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1 Introduction

Economic relationships are often subject to structural changes. Hence, testing for a structural

break and estimating the break date have been important topics in both economics and

statistics; see Perron (2006) for a review. To test for a structural break, or instability of the

parameters, important contributions include Andrews (1993) and Andrews and Ploberger

(1994). Bai (1994, 1997) showed that the break date can be estimated consistently by

minimizing the sum of squared residuals (SSR) from the unrestricted model and derived the

limiting distribution of the estimate of the break date, which can be applied to construct

con�dence intervals (CIs) for the true break date. Bai and Perron (1998, 2003) considered

statistical inference related to multiple structural changes under general conditions.

In the literature, most of the work assumed that the regressors and the errors are station-

ary. Structural breaks in trend regressors and non-stationary processes are also important

from a practical perspective. Perron (1989) showed that the Dickey and Fuller (1979) type

unit root test is biased in favor of a non-rejection of the unit root null hypothesis when the

process is trend stationary with a structural break in slope. With respect to the problem

of estimating the break date of the change in the slope of a linear trend with or without

a concurrent level shift, Perron and Zhu (2005) (PZ, henceforth) analyzed the consistency,

rate of convergence and the limiting distributions of the parameter estimates when the errors

are either short-memory, I(0), or have an autoregressive unit root, I(1). We extend their

analysis to cover the more general case of fractionally integrated errors for values of d� in

the interval (�0:5, 1:5) excluding the boundary case 0:5. Our theoretical results uncover
some interesting features. For example, when a concurrent level shift is allowed, the rate of

convergence of the estimate of the break date is the same for all values of d� in the interval

(�0:5; 0:5). This feature is linked to the contamination induced by allowing a level shift,
previously discussed by Perron and Zhu (2005). In all other cases, the rate of convergence is

monotonically decreasing as d� increases. We also provide results about the so-called spuri-

ous break issue and show that it cannot occur for all values of d� in the interval (�0:5; 0:5).
Simulation experiments are provided to illustrate the theoretical results in the paper.

Work related to changes in trend include the following. Feder (1975) considered esti-

mating the joint points of polynomial type segmented regressions. Bai (1997) and Bai and

Perron (1998) provided inference results with trending regressors. In order to obtain the lim-

iting distribution, the trending regressors are assumed to be a function of t=T , say g(t=T ),

with T the sample size. Deng and Perron (2006) analyzed the consequences of specifying
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the trend function in scaled form when a structural break is involved. Bai et al. (1998)

analyzed the limiting distribution of the estimated break date for non-stationary type series

with a change in slope. Chu and White (1992) suggested a testing procedure for a change

in a trend function with stationary errors. Perron (1991) and Vogelsang (1997) considered

testing a structural break in trend when the errors are either stationary or have a unit root.

Vogelsang (1999) devised a test whose limiting distribution does not change depending on

whether the noise component is stationary or integrated. Recently, Perron and Yabu (2009)

considered testing for structural changes in the trend function of a time series without any

prior knowledge about whether the errors are stationary or integrated. Their testing pro-

cedure adopts a quasi-feasible generalized least squares approach that uses a super-e¢ cient

estimate of the sum of the autoregressive parameters � when � = 1. Harvey et al. (2009)

proposed a generalized least squares (GLS)-based trend break test that is asymptotically

size robust with I(0) and I(1) errors. The results of PZ and Perron and Yabu (2009) have

been used in Kim and Perron (2009) to provide unit root tests with improved power that

allow for a change in the trend function under both the null and alternative hypotheses.

Fractionally integrated processes have been popular in the economics and statistics lit-

erature, in particular following the introduction of the ARFIMA processes by Granger and

Joyeux (1980) and Hosking (1981). Kuan and Hsu (1998) considered a change in mean model

and showed the consistency and the rate of convergence of the least square estimate of the

break date when the errors are fractionally integrated; see also Lavielle and Moulines (2000).

They found that the convergence rate depends on the order of integration d�. Moreover,

when no such change in mean is present, the estimate of the break date obtained by mini-

mizing the sum of squared residuals supports a spurious break date when d� 2 (0; 0:5). Hsu
and Kuan (2008) showed that the least square estimate of the break date in a mean change

model is not consistent when the errors are fractionally integrated with d� 2 (0:5; 1:5), and
that the spurious feature also occurs. Gil-Alana (2008) executed a set of Monte Carlo sim-

ulations to con�rm that both the order of fractional integration and the break date can be

estimated simultaneously by minimizing the SSR considering all possible grids on d� and

break dates T1. More recently, Iacone et al. (2013) provided a sup-Wald type test for a

structural change in trend when the order of integration in the errors is unknown a priori.

The structure of the paper is as follows. In section 2, we review fractionally integrated

processes, fractional Brownian motion and useful related functional central limit theorems.

Section 3 presents the models, the assumptions and a key inequality used throughout the

proofs. Section 4 provides the main contributions related to the limit properties of the
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estimates: consistency (Section 4.1), rate of convergence (Section 4.2), limit distributions

of the estimate of the break date (Section 4.3) and limit distributions of the estimates of

the other parameters (Section 4.4). The problem of the possibility of a spurious break is

discussed in Section 5. Section 6 provides brief concluding remarks and an appendix contains

all technical derivations.

2 Fractionally Integrated Processes and Functional Central Limit Theorem

In this section, we brie�y de�ne fractionally integrated processes and review results to be

used in subsequent developments. We follow the notation of Marinucci and Robinson (1999)

and Wang et al. (2003).

De�nition 1 An autoregressive fractionally integrated moving average (ARFIMA) process
ut is de�ned as

(1� L)d+mut = �t and �t =  (L)"t (1)

for t = 1; 2; : : :, where m � 0 is an integer and d 2 (�0:5; 0:5); L is the lag operator such
that Lut = ut�1 and "t are independently and identically distributed (i.i.d.) random variables

with zero mean and �nite variance.

Using this notation, note that the order of integration is d� = m+ d. Wang et al. (2003)

derived the invariance principle for m � 0 which includes the non-stationary cases. We

summarize their results insofar as they will be relevant for subsequent derivations.

Lemma 1 (Wang et al., 2003, Theorem 2.1): Let ut satisfy (1) with m = 0 and let f j; j �
0g satisfy

1X
j=0

j jj <1 and b �
1X
j=0

 j 6= 0 (2)

Assume that E�20 <1. Then, for 0 � d < 0:5,

1

�(d)T 1=2+d

[Tr]X
j=1

uj ) Wd(r); r 2 [0; 1]; (3)

where

�2(d) =
b2 �(1� 2d)E�20

(1 + 2d)�(1 + d)�(1� d)
(4)
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andWd(r) is a Type I fractional Brownian motion 1 on D[0; 1]. Also, if Ej�0j(2+c)=(1+2d) <1,
where c > 0, then (3) still holds for d 2 (�0:5; 0).

Lemma 2 (Wang et al., 2003, Theorem 2.2): Let ut satisfy (1) with m = 0 and let f j; j �
0g satisfy

1X
j=0

j1=2�dj jj <1 and b �
1X
j=0

 j 6= 0: (5)

Assume that Ej�0jmaxf2;2=(1+2d)g <1. Then, (3) holds for d 2 (�0:5; 0:5).

Corollary 1 (Wang et al., 2003, Corollary 2.1): Let uj satisfy (1) with m = 0.

If Ej�0jmaxf2;2=(1+2d)g <1, then (3) follows with b = �(1)=�(1) for d 2 (�0:5; 0:5).

In order to consider general non-stationary fractionally integrated processes, two addi-

tional conditions are required.

� Condition 1: f j; j � 0g satisfy (2), and Ej"0jp < 1 where p = 2, for d 2 [0; 0:5);
p = (2 + c)=(1 + 2d) <1, c > 0 for d 2 (�0:5; 0).

� Condition 2: f j; j � 0g satisfy (5), and Ej"0jmaxf2;2=(1+2d)g <1.

Lemma 3 (Wang et al. , 2003, Theorem 3.1): Let uj satisfy (1) withm � 1. Let Conditions
1 and 2 hold. Then, for 0 � r � 1,

1

�(d)T�1=2+d+m
u[Tr] ) Wd;m(r);

1

�(d)T 1=2+d+m

[Tr]X
j=1

uj )
Z r

0

Z rm

0

: : :

Z r2

0

Wd(r1)dr1dr2 : : : drm;

1

�2(d)T 2(d+m)

[Tr]X
j=1

u2j )
Z r

0

[Wd;m(s)]
2ds

1Marinucci and Robinson (1999) de�ned type I fractional Brownian motions with d 2 (�0:5; 0:5) on
D[0; 1] as follows:

Wd(t) =
1

A(d)

Z 0

�1
[(t� s)d � (�s)d]dW (d) +

Z t

0

(t� s)ddW (s);

where W (s) is a standard Brownian motion and

A(d) =

�
1

2d+ 1
+

Z 1

0

[(1 + s)d � sd]2ds
�1=2

:

They explained the di¤erence between Type I and Type II fractional Brownian motion and showed how
those two types are related.
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where

Wd;m(r) =

8<: Wd(r) if m = 1R r
0

R rm�1
0

� � �
R r2
0
Wd(r1)dr1dr2 � � � drm�1 if m � 2:

We shall be interested in the case m = 1, in which case

1

�(d)T 1=2+d
) Wd(r); (6)

1

�(d)T 1=2+d+1

[Tr]X
j=1

uj )
Z r

0

Wd(s)ds;

1

�2(d)T 2(d+1)

[Tr]X
j=1

u2j )
Z r

0

[Wd(s)]
2ds:

3 The Models and Assumptions

The series of interest, yt, is assumed to consist of some systematic part ft and a random

component ut, namely,

yt = ft + ut:

For the noise component ut, we assume Eut = 0 and that the following two assumptions

hold.

� Assumption A1: For d� 2 (�0:5; 0:5) [ (0:5; 1:5), ut = ��d��t1t>0 where �
d� �

(1 � L)d
�
, with L being a lag operator such that L�t = �t�1 and �

�d� =
P1

j=0 �jL
j

with �j � �(j + d�)=[�(d�)�(j + 1)], where �(�) denotes the Gamma function.

� Assumption A2: �t � I(0). More speci�cally, �t is such that T
�1=2P[Tr]

t=1 �t )
b W (r) where b2 = limT!1 T

�1E(
PT

t=1 �t)
2 exists and is strictly positive. Here )

denotes weak convergence in distribution (under the Skorohod topology) and W (�) is
the standard Wiener process.

Remark 1 There are many sets of su¢ cient conditions to guarantee that the invariance
principle in Assumption A2 holds. For example, it holds when �t is a linear process such

that �t =
P1

j=0 cj"t�j with
P1

j=0 jjcjj < 1, where f"t;Ft�1g is a martingale di¤erence
sequence with Ft�1 the �ltration to which "t is adapted.

For the systematic part ft, we consider two cases studied in PZ with I(0) and I(1) errors.

The �rst, labelled Model I, speci�es that ft is a �rst-order linear trend with a single change
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in slope. In this case, the trend is joined at the time of break and there is no concurrent

level shift. The second, labelled Model II, speci�es that ft is a �rst-order linear trend with a

concurrent break in both intercept and slope. Let � = T1=T denote the break fraction with

a postulated break date T1.

� Model I: Joint Broken Trend with Fractionally Integrated Errors: The de-
terministic component ft is speci�ed as

ft = �1 + �1t+ �bBt; (7)

where Bt is a dummy variable for the slope change de�ned by

Bt =

8<: 0 if t � T1;

t� T1 if t > T1:

Hence, the slope coe¢ cient changes from �1 to �1 + �b at time T1. Note that the

trend function is continuous at the time point T1, hence the labelling of a �joint broken

trend�.

� Model II: Local Disjoint Broken Trend with Fractionally Integrated Errors:
The deterministic component ft is speci�ed by

ft = �1 + �1t+ �bCt + �bBt; (8)

where Ct is a dummy variable for the level shift de�ned by

Ct =

8<: 0 if t � T1;

1 if t > T1:

At the break date T1, there are concurrent slope and level shifts. The magnitude of the

level shift is �b, which is asymptotically negligible compared to the level of the series

�1 + �1T1, hence the labelling of a �local disjoint broken trend�.

Throughout, we assume that there is at least a change in slope as stated in the following

assumption. Let the true break date be denoted by T 01 and let the break fraction be �0 =

T 01 =T .

� Assumption A3: �b 6= 0 and �0 2 (0; 1).
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This assumption is required to ensure that there is a break in slope and that the pre and

post break samples are asymptotically large enough to obtain consistent estimates of the

unknown coe¢ cients. This is a standard assumption needed to derive any useful asymptotic

result. By construction, the true break date T 01 increases in the sample size T .

In matrix notation, the Data Generating Processes can be speci�ed as follows

Y = XT 01

 + U (9)

where Y = [y1; : : : ; yT ]0, U = [u1; : : : ; uT ]0, Xk = [x(k)1; : : : ; x(k)T ]
0, with x(k)0t = [1 t Bt]

and 
 = [�1 �1 �b]
0, for Model I, while for Model II, x(k)0t = [1 t Ct Bt] and 
 =

[�1 �1 �b �b]
0. Note that the matrix XT1 depends on the candidate break date T1, while

XT 01
depends on the true break date T 01 . The parameters are estimated using a global least-

squares criterion. The estimate of the break date is

T̂1 = argmin T1Y
0(I � PT1)Y

where PT1 is the matrix that projects on the range space ofXT1 , i.e., PT1 = XT1(X
0
T1
XT1)

�1X 0
T1
.

With XT̂1
constructed using the estimate of the break date T̂1, the OLS estimate of 
 is


̂ = (X 0
T̂1
XT̂1

)�1X 0
T̂1
Y

and the resulting sum of squared residuals is, for an estimated break fraction �̂ = T̂1=T ,

S(�̂) =
TX
t=1

û2t =
TX
t=1

�
yt � x(T̂1)

0
t
̂
�2
= Y 0(I � PT̂1)Y

where PT̂1 is the projection matrix associated with XT̂1
. The limiting distributions of �̂� �0

and 
̂ � 
0 have been derived by PZ for the dichotomous case with either I(0) and I(1)

errors.

In what follows, our aim is the following. First, we show that the break fraction �0 can

be estimated consistently by minimizing the sum of squared residuals when the errors are

fractionally integrated. Second, we derive the limit distributions of the estimates. Third, we

show that a spurious break phenomenon can occur even in the case of a break in a linear

time trend when the errors are fractionally integrated.

3.1 A Key Inequality

As in PZ, a key inequality will play a crucial role in proving the limit results. First, by

construction, we have for all T ,

S(�̂) � S(�0)
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or equivalently,

Y 0(I � PT̂1)Y � Y 0(I � PT 01 )Y:

Using (9), this inequality can be rewritten as

Y 0(PT 01 � PT̂1)Y � 0

or equivalently,

(
00X
0
T 01
+ U 0)(PT̂ 01 � PT̂1)(XT 01


0 + U)

= 
00X
0
T 01
(PT 01 � PT̂1)XT 01


0 + 2

0
0X

0
T 01
(PT 01 � PT̂1)U + U 0(PT 01 � PT̂1)U

= 
00(XT 01
�XT̂1

)0(I � PT̂1)(XT 01
�XT̂1

)
0

+ 2
00(XT 01
�XT̂1

)0(I � PT̂1)U + U 0(PT 01 � PT̂1)U

� (XX) + 2(XU) + (UU) � 0 (10)

where we have made use of the fact that X 0
T 01
PT 01 = X 0

T 01
and X 0

T 01
(I � PT 01 ) = 0. Moreover,

it is straightforward to show that

argmin T1 [SSR(T1)] = argmin T1 [SSR(T1)� SSR(T 01 )]

= argmin T1 [

0
0(XT 01

�XT1)
0(I � PT1)(XT 01

�XT1)
0

+ 2
00(XT 01
�XT1)

0(I � PT1)U + U 0(PT 01 � PT1)U ]:

We will make use of this result later to derive the rate of convergence of �̂ = T̂1=T .

4 Asymptotic Results

We consider in turn the consistency, rate of convergence and limit distribution of the esti-

mates, concentrating on the estimate of the break date.

4.1 Consistency

We show that �̂ is a consistent estimate of �0 when the errors are fractionally integrated with

parameter d� 2 (�0:5; 0:5) [ (0:5; 1:5). The idea behind the proof is the following. Unless
�̂!p �0, the �rst (non-negative) term in (10) would asymptotically dominate the others. It

means that the key inequality does not hold if �̂ does not converge to �0, which leads to the

desired contradiction. We start with the following theorem.
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Theorem 1 De�ne

(XX) = 
00(XT 01
�XT1)

0(I � PT1)(XT 01
�XT1)
0

(XU) = 
00(XT 01
�XT1)

0(I � PT1)U

(UU) = U 0(PT 01 � PT1)U:

Under the Assumptions A1-A3, the following results hold uniformly over all generic T1 2
[�T; (1��)T ] for some arbitrary small � such that �0 2 [�; 1��]. First, for d 2 (�0:5; 0:5),
we have for Model I: i) if m = 0:

(XX) = jT1 � T 01 j2O(T )
(XU) = jT1 � T 01 jOp(T

1=2+d)

(UU) = jT1 � T 01 jOp(T
�1+2d);

ii) if m = 1:

(XX) = jT1 � T 01 j2O(T )
(XU) = jT1 � T 01 jOp(T

3=2+d)

(UU) = jT1 � T 01 jOp(T
1+2d):

For Model II: i) if m = 0:

(XX) = jT1 � T 01 j3O(1)
(XU) = jT1 � T 01 j3=2+dOp(1)

(UU) = jT1 � T 01 j1=2+dOp(T
�1=2+d):

ii) if m = 1

(XX) = jT1 � T 01 j3O(1)
(XU) = jT1 � T 01 j2Op(T

1=2+d)

(UU) = jT1 � T 01 jOp(T
1+2d):

Note that (XX) is always positive because it is quadratic and (I � PT1) is positive

semi-de�nite. Given the results in Theorem 1, unless �̂ !p �0, then (XX) = O(T 3),

(XU) = Op(T
3=2+d), and (UU) = Op(T

2d) with m = 0. Similarly, (XX) = O(T 3), (XU) =

Op(T
5=2+d), and (UU) = Op(T

2+2d) with m = 1. Hence, for large T and d 2 (�0:5; 0:5), with
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some probability, the positive term (XX) dominates the other two terms (XU) and (UU)

such that inequality (10) will not hold with probability 1. Hence, we have a contradiction

since the inequality (10) holds by construction. Therefore, we can conclude that �̂ !p �0,

as stated in the following theorem.

Theorem 2 Under Assumptions A1-A3, in Model I-II, �̂
p! �0, 8d� 2 (�0:5; 0:5)[(0:5; 1:5).

4.2 Rate of Convergence

The following theorem shows that the rate of the convergence of the estimate of the break

fraction, �̂, depends on the order of fractional integration d�. It also di¤ers across the two

models being faster with no concurrent level shift.

Theorem 3 Under Assumptions A1-A3, for every d 2 (�0:5; 0:5): For Model I:

�̂� �0 =

8<: Op(T
�3=2+d) if m = 0

Op(T
�1=2+d) if m = 1,

For Model II:

�̂� �0 =

8<: Op(T
�1) if m = 0

Op(T
�1=2+d) if m = 1.

Theorem 3 implies that the rate of convergence is slower when allowing for a concurrent

level shift, even if none is present, when d� 2 (�0:5; 0:5). It is, however, the same when
d� 2 (0:5; 1:5). These results accord with those from PZ who considered I(0) and I(1)

processes. For Model I and II with I(1) process, �̂ � �0 = Op(T
�1=2). On the other hand,

for Model I with I(0) process, �̂ � �0 = Op(T
�3=2) and for Model II with I(0) process,

�̂��0 = Op(T
�1). PZ (2005) presented an intuitive explanation for the change in convergence

rate induced by introducing a level shift. Brie�y, a random deviation from a deterministic

trend function is subject to be captured as if it were a level shift. Hence, it can have an

e¤ect on the precision of the estimate.

The results show that the rate of convergence is linearly decreasing as d� increases for

all models except Model II for d� 2 (�0:5; 0:5). The result for this latter case is quite
interesting as the rate of convergence is the same for all d� 2 (�0:5; 0:5). The explanation
for this feature is again related to the contamination induced by allowing a concurrent

level shift, which implies added noise. If the process is stationary, d� 2 (�0:5; 0:5), this
added noise dominates and renders the rate of convergence invariant to d�. If the process
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is non-stationary, d� 2 (0:5; 1:5), the noise is small compared to the signal and we are back
essentially to the case with no concurrent level shift.

4.3 The Limiting distribution of the estimate of the break date

Given results about the convergence and the rate of convergence of the estimate of the

break fraction �̂, we can now consider its limiting distribution. The results are stated in the

following Theorem.

Theorem 4 Under Assumptions A1-A3, we have for every d 2 (�0:5; 0:5): 1) For Model I:
a) if m = 0,

T 3=2�d(�̂� �0)) � 4�(d)�

�0(1� �0)�b
;

b) if m = 1,

T 1=2�d(�̂� �0)) �
4�(d)

R 1
�0
W �
d (r)dr

�0(1� �0)�b

where �(d) is de�ned by (4),

� =

Z 1

�0

dWd(r) +
1� �0
2

Z 1

0

dWd(r)�
3(1� �0)

2�0

Z 1

0

rdWd(r)

� 3(2�0 � 1)
2�0(1� �0)

Z 1

�0

(r � �0)dWd(r);

and Z 1

�0

W �
d (r)dr =

Z 1

�0

Wd(r)dr +
1� �0
2

Z 1

0

Wd(r)dr �
3(1� �0)

2�0

Z 1

0

rWd(r)dr

� 3(2�0 � 1)
2�0(1� �0)

Z 1

�0

(r � �0)Wd(r)dr:

2) For Model II: a) if m = 0, de�ne a stochastic process S�(m) on the set of integers as

follows: S�(0) = 0, S�(m) = S1(m) for m < 0 and S�(m) = S2(m) for m > 0, with

S1(m) =
0X

k=m+1

(�b + �bk)
2 � 2

0X
k=m+1

(�b + �bk)uk; m = �1;�2; : : : ;

S2(m) =
mX
k=1

(�b + �bk)
2 + 2

mX
k=1

(�b + �bk)uk; m = 1; 2; : : : :
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If ut is strictly stationary with a continuous distribution, S� is a two-sided random walk with

drift, and T 1�d(�̂� �)) argminmS
�(m). b) if m = 1, de�ne

�1 =

�Z 1

0

Wd(r)dr;

Z 1

0

rWd(r)dr;

Z 1

�0

Wd(r)dr;

Z 1

�0

(r � �0)Wd(r)dr

�0
;

�2 =

�
0; 0;Wd(�0);

Z 1

�0

Wd(r)dr

�0
;

�3 =

Z �0

0

[(3r2 � 2r�0)=(�0)2]dWd(r);

�4 =

Z 1

�0

[(r � 1)(3r � 2�0 � 1)=(1� �)2]dWd(r);


1 =

2666666664

4
�0

� 6
�20

2
�0

6
�20

� 6
�20

12
�30

� 6
�20

� 12
�30

2
�0

� 6
�20

4
�0(1��0)

6(1�2�0)
�20(1��0)2

6
�20

� 12
�30

6(1�2�0)
�20(1��0)2

12(3�20�3�0+1)
�30(1��0)3

3777777775


2 =

26666664
� 4
�20

12
�30

� 2
�20

� 12
�30

12
�30

� 36
�40

12
�30

36
�40

� 2
�20

12
�30

4(2�0�1)
�20(1��0)2

12(3�20�3�0+1)
�30(�0�1)3

� 12
�30

36
�40

12(3�20�3�0+1)
�30(�0�1)3

36(4�30�6�20+4�0�1)
�40(1��0)4

37777775 :

Also de�ne Z�(v) as follows: Z�(0) = 0, Z�(v) = Z1(v) for v < 0 and Z�(v) = Z2(v) for

v > 0, with

Z1(v) = (�b)
2jvj3=3 + v2�(d)�b�4 + v�2[2�02
1�1 � �01
2�1]; v < 0;

Z2(v) = (�b)
2jvj3=3 + v2�(d)�b�3 + v�2[2�02
1�1 � �01
2�1]; v > 0:

Then, T 1=2�d(�̂� �)) argmin vZ
�(v).

4.4 The limiting distribution of other parameters

We turn to the limiting distribution of the other parameters in the models, that is (�̂1; �̂1; �̂b)

for Model I, and (�̂1; �̂b; �̂1; �̂b) for Model II.
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Theorem 5 Under assumption A1-A3, the following results hold for all d 2 (�0:5; 0:5). 1)
For Model I: 266664

T 1=2�d(�̂1 � �01)

T 3=2�d(�̂1 � �01)

T 3=2�d(�̂b � �0b)

377775) ��1a �0 if m = 0;

266664
T�1=2�d(�̂1 � �01)

T 1=2�d(�̂1 � �01)

T 1=2�d(�̂b � �0b)

377775) ��1a �1 if m = 1;

where

��1a =

26664
(�0 + 3)=�0 �3(�0 + 1)=�20 3=�20(1� �0)

�3(�0 + 1)=�20 3(3�0 + 1)=�
3
0 �3(2�0 + 1)=�30(1� �0)

3=�20(1� �0) �3(2�0 + 1)=�30(1� �0) 3=�30(1� �0)
3

37775 ;

�0 = �(d)

0BBB@
Z �0

0

26664
3�20�2�0+6�0r�6r

�20
�30��0+3�20r�3r

�20
�(1��0)2(�0+3r)

�20

37775 dWd(r) +

Z 1

�0

26664
�3(�0+1�2r)

1��0
��20�3�0�2+2�0r+4r

1��0

�2�0 + 4r � 2

37775 dWd(r)

1CCCA ;

and

�1 = �(d)

0BBB@
Z �0

0

26664
3(1��0)r2+(3�0�2)�0r��20

�20
(3�2�20)r2�2�0(1�2�20)r��20

2�20
(1��0)2(3r2�2�0r��20)

2�20

37775 dWd(r) +

Z 1

�0

26664
3fr2�(1+�0)r+�0g

1��0
(�0+2)fr2�(1+�0)r+�0g

1��0

2fr2 � (1 + �0)r + �0g

37775 dWd(r)

1CCCA :

2) For Model II:266666664

T 1=2�d(�̂1 � �01)

T 3=2�d(�̂1 � �01)

T 1=2�d(�̂b � �0b)� T 1=2�d�b(T̂1 � T 01 )

T 3=2�d(�̂b � �0b)

377777775
) �(d)
1

26666664

R 1
0
dWd(r)R 1

0
rdWd(r)R 1

�0
dWd(r)R 1

�0
(r � �0)dWd(r)

37777775 if m = 0;
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266666664

T�1=2�d(�̂1 � �01)

T 1=2�d(�̂1 � �01)

T�1=2�d(�̂b � �0b)� T�1=2�d�b(T̂1 � T 01 )

T 1=2�d(�̂b � �0b)

377777775
) �(d)
1

26666664

R 1
0
Wd(r)drR 1

0
rWd(r)drR 1

�0
Wd(r)drR 1

�0
(r � �0)Wd(r)dr

37777775 if m = 1:

This implies that �̂b is asymptotically unidenti�ed.

Note that except for the unidenti�ed intercept shift �̂b, the other parameters, (�̂0; �̂0; �̂b),

have the same stochastic order for Model I and II. As noted in PZ, the exact model speci�-

cation does not matter if one wants to make asymptotic inference on these parameters.

5 Spurious Break

In this section, we consider the properties of the least square estimate of a structural break

date when no structural break is present in the data generating process. Nunes et al. (1995)

and Bai (1998) showed that the least square estimator of the break date can lead to a spurious

break date when the errors are integrated, in the sense that the estimate will not converge

to either end of the sample. Kuan and Hsu (1998) considered a change in mean model for a

fractionally integrated process with d� 2 (�0:5; 0:5) and showed that a spurious break can
be estimated if d� 2 (0; 0:5). Hsu and Kuan (2008) con�rmed the possibility of estimating
a spurious mean break if the series is a non-stationary fractionally integrated process, i.e.,

d� 2 (0:5; 1:5). Here, we consider the issue of spurious breaks in the context of Model I with
a joint-segmented trend. The DGP is speci�ed as follows; for t = 1; : : : ; T;

yt = �+ �t+ ut; (11)

and

(1� L)d
�
ut1t>0 = �t (12)

where �t � i:i:d:N(0; �2). When estimating a one-break model in slope using Model I, the

regression for a candidate break date is

yt = �+ �t+ 
Bt + ut; t = 1; : : : ; T:

The so-called spurious break problem has been analyzed in the segmented regression model

(see, e.g., Nunes et al, 1995). However, we take a global least squares approach. Hence, the

theoretical derivations are di¤erent. In matrix form, the DGP is

Y = X0� + U;

14



and Model I can be written as:

Y = XT1� + U:

The OLS estimate of � is �̂ = (X 0
T1
XT1)

�1X 0
T1
Y , the OLS residuals are

Û = [I �XT1(X
0
T1
XT1)

�1X 0
T1
]Y;

and the sum of squared residuals is given by

Û 0Û = Y 0[I �XT1(X
0
T1
XT1)

�1X 0
T1
]Y:

It is straightforward to show that

T̂1 = argmin
T1

Û 0Û = argmin
T1
fÛ 0Û � U 0Ug

= argmax
T1

U 0XT1(X
0
T1
XT1)

�1X 0
T1
U = argmax

T1
MT (T1):

Let M�
T (T1) be the normalized version of MT (T1), that is,

M�
T (T1) � T�2(d+m)MT (T1)

= T�(d+m)U 0XT1D
�1=2
T (D

�1=2
T X 0

T1
XT1D

�1=2
T )�1D

�1=2
T X 0

T1
UT�(d+m)

where DT = diagfT; T 3; T 3g and m 2 f0; 1g. In order to derive the asymptotic distribution
ofM�

T (T1), we need the following conditions which are similar to those of Nunes et al. (1995)

and Bai (1998).

� Condition S1 There exists a diagonal matrix DT such that D
�1=2
T X 0

T1
XT1D

�1=2
T

p!
Q(�), uniformly in � 2 (0; 1) where Q(�) is assumed to be a positive de�nite matrix
for all � > 0.

� Condition S2 For some � � 0, T��=2D�1=2
T X 0

T1
U

p! G(�), where G(�) is a stochastic

process having continuous sample paths.

Conditions S1 and S2 hold with Assumptions A1 and A2. Note that T̂1 = argmaxT1MT (T1) =

argmaxT1M
�
T (T1) because the normalization factor T

�2(d+m) does not depend on T1. If Con-

ditions S1 and S2 hold, we have

M�
T (T1)

p!M�(�) � G(�)0Q(�)G(�):

It can be shown that (see, Bai, 1997) �̂ d! argmax�2(0;1)M
�(�). Hence, the estimate of the

break fraction �̂ is a random variable with support in (0; 1). Note that this is true for all
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d� 2 (�0:5; 0:5)[(0:5; 1:5), which generalizes the results for I(0) and I(1) processes in Nunes
et al. (1995) and Bai (1998).

Below, we show thatM�(�)!1 as �! f0; 1g if d� 2 (�0:5; 0:5). Taqqu (1977) showed
that for d� 2 (�0:5; 0:5), the fractional Brownian motion Wd(t); t 2 R satis�es the following
law of iterated logarithms:

lim sup
t!1

Wd(t)

(ct1+2d log log t)1=2
= 1 a:s:

for some positive constant c. SinceWd(t) is self-similar with self-similarity parameter 0:5+d,

for any c > 0 it satis�es, Wd(t)
d
= c�(0:5+d)Wd(ct), where

d
= denotes equality in distribution.

Applying the law of iterated logarithms to Wd(1=t) and self-similarity, we have

lim sup
t!0

Wd(t)

(ct1+2d log log(1=t))1=2
= 1 a:s:

Then, for d 2 (�0:5; 0],

lim sup
�!0

Wd(�)p
�

= lim sup
�!0

q
c�2d log log(1=�) =1 a:s:

It is easy to verify that Wd(1) � Wd(�) is also a fractional Brownian motion Wd(s) with

s = 1� �. For d 2 (�0:5; 0],

lim sup
�!1

Wd(1)�Wd(�)p
1� �

= lim sup
s!0

Wd(s)p
s
=1 a:s:

Of interest is the behavior of M�(�) when � gets closer to either 0 or 1.

Theorem 6 Under Assumption A1 and A2: 1) for any d� 2 (�0:5; 0], lim sup�!0M�(�) =

lim sup�!1M
�(�) =1 a:s:; 2) for any d� 2 (0; 0:5), lim sup�!1M�(�) =1 a:s:.

Theorem 6 implies that no spurious break is estimated if the order of fractional integration

is a value in (�0:5; 0:5).

Proposition 1 For � de�ned in Condition S2, assume � � 2d� with d� 2 (0:5; 1:5). Then,
sup�2(0;1)M

�(�) = Op(1).

The proof is similar to that of Theorem 1 in Bai (1998) with Lemma 3 and is omitted.

Proposition 1 implies that M�(�) is stochastically bounded for d� 2 (0:5; 1:5). In the follow-
ing theorem, we show that it is not possible that �̂ ! f0; 1g in the limit. Note that M�(0)
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andM�(1) are de�ned without the dummy variable for a slope change Bt in the model. After

some algebra, we have

M�(0) =M�(1) = �2(d)[4

�Z 1

0

Wd(r)dr

�2
� 12

�Z 1

0

Wd(r)dr

��Z 1

0

rWd(r)dr

�
+ 12

�Z 1

0

rWd(r)dr

�2
]:

Theorem 7 Under Assumption A1 and A2, for any d� 2 (0:5; 1:5), M�(0) = M�(1) <

M�(�), for every � 2 (0; 1):

Theorem 7 implies that the maximum value ofM�(�) cannot be located at 0 or 1 and the

value that maximizes M�(�) on any subset of [0; 1] is bounded away from 0 or 1 since M�(�)
is not a constant process. Hemce, the spurious break feature applies when d� 2 (0:5; 1:5).

5.1 Monte Carlo Experiments

We consider simulation experiments to illustrate the issue of a potential spurious break. The

data generating process is speci�ed by

yt = �+ �t+ ut;

(1� L)d
�
ut1t>0 = �t; �t � i:i:d:N(0; �2):

for t = 1; : : : ; T . Without loss of generality, we set � = � = 0 and we consider d� 2
f�0:2; 0:3; 0:8; 1:3g. The sample sizes used are T = 200 and T = 2; 000. For each value of
d�, the results are obtained from 10,000 replications. We consider estimating the date of a

structural break using either Model I (joint-segmented trend) or Model II (locally disjoint

broken trend).

Figure 1 presents the results pertaining to Model I. Figure 1(a) presents histograms of

the estimates T̂1 when T = 200. For d� 2 f�0:2; 0:3g, the estimates are concentrated at
the two end points (1 and T ) indicating that the estimate of the break date is consistent

and no spurious break feature is present, consistent with Theorem 6. For d� 2 f0:8; 1:3g,
the estimates of the break date T̂1 tend to cluster near the middle of the sample, which

falsely indicates that there is a break in the sample. Figure 1(b) presents histograms of the

estimates T̂1 with T = 2000. With this larger sample, the estimates often occur near the

boundaries, though there is no mass at or very near 0 or 1 with d� 2 f0:8; 1:3g. Hence, the
theoretical results are supported by the simulations.
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The corresponding results for Model II are presented in Figure 2. Interestingly, in this

case a spurious break occurs for all positive values of d� even when T = 2000. Hence, it

appears that simply introducing an irrelevant level shift can alter the results towards having

a spurious break. More work is needed to theoretically assess this feature.

These results reinforce the feature discussed in the literature to the e¤ect that structural

change and long memory imply similar features in the data, and it is di¢ cult to distinguish

one from the other at least in small samples. This suggests the importance of implementing

a proper testing procedure for a structural break which should be robust to any a priori

unknown order of integration. Recently, Harvey et al. (2009) and Perron and Yabu (2009)

suggested testing procedures for a structural change in trend function designed to be robust

to I(0) or I(1) errors. Iacone et al. (2013) presented a sup-Wald type test for a change in the

slope of a trend function which is robust across fractional values of the order of integration.

These tests are useful to avoid the spurious break problem.

6 Conclusion

This paper considered the consistency, rate of convergence and limit distribution of the

estimate of a break date in the slope of a linear trend function, with or without a concurrent

level shift, when the errors are fractionally integrated with d� 2 (�0:5; 0:5) [ (0:5; 1:5). Our
theoretical results uncover some interesting features. For example, when a concurrent level

shift is allowed, the rate of convergence of the estimate of the break date is the same for all

values of d� in the interval (�0:5; 0:5). This feature is linked to the contamination induced
by allowed a level shift, previously discussed by Perron and Zhu (2005). In all other cases,

the rate of convergence is monotonically decreasing as d� increases. We also provide results

about the so-called spurious break issue and show that it cannot occur in the limit when d�

in the interval (�0:5; 0:5). Simulation experiments illustrate this theoretical result.
The results in this paper can be useful for subsequent work. For instance, Lobato and

Velasco (2007) considered e¢ cient Wald test of unit root against a fractionally integrated

process with unknown order. However, their procedure does not allow a break under both

the null and alternative hypotheses. Accordingly, an interesting avenue would be to extend

the Kim and Perron (2009) unit root testing procedure that allows a structural change in the

trend function under both the null and alternative hypotheses. Just as the results of Perron

and Zhu (2005) and Perron and Yabu (2009) were useful to achieve this task, one could use

our results and those of Iacone et al. (2013) to extend the test of Lobato and Velasco (2007).

This is currently the object of ongoing research.
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Appendix

We consider the proofs of Theorems 1-4 for Models I and II separately, for ease of exposition.
Note �rst that all limit statements are taken as T !1.

A.1 Results for Model I

Model I can be represented in matrix notation as

Y = XT1
 + U

=
h
� t BT1

i26664
�1

�1

�b

37775+ U

where Y = (y1; : : : ; yT )
0, U = (u1; : : : ; uT )

0, XT1 = (x(T1)1; : : : ; x(T1)T )
0 with x(T1)

0
t =

(1; t; Bt) and 
 = (�1; �1; �b)
0. Note that the matrix XT1 depends on the candidate value of

the break date T1. In the proof, we only consider the case T1 > T 01 . It is straightforward to
apply the same arguments to the case where T1 < T 01 . For T1 > T 01 , let

e�b(t) =
8>>><>>>:
0 if 1 � t � T 01
t�T 01
T1�T 01

if T 01 < t < T1

1 if T1 � t � T :

and for T1 = T 01 , let

e�b(t) = �b(t) =

8<: 0 if 1 � t � T 01

1 if T 01 < t � T :

With this notation, we can write

(XT 01
�XT1)
 = �b(T1 � T 01 )e�b

Note that e�b([Tr]) converges to a continuous function fe�b(r) over [0; 1] de�ned by, for � > �0,

fe�b(r) =
8>>><>>>:
0 if 0 � r � �0

r��0
���0 if �0 < r < �

1 if � � r � 1;

and by, for � = �0,

fe�b(r) = f�b(r) =

8<: 0 if 0 � r � �0

1 if �0 < r � 1:
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Pertaining to the proof of Theorem 1, we �rst consider the term (XX). We have

(XX) = 
00(XT 01
�XT1)

0(I � PT1)(XT 01
�XT1)
0

= (T1 � T 01 )
2�2be�0b(I � PT1)e�b

where the second equality holds because the �rst two columns of (XT 01
�XT1) are zeros by

construction. Note that e�0b(I � PT1)e�b is the sum of squared residuals from a regression e�b on
[� t BT1 ]. De�ne

ST = e�0b(I � PT1)e�b:
Next, consider the continuous time least-squares projection of the function fe�b(r) on [1 r fB(r)],
where fB(r) = (r��)1r��. Let [�̂ �̂  ̂] denote the estimates of the coe¢ cients and let S1
denote the resulting SSR. From the de�nition of a Riemann integral, T�1ST ! S1, where

S1 =

Z 1

0

�
fe�b(r)� �̂� �̂r �  ̂fB(r)

�2
dr:

Suppose that �̂ = �̂ = 0. It is easy to show that S1 > 0 from the de�nition of fe�b(r) and
fB(r). Otherwise, we have

S1 �
Z minf�;�0g

0

�
fe�b(r)� �̂� �̂r �  ̂fB(r)

�2
dr =

Z minf�;�0g

0

(�̂+ �̂r)2dr > 0

where the equality holds because of the de�nition on fe�b(r) and fB(r) and the fact that both
� and �0 are bounded away from zero. Hence, 0 < S1 <1 and ST = O(T ). Accordingly,

(XX) = (T1 � T 01 )
2�2bO(T ):

Next, we consider the term (XU). We have

(XU) = 
0(XT 01
�XT1)

0(I � PT1)U

= �b(T1 � T 01 )e�0b(I � PT1)U

De�ne efe�b(r) as the projection residuals from a least-squares regression of fe�b(r) on [1 r fB(r)].
By the properties of orthogonal projections and the result for (XX), we haveZ 1

0

efe�b(r)dr = Z 1

0

�
fe�b(r)� �̂� �̂r �  ̂fB(r)

�
dr = 0

and Z 1

0

[ efe�b(r)]2dr = S1 = O(1)

uniformly over all �. By the functional central limit theorem (FCLT) and the continuous
mapping theorem,

T�(d+1=2)e�0b(I � Pk)U ) �(d)

Z 1

0

efe�b(r)dWd(r) if m = 0:
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Similarly,

T�(d+3=2)e�0b(I � Pk)U ) �(d)

Z 1

0

efe�b(r)Wd(r)dr if m = 1;

where �2(d) = [b2 �(1� 2d)E"20]=(1 + 2d)�(1 + d)�(1� d). We deduce that

E[

Z 1

0

efe�b(r)dWd(r)] = 0 and E[

Z 1

0

efe�b(r)Wd(r)dr] = 0;

V ar[

Z 1

0

efe�b(r)dWd(r)] =

Z 1

0

Z 1

0

efe�b(r) efe�b(u)E[dWd(u)dWd(r)]

= �d

Z 1

0

Z 1

0

ju� rj2d�1 efe�b(r) efe�b(u)dudr = k efe�bk2H; if m = 0

where �d = 2d(d+ 1=2) and H is a Banach space, and

V ar[

Z 1

0

efe�b(r)Wd(r)dr] =

Z 1

0

Z 1

0

efe�b(r) efe�b(u)E[Wd(r)Wd(u)]dudr

=

Z 1

0

Z 1

0

efe�b(r) efe�b(u)12(juj2d+1 + jrj2d+1 � ju� rj2d+1)dudr

=

Z 1

0

Z r

0

efe�b(r) efe�b(u)(juj2d+1 + jrj2d+1 � ju� rj2d+1)dudr

= Op(1); if m = 1

uniformly over all � 2 [�; 1� �]. Therefore,
R 1
0
efe�b(r)Wd(r)dr = Op(1) and

e�0b(I � PT1)U =

8<: Op(T
d+1=2) if m = 0;

Op(T
d+3=2) if m = 1:

Hence, we have

(XU) =

8<: �b(T1 � T 01 )Op(T
d+1=2) if m = 0;

�b(T1 � T 01 )Op(T
d+3=2) if m = 1:

Finally, we consider the term (UU). De�ne DT = diag(T d+1=2; T d+3=2; T d+3=2) with d 2
(�0:5; 0:5). We have

(UU) = U 0(PT 01 � PT1)U

= UfXT 01
(X 0

T 01
XT 01

)�1X 0
T 01
�XT1(X

0
T1
XT1)

�1X 0
T1
gU

= U(XT 01
�XT1)D

�1
T [D

�1
T X 0

T 01
XT 01

D�1
T ]

�1D�1
T X 0

T 01
U

+ UXT1D
�1
T [D

�1
T X 0

T1
XT1D

�1
T ]

�1D�1
T [X

0
T1
XT1 �X 0

T 01
XT 01

]

�D�1
T [D

�1
T X 0

T 01
XT 01

D�1
T ]

�1D�1
T X 0

T 01
U

+ UXT1D
�1
T [D

�1
T X 0

T1
XT1D

�1
T ]

�1D�1
T (XT 01

�XT1)
0U:
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Applying the FCLT for d 2 (�0:5; 0:5) and m = 0,

T�(d+1=2)
TX
t=1

ut ) �(d)Wd(1);

T�(d+3=2)
TX
t=1

tut ) �(d)[Wd(1)�
Z 1

0

Wd(r)dr] = �(d)

Z 1

0

rdWd(r):

Also, from Lemma 3 with m = 1.

T�(d+3=2)
TX
t=1

ut ) �(d)

Z 1

0

Wd(r)dr;

T�(d+5=2)
TX
t=1

tut ) �(d)

Z 1

0

rWd(r)dr:

In addition, it is easy to show that

T�3
TX

t=T1+1

(t� T1)
2 !

Z 1

�

(r � �)2dr;

T�3
TX

t=T1+1

(t� T1)t!
Z 1

�

(r � �)rdr;

T�2
TX

t=T1+1

(t� T1)!
Z 1

�

(r � �)dr:

We next consider each term in (UU).

1. D�1
T X 0

T1
XT1D

�1
T and D�1

T X 0
T 01
XT 01

D�1
T are O(T�2d) uniformly in �.

2. When m = 0, D�1
T X 0

T1
U and D�1

T X 0
T 01
U are Op(1) uniformly in �, and

D�1
T X 0

T1
U =

26664
T�(d+1=2)

PT
t=1 ut

T�(d+3=2)
PT

t=1 tut

T�(d+3=2)
PT

t=T1+1
(t� T1)ut

37775)
26664

�(d)Wd(1)

�(d)
R 1
0
rdWd(r)

�(d)
R 1
�
(r � �)dWd(r)

37775 :
When m = 1, D�1

T X 0
T1
U and D�1

T X 0
T 01
U are Op(T ) uniformly in �, and

T�1D�1
T X 0

T1
U =

26664
T�(d+3=2)

PT
t=1 ut

T�(d+5=2)
PT

t=1 tut

T�(d+5=2)
PT

t=T1+1
(t� T1)ut

37775)
26664

�(d)
R 1
0
Wd(r)dr

�(d)
R 1
0
rWd(r)dr

�(d)
R 1
�
(r � �)Wd(r)dr

37775 :
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3. U 0(XT 01
� XT1)D

�1
T . It su¢ ces to consider the third column of (XT 01

� XT1) because
the �rst two columns are zeros. We have

T�(d+1=2+m)U 0(BT 01
�BT1) = T�(d+1=2+m)

T1X
T 01+1

(t� T 01 )ut + T�(d+1=2+m)(T1 � T 01 )
TX

T1+1

ut

= jT1 � T 01 jOp(1) for m 2 f0; 1g:

4. D�1
T [X

0
T1
XT1�X 0

T 01
XT 01

]D�1
T . As noted earlier, it su¢ ces to consider the terms in which

BT1 and BT 01
are involved.

B0T 01
BT 01

�B0T1BT1 = jT1 � T 01 jO(T 2)
B0T 01

t�B0T1t = jT1 � T 01 jO(T 2)
B0T 01

��B0T1� = jT1 � T 01 jO(T )

Hence, we have

D�1
T [X

0
T1
XT1 �X 0

T 01
XT 01

]D�1
T = jT1 � T 01 jO(T�(1+2d)); for m 2 f0; 1g:

Based on the results 1-4,

(UU) =

8<: jT1 � T 01 jOp(T
�1+2d) if m = 0

jT1 � T 01 jOp(T
1+2d) if m = 1

This completes the proof of Theorem 1 for Model I.

A.1.1 Proof of Consistency (Theorem 2)

From the proof of Theorem 1, we know that for Model I, if m = 0,

(X̂X̂) = (T 01 � T̂1)
2�2bO(T )

(X̂Û) = �b(T
0
1 � T̂1)Op(T

1=2+d)

(Û Û) = jT 01 � T̂1jOp(T
�1+2d):

and, if m = 1,

(X̂X̂) = (T 01 � T̂1)
2�2bO(T )

(X̂Û) = �b(T
0
1 � T̂1)Op(T

3=2+d)

(Û Û) = jT 01 � T̂1jOp(T
1+2d)

We consider the proof for m = 0 (the proof for m = 1 is similar). Suppose that �̂ 9p �0.
Then, the results above imply that (X̂X̂) = O(T 3), (X̂Û) = Op(T

3=2+d), and (Û Û) =
Op(T

2d) for d 2 (�0:5; 0:5). Therefore, for su¢ ciently large T , the term (X̂X̂) dominates
the others with some probability. It implies that the key inequality (X̂X̂)+2(X̂Û)+(Û Û) � 0
cannot hold with probability 1. Since this inequality is valid for all T , we have a contradiction.
Hence, we can conclude that �̂!p �0.
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A.1.2 Rate of Convergence (Theorem 3)

Consider the set
V (�) = fT1 : jT1 � T 01 j < �T; 8� > 0g:

From the consistency of T̂1 in Theorem 2, Pr
�
T̂1 2 V (�)

�
! 1 as T !1. Hence, it su¢ ces

to consider the behavior of S(T1) for all T1 2 V (�). Consider another set Vc(�) de�ned by

Vc(�) = fT1 : jT1 � T 01 j < �T and jT1 � T 01 j > CT�1=2+d+m;

8� > 0;8d 2 (�0:5; 0:5);m = f0; 1gg:

Note that Vc(�) � V (�). Since S(T̂1) � S(T 01 ) with probability 1, we can claim that T 01 =2
Vc(�) by showing that for each � > 0, there exists a constant C > 0 such that

Pr

�
min

T12Vc(�)
fS(T1)� S(T 01 )g � 0

�
< � (A.1)

Equation (A.1) implies that a minimum cannot be obtained in the set Vc(�) and that
jT1 � T 01 j � CT�1=2+d+m must hold with an arbitrary large probability. Equation (A.1)
is equivalent to

Pr

�
min

T12Vc(�)
f(XX) + 2(XU) + (UU)g � 0

�
< �

Based on results derived in Theorem 1, we can apply the following normalizations. If m = 0,
then

(XX)

jT1 � T 01 jT 1=2+d
=
jT1 � T 01 j2�2bO(T )
jT1 � T 01 jT 1=2+d

>
CT�1=2+d�2bO(T )

T�1=2+dT
= aC + o(1)

(XU)

jT1 � T 01 jT 1=2+d
=
jT1 � T 01 j�bOp(T

1=2+d)

jT1 � T 01 jT 1=2+d
= Op(1)

(UU)

jT1 � T 01 jT 1=2+d
=
jT1 � T 01 jOp(T

�1+2d)

jT1 � T 01 jT 1=2+d
= op(1):

If m = 1, then

(XX)

jT1 � T 01 jT 3=2+d
=
jT1 � T 01 j2�2bO(T )
jT1 � T 01 jT 3=2+d

>
CT 1=2+d�2bO(T )

T 1=2+dT
= aC + o(1)

(XU)

jT1 � T 01 jT 3=2+d
=
jT1 � T 01 j�bOp(T

3=2+d)

jT1 � T 01 jT 3=2+d
= Op(1)

(UU)

jT1 � T 01 jT 3=2+d
=
jT1 � T 01 jOp(T

1+2d)

jT1 � T 01 jT 3=2+d
= op(1):

where a is a positive constant. Here, we simply use the fact that jT1 � T 01 j < �T and
jT1 � T 01 j > CT�1=2+d+m in Vc(�). Therefore, Equation (A.1) is satis�ed for all � > 0 if we
choose a su¢ ciently large C > 0.
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A.1.3 Limiting Distribution of the estimate of the break date

Consider �rst the case with m = 1. De�ne the set D(C) = fT1 : jT1 � T 01 j < CT 1=2+dg, for
some positive number C, and mT = T�1=2�djT1 � T 01 j. We are interested in the stochastic
orders of the other parameters. We analyze

argmin T12D(C)[SSR(T1)� SSR(T 01 )]:

For T1 2 D(C), we have jT1�T 01 j = O(T 1=2+d). Hence, (XX) = jT1�T 01 j2O(T ) = O(T 2+2d),
(XU) = jT1 � T 01 jOp(T

3=2+d) = Op(T
2+2d) and (UU) = jT1 � T 01 jOp(T

1+2d) = Op(T
3=2+3d).

Then,

argmin T12D(C)[SSR(T1)� SSR(T 01 )] = argmin T12D(C)[(XX) + 2(XU) + (UU)]=T
2+2d

= argmin T12D(C)[(XX)=T
2+2d + 2(XU)=T 2+2d + op(1)];

hence we only need to consider the �rst two terms. Note that on the set D(C), j� � �0j =
O(T�1=2+d) for d 2 (�0:5; 0:5). Using this fact, we can derive the following results that will
subsequently be applied:

T 2dD�1
T X 0

T1
XT1D

�1
T =

26664
1 1=2 (1� �0)

2=2

1=2 1=3 (1� �0)
2(2 + �0)=6

(1� �0)
2=2 (1� �0)

2(2 + �0)=6 (1� �0)
3=3

37775+ o(1)

� �a + o(1);

and the inverse is T�2d(D�1
T X 0

T1
XT1D

�1
T )

�1 = ��1a + o(1) with

��1a =

26664
(�0 + 3)=�0 �3(�0 + 1)=�20 3=�20(1� �0)

�3(�0 + 1)=�20 3(3�0 + 1)=�
3
0 �3(2�0 + 1)=�30(1� �0)

3=�20(1� �0) �3(2�0 + 1)=�30(1� �0) 3=�30(1� �0)
3

37775
We have

(XX) = �2b(BT 01
�BT1)

0(I � PT1)(BT 01
�BT1)

= �2bf(BT 01
�BT1)

0(BT 01
�BT1)

�(BT 01
�BT1)

0XT1D
�1
T (D

�1
T X 0

T1
XT1D

�1
T )

�1D�1
T X 0

T1
(BT 01

�BT1)g

The second term in (XX) is such that

T�1(BT 01
�BT1)

0XT1D
�1
T = jT1 � T 01 jT�1=2�dT�1=2+de�0bXT1D

�1
T

= mT

h
1� �0

1��20
2

(1��0)2
2

i
+ o(1)
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where mT = T�1=2�djT1 � T 01 j. Using the results above,

T�1�2d(BT 01
�BT1)

0XT1D
�1
T (D

�1
T X 0

T1
XT1D

�1
T )

�1 = mT

h
�1��0

2
3(1��0)
2�0

3(2�0�1)
2�0(1��0)

i
+ o(1)

(A.2)
Hence,

T�2�2d(BT 01
�BT1)

0XT1(X
0
T1
XT1)

�1X 0
T1
(BT 01

�BT1) =

�
(1� �0)�0

4

�
m2
T + o(1) (A.3)

and

T�2�2d(BT 01
�BT1)

0(BT 01
�BT1) = T�2�2djT1 � T 01 j2e�0be�b

= m2
TT

�1e�0be�b
= (1� �0)m

2
T + o(1)

Combining (A.2) and (A.3), we obtain

T�2�2d(BT 01
�BT1)

0(I � PT1)(BT 01
�BT1) =

�
(1� �0)�0

4

�
m2
T + o(1)

Now,
(XU) = 
0(XT 01

�XT1)
0(I � PT1)U = �(BT 01

�BT1)
0(I � PT1)U:

We have,

T�2�2d(BT 01
�BT1)

0U = jT1 � T 01 jT�1=2�dT�3=2�de�0bU
= mT�(d)

Z 1

�

(1� r=�)Wd(r)dr + op(1);

T�2�2d(BT 01
�BT1)

0XT1(X
0
T1
XT1)

�1X 0
T1
U

= T�2�2d(BT 01
�BT1)

0XT1D
�1
T (D

�1
T X 0

T1
XT1D

�1
T )

�1D�1
T X 0

T1
U

= T�1(BT 01
�BT1)

0XT1D
�1
T T�2d(D�1

T X 0
T1
XT1D

�1
T )

�1T�1D�1
T X 0

T1
U;

and

T�1D�1
T X 0�1

T1
U = T�1

"
T�1=2�d

TX
t=1

ut T�3=2�d
TX
t=1

tut T�3=2�d
TX

t=T1+1

(t� T1)ut

#0

=

24T�3=2�d TX
t=1

ut T�5=2�d
TX
t=1

tut T�5=2�d
TX

t=T 01+1

(t� T 01 )ut + op(1)

350 :
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Hence, for d 2 (�0:5; 0:5) and m = 1, we have

T�2�2d(BT 01
�BT1)

0(I � PT1)U

= �(d)f
Z 1

�0

Wd(r)dr +
1� �0
2

Z 1

0

Wd(r)dr�

� 3(1� �0)

2�0

Z 1

0

rWd(r)dr �
3(2�0 � 1)
2�0(1� �0)

Z 1

�0

(r � �0)Wd(r)drg�bmT + op(1)

= �(d)�bmT

Z 1

�0

W �
d (r)dr + op(1);

where W �
d (r) is the residuals function from a continuous time least-squares regression of

Wd(r) on f1; r; (r � �0)1r>�0g. Therefore,

m�
T = argminmT2D(C)[(XX)T

�2�2d + 2(XU)T�2�2d + op(1)]

= argminmT2D(C)[m
2
T�

2
b

�0(1� �0)

4
+ 2�(d)mT�b

Z 1

�0

W �
d (r)dr] + op(1)

by the continuous mapping theorem. Note that the objective function does not change if
T1 � T 01 < 0. We can conclude that

m�
T = T�1=2�djT̂1 � T 01 j ) �

4�(d)
R 1
�0
W �
d (r)dr

�0(1� �0)�b
:

Next, consider the case with m = 0. De�ne mT = T 1=2+djT1 � T 01 j for this case. Note that
T�1=2�de�0bU ) �(d)

R 1
�0
dWd(r). For (XX), we have the same results as form = 1. For (XU),

we have:

(XU) = �b(BT 01
�BT1)

0(I � PT1)U

= T�1=2�d�bmTe�0b(I � PT1)U

= T�1=2�d�bmTe�0�1=2�db �bmTe�0bXT1D
�1
T (D

�1
T X 0

T1
XT1D

�1
T )

�1D�1
T XT1U

= �bmT�(d)

�Z 1

�0

dWd(r)

�
�
�0 � 1
2

3(1� �0)

2�0

3(2�0 � 1)
2�0(1� �0)

�26664
R 1
0
dWd(r)R 1

0
rdWd(r)R 1

�0
(r � �0)dWd(r)

37775
37775+ op(1)

= �bmT�(d)

�Z �0

0

�0 � �20 + 3r � 3r�0
2�0

dWd(r) +

Z 1

�0

�0(2 + �0 � 3r)
2(1� �0)

dWd(r)

�
+ op(1)

� �bmT�(d)� + op(1):
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For (UU), we know that U is an I(d) process with d 2 (�0:5; 0:5). It is easy to show
that U 0(XT 01

� XT1)D
�1
T = jT1 � T 01 jOp(T

�1), D�1
T X 0

T 01
U = Op(1), and D�1

T X 0
T 01
XT 01

D�1
T =

Op(T
�2d). Hence, (UU) = jT1�T 01 jOp(T

�1�2d) which is dominated by (XU) asymptotically.
The optimal m�

T is therefore given by

m�
T = T 3=2+d(�̂� �0))

�4�(d)�
�b�0(1� �0)

:

A.1.4 Limit Distributions of the Other Parameters

The OLS estimates of the regression coe¢ cients 
 is


̂ = (X 0
T̂1
XT̂1

)�1X 0
T̂1
Y

= (X 0
T̂1
XT̂1

)�1X 0
T̂1
XT 01


0 + (X
0
T̂1
XT̂1

)�1X 0
T̂1
U

= 
0 +D�1
T (D

�1
T X 0

T̂1
XT̂1

D�1
T )

�1D�1
T X 0

T̂1
(XT 01

�XT̂1
)
0

+D�1
T (D

�1
T X 0

T̂1
XT̂1

D�1
T )

�1D�1
T X 0

T̂1
U:

Hence,

DT (
̂ � 
0) = (D
�1
T X 0

T̂1
XT̂1

D�1
T )

�1[D�1
T X 0

T̂1
(XT 01

�XT̂1
)
0 +D�1

T X 0
T̂1
U ]:

First, for m = 0,

D�1
T X 0

T̂1
(XT 01

�XT̂1
)
0 +D�1

T X 0
T̂1
U

= D�1
T X 0

T̂1
�bjT1 � T 01 je�b +D�1

T X 0
T̂1
U

= D�1
T X 0

T̂1
�bjT1 � T 01 jT 1=2�de�bT�1=2+d +D�1

T X 0
T̂1
U

= mT�bT
�1=2+dD�1

T X 0
T̂1
e�b +D�1

T X 0
T̂1
U

) �4�(d)�
�b�0(1� �0)

�b

266664
1� �0

1��20
2

(1��0)2
2

377775+ �(d)

266664
R 1
0
dWd(r)R 1

0
rdWd(r)R 1

�0
(r � �0)dWd(r)

377775

= �(d)

0BBB@
Z �0

0

26664
3�20�2�0+6�0r�6r

�20
�30��0+3�20r�3r

�20
�(1��0)2(�0+3r)

�20

37775 dWd(r) +

Z 1

�0

26664
�3(�0+1�2r)

1��0
��20�3�0�2+2�0r+4r

1��0

�2�0 + 4r � 2

37775 dWd(r)

1CCCA
� �0:

Since T�2d(D�1
T X 0

T1
XT1D

�1
T )

�1 p! ��1a ,

T�2dDT (
̂ � 
0)) ��1a �0:
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Second, for m = 1,

T�1DT (
̂ � 
0) = (D
�1
T X 0

T̂1
XT̂1

D�1
T )

�1[T�1D�1
T X 0

T̂1
(XT 01

�XT̂1
)
0 + T�1D�1

T X 0
T̂1
U ]:

Then, we have

T�1D�1
T X 0

T̂1
(XT 01

�XT̂1
)
0 + T�1D�1

T X 0�1
T̂1
D�1
T X 0

T̂1
�bjT1 � T 01 je�b + T�1D�1

T X 0
T̂1
U

= D�1
T X 0

T̂1
�bjT1 � T 01 jT�1=2�de�bT�1=2+d + T�1D�1

T X 0
T̂1
U

= mT�bT
�1=2+dD�1

T X 0
T̂1
e�b + T�1D�1

T X 0
T̂1
U

) ��(d)
Z 1

�0

W �
d (d)dr

266664
4
�0

2(1+�0)
�0

2(1��0)
�0

377775+ �(d)

266664
R 1
0
Wd(r)drR 1

0
rWd(r)drR 1

�0
(r � �)Wddr(r)

377775

= �(d)

0BBB@
Z �0

0

26664
3(1��0)r2+(3�0�2)�0r��20

�20
(3�2�20)r2�2�0(1�2�20)r��20

2�20
(1��0)2(3r2�2�0r��20)

2�20

37775 dWd(r) +

Z 1

�0

26664
3fr2�(1+�0)r+�0g

1��0
(�0+2)fr2�(1+�0)r+�0g

1��0

2fr2 � (1 + �0)r + �0g

37775 dWd(r)

1CCCA
� �1:

Therefore,
T�1�2dDT (
̂ � 
0)) ��1a �1:

A.2 Results for Model II

We now consider results for Model II. The proofs of the consistency is similar to that for
Model I. In any event, the relevant bound will be derived in the proof of the limit distribution.

A.2.1 Consistency (Theorem 2)

From Theorem 1, for m = 0:

(X̂X̂) = (T 01 � T̂1)
3�2bO(1)

(X̂Û) = �b(T
0
1 � T̂1)

3=2+dOp(1)

(Û Û) = jT 01 � T̂1j1=2+dOp(T
�1=2+d);

and for m = 1:

(X̂X̂) = (T 01 � T̂1)
3�2bO(1)

(X̂Û) = �b(T
0
1 � T̂1)

2Op(T
1=2+d)

(Û Û) = jT 01 � T̂1jOp(T
1+2d):
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The proof of consistency is similar to that for Model I. Suppose that �̂
p9 �. Then, with

m = 1, (X̂X̂) = O(T 3), (X̂Û) = Op(T
5=2+d) and (Û Û) = Op(T

2+2d) for all d 2 (�0:5; 0:5).
Hence, with some positive probability, (X̂X̂) dominate the other two terms, so that this
result cannot be compatible with the key inequality (10). Hence, we have a contradiction
and conclude that �̂

p! �.

A.2.2 Rate of Convergence (Theorem 3)

We consider the seteVc(�) = fT1 : jT1 � T 01 j < �T and jT1 � T 01 j > CTm(d+1=2);

8� > 0;8d 2 (�0:5; 0:5);m = f0; 1gg:

Given the results in Theorem 1, if m = 0:

(XX)

jT1 � T 01 j3=2+d
=
jT1 � T 01 j3�2bO(1)
jT1 � T 01 j3=2+d

= jT1 � T 01 j3=2�d�2bO(1) > C3=2�d�2bO(1) = aC1 + o(1);

(XU)

jT1 � T 01 j3=2+d
=
jT1 � T 01 j3=2+d�bOp(1)

jT1 � T 01 j3=2+d
= Op(1);

(UU)

jT1 � T 01 j3=2+d
=
jT1 � T 01 j1=2+dOp(T

�1=2+d)

jT1 � T 01 j3=2+d
= op(1);

and if m = 1:

(XX)

jT1 � T 01 j2T 1=2+d
=
jT1 � T 01 j3�2bO(1)
jT1 � T 01 j2T 1=2+d

>
CT 1=2+d�2bO(1)

T 1=2+d
= aC + o(1);

(XU)

jT1 � T 01 j2T 1=2+d
=
jT1 � T 01 j2�bOp(T

1=2+d)

jT1 � T 01 j2T 1=2+d
= Op(1);

(UU)

jT1 � T 01 j2T 1=2+d
=
jT1 � T 01 jOp(T

1+2d)

jT1 � T 01 j2T 1=2+d
= op(1)

for 8d 2 (�0:5; 0:5) where a is a positive constant. It is easy to show that

Pr

 
min

T12eVc(�)fS(T1)� S(T 01 )g � 0
!
< �

for any � > 0 if we choose a su¢ ciently large C > 0. This completes the proof.

A.2.3 Limit Distribution of the Estimate of the Break Date

Given the results in Theorem 3, we work on the set D0(C) = fT1 : jT1 � T 01 j < T dCg if
m = 0 and D1(C) = fT1 : jT1 � T 01 j < T 1=2+dCg if m = 1, for some positive C. In other
words, for � = T1=T , j� � �0j = Op(T

�1+d) with m = 0 and j� � �0j = Op(T
�1=2+d) with

m = 1. In matrix notation, Model II can be expressed as

Y = XT1
 + U
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with
XT1 =

h
� t CT1 BT1

i
where � = (1; : : : ; 1)0, t = (1; 2; : : : ; T )0, CT1 = (C1; : : : ; CT ), BT1 = (B1; : : : ; BT )

0 and

 = [�1 �1 �b �b]

0. For T1 > T 01 ,

CT 01
�CT1 =

8<: 1 if T 01 � t � T1

0 otherwise;

and

BT 01
�BT1 � (T1 � T 01 )CT1 =

8<: t� T 01 if T 01 � t � T1

0 otherwise:

When T1 < T 01 ,

CT 01
�CT1 =

8<: �1 if T 01 � t � T1

0 otherwise;

and

BT 01
�BT1 � (T1 � T 01 )CT1 =

8<: �(t� T 01 ) if T 01 � t � T1

0 otherwise:

We shall use the following notations. For T 01 > T1,

g1(T1 � T 01 ) =

T 01X
t=T1+1

[�b + �b(t� T 01 )];

h1(T1 � T 01 ) =

T 01X
t=T1+1

[�b + �b(t� T 01 )]
2

and for T 01 < T1,

g2(T1 � T 01 ) =

T1X
t=T 01+1

[�b + �b(t� T 01 )];

h2(T1 � T 01 ) =

T1X
t=T 01+1

[�b + �b(t� T 01 )]
2
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We �rst consider the term (XX). Noting that (T1 � T 01 )(I � PT1)CT1 = 0, we have

(XX) = 
00(XT 01
�XT1)

0(I � PT1)(XT 01
�XT1)
0

= [(CT 01
�CT1)�b + (BT 01

�BT1 � (T1 � T 01 )CT1)�b)]
0(I � PT1)

� [(CT 01
�CT1)�b + (BT 01

�BT1 � (T1 � T 01 )CT1)�b)]

=

T1X
t=T 01+1

[�b + �b(t� T 01 )]
2

�
T1X

t=T 01+1

[�b + �b(t� T 01 )]x(T1)
0
tD

�1
T (D

�1
T X 0

T1
XT1D

�1
T )

�1D�1
T

T1X
t=T 01+1

x(T1)t[�b + �b(t� T 01 )]

where DT = diag(T 1=2+d; T 3=2+d; T 1=2+d; T 3=2+d). Note that for T1 > T 01 ,

T1X
t=T 01+1

[�b + �b(t� T 01 )]x(T1)
0
tD

�1
T

= T�d
T1X

t=T 01+1

[�b + �b(t� T 01 )][T
�1=2 tT�3=2 0 0]

= T�1=2�d
T1X

t=T 01+1

[�b + �b(t� T 01 )][1 t=T 0 0]

= T�1=2�d
T1�T 01X
k=1

[�b + �bk][1 (k + T 01 )=T 0 0]

= T�1=2�dg2[1 T 01 =T 0 0] + T�1=2�d
T1�T 01X
k=1

[�b + �bk][0 k=T 0 0]

� T�1=2�djg2j[1 T 01 =T 0 0] + jg2jT�1=2�d
jT1 � T 01 j

T
[0 1 0 0]

= Op(jg2jT�1=2�d):

where the last step follows from the fact that jT1 � T 01 j=T
p! 0 on both D0(C) and D1(C).

Also,
(D�1

T X 0
T1
XT1D

�1
T )

�1 = Op(T
2d):

Hence, the second term in (XX) is such that


00(XT 01
�XT1)

0PT1(XT 01
�XT1)
0 = Op(g

2
2T

�1) = op(h2)
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because j� � �0j = Op(T
�1+d) if m = 0 and j� � �0j = Op(T

�1=2+d) if m = 1 where
d 2 (�0:5; 0:5). Therefore,

(XX) =

8<: h2 + op(h2) if T1 > T 01

h1 + op(h1) if T1 � T 01

This implies that
(XX) = jT1 � T 01 j3O(1)

since �b is �xed. Consider now the term (XU). For m = 1, we have

(XU) = 
0(XT 01
�XT1)

0(I � PT1)U

=

T1X
t=T 01+1

[�b + �b(t� T 01 )]ut

� [
T1X

t=T 01+1

[�b + �b(t� T 01 )]x(T1)
0
tD

�1
T ](D

�1
T X 0

T1
XT1D

�1
T )

�1D�1
T X 0

T1
U

We consider each term of this expression.

1. When T 01 < T1, let ut = uT 01 + vk. Then,

T�1=2�d
T1X

t=T 01+1

[�b + �b(t� T 01 )]ut = T�1=2�d
T1�T 01X
k=1

[�b + �bk]uT 01+k

= T�1=2�dg2uT 01 + T�3=2�d
T1�T 01X
k=1

[�b + �bk]vk

= g2�(d)Wd(�0) + op(g2):

2. T 2dD�1
T X 0

T1
XT1D

�1
T = 
�11 + o(1), where


1 =

2666666664

4
�0

� 6
�20

2
�0

6
�20

� 6
�20

12
�30

� 6
�20

� 12
�30

2
�0

� 6
�20

4
�0(1��0)

6(1�2�0)
�20(1��0)2

6
�20

� 12
�30

6(1�2�0)
�20(1��0)2

12(3�20�3�0+1)
�30(1��0)3

3777777775
;
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and


�11 =

2666666664

1 1
2

1� �0
(1��0)2

2

1
2

1
3

(1��0)2
2

(1��0)2(2+�0)
6

1� �0
1��20
2

1� �0
(1��0)2

2

(1��0)2
2

(1��0)2(2+�0)
6

(1��0)2
2

(1��0)3
3

3777777775
:

3. T�1D�1
T X 0

T1
U ) �(d)�1, where

�1 =

2666666664

R 1
0
Wd(r)drR 1

0
rWd(r)drR �0

0
Wd(r)drR 1

�0
(r � �0)Wd(r)dr

3777777775
=

2666666664

R 1
0
(1� r)dWd(r)R 1
0
1�r2
2
dWd(r)R �0

0
(1� �0)dWd(r) +

R 1
�0
(1� r)dWd(r)R �0

0
(1��0)2

2
dWd(r) +

R 1
�0

(1��0)2�(1��0)2
2

dWd(r)

3777777775
using integration by parts.

4. When T 01 < T1,

T�1=2�d
T1X

t=T 01+1

[�b + �b(t� T 01 )]XT1D
�1
T

= T�1�2d
T1X

t=T 01+1

[�b + �b(t� T 01 )][1 t=T 0 0]

= T�1�2dg2[1 �0 0 0] + T�1�2d
T1�T 01X
k=1

[�b + �bk][0 k=T 0 0]

= T�1�2dg2[1 �0 0 0] + op(g2T
�1�2d):

Combining the results 1-4, we obtain that

(XU) = T 1=2+dfg2�(d)Wd(�0)� g2[1 �0 0 0]
1�(d)�1 + op(1)g
= T 1=2+dg2�(d)fWd(�0)� [1 �0 0 0]
1�1 + op(1)g
= T 1=2+dg2�(d)�3 + op(T

1=2+dg2):

After some algebra, we have

�3 = Wd(�0)� [1 �0 0 0]
1�1 =

Z �0

0

�
3r2 � 2�0r

�20

�
dWd(r):
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We can show that when T 01 > T1,

T�1=2�d
T 01X

t=T1+1

[�b + �b(t� T 01 )]ut = g1�(d)Wd(�0) + op(g1)

and

T�1=2�d
T 01X

t=T1+1

[�b + �b(t� T 01 )]x(T1)
0
tD

�1
T = T�1�2dg1[1 �0 1 0] + op(g1T

�1�2d):

Hence,
(XU) = T 1=2+dg1�(d)�4 + op(T

1=2+dg1)

where

�4 =

Z 1

�0

[(r � 1)(3r � 2�0 � 1)=(1� �0)
2]dWd(r):

These results imply that

(XU) = T 1=2+d�(d)

8<: g2�3 if T 01 < T1

g1�4 if T 01 > T1
+ op(1)

and
(XU) = jT1 � T 01 j2Op(T

1=2+d):

We �nally consider the term (UU). We have

(UU) = U 0(PT 01 � PT1)U

= U 0(XT 01
�XT1)D

�1
T (D

�1
T X 0

T 01
XT 01

D�1
T )

�1D�1
T X 0

T 01
U

+ U 0XT1D
�1
T (D

�1
T X 0

T 01
XT 01

D�1
T )

�1D�1
T [X

0
T1
XT1 �X 0

T 01
XT 01

]

�D�1
T (D

�1
T X 0

T 01
XT 01

D�1
T )

�1D�1
T X 0

T 01
U

+ U 0XT1D
�1
T (D

�1
T X 0

T1
XT1D

�1
T )

�1D�1
T (XT 01

�XT1)
0U

We �rst have

T�1=2�dU 0(CT01
�CT1) = �(d)(T 01 � T1)

Z 1

�0

Wd(r)dr + op(1);

T�3=2�dU 0(BT01 �BT1) = �(d)(T 01 � T1)

Z 1

�0

rWd(r)dr + op(1):

Hence,
U 0(XT 01

�XT1)D
�1
T = (T1 � T 01 )[�(d)�

0
2 + op(1)]
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where �02 = [0 0
R 1
�0
Wd(r)dr

R 1
�0
rWd(r)dr]. For the second term in (UU), we have

D�1
T [X

0
T1
XT1 �X 0

T 01
XT 01

]D�1
T = �(T1 � T 01 )T

�1�2d�f

with

�f =

266666664

0 0 1 1� �0

0 0 �0
1��20
2

1 �0 1 1� �0

1� �0
1��20
2

1� �0 (1� �0)
2

377777775
:

Hence,

T 1+2dU 0XT1D
�1
T (D

�1
T X 0

T 01
XT 01

D�1
T )

�1D�1
T [X

0
T1
XT1 �X 0

T 01
XT 01

]

�D�1
T (D

�1
T X 0

T 01
XT 01

D�1
T )

�1D�1
T X 0

T 01
U

= �(T1 � T 01 )T
1+2d�2(d)[�01
2�1 + op(1)]

where


2 = 

�1
1 �f


�1
1 =

26666664
� 4
�20

12
�30

� 2
�20

� 12
�30

12
�30

� 36
�40

12
�30

36
�40

� 2
�20

12
�30

4(2�0�1)
�20(1��0)2

12(3�20�3�0+1)
�30(�0�1)3

� 12
�30

36
�40

12(3�20�3�0+1)
�30(�0�1)3

36(4�30�6�20+4�0�1)
�40(1��0)4

37777775 :

Collecting the results above, we have

(UU) = (T1 � T 01 )T
1+2d�2(d)[2�02
1�1 � �01
2�1 + op(1)]:

This implies that with m = 1,

(UU) = jT1 � T 01 jOp(T
1+2d):

De�ne mT = (T1 � T 01 )T
�1=2�d. It is easy to show that both h1 and h2 are asymptoti-

cally equivalent to T 3=2+3d(�b)
2jmT j3=3 and both g1 and g2 are asymptotically equivalent to

T 1+2dm2
T�b=2, therefore

T�3=2�3d(XX) = �2b jmT j3=3 + op(1);

2T�3=2�3d(XU) =

8<: �(d)m2
T�b�3 + op(1) if mT > 0

�(d)m2
T�b�4 + op(1) if mT < 0

T�3=2�3d(UU) = mT�(d)
2[2�02
1�1 � �01
2�1] + op(1):
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De�ne Z�(v;�0; �b; �(d)) as follows: Z
�(0) = 0, Z�(v) = Z1(v) for v < 0 and Z�(v) = Z2(v)

for v > 0, with

Z�1(v;�0; �b; �(d)) = (�b)
2jvj3=3 + v2�(d)�b�4 + v�(d)2[2�02
1�1 � �01
2�1] + op(1);

Z�2(v;�0; �b; �(d)) = (�b)
2jvj3=3 + v2�(d)�b�3 + v�(d)2[2�02
1�1 � �01
2�1] + op(1):

By the continuous mapping theorem, we have

m�
T � (T̂1 � T 01 )T

�1=2�d ) argmin vZ
�(v;�0; �0; �):

Now, consider the case with d 2 (�0:5; 0:5) and m = 0. The following argument applies to
the set

D0(C) = fT1 : jT1 � T 01 j < T dCg
and accordingly we have j�� �0j = Op(T

�1+d) for � = T1=T . As in the case with m = 1,

(XX) =

8<: h1 + op(h1) if T1 < T 01

h2 + op(h2) if T1 > T 01 :

If T1 > T 01 ,

(XU) =

T1X
t=T 01+1

[�b + �b(t� T 01 )]ut

� f
T1X

t=T 01+1

[�b + �b(t� T 01 )]x(T1)
0
tD

�1
T g(D�1

T X 0
T1
XT1D

�1
T )

�1D�1
T X 0

T1
U:

We next consider each term of (XU).

1.

T1X
t=T 01+1

[�b + �b(t� T 01 )]ut =

T1�T 01X
k=1

[�b + �bk]uk+T 01

=

T1�T 01X
k=1

�buk+T 01 + �b

T1�T 01X
k=1

kuk+T 01 = Op(jT1 � T 01 j3=2+d):
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2.

T1X
t=T 01+1

[�b + �b(t� T 01 )]x(T1)
0
tD

�1
T

= T�1=2�d
T1X

t=T 01+1

[�b + �b(t� T 01 )][1 t=T 0 0]

= T�1=2�d
T1�T 01X
k=1

[�b + �bk][1 (k + T 01 )=T 0 0]

= T�1=2�d
T1�T 01X
k=1

[�b + �bk][1 k=T 0 0] + T�1=2�d
T1�T 01X
k=1

[�b + �bk][1 �0 0 0]

= Op(jT1 � T 01 j2T�1=2�d):

3. (D�1
T X 0

T1
XT1D

�1
T )

�1 = Op(T
2d):

4. D�1
T X 0

T1
U = Op(1):

Since we search in a set for which jT1 � T 01 j < T dC for some C > 0 and j� � �0j =
Op(T

�1+d), 
00(XT 01
�XT̂1

)0PT1U is dominated by 

0
0(XT 01

�XT̂1
)0U asymptotically. Hence,

(XU) = jT1 � T 01 j3=2+dOp(1):

We can derive the results for T 01 > T1 in a similar way. In sum,

(XU) =

8>>><>>>:
PT1

t=T 01+1
[�b + �b(t� T 01 )]ut + op(1) if T1 > T 01

0 if T1 = T 01PT 01
t=T1+1

[�b + �b(t� T 01 )]ut + op(1) if T1 < T 01 :

Next, consider the term (UU). We have

T�1=2�dU 0(CT 01
�CT1) = T�1=2�d

maxfT1;T 01 gX
t=minfT1;T 01 g+1

ut

= T�1=2�djT1 � T 01 j1=2+djT1 � T 01 j�1=2�d
maxfT1;T 01 gX

t=minfT1;T 01 g+1

ut

= T�1=2�djT1 � T 01 j1=2+dOp(1):
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and

T�3=2�dU 0(BT 01
�BT1) = T�1(T�1=2�dU 0BT 01

� T�1=2�dU 0BT1)

= T�1jT 01 � T1jOp(1):

Hence,
U 0(XT 01

�XT1)D
�1
T = jT1 � T 01 j1=2+dOp(T

�1=2�d):

Then following the same arguments as for Model I, we have

(UU) = jT1 � T 01 j1=2+dOp(T
�1=2�d)Op(T

2d)Op(1)

= jT1 � T 01 j1=2+dOp(T
�1=2+d):

Following Bai (1997), we de�ne a stochastic process S�(�) on the set of integers as follows:

S�(�) =

8>>><>>>:
S1(�) if � < 0

0 if � = 0

S2(�) if � > 0

with

S1(�) =
0X

k=�+1

(�b + �bk)
2 � 2

0X
k=�+1

(�b + �bk)uk; � = �1;�2; : : : ;

S2(�) =
�X
k=1

(�b + �bk)
2 � 2

�X
k=1

(�b + �bk)uk; � = 1; 2; : : : :

Under the assumption that ut is strictly stationary and has a continuous distribution, the
rest of the proof is similar to that of Bai (1997, p.592) and, hence omitted.

A.2.4 Limit Distributions of the Other Parameters

As for Model I, we use the facts that

DT (
̂ � 
0) = (D
�1
T X 0

T̂1
XT̂1

D�1
T )

�1[D�1
T X 0

T̂1
(XT 01

�XT̂1
)
0 +D�1

T X 0
T̂1
U ];

and
T�2d(D�1

T X 0
T̂1
XT̂1

D�1
T )

�1 = 
1 + o(1)

where


1 =

2666666664

4
�0

� 6
�20

2
�0

6
�20

� 6
�20

12
�30

� 6
�20

� 12
�30

2
�0

� 6
�20

4
�0(1��0)

6(1�2�0)
�20(1��0)2

6
�20

� 12
�30

6(1�2�0)
�20(1��0)2

12(3�20�3�0+1)
�30(1��0)3

3777777775
:
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Hence, we obtain

T�2dDT (
̂ � 
0)

= 
�11

0BBBBBB@�bjT̂1 � T 01 jT 1=2�d

26666664
1� �0
1�(�0)2

2

1� �0
(1��0)2

2

37777775+ �(d)

26666664

R 1
0
dWd(r)R 1

0
rdWd(r)R 1

�0
dWd(r)R 1

�0
(r � �0)dWd(r)

37777775

1CCCCCCA+ op(1)

= �bjT̂1 � T 01 jT 1=2�d

26666664
0

0

1

0

37777775+ �(d)
�11

26666664

R 1
0
dWd(r)R 1

0
rdWd(r)R 1

�0
dWd(r)R 1

�0
(r � �0)dWd(r)

37777775+ op(1):

Note that the limiting distribution of �̂b depends on that of jT̂1 � T 01 j. Similarly, it is easy
to show that, when m = 1,

T�1�2dDT (
̂ � 
0)

= �bjT̂1 � T 01 jT�1=2�d

26666664
0

0

1

0

37777775+ �(d)
�1

26666664

R 1
0
Wd(r)drR 1

0
rWd(r)drR 1

�0
Wd(r)drR 1

�0
(r � �0)Wd(r)dr

37777775+ op(1):

Proof of Theorem 6: Consider �rst the case with d� 2 (�0:5; 0:5). After some algebra,
we have

M�
T (T1)

p!M�(�)

= �2(d)[
�+ 3

�
[Wd(1)]

2 � 6(�+ 1)
�2

Wd(1)

�Z 1

0

rdWd(r)

�
+

6

�2(1� �)
Wd(1)

�Z 1

�

(r � �)dWd(r)

�
� 6(2�+ 1)
�3(1� �)

�Z 1

0

rdWd(r)

��Z 1

�

(r � �)dWd(r)

�
+
3(3�+ 1)

�3

�Z 1

0

rdWd(r)

�2
+

3

�3(1� �)3

�Z 1

�

(r � �)dWd(r)

�2
]:
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We can write
R 1
�
(r � �)dWd(r) = ��Wd(1) + �Wd(�) +

R 1
�
rdWd(r). Then

M�(�)

= �2(d)[
�+ 3

�
[Wd(1)]

2 � 6(�+ 1)
�2

Wd(1)

�Z 1

0

rdWd(r)

�
� 6

�(1� �)1=2
Wd(1)

�
Wd(1)�Wd(�)p

1� �

�
+

6

�2(1� �)
Wd(1)

�Z 1

�

rdWd(r)

�
+

6(2�+ 1)

�2(1� �)1=2

�Z 1

0

rdWd(r)

��
Wd(1)�Wd(�)p

1� �

�
� 6(2�+ 1)
�3(1� �)

�Z 1

0

rdWd(r)

��Z 1

�

rdWd(r)

�
+
3(3�+ 1)

�3

�Z 1

0

rdWd(r)

�2
+

3

�3(1� �)3

�
��Wd(1) + �Wd(�) +

Z 1

�

rdWd(r)

�2
]:

Since the last term is quadratic, it dominates the other terms if it diverges. Note that

3

�3(1� �)3

�
��Wd(1) + �Wd(�) +

Z 1

�

rdWd(r)

�2
=

3

�3(1� �)2

�
��Wd(1)�Wd(�)p

1� �
+

1

(1� �)1=2

Z 1

�

rdWd(r)

�2
: (A.4)

By applying the law of iterated logarithms for a fractional Brownian motion, we can show
that lim sup�!1M

�(�) =1 a:s: for d� 2 (�0:5; 0]. Furthermore, note that

3

�3(1� �)3

�
��Wd(1) + �Wd(�) +

Z 1

�

rdWd(r)

�2
=

3

�3(1� �)

�
��Wd(1)�Wd(�)

1� �
+

1

(1� �)

Z 1

�

rdWd(r)

�2
;

Using the iterated law of logarithms for d� 2 (0; 0:5), we obtain

lim sup
�!1

Wd(1)�Wd(�)

1� �
= lim sup

s!0

Wd(s)

s
=1 a:s::

Hence, this shows that lim sup�!1M
�(�) = 1 a:s: for d� 2 (0; 0:5). On the other hand,

when � ! 0, we can apply the law of iterated logarithms to the quadratic term only for
d� 2 (�0:5; 0] because the order of � is not su¢ cient for the law of iterated logarithms to
hold with d� 2 (0; 0:5).
Proof of Theorem 7: Consider the case with d� 2 (0:5; 1:5). With the functional central
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limit theorem in Lemma 3, it is easy to show that

M�
T (T1)

p!M�(�)

= �2(d)[
�+ 3

�

�Z 1

0

Wd(r)dr

�2
� 6(�+ 1)

�2

�Z 1

0

Wd(r)dr

��Z 1

0

rWd(r)dr

�
+

6

�2(1� �)

�Z 1

0

Wd(r)dr

��Z 1

�

(r � �)Wd(r)dr

�
� 6(2�+ 1)
�3(1� �)

�Z 1

0

rWd(r)dr

��Z 1

�

(r � �)Wd(r)dr

�
+
3(3�+ 1)

�3

�Z 1

0

rWd(r)dr

�2
+

3

�3(1� �)3

�Z 1

�

(r � �)Wd(r)dr

�2
]:

Then, for any � 2 (0; 1),

M�(�)�M�(0) =M�(�)�M�(1)

= �2(d)[

r
3(1� �)

�

�Z 1

0

Wd(r)dr

�
�
r
3(3�+ 1)

�3
� 12

�Z 1

0

rWd(r)dr

�
+

s
3

�3(1� �)3

�Z 1

�

(r � �)Wd(r)dr

�
]2 > 0:

The inequality holds because M�(�) is not a constant process. This completes the proof.
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Figure 1: Histograms of the estimate of a break date T̂1 for Model I
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Figure 2: Histograms of the estimate of a break date T̂1 for Model II


