj+1 + (�̂m=T )�
�2
j+1

)]

f
jX
k=1

(1� (mIk
fk
�2d̂m�2d0k (

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
))

n(
mX
k=1

Ik
fk
�2d̂m�2d0k (

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
))]g

= (
��2m

��2d̂mm + (�̂m=T )�
�2
m

)[m

�m
mX
k=1

Ik
fk
�2d̂m�2d0k (

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
)n(

mX
j=1

Ij
fj
�2d̂m�2d0j (

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
))]
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+

m�1X
j=1

[(
��2j

��2d̂mj + (�̂m=T )�
�2
j

)� (
��2j+1

��2d̂mj+1 + (�̂m=T )�
�2
j+1

)]

[j �m
jX
k=1

(
Ik
fk
�2d̂m�2d0k (

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
))

n(
mX
k=1

Ik
fk
�2d̂m�2d0k (

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
))]

Now, suppose �̂m ! 0 with (@=@�)Jm(d̂m; �̂m) = 0. We de�ne hk � [1+M0(T
1�2d0=k2�2d0)]=[1+

Mm(T
1�2d̂m=k2�2d̂m)]. We consider two cases. In the �rst, suppose Mm ! 0 at a slow

rate such that for some small k; we still have Mm(T
1�2d̂m=k2�2d̂m) ! 1. Let �m =

infkfMm(T
1�2d̂m=k2�2d̂m)! 0g, then

hk �

8<:
M0

Mm
(T
k
)2(d̂m�d0) + 1

Mm(T 1�2d̂m=k2�2d̂m )
when k � �m

1 +M0(T
1�2d0=k2�2d0) when k > �m

Note that we must have either (M0=Mm)(T=k)
2(d̂m�d0) or M0(T

1�2d0=k2�2d0) go to in�nity
for some small k. Also,

M0(T
1�2d0=k2�2d0) =

M0

Mm

(
T

k
)2(d̂m�d0)(Mm(

T

k
)�2(d̂m�d0)

T 1�2d0

k2�2d0
)

=
M0

Mm

(
T

k
)2(d̂m�d0)(Mm

T 1�2d̂m

k2�2d̂m
) = op(

M0

Mm

(
T

k
)2(d̂m�d0))

when k > �m. Hence,

�2d̂�2d0k (
1 +M0(T

1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
) s

8<: (M0=Mm) when k � �m
op(M0=Mm) when k > �m

Let

aj =
Ik
fk
�2d̂m�2d0k (

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
)

then we know that aj = Op(M0=Mm) when k � �m and aj = op(M0=Mm) when k > �m. So,
fajg is a positive sequence whose �rst few terms have higher order than the rest. So we have

(j=m)�
Pj

k=1(
Ik
fk
�2d̂m�2d0k ( 1+M0(T 1�2d0=k2�2d0 )

1+Mm(T 1�2d̂m=k2�2d̂m )
)) (A.2)

n(
Pm

k=1
Ik
fk
�2d̂m�2d0k ( 1+M0(T 1�2d0=k2�2d0 )

1+Mm(T 1�2d̂m=k2�2d̂m )
)) � Cj < 0
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where Cj is some constant. Under the second case, Mm ! 0 fast enough so that, for any k,
Mm(T

1�2d̂m=k2�2d̂m) � Op(1). For this case, hk � 1 +M0(T
1�2d0=k2�2d0) and

�2d̂m�2d0k (
1 +M0(T

1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
)

� �2d̂m�2d0k (1 +M0(T
1�2d0=k2�2d0) � (T=k)2d0�2d̂m +M0(T

1�2d̂m=k2�2d̂m)

If d0 � d̂m, the last expression is decreasing in k for all k = 1; :::;m; if d0 < d̂m, the �rst
is increasing in k; but always smaller than 1, and the second is decreasing in k and goes to
in�nity when k is small. Hence, (A.2) still holds. Since for T large enough,

��2j (�
�2d̂m
j + (�̂m=T )�

�2
j )

�1 � ��2j+1(��2d̂mj+1 + (�̂m=T )�
�2
j+1)

�1 � Dj > 0

where Dj is some constant, we have shown that (@=@�)Jm(d̂m; �̂m) < 0 if �̂m ! 0, which is
a contradiction. So �̂m has to be bounded from zero when �0 > 0.

Proof of Theorem 1: First, we consider the case when LFC indeed exists in the true
DGP. The proof for the case with no LFC will follow with trivial modi�cations. Note that
if LFC components are present, the probability limit of the estimate �̂m is bounded above
zero, by Lemma 1. This implies that with probability arbitrarily close to one, �̂m will be
in the set (0;1) and, without loss of generality, we can consider analyzing the limit of d̂m
for any sequence or values of �m in the set (0;1). Accordingly, we want to show that, with
probability arbitrarily close to one for large T and m, if f�mg is a sequence bounded above
from zero and if fd̂mgminimizes Jm(d; �m) given f�mg, then for d̂m such that jd̂m�d0j � � for
any � > 0, we have Jm(d̂m; �m)�Jm(d0; �m) > 0, which delivers a contradiction showing that
in the limit the minimizer of Jm(d; �m) must converge to d0. Let G(d; �m) = m�1Pm

k=1 Ik=gk,
where gk = (�

�2d
k + (�m=T )�

�2
k ). We �rst have:

Jm(d̂m; �m)� Jm(d0; �m) = [logG(d̂m; �m) +
1

m

mX
k=1

log(��2d̂mk (1 +
�m
T
��2+2d̂mk ))

�[logG(d0; �m) +
1

m

mX
k=1

log(��2d̂mk (1 +
�m
T
��2+2d0k ))]

= logG(d̂m; �m)� logG(d0; �m) +
1

m

mX
k=1

log(�
�2(d̂m�d0)
k (

1 + (�m=T )�
�2+2d̂m
k

1 + (�m=T )�
�2+2d0
k

))

= log
G(d̂m; �m)

G0(m�1Pm
k=1�

2(d̂m�d0)
k )

� log G(d0; �m)
G0

+ log(
1

m

mX
k=1

�
2(d̂m�d0)
k )

�2(d̂m � d0)
m

mX
k=1

�k +
1

m

mX
k=1

log(
1 + (�m=T )�

�2+2d̂m
k

1 + (�m=T )�
�2+2d0
k

)
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= log
G(d̂m; �m)

G0(m�1Pm
k=1 �

2(d̂m�d0)
k )

� log G(d0; �m)
G0

+ log(�
2(d̂m�d0)
k (2(d̂m � d0) + 1))

� log(2(d̂m � d0) + 1))

�2(d̂m � d0)[
1

m

mX
k=1

(log k � logm)] + 1

m

mX
k=1

log(
1 + (�m=T )�

�2+2d̂m
k

1 + (�m=T )�
�2+2d0
k

)

= log
G(d̂m; �m)

G0(m�1Pm
k=1 �

2(d̂m�d0)
k )

� log G(d0; �m)
G0

+ log(
2(d̂m � d0) + 1

m

mX
k=1

(
k

m
)2(d̂m�d0))

�2(d̂m � d0)[
1

m

mX
k=1

log k � (logm� 1)] + 1

m

mX
k=1

log(
1 + (�m=T )�

�2+2d̂m
k

1 + (�m=T )�
�2+2d0
k

) (A.3)

� log(1 + 2(d̂m � d0)) + 2(d̂m � d0)
Note that for the last term of (A.3), we have � log(1+2(d̂m�d0))+2(d̂m�d0) � (1=6)(d̂m�
d0)

2 � (1=6)�2. Hence, if we can show that the other �ve terms are op(1), we can derive a
contradiction. The third and fourth are op(1) from Robinson (1995a).

Proof that the �rst term of (A.3) is op(1). To show that, it is equivalent to prove that
G(d̂m; �m)=[G0(m

�1Pm
k=1 �

2(d̂m�d0)
k )]� 1 = op(1). To that e¤ect,

G(d̂m; �m)

G0(m�1Pm
k=1 �

2(d̂m�d0)
k )

� 1

= (G0(m
�1

mX
k=1

�
2(d̂m�d0)
k ))�1f 1

m

mX
k=1

Ik

��2d̂mk (1 + (�m=T )�
�2+2d̂m
k )

� 1

m
G0

mX
k=1

�
2(d̂m�d0)
k g

= (
mX
k=1

�
2(d̂m�d0)
k )�1f

mX
k=1

[
Ik

G0�
�2d0
k (1 + (�m=T )�

�2+2d̂m
k )

�
2(d̂m�d0)
k � �2(d̂m�d0)k ]g

= (

mX
k=1

�
2(d̂m�d0)
k )�1f

mX
k=1

�
2(d̂m�d0)
k [

Ik
fk

1 + (�0=T )�
�2+2d0
k

1 + (�m=T )�
�2+2d̂m
k

� 1]g

= (
1

m

mX
k=1

(
k

m
)2(d̂m�d0))�1f 1

m

mX
k=1

(
k

m
)2(d̂m�d0)(

Ik
fk

1 + (�0=T )�
�2+2d0
k

1 + (�m=T )�
�2+2d̂m
k

� 1)g

From Robinson (1995a), m�1Pm
k=1(k=m)

2(d̂m�d0) = op(1) if d̂m�d0 6= �1=2. When k �
p
T ,

Ik
fk

1 + (�m=T )�
�2+2d0
k

1 + (�m=T )�
�2+2d̂m
k

� 1 = (Ik
fk
� 1) + Ik

fk
O((

k

T
)2d0):

From Lemma A.2, m�1Pm
k=1(Ik=fk � 1) = op(1), hence m�1Pm

k=1 Ik=fk = 1 + op(1). Also,

1

m

p
TX

k=1

Ik
fk
=
1

m

p
TX

k=1

(
Ik
fk
� Iy;k
fy;k

) +
1

m

p
TX

k=1

Iy;k
fy;k
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The �rst term is op(1) from Lemma A.3 and the second is op(m�1
p
T ) = op(1) from Hurvich

et. al. (2005). Combining these results, we have m�1Pm
k=
p
T Ik=fk = 1 + op(1). Now,

1

m

mX
k=
p
T

(
k

m
)2(d̂m�d0)(

Ik
fk

1 + (�0=T )�
�2+2d0
k

1 + (�m=T )�
�2+2d̂m
k

� 1)

=
1

m

mX
k=
p
T

(
k

m
)2(d̂m�d0)(

Ik
fk
� 1) + 1

m

mX
k=
p
T

(
k

m
)2(d̂m�d0)O(

T

k2
(
k

T
)2d0)

Ik
fk

=
1

m

mX
k=
p
T

(
k

m
)2(d̂m�d0)(

Ik
fk
� Iy;k
fy;k

) +
1

m

mX
k=
p
T

(
k

m
)2(d̂m�d0)(

Iy;k
fy;k

� 1) (A.4)

+
1

m

mX
k=
p
T

(
k

m
)2d̂mO(

T

k2
(
m

T
)2d0)(

Ik
fk
� Iy;k
fy;k

) +
1

m

mX
k=
p
T

(
k

m
)2d̂mO(

T

k2
(
m

T
)2d0)

Iy;k
fy;k

We will show that all four terms of (A.4) are op(1) by showing that the expectations of their
absolute values are op(1). For the �rst term, we have from Lemma A.3,

E(j 1
m

mX
k=
p
T

(
k

m
)2(d̂m�d0)(

Ik
fk
� Iy;k
fy;k

)j) � 1

m

mX
k=
p
T

(
k

m
)2(d̂m�d0)Ej(Ik

fk
� Iy;k
fy;k

)j

From Lemma A.1, we know that Ej(Ik=fk� Iy;k=fy;k)j � C(k=T )d0 � C(m=T )d0, where C is
some constant not depending on T and m. We also have

1

m

p
TX

k=1

(
k

m
)2(d̂m�d0) =

p
T

m

1p
T

p
TX

k=1

(
kp
T
)2(d̂m�d0)(

p
T

m
)2(d̂m�d0)

= (

p
T

m
)1+2(d̂m�d0)

1p
T

p
TX

k=1

(
kp
T
)2(d̂m�d0) = Op(

p
T

m
)! 0

where the last equality is from Robinson (1995a, eq. (3.7)). Hence,m�1Pm
k=
p
T (k=m)

2(d̂m�d0)

� 1=(1 + 2(d̂m � d0)), which shows that the �rst term is op(1). For the second term,

Ej 1
m

mX
k=
p
T

(
k

m
)2(d̂m�d0)(

Iy;k
fy;k

�1)j = Ej 1
m

mX
k=1

(
k

m
)2(d̂m�d0)(

Iy;k
fy;k

�1)� 1
m

p
TX

k=1

(
k

m
)2(d̂m�d0)(

Iy;k
fy;k

�1)j

� Ej 1
m

mX
k=1

(
k

m
)2(d̂m�d0)(

Iy;k
fy;k

� 1)j+ (
p
T

m
)1+2(d̂m�d0)Ej 1p

T

p
TX

k=1

(
k

m
)2(d̂m�d0)(

Iy;k
fy;k

� 1)j = op(1)

For the third term,

E(j 1
m

mX
k=
p
T

(
k

m
)2d̂mO(

T

k2
(
m

T
)2d0)(

Ik
fk
� Iy;k
fy;k

)j) = Ej 1
m

mX
k=
p
T

(
k

m
)2d̂mO(

m

T
)2d0(

Ik
fk
� Iy;k
fy;k

)j
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� E( 1
m

mX
k=
p
T

(
k

m
)2(d̂m�d0)

T

k2
O(
m

T
)2d0C(

k

m
)2d0) � Op(

T

m2
) = op(1)

For the fourth term,

E(j 1
m

mX
k=
p
T

(
k

m
)2d̂mO(

T

k2
(
m

T
)2d0)

Iy;k
fy;k

j) = Ej 1
m

mX
k=
p
T

(
k

m
)2d̂m

T

k2
O(
m

T
)2d0

Iy;k
fy;k

j

� 1

m

mX
k=
p
T

(
k

m
)2d̂m

T

k2
O(
m

T
)2d0EjIy;k

fy;k
j � Op(

T

m2
) = op(1)

according to Equation (3.15) in Robinson (1995a). Hence,

1

m

mX
k=
p
T

(
k

m
)2(d̂m�d0)(

Ik
fk

1 + (�0=T )�
�2+2d0
k

1 + (�m=T )�
�2+2d
k

� 1) = op(1):

Proof that the second term of (A.3) is op(1). Note that

(�m=T )�
�2+2d̂m
k = �m(2�)

�2+2d̂m(T 1�2d̂m=k2�2d̂m)

and let M0 = �0(2�)
�2+2d0, Mm = �m(2�)

�2+2d̂m and fM = infm�1f�mg(2�)�2+2d̂m. Then

1

m

p
TX

k=1

(
k

m
)2(d̂m�d0)(

Ik
fk

1 + (�0=T )�
�2+2d0
k

1 + (�m=T )�
�2+2d̂m
k

� 1)

=
1

m

p
TX

k=1

(
k

m
)2(d̂m�d0)(

Ik
fk

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
) + op(1)

Suppose �rst that d̂m 2 [0; d0 � �), then (1� 2d0)=(2� 2d0) < (1� 2d̂m)=(2� 2d̂m). When
M0 > 0 and M > 0, we have

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)

8>>><>>>:
2 [(1 + fM)�1; 1 +M0]; if k � T

1�2d̂m
2�2d̂m

= Op(k
2�2d̂m=T 1�2d̂m) = op(1); if k 2 (T

1�2d0
2�2d0 ; T

1�2d̂m
2�2d̂m )

� 2(M0=fM)(k=T )2(d0�d̂m); if k � T 1�2d0
2�2d0

���������
Hence,

Ej 1
m

p
TX

k=1

(
k

m
)2(d̂m�d0)(

Ik
fk

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
)j

� 1

m

p
TX

k=1

(
k

m
)2(d̂m�d0)EjIk

fk
j( 1 +M0(T

1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
)
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� C

m

T (1�2d0)=(2�2d0)X
k=1

(
k

m
)2(d̂m�d0)2

M0fM (
k

T
)2(d0�d̂m)+

1 +M0

m
C

p
TX

k=T (1�2d0)=(2�2d0)

(
k

m
)2(d̂m�d0) = op(1)

Second, suppose d̂m 2 (d0 + �; 1=2), then (1� 2d̂m)=(2� 2d̂m) < (1� 2d0)=(2� 2d0), and

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)

8>>>><>>>>:
2 [(1 + fM)�1; 1 +M0]; if k � T

1�2d0
2�2d0

= Op(k
2�2d̂m=T 1�2d̂m) = op(1); if k 2 (T

1�2d̂m
2�2d̂m ; T

1�2d0
2�2d0 )

� 2(M0=fM)(k=T )2(d0�d̂m); if k � T 1�2d̂m
2�2d̂m

����������
Hence,

Ej 1
m

p
TX

k=1

(
k

m
)2(d̂m�d0)(

Ik
fk

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
)j

� 1

m

p
TX

k=1

(
k

m
)2(d̂m�d0)EjIk

fk
j( 1 +M0(T

1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)
)

� 2

�
C

m

� T (1�2d̂m)=(2�2d̂m)X
k=1

M0fM (
k

m
)2(d̂m�d0)(

k

T
)2(d0�d̂m) (A.5)

+2

�
C

m
M0

� T (1�2d0)=(2�2d0)X
k=T (1�2d̂m)=(2�2d̂m)

(
k

m
)2(d̂m�d0)(T 1�2d0=k2�2d0) (A.6)

+

�
(1 +M0)

C

m

� p
TX

k=T (1�2d0)=(2�2d0)

(
k

m
)2(d̂m�d0) (A.7)

Note that (A.5) is of order T (1�2d̂m)=(2�2d̂m)+2(d�d0)=m1+2(d̂m�d0) = op(1) and (A.6) is of order
T 1�2d0�(1�2d̂m)

2=(2�2d̂m)=m1+2(d̂m�d0) = op(1) if m=T [1�2d0�(1�2d̂m)
2=(2�2d̂m)]=[1+2(d̂m�d0)] ! 1.

Let

�1(d̂m; d0) = [(1� 2d̂m)=(2� 2d̂m) + 2(d̂m � d0)]=[1 + 2(d̂m � d0)];
�2(d̂m; d0) = [1� 2d0 � (1� 2d̂m)2=(2� 2d̂m)]=[1 + 2(d̂m � d0)]

Note that (1 � 2d̂m)=(2 � 2d̂m) + 2(d̂m � d0) = (1 � 2d0) � (1 � 2d̂m)2=(2 � 2d̂m), so that
�1(d̂m; d0) = �2(d̂m; d0) , �(d̂m; d0) = 1�(2(1�d̂m)(1�2d0+2d̂m))�1. Tedious algebra shows
that if 0 � d0 < d̂m < 1=2 (which holds since we are considering the case d̂m 2 (d0+ �; 1=2)),
then for a given d0, the maximized value of �(d̂m; d0) is 1 � (d20 � 3d0 + 9=4)�1. So if
T 1�(d

2
0�3d0+9=4)�1=m ! 0, which holds under Assumption A4, then (A.6) is op(1). The

arguments to show that (A.7) is op(1) are similar but applied to the case d̂m 2 [0; d0 � �).

A-10



Proof that the �fth term of (A.3) is op(1). We have:

1

m

mX
k=1

log(
1 + (�m=T )�

�2+2d̂m
k

1 + (�m=T )�
�2+2d0
k

) =
1

m

mX
k=1

log(
1 + (�mT=(4�

2k2))�2d̂mk
1 + (�mT=(4�2k2))�

2d0
k

)

=
1

m

p
TX

k=1

log(
1 + (�mT=(4�

2k2))�2d̂mk
1 + (�mT=(4�2k2))�

2d0
k

) +
1

m

mX
k=
p
T

log(
1 + (�mT=(4�

2k2))�2d̂mk
1 + (�mT=(4�2k2))�

2d0
k

) (A.8)

It is easy to show that the second term of (A.8) is op(1). For the �rst term,

j 1
m

p
TX

k=1

log(
1 + (�mT=(4�

2k2))�2d̂mk
1 + (�mT=(4�2k2))�

2d0
k

)j

= j 1
m

p
TX

k=1

[log(1 + (�mT=(4�
2k2))�2d̂mk )� log(1 + (�mT=(4�2k2))�2d0k )]j

� 1

m

p
TX

k=1

log(1 + fM(T 1�2d̂m=k2�2d̂m) + 1

m

p
TX

k=1

log(1 +M0(T
1�2d0=k2�2d0)

� 1

m

p
TX

k=1

log(1 + fMT 1�2d̂m) + 1

m

p
TX

k=1

log(1 +M0T
1�2d0)

s Op(

p
T

m
log(T 1�2d̂m)) +Op(

p
T

m
log(T 1�2d0)) s Op(

p
T log T

m
) +Op(

p
T log T

m
) = op(1)

This completes the proof of Theorem 1(a). For part (b), note that Jm(d̂m; �m)�Jm(d0; �m) =
Op(m

�1T (1=2)(d
2
0�3d0+9=4)g(1=2)). So if m � Op(T �) with � > (1=2)(d20 � 3d0 + 9=4)g (1=2):

0 � Op(T
(1=2)(d20�3d0+9=4)g(1=2)��)� (1=2) log(1 + 2(d̂m � d0)) + 2(d̂m � d0)

� Op(T
(1�(d20�3d0+9=4)�1)g(1=2)��) + (1=6)(d̂m � d0)2

Hence (1=6)(d̂m � d0)2 � Op(T
(1=2)(d20�3d0+9=4)g(1=2)��), so that jd̂m � d0j = op((logm)

�3)

if T (1�(d
2
0�3d0+9=4)�1)g(1=2)��) = op((logm)

�3) which is guaranteed if � > (1 � (d20 � 3d0 +
9=4)�1)g (1=2), by Assumption A4. This completes the proof of Theorem 1 for the case in
which LFC are present. If no LFC is present �0 = 0, in which case all proofs go through with
no requirement on �m, since the ratio (1 +M0(T

1�2d0=k2�2d0))=(1 +Mm(T
1�2d̂m=k2�2d̂m)) =

1=(1 +Mm(T
1�2d̂m=k2�2d̂m)) is bounded for any choice of Mm � 0.

Proof of Lemma 2. Let �� = lim sup �̂m, �M = (2�)2d̂m�2��, Mm = (2�)2d̂m�2�̂m, TMm =
supkfkjk2�2d0=T 1�2d0 �Mmg and T �M = supkfkjk2�2d0=T 1�2d0 � �Mg = Op( �MT (1�2d0)=(2�2d0)).
Note that from Theorem 1, d̂m ! d0. Then, (A.1) becomes

0 = f
mX
k=1

(
��2k

��2d̂mk + (�̂m=T )�
�2
k

)[1�(mIk
fk
(

��2d0k

��2d̂mk + (�̂m=T )�
�2
k

))n(
mX
j=1

Ij
fj
(

��2d0j

��2d̂mj + (�̂m=T )�
�2
j

))]g
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= f
mX
k=1

(
��2k

��2d̂mk + (�̂m=T )�
�2
k

)[1� (mIk
fk
�2d̂m�2d0k (

1

1 +Mm(T 1�2d̂m=k2�2d̂m)
))

n(
mX
j=1

Ij
fj
�2d̂m�2d0j (

1

1 +Mm(T 1�2d̂m=k2�2d̂m)
))]g

� (2�)2�2d̂mf
mX
k=1

(
T

k
)2�2d̂m [1� Ik

fk

(k2�2d̂m=T 1�2d̂m)

(k2�2d̂m=T 1�2d̂m) +Mm

]g

�
mX
k=1

(
T

k
)2�2d̂m � 1

�M

TMmX
k=1

(
T

k
)2�2d̂mjIk

fk
j k

2�2d̂m

T 1�2d̂m
�

mX
k=TMm+1

(
T

k
)2�2d̂m

Ik
fk

�
TMX
k=1

(
T

k
)2�2d̂m � 1

�M

TMmX
k=1

T jIk
fk
j �

mX
k=TMm+1

(
T

k
)2�2d̂mjIk

fk
� 1j

= T 2�2d0(1� T 2d0�1�M
)�Op(T 1+(1�2d0)=(2�2d0))�

mX
k=T �M+1

T 2�2d0 log k

k3�2d0
+ op(1)

If �� > 0, then �M > 0, and

T 2�2d0(1� T 2d0�1�M
)�Op(T 1+(1�2d0)=(2�2d0))�

mX
k=T �M+1

T 2�2d0 log k

k3�2d0

> Op(T
1+(1�2d0))�Op(T 1+(1�2d0)=(2�2d0))�Op(T 2�2d0 logm(T 2d0�2M �m2d0�2))!1

So the partial derivative with respect of � will be always greater than zero and the objective
function can not be minimized at �̂m, which is a contradiction. Hence, �̂m

p! 0 when there
is no LFC in the data. To complete the proof, note that:

T 2�2d0(1� T 2d0�1�M
)�Op(T 1+((1�2d0)=(2�2d0))�

mX
k=T �M+1

T 2�2d0 log k

k3�2d0
< 0

so that T 2d0�1�M
� Op(1). Hence,

T 1�2d0�M
= Op( �M

1�2d0T (1�2d0)
2=(2�2d0)) = Op(��

1�2d0T (1�2d0)
2=(2�2d0)) � Op(1):

which implies that �� = lim sup �̂m � Op(T�(1�2d0)=(2�2d0)) and proves the result.

Proof of Theorem 2. The proof follows Robinson (1995a) with appropriate modi�cations
to accommodate the extra term. Note that given Theorem 1(b), we can restrict the analysis
to values of d̂m in the set Cm(d) = fd̂m : jd̂m � d0j < log(m)�3g and �̂m in the set (0;1) by
Lemma 1 when LFC are present. We can write the objective function as

Jm(d; �) = log(
1

m

mX
k=1

Ik

��2dk + (�=T )��2k
) +

1

m

mX
k=1

log(��2dk + (�=T )��2k )
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Since Ĝ(d; �) = m�1Pm
k=1(Ik=(�

�2d
k + (�=T )��2k )), we have

J 0m(d; �) =
@

@d
Jm(d; �) =

1

Ĝ(d; �)

2

m

mX
k=1

Ik
gk
log(�k)

gyk
gk
� 2

m

mX
k=1

log(�k)
gyk
gk

and the second order derivative is

J 00m(d; �) =
@2

@d2
Jm(d; �) = �

4

m2

1

Ĝ(d; �)2
(

mX
k=1

Ik
gk

��2dk

gk
log(�k))

2

+
4

Ĝ(d; �)

1

m

mX
k=1

(
(log(�k))

2

(gk)3
Ik�

�2d
k gyk)

� 4

Ĝ(d; �)

1

m

mX
k=1

(
(log(�k))

2

(gk)3
Ik�

�2d
k guk) +

4

m

mX
k=1

((log(�k))
2�

�2d
k guk
(gk)2

) (A.9)

We �rst show that when evaluated at d̂m and �̂m both terms of (A.9) are op(1). For the �rst:

� 4

Ĝ(d̂m; �̂m)

1

m

mX
k=1

(
(log(�k))

2

(gk)3
Ik�

�2d̂m
k guk) � 1

m

mX
k=1

(log(�k)
2(
Ik
g0k
)(
g0k
gk
)
��2d̂mk guk
(gk)2

)

� 1

m

mX
k=1

((log(�k)
2(
Ik
g0k
)�
2(2d̂m�d0)
k )

For d̂m in Cm(d), we have for T and m large enough, 2d̂m � d0 � (1=2)d0, so that the �rst
term is op(1). It is trivial to show that the second is op(1). Hence, the second derivative of
the objective function evaluated at (d̂m; �̂m) is such that:

J 00m(d̂m; �̂m) = � 4

m2

1

Ĝ(d̂m; �̂m)2
(
mX
k=1

Ik
gk

��2d̂mk

gk
log(�k))

2

+
4

Ĝ(d̂m; �̂m)

1

m

mX
k=1

(
(log(�k))

2

(gk)3
Ik�

�2d̂m
k gyk) + op(1)

Let Ĝl(d̂m; �̂m) = m�1Pm
k=1(Ik=gk)(log(�k))

l(gyk=gk)
l, then

J 00m(d̂m; �̂m) =
4

Ĝ0(d̂m; �̂m)
[Ĝ0(d̂m; �̂m)Ĝ2(d̂m; �̂m)� Ĝ1(d̂m; �̂m)2] + op(1)

De�ning eGl(d̂m; �̂m) = m�1Pm
k=1(Ik=gk)(log(�k))

l, we will show that Ĝl(d̂m; �̂m) = eGl(d̂m; �̂m)+
op( eGl(d̂m; �̂m)), for l = 0; 1; 2. When l = 1,
Ĝ1(d̂m; �̂m) =

1

m

mX
k=1

(
Ik
gk
) log(�k)(

gyk
gk
) =

1

m

mX
k=1

(
Ik
gk
) log(�k)�

1

m

mX
k=1

(
Ik
gk
) log(�k)(

guk
gk
)

= eG1(d̂m; �̂m) + op( eG1(d̂m; �̂m))
A-13



if [m�1Pm
k=1(Ik=gk) log(�k)(guk=gk)]=[m

�1Pm
k=1(Ik=gk) log(�k)]! 0, which we now prove.

m�1Pm
k=1(Ik=gk) log(�k)(guk=gk)

m�1Pm
k=1(Ik=gk) log(�k)

=
m�1Pp

T�1
k=1 (Ik=gk) log(�k)(guk=gk)eG1(d̂m; �̂m) +

m�1Pm
k=
p
T (Ik=gk) log(�k)(guk=gk)eG1(d̂m; �̂m) (A.10)

For the �rst term,

jm
�1Pp

T�1
k=1 (Ik=gk) log(�k)(guk=gk)eG1(d̂m; �̂m) j =

Pp
T�1

k=1 (Ik=g
0
k)(g

0
k=gk)(guk=gk) log(�k)Pm

k=1(Ik=g
0
k)(g

0
k=gk) log(�k)

=

Pp
T�1

k=1 (Ik=g
0
k)(k=T )

2(d̂m�d0) 1+M0(T 1�2d0=k2�2d0 )

1+Mm(T 1�2d̂m=k2�2d̂m )
log(�k)(guk=gk)Pm

k=1(Ik=g
0
k)(k=T )

2(d̂m�d0) 1+M0(T 1�2d0=k2�2d0 )

1+Mm(T 1�2d̂m=k2�2d̂m )
log(�k)

�

Pp
T�1

k=1 (Ik=g
0
k)(k=T )

2(d̂m�d0) 1+M0(T 1�2d0=k2�2d0 )

1+Mm(T 1�2d̂m=k2�2d̂m )
log(�k)Pm

k=1(Ik=g
0
k)(k=T )

2(d̂m�d0) 1+M0(T 1�2d0=k2�2d0 )

1+Mm(T 1�2d̂m=k2�2d̂m )
log(�k)

= Op

0BBBBBBB@

log(T )
Pp

T�1
k=1 (k=m)2(d̂m�d0) 1+M0(T 1�2d0=k2�2d0 )

1+Mm(T 1�2d̂m=k2�2d̂m )

�
Pp

T�1
k=1 (k=m)2(d̂m�d0) 1+M0(T 1�2d0=k2�2d0 )

1+Mm(T 1�2d̂m=k2�2d̂m )
log(k)

log(T )
Pm

k=
p
T (k=m)

2(d̂m�d0) 1+M0(T 1�2d0=k2�2d0 )

1+Mm(T 1�2d̂m=k2�2d̂m )

�
Pm

k=
p
T (k=m)

2(d̂m�d0) 1+M0(T 1�2d0=k2�2d0 )

1+Mm(T 1�2d̂m=k2�2d̂m )
log(k)

1CCCCCCCA
= Op(

Pp
T�1

k=1 (k=m)2(d̂m�d0) 1+M0(T 1�2d0=k2�2d0 )

1+Mm(T 1�2d̂m=k2�2d̂m )Pm
k=
p
T (k=m)

2(d̂m�d0)
)

From Robinson (1995a, eq. 3.7) and a result in the proof of consistency,
Pm

k=
p
T (k=m)

2(d̂m�d0)

�
Pm

k=1(k=m)
2(d̂m�d0) = m(1 + 2(d̂m � d0))�1 + op(m) � m for d̂ in Cm(d). Hence,Pp

T�1
k=1 (k=m)2(d̂m�d0) 1+M0(T 1�2d0=k2�2d0 )

1+Mm(T 1�2d̂m=k2�2d̂m )Pm
k=
p
T (k=m)

2(d̂m�d0)
� 1

m

p
T�1X
k=1

(
k

m
)2(d�d0)

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)

which is op(1) under Assumption A4 from the proof of consistency. For the second term in
(A.10), using similar arguments, we have:

m�1Pm
k=
p
T (Ik=gk) log(�k)(guk=gk)eG1(d̂m; �̂m)

� 1

m

mX
k=
p
T

(
k

m
)2(d̂m�d0)

1 +M0(T
1�2d0=k2�2d0)

1 +Mm(T 1�2d̂m=k2�2d̂m)

(�̂m=T )�
�2
k

��2d̂mk + (�̂m=T )�
�2
k

(A.11)
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If d0 > 0, then (A.11) is asymptotically equivalent to m�1Pm
k=
p
T (k=m)

2(d̂m�d0)(k=T )2d̂m =

(m=T )2d̂mm�1Pm
k=
p
T (k=m)

2(2d̂m�d0) ! 0, for d̂m in Cm(d). If d0 = 0, then (A.11) is asymp-
totically equivalent to (T=m)

Pm
k=
p
T (k=m)

4(�̂m=k
2) � (T=m5)

Pm
k=
p
T k

2 � (T=m5)m3 =

(T=m2)! 0. Hence, both terms of (A.10) are op(1) and we have Ĝ1(d̂m; �̂m) = eG1(d̂m; �̂m)+
o( eG1(d̂m; �̂m)). Similarly, Ĝ2(d̂m; �̂m) = eG2(d̂m; �̂m) + o( eG2(d̂m; �̂m)). Accordingly,

@2

@d2
Jm(d̂m; �̂m) �

4eG0(d̂m; �̂m)2 [ eG0(d̂m; �̂m) eG1(d̂m; �̂m)� eG1(d̂m; �̂m)2]
=

4

(m�1Pm
k=1(Ik=gk))

2
[(
1

m

mX
k=1

(
Ik
gk
))(
1

m

mX
k=1

(
Ik
gk
) log2(�k))� (

1

m

mX
k=1

(
Ik
gk
) log(�k))

2]

=
4

(m�1Pm
k=1(Ik=gk))

2
[(
1

m

mX
k=1

(
Ik
gk
))(
1

m

mX
k=1

(
Ik
gk
) log2(k))� ( 1

m

mX
k=1

(
Ik
gk
) log(k))2]

Let F̂l(d̂m; �̂m) = m�1Pm
k=1(Ik=gk) log(k))

l, hk = hk(d̂m; �̂m) = 1 + (�̂m=T )�
�2+2d̂m
k = 1 +

Mm(T
1�2d̂m=k2�2d̂m), and h0k = hk(d0; �0) = 1 +M0(T

1�2d0=k2�2d0). Then
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For � = 0; 1; 2;
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m
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Ik log
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��2d̂mk + (�̂m=T )�
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For the �rst term of (A.12), we have
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m
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j+Op(

log� (m)

m

p
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Note that from results in the proof for consistency and the fact that d̂m is in Cm(d), this last
term is op(1) if A4 holds. For the second term of (A.12), we have
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and the �rst derivative of the second term of (A.12) is
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since d̂m in Cm(d). Also, under A4 and for d̂m in Cm(d): log
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Note that the derivations above are valid so long as the sequence f�̂mg is bounded below
from zero, which holds if LFC are present. Now because Ĝ(d0; �̂m) = m�1Pm

k=1 Ik[�
�2d0
k +

(�̂m=T )�
�2
k ]

�1 p! G0, from the fact that the second term in (A.3) is op(1) in the proof of
Theorem 1, then using similar arguments as in Robinson (1995a), we have
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where �k = [log k� (m�1Pm
j=1 log j)]. Using the same approach as in Robinson (1995a, pp.

1644-1653), the �rst part converges to a N(0; 4) (note that for the part involving the 4-th
cumulant cum(!j=fj; !k=fk; �!j=fj; �!k=fk) we need to use the results of Lemmas A.1-A.2 to
get the corresponding results for the DGP with LFC). What remains to be shown is that
the second part is op(1). We have, where eIuk := Ik � Iyk:
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using summations by parts andMmG0 = [
Pm

k=1(�
�2
k =gk)

2(k2=T )eIuk=Pm
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2]. Hence,

a CLT can be applied so that
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This completes the proof of Theorem 2 for the case with LFC present. To complete the proof
for the case with no LFC, we need to show that
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Note that with no LFC, we have Ik = Iyk and eIuk = 0. Hence,
m�1=2

mX
k=1

((
Ik
fk
� Iyk
fyk
)
gyk
gk
)�k = �m�1=2

mX
k=1

guk
gk

gyk
gk
�k + op(1)

So we want to show that m�1=2Pm
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k=1(guk=gk)�k = op(1). To prove this, note that
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using Lemma 2. Then,
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from Assumption A4. Hence, (A.13) holds when there is no LFC, which completes the proof
of Theorem 2.
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Table 1: Bias and RMSE for a short memory process ARFIMA(�; d = 0; 0) with RLS

p = 0 p = 5 p = 10 p = 20
Tn� 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8
a) Bias � = 0
256 -0.087 -0.047 -0.021 -0.021 -0.038 0.004 0.004 -0.017 -0.002 -0.011 -0.059 0.023
512 -0.052 -0.025 -0.008 -0.016 -0.007 0.005 -0.014 -0.028 -0.012 -0.086 -0.055 0.011
1024 -0.037 -0.016 -0.006 -0.029 -0.001 0.003 -0.018 -0.001 -0.004 0.008 -0.026 0.001
2048 -0.013 -0.009 -0.006 -0.012 0.001 0.001 0.016 -0.006 0.005 0.013 -0.011 -0.005
4096 -0.007 -0.004 -0.004 -0.009 -0.006 -0.001 -0.032 -0.009 0.003 0.003 -0.009 0.000

� = 0:3
256 -0.022 0.070 0.168 0.009 0.122 0.246 0.215 0.413 0.524 -0.012 0.131 0.270
512 -0.029 0.041 0.134 0.015 0.116 0.194 0.166 0.354 0.491 0.059 0.142 0.242
1024 -0.012 0.025 0.118 -0.009 0.048 0.137 0.123 0.267 0.436 0.023 0.053 0.160
2048 -0.005 0.027 0.092 0.004 0.033 0.107 0.072 0.206 0.383 -0.012 0.040 0.013
4096 -0.007 0.014 0.073 0.018 0.015 0.085 0.044 0.145 0.329 -0.011 0.024 0.100

� = 0:6
256 0.128 0.299 0.432 0.176 0.387 0.498 0.213 0.414 0.524 0.221 0.449 0.561
512 0.093 0.223 0.392 0.135 0.307 0.459 0.178 0.344 0.492 0.174 0.388 0.517
1024 0.052 0.170 0.347 0.109 0.250 0.406 0.069 0.202 0.380 0.108 0.298 0.463
2048 0.020 0.125 0.307 0.066 0.186 0.361 0.063 0.143 0.330 0.085 0.234 0.409
4096 0.013 0.084 0.267 0.036 0.131 0.311 0.014 0.101 0.281 0.035 0.161 0.349

b) RMSE � = 0
256 0.191 0.111 0.078 0.423 0.291 0.140 0.546 0.327 0.162 0.656 0.421 0.231
512 0.132 0.075 0.046 0.353 0.169 0.082 0.402 0.197 0.121 0.575 0.362 0.104
1024 0.095 0.057 0.037 0.262 0.130 0.068 0.280 0.147 0.071 0.376 0.213 0.078
2048 0.068 0.041 0.026 0.215 0.089 0.044 0.274 0.108 0.046 0.316 0.131 0.052
4096 0.062 0.029 0.019 0.147 0.069 0.031 0.218 0.075 0.031 0.264 0.101 0.041

� = 0:3
256 0.172 0.118 0.180 0.371 0.201 0.265 0.467 0.269 0.277 0.524 0.337 0.311
512 0.132 0.086 0.142 0.282 0.179 0.207 0.354 0.185 0.235 0.432 0.241 0.261
1024 0.082 0.058 0.122 0.157 0.087 0.142 0.203 0.096 0.154 0.276 0.117 0.172
2048 0.068 0.049 0.096 0.128 0.060 0.111 0.140 0.066 0.120 0.221 0.083 0.137
4096 0.049 0.035 0.076 0.102 0.041 0.088 0.115 0.047 0.094 0.150 0.060 0.102

� = 0:6
256 0.194 0.312 0.437 0.357 0.407 0.504 0.385 0.442 0.530 0.482 0.493 0.569
512 0.145 0.233 0.395 0.237 0.322 0.463 0.300 0.370 0.497 0.340 0.414 0.522
1024 0.099 0.177 0.349 0.190 0.260 0.409 0.229 0.278 0.438 0.279 0.313 0.466
2048 0.066 0.132 0.308 0.136 0.194 0.362 0.167 0.216 0.385 0.203 0.245 0.411
4096 0.053 0.098 0.268 0.092 0.138 0.312 0.116 0.153 0.330 0.146 0.170 0.351



Table 2: Bias and RMSE for a long memory process ARFIMA(�; d = 0:2; 0) with RLS

p = 0 p = 5 p = 10 p = 20
Tn� 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8
a) Bias � = 0
256 -0.106 -0.054 -0.033 -0.103 -0.05 -0.030 -0.093 -0.057 -0.053 -0.159 -0.094 -0.047
512 -0.050 -0.025 -0.020 -0.054 -0.011 -0.026 -0.107 -0.027 -0.025 -0.064 -0.052 -0.001
1024 -0.033 -0.019 -0.015 -0.025 -0.012 -0.036 -0.012 -0.014 -0.042 -0.054 -0.029 -0.039
2048 -0.016 -0.011 -0.012 -0.027 -0.008 -0.027 -0.016 -0.010 -0.031 -0.009 -0.013 -0.030
4096 -0.015 -0.008 -0.006 0.004 -0.009 0.020 -0.011 -0.006 -0.022 -0.006 -0.009 -0.022

� = 0:3
256 -0.047 0.063 0.149 -0.080 0.101 0.203 0.021 0.114 0.214 -0.030 0.118 0.237
512 -0.017 0.034 0.126 -0.023 0.088 0.167 0.001 0.098 0.185 -0.019 0.102 0.220
1024 -0.014 0.019 0.102 -0.006 0.054 0.141 0.003 0.003 0.162 -0.035 0.073 0.172
2048 -0.022 0.023 0.088 -0.018 0.035 0.117 -0.020 0.040 0.128 -0.011 0.048 0.140
4096 -0.014 0.013 0.074 0.010 0.025 0.092 0.004 0.033 0.101 0.005 0.042 0.112

� = 0:6
256 0.128 0.302 0.424 0.160 0.336 0.442 0.192 0.362 0.474 0.149 0.383 0.483
512 0.080 0.223 0.384 0.098 0.268 0.415 0.138 0.297 0.427 0.129 0.339 0.461
1024 0.045 0.170 0.348 0.078 0.209 0.365 0.091 0.227 0.380 0.118 0.251 0.412
2048 0.038 0.120 0.306 0.050 0.153 0.322 0.067 0.170 0.335 0.056 0.194 0.361
4096 0.015 0.086 0.267 0.031 0.114 0.277 0.039 0.125 0.292 0.026 0.137 0.309

b) RMSE � = 0
256 0.229 0.126 0.082 0.409 0.213 0.139 0.508 0.298 0.191 0.635 0.398 0.191
512 0.132 0.083 0.058 0.302 0.136 0.091 0.414 0.198 0.103 0.514 0.273 0.116
1024 0.097 0.057 0.040 0.205 0.076 0.059 0.244 0.068 0.057 0.370 0.088 0.059
2048 0.065 0.041 0.028 0.163 0.051 0.044 0.194 0.043 0.039 0.265 0.057 0.039
4096 0.053 0.033 0.021 0.109 0.037 0.032 0.148 0.029 0.028 0.205 0.039 0.029

� = 0:3
256 0.174 0.114 0.161 0.330 0.201 0.221 0.379 0.226 0.243 0.485 0.316 0.274
512 0.128 0.085 0.137 0.256 0.146 0.179 0.292 0.173 0.198 0.409 0.203 0.235
1024 0.085 0.056 0.107 0.200 0.099 0.147 0.256 0.115 0.169 0.329 0.140 0.180
2048 0.078 0.045 0.091 0.114 0.070 0.121 0.170 0.079 0.132 0.202 0.097 0.145
4096 0.056 0.033 0.077 0.096 0.048 0.095 0.118 0.066 0.104 0.143 0.070 0.115

� = 0:6
256 0.216 0.314 0.429 0.264 0.350 0.447 0.323 0.380 0.479 0.382 0.434 0.503
512 0.137 0.233 0.387 0.218 0.279 0.418 0.231 0.311 0.430 0.265 0.352 0.465
1024 0.098 0.180 0.350 0.135 0.217 0.367 0.171 0.238 0.382 0.139 0.262 0.414
2048 0.075 0.126 0.307 0.106 0.160 0.323 0.122 0.177 0.337 0.139 0.203 0.363
4096 0.051 0.090 0.268 0.077 0.120 0.278 0.093 0.132 0.293 0.099 0.143 0.310



Table 3: Bias and RMSE for a long memory process ARFIMA (�,d = 0:45,0) with RLS

p = 0 p = 5 p = 10 p = 20
Tn� 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8
a) Bias � = 0
256 -0.148 -0.056 -0.065 -0.142 -0.082 -0.080 -0.144 -0.096 -0.062 -0.195 -0.090 -0.099
512 -0.073 -0.0382 -0.036 -0.075 -0.047 -0.045 -0.081 -0.041 -0.050 -0.097 -0.050 -0.063
1024 -0.049 -0.025 -0.026 -0.041 -0.039 -0.033 -0.036 -0.027 -0.081 -0.036 -0.027 -0.081
2048 -0.027 -0.018 -0.017 -0.060 -0.040 -0.030 -0.023 -0.014 -0.062 -0.023 -0.014 -0.062
4096 -0.016 -0.009 -0.010 -0.049 -0.035 -0.022 0.004 -0.013 -0.047 0.004 -0.013 -0.047

� = 0:3
256 -0.071 0.069 0.142 -0.091 0.034 0.162 -0.060 0.079 0.170 -0.053 0.101 0.200
512 -0.056 0.043 0.125 -0.061 0.048 0.143 -0.054 0.078 0.144 -0.046 0.074 0.074
1024 -0.034 0.027 0.106 -0.014 0.044 0.118 -0.034 0.050 0.126 -0.005 0.054 0.140
2048 -0.001 0.015 0.091 -0.008 0.024 0.094 -0.014 0.033 0.105 -0.014 0.038 0.112
4096 -0.007 0.015 0.070 -0.006 0.019 0.078 0.002 0.020 0.081 -0.005 0.027 0.088

� = 0:6
256 0.107 0.289 0.407 0.069 0.302 0.409 0.129 0.291 0.417 0.135 0.304 0.414
512 0.067 0.223 0.376 0.067 0.234 0.380 0.079 0.246 0.388 0.095 0.266 0.389
1024 0.042 0.169 0.341 0.049 0.169 0.342 0.048 0.185 0.344 0.061 0.201 0.355
2048 0.032 0.129 0.300 0.028 0.130 0.284 0.028 0.141 0.305 0.040 0.154 0.310
4096 0.019 0.089 0.263 0.014 0.071 0.227 0.022 0.100 0.234 0.009 0.107 0.269

b) RMSE � = 0
256 0.324 0.160 0.129 0.405 0.236 0.172 0.456 0.340 0.151 0.561 0.391 0.258
512 0.238 0.105 0.069 0.288 0.169 0.090 0.327 0.167 0.107 0.404 0.253 0.143
1024 0.187 0.077 0.052 0.191 0.101 0.084 0.210 0.099 0.082 0.288 0.133 0.084
2048 0.147 0.064 0.039 0.130 0.078 0.064 0.142 0.055 0.059 0.158 0.089 0.047
4096 0.080 0.043 0.030 0.092 0.059 0.050 0.097 0.040 0.042 0.116 0.061 0.028

� = 0:3
256 0.329 0.124 0.159 0.356 0.206 0.199 0.347 0.193 0.201 0.451 0.256 0.229
512 0.213 0.093 0.135 0.257 0.161 0.154 0.270 0.137 0.155 0.399 0.181 0.183
1024 0.133 0.066 0.111 0.144 0.090 0.124 0.215 0.094 0.133 0.227 0.114 0.146
2048 0.085 0.044 0.094 0.094 0.056 0.097 0.117 0.066 0.109 0.146 0.081 0.116
4096 0.060 0.033 0.072 0.063 0.042 0.081 0.082 0.048 0.083 0.097 0.055 0.091

� = 0:6
256 0.244 0.307 0.413 0.324 0.320 0.414 0.250 0.325 0.422 0.289 0.385 0.421
512 0.195 0.234 0.380 0.196 0.243 0.383 0.215 0.257 0.391 0.239 0.278 0.392
1024 0.105 0.177 0.343 0.121 0.186 0.346 0.130 0.195 0.350 0.147 0.208 0.357
2048 0.073 0.135 0.301 0.088 0.135 0.284 0.091 0.148 0.310 0.101 0.160 0.311
4096 0.060 0.094 0.264 0.045 0.074 0.228 0.062 0.114 0.236 0.059 0.110 0.270



Table 4: Bias and RMSE for a long memory process with additive noise (�2w = 4) and RLS;
LWLFC and LWPLFC estimators

p = 0 p = 20
d = 0:2 d = 0:45 d = 0:2 d = 0:45

Tn� 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8
a) Bias of LWLFC

256 -0.218 -0.180 -0.172 -0.349 -0.328 -0.342 -0.248 -0.177 -0.164 -0.403 -0.366 -0.368
512 -0.182 -0.165 -0.164 -0.284 -0.296 -0.324 -0.228 -0.164 -0.164 -0.332 -0.314 -0.344
1024 -0.161 -0.146 -0.152 -0.224 -0.254 -0.299 -0.138 -0.141 -0.151 -0.257 -0.282 -0.322
2048 -0.133 -0.138 -0.145 -0.183 -0.223 -0.279 -0.096 -0.123 -0.123 -0.163 -0.182 -0.232
4096 -0.124 -0.128 -0.137 -0.142 -0.197 -0.261 -0.102 -0.110 -0.121 -0.114 -0.152 -0.215

b) RMSE of LWLFC
256 0.278 0.213 0.186 0.436 0.355 0.355 0.462 0.285 0.212 0.601 0.445 0.398
512 0.225 0.178 0.172 0.335 0.320 0.332 0.420 0.229 0.182 0.490 0.352 0.355
1024 0.191 0.156 0.156 0.261 0.266 0.303 0.276 0.181 0.162 0.358 0.307 0.328
2048 0.150 0.144 0.147 0.208 0.230 0.281 0.190 0.132 0.125 0.256 0.205 0.238
4096 0.135 0.131 0.139 0.158 0.202 0.263 0.157 0.109 0.119 0.157 0.163 0.218

c) Bias of LWPLFC
256 -0.420 -0.296 -0.158 -0.310 -0.241 -0.228 0.236 0.248 0.195 0.028 -0.007 0.060
512 -0.450 -0.246 -0.171 -0.219 -0.144 -0.115 0.258 0.137 0.116 0.096 0.068 0.066
1024 -0.368 -0.184 -0.107 -0.094 -0.074 -0.033 0.279 0.155 0.104 0.134 0.082 -0.006
2048 -0.232 -0.083 -0.038 -0.074 -0.050 -0.044 0.190 0.163 0.131 0.092 0.051 -0.006
4096 -0.188 -0.048 -0.030 -0.036 -0.030 -0.026 0.136 0.136 0.051 0.081 0.009 0.009

d) RMSE of LWPLFC
256 0.645 0.551 0.370 0.524 0.433 0.361 0.559 0.582 0.522 0.456 0.454 0.392
512 0.675 0.485 0.387 0.436 0.284 0.298 0.587 0.538 0.505 0.358 0.381 0.327
1024 0.613 0.431 0.258 0.288 0.184 0.163 0.563 0.564 0.496 0.338 0.272 0.252
2048 0.490 0.309 0.131 0.195 0.144 0.123 0.544 0.470 0.457 0.234 0.208 0.151
4096 0.447 0.231 0.105 0.160 0.113 0.090 0.531 0.419 0.341 0.145 0.153 0.117



Table 5: Bias and RMSE for a long memory process ARFIMA(0:6; d; 0) with RLS (p = 10) and additive noise
LWLFC LWPLFC

�2w = 1 �2w = 4 �2w = 1 �2w = 4
Tn� 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8

a) bias: d = 0:2
256 0.131 0.252 0.246 -0.015 0.060 0.038 0.271 0.293 0.310 0.045 0.117 0.183
512 0.106 0.212 0.251 0.013 0.080 0.054 0.231 0.239 0.260 0.060 0.136 0.140
1024 0.061 0.178 0.242 0.004 0.061 0.076 0.179 0.185 0.250 0.061 0.106 0.121
2048 0.045 0.128 0.226 0.008 0.050 0.070 0.135 0.139 0.227 0.103 0.076 0.092
4096 0.021 0.092 0.202 -0.011 0.029 0.069 0.113 0.107 0.204 0.127 0.044 0.071
8192 0.012 0.066 0.176 -0.009 0.013 0.062 0.112 0.076 0.182 0.101 0.031 0.046

b) bias: d = 0:45
256 0.057 0.167 0.145 -0.027 -0.064 -0.139 0.131 0.218 0.230 -0.014 0.072 0.115
512 0.032 0.171 0.184 -0.013 0.025 -0.051 0.112 0.185 0.215 0.05 0.082 0.113
1024 0.030 0.139 0.193 -0.023 0.033 -0.004 0.094 0.142 0.195 0.046 0.064 0.096
2048 0.015 0.112 0.186 -0.016 0.030 0.021 0.062 0.113 0.183 0.030 0.050 0.068
4096 0.010 0.083 0.174 -0.012 0.028 0.034 0.059 0.085 0.173 0.044 0.040 0.052
8192 0.005 0.059 0.156 -0.009 0.015 0.039 0.050 0.063 0.161 0.030 0.035 0.030

c) RMSE: d = 0:2
256 0.290 0.287 0.280 0.305 0.171 0.112 0.380 0.325 0.331 0.396 0.321 0.293
512 0.202 0.231 0.258 0.236 0.119 0.087 0.345 0.263 0.268 0.322 0.197 0.190
1024 0.144 0.189 0.246 0.142 0.089 0.088 0.291 0.199 0.254 0.282 0.149 0.147
2048 0.111 0.137 0.228 0.102 0.075 0.077 0.229 0.153 0.229 0.225 0.110 0.103
4096 0.088 0.100 0.204 0.077 0.050 0.072 0.206 0.121 0.205 0.231 0.078 0.076
8192 0.067 0.072 0.177 0.063 0.033 0.067 0.205 0.086 0.183 0.212 0.061 0.056

d) RMSE: d = 0:45
256 0.319 0.251 0.219 0.273 0.258 0.216 0.303 0.245 0.255 0.362 0.272 0.212
512 0.232 0.188 0.198 0.204 0.122 0.097 0.186 0.198 0.222 0.200 0.145 0.158
1024 0.142 0.150 0.196 0.160 0.075 0.058 0.145 0.157 0.199 0.162 0.100 0.121
2048 0.081 0.120 0.190 0.097 0.059 0.040 0.111 0.121 0.185 0.120 0.072 0.089
4096 0.061 0.089 0.175 0.061 0.043 0.041 0.099 0.091 0.175 0.094 0.060 0.060
8192 0.050 0.064 0.157 0.047 0.029 0.042 0.076 0.066 0.162 0.067 0.049 0.040


