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Abstract

We extend the random level shift (RLS) model of Lu and Perron (2010) for the
volatility of asset prices, which consists of a short memory process and a random
level shift component. Motivated by empirical features a) we specify a time-varying
probability of shifts as a function of large negative lagged returns; b) we incorporate
a mean reverting mechanism so that the sign and magnitude of the jump component
change according to the deviations of past jumps from their long run mean. This
allows the possibility of forecasting the sign and magnitude of the jumps. We estimate
the model using twelve di¤erent series. We compare its forecasting performance with a
variety of competing models at various horizons. A striking feature is that the modi�ed
RLS model has the smallest mean square forecast errors in 64 out of the 72 cases, while
it is a close second for the other 8 cases. The improvement in forecast accuracy is often
substantial, especially for medium to long-horizon forecasts. This is strong evidence
that our modi�ed RLS model o¤ers important gains in forecasting performance.
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1 Introduction

Recently, there has been an upsurge of interest in the possibility of confusing long-memory

with structural change in levels. This idea extends that exposited by Perron (1989, 1990) who

showed that structural change and unit roots are easily confused. When a stationary process

is contaminated by structural changes in mean, the estimate of the sum of its autoregressive

coe¢ cients is biased towards one and tests of the null hypothesis of a unit root are biased

toward non-rejection. This phenomenon has been shown to apply to the long-memory context

as well. That is, when a stationary short-memory process is contaminated by structural

changes in level, the estimate of the long-memory parameter is biased away from zero and

the autocovariance function of the process exhibits a slow rate of decay. Relevant references

on this issue include Diebold and Inoue (2001), Engle and Smith (1999), Gourieroux and

Jasiak (2001), Granger and Ding (1996), Granger and Hyung (2004), Lobato and Savin

(1998), Mikosch and St¼aric¼a (2004), Parke (1999) and Teverosovky and Taqqu (1997).

The literature on modeling and forecasting stock return volatility is voluminous. Two

approaches that have proven useful are the GARCH and stochastic volatility (SV) models.

In their standard forms, the ensuing volatility processes are stationary and weakly dependent

with autocorrelations that decrease exponentially. This contrasts with the empirical �ndings

obtained using various proxies for volatility (e.g., daily absolute returns) which indicate

autocorrelations that decay very slowly at long lags. In light of this, several long-memory

models have been proposed. For example, Baillie, Bollerslev, and Mikkelsen (1996) and

Bollerslev and Mikkelsen (1996) considered fractionally integrated GARCH and EGARCH

models, while Breidt, Crato and De Lima (1998) and Harvey (1998) proposed long memory

SV (LSV) models where the log of volatility is modeled as a fractionally integrated process.

More recently, attempts have been made to distinguish between short-memory stationary

processes plus level shifts and long-memory models; see, in particular, Granger and Hyung

(2004). They documented the fact that, when breaks determined via some pre-tests are ac-

counted for, the evidence for long-memory is weaker. This evidence is, however, inconclusive

since structural change tests are severely biased in the presence of long-memory and log pe-

riodogram estimates of the memory parameter are biased downward when sample-selected

breaks are introduced. This is an over�tting problem that Granger and Hyung (2004, p.

416) clearly recognized. St¼aric¼a and Granger (2005) presented evidence that log-absolute

returns of the S&P 500 index is a white noise series a¤ected by occasional shifts in the un-

conditional variance and showed that this speci�cation has better forecasting performance
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than the more traditional GARCH(1,1) model and its fractionally integrated counterpart.

Mikosch and St¼aric¼a (2004) considered the autocorrelation function of the absolute returns

of the S&P 500 index for the period 1953-1977. They documented the fact that for the full

period, it resembles that of a long-memory process. But, interestingly, if one omits the last

four years of data, the autocorrelation function is very di¤erent and looks like one associated

with a short-memory process. They explain this �nding by arguing that the volatility of

the S&P 500 returns has increased over the period 1973-1977. Morana and Beltratti (2004)

also argue that breaks in the level of volatility partially explain the long-memory features

of some exchange rate series. Perron and Qu (2007) analyzed the time and spectral domain

properties of a stationary short memory process a¤ected by random level shifts. Perron and

Qu (2010) showed that, when applied to daily S&P 500 log absolute returns over the period

1928-2002, the level shift model explains both the shape of the autocorrelations and the

path of log periodogram estimates as a function of the number of frequency ordinates used.

Qu and Perron (2012) estimated a stochastic volatility model with level shifts adopting a

Bayesian approach using daily data on returns from the S&P 500 and NASDAQ indices over

the period 1980.1-2005.12. They showed that the level shifts account for most of the vari-

ation in volatility, that their model provides a better in-sample �t than alternative models

and that its forecasting performance is better for the NASDAQ and just as good for the

S&P 500 as standard short or long-memory models without level shifts.

Lu and Perron (2010) extended the work of St¼aric¼a and Granger (2005) by directly

estimating a structural model. They adopted a speci�cation for which the series of interest

is the sum of a short-memory process and a jump or level shift component. For the latter,

they speci�ed a simple mixture model such that the component is the cumulative sum of a

process that is 0 with some probability (1��) and is a random variable with probability �.
To estimate such a model, they transformed it into a linear state space form with innovations

having a mixture of two normal distributions and adopted an algorithm similar to the one

used by Perron and Wada (2009) and Wada and Perron (2007). They restricted the variance

of one of the two normal distributions to be zero, allowing a simple but e¢ cient algorithm.

Varneskov and Perron (2013) further extended the random level shift model to combine

it with a long memory process, modeled as a ARFIMA(p; d; q) process. They provided a

forecasting framework for a class of long-memory models with level shifts. Their forecasting

experiments using six di¤erent data series covering both low frequency and high frequency

data showed that the RLS-ARFIMA model outperforms other competing models.

This paper extends Lu and Perron (2010) in several directions. First, we let the jump
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probability depend on some covariates. This allows a more comprehensive and realistic

probabilistic structure for the level shift model. The speci�cation adopted is in the spirit of

the �news impact curve�as suggested by Engle and Ng (1993). We model the probability

of a shift as a function of the occurrence and magnitude of large negative lagged returns.

The second modi�cation is to incorporate a mean reverting mechanism to level shift model

so that the sign and magnitude of the jump component change according to the deviations

of past jumps from their long run mean. Apart from being a device that allows a better

in-sample description, its advantage is that the sign and magnitude of the jumps can be

predicted to some extent. As we shall show this allows much improved forecasts.

We apply the modi�ed level shift model to the following daily return series using absolute

returns as a proxy for volatility and a logarithmic transformation to have series closer to being

normally distributed and also not bounded below by zero: S&P 500 stock market index, Dow

Jones Industrial Average (DJIA) index, AMEX index, Nasdaq index, Nikkei 225 index, IBM

stock prices, Crude Oil prices, Treasury Bond Futures, Trade Weighted U.S. Dollar Index.

To assess the sensitivity of our results, we also consider three realized volatility series, also

in logarithmic form, constructed from 5 minutes returns on the S&P 500 and Treasury Bond

Futures, as well as a realized volatility series constructed from tick-by-tick trades on the

SPY, an exchange traded fund that tracks the S&P 500. Our point estimate for the average

probability of shifts is similar to that of the original model, still a quite small number. But the

weight on extreme past negative returns is large enough to result in a signi�cant increase in

jump probability when past stock return is taken into account, thereby inducing a clustering

property for the jumps. Also, the estimates indicate that a mean reverting mechanism is

present, which changes the sign of the jump. When the past jump component deviates from

the long run mean by a large amount it is brought back towards the long-run mean.

We compare the forecasting performance of our model with eight competing models: the

original random level shift model (RLS), the popularARFIMA(1; d; 1) andARFIMA(0; d; 0),

a GARCH(1,1), a fractionally integrated GARCH model (FIGARCH(1,d,1)), the HAR

model, a Multiple Regime Smooth Transition Heterogeneous Autoregressive Model (HARST)

and a Markov Regime Switching model. We consider forecast horizons of 1, 5, 10, 20, 50 and

100 days. This gives 72 cases in total. A striking feature is that the modi�ed RLS model has

the smallest mean square forecast errors in 64 out of the 72 cases, while it is a close second

for the other 8 cases. The improvement in forecast accuracy is often substantial, especially

for medium to long-horizon forecasts. Overall, this is very strong evidence that our modi�ed

random level shift model o¤ers important gains in forecasting performance.
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The structure of this paper is as follows. Section 2 brie�y describes the data. Section 3

presents the basic random level shift model and discusses key results obtained from estimating

it using data on the S&P 500 index in order to motivate subsequent developments. Section

4 discusses extensions of the basic model to allow for time varying probabilities of jumps

and a mean-reverting mechanism. Section 5 presents the estimation methodology. Section

6 presents the full-sample estimates obtained from the extended model. Section 7 presents

results for a real-time forecasting experiment, which show that much improved forecasts can

be obtained using our extended model. Section 8 provides brief concluding remarks.

2 Data and Summary Statistics

The series used consist of nine daily returns series and three realized volatility series. The

daily returns series are: S&P 500 stock market index (01/03/1950-10/11/2011; 15,543 ob-

servations), Dow Jones Industrial Average (DJIA) index (01/05/1950/-06/15/2012; 15,752

observations), AMEX index (01/03/1996-06/18/2012; 4,137 observations), Nasdaq index

(02/09/1971-06/18/2012; 10,434 observations), Nikkei 225 index (05/18/1949-08/12/2013;

16,000 observations), IBM stock prices (01/06/1970-06/05/2007; 9,444 observations), Crude

Oil Prices 1 (01/06/1986-08/06/2013; 6,960 observations), Treasury Bond Futures (01/05/1983-

06/11/2009; 6,639 observations), Trade Weighted U.S. Dollar Index: Major Currencies

(DTWEXM) 2, (01/04/1973-08/16/2013; 10,180 observations). For these daily series, the

data used to construct the volatility series are based on daily closing prices, say Pt, and the

daily returns are computed as rt = ln(Pt) � ln(Pt�1). The volatility is proxied by absolute
returns and a logarithmic transformation is applied to have series closer to being normally

distributed and also not bounded below by zero. In order to avoid extreme negative values,

we bound absolute returns away from zero by adding a small constant 0.001, so that the

volatility series used is yt = ln(jrtj + 0:001). The percentage of zero values is indicated in
Table 1. They are quite small, the highest being 3.8% for the Treasury Bond Futures 3.

1West Texas Intermediate (WTI) - Cushing, Oklahoma (DCOILWTICO); units are dollars per barrel.
2A weighted average of the foreign exchange value of the U.S. dollar against a subset of the broad index

currencies that circulate widely outside the country of issue. The major currencies index includes the Euro
Area, Canada, Japan, United Kingdom, Switzerland, Australia, and Sweden. Unit are normalized with the
value in March 1973 set to 100.

3The series for S&P 500, Nasdaq, Dow Jones, AMEX, and IBM are from Yahoo �nance
(http://�nance.yahoo.com/). The series for Nikkei 225 index, Oil price, and Trade Weighted U.S. Dollar
Index (DTWEXM) are from the Federal Reserve Bank of St. Louis (http://research.stlouisfed.org/). The
Treasury Bond Futures series was provided by Rasmus Varneskov and is the daily version of the corresponding
realized volatility series also used. The data was obtained from �Tickdata�(http://www.tickdata.com/).
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To assess the robustness of our results, we also consider three realized volatility series,

also in logarithmic form, constructed from 5 minutes returns on the S&P 500 (04/22/1982-

03/02/2007; 6,261 observations) and Treasury Bond Futures (01/05/1983-06/11/2009; 6,639

observations), as well as a realized volatility series constructed from tick-by-tick trades on

the SPY, an exchange traded fund that tracks the S&P 500 (01/03/1997-07/02/2008; 2,913

observations). The realized volatility series for the S&P 500 Futures was provided by Shin-

suke Ikeda; see Ikeda (2013) for details about how the original data was cleaned. The

realized volatility series on the Treasury Bond Futures and the SPY were provided by Ras-

mus Varneskov. The realized volatility series for the S&P 500 and Treasury Bond Futures

were constructed from 5-minutes returns, i.e., log([
Pn

t=1 r
2
t ]
1=2) where rt are 5-minutes re-

turns and n is the number of such returns within a day. The construction of the real-

ized volatility series for the SPY is more involved as it uses all tick-by-tick data, obtained

from Asger Lunde and cleaned using the procedure in Barndor¤-Nielsen et al. (2009). It

is based on the modulated realized volatility approach of Podolskij and Vetter (2009a,b)

which accounts for microstructure noise and jumps. The obtained realized volatility se-

ries, say CMRV;t, is given by CMRV;t = log[
q
C2MRV;t] where C

2
MRV;t = MRVt � Jt, with

MRVt = (c1;tc2=�1;t)MBV (2; 0)t � (�2;t=�1;t)!̂2t , MBV (2; 0)t =
PMt

j=1 j�p
(Kt)
t;j j2 and �p

(Kt)
t;j =

(nt=Mt �Kt + 1)
�1Pjnt=Mt�Kt

i=(j�1)n=Mt
(p� t;i+Kt � p� t;i) is the j-th averaged return, � t;i = i=nt (i =

0; � � � ; nt) is the intra-daily time stamp, Kt = c1;tn
1=2
t , and Mt = n

1=2
t =(c1;tc2) for some opti-

mally determined coe¢ cients c1;t, c2, �1;t and �2;t (as de�ned in Podolskij and Vetter, 2009a).

Also, !̂2t is the
p
nt-consistent noise variance estimator !̂

2
t = (2nt)

�1Pnt
i=1(p� t;i � p� t;i�1)2.

The jump component is Jt and its construction follows the method recommended by Podol-

skij and Vetter (2009a).

Table 1 gives summary statistics of those volatility proxies and shows their unconditional

distribution characteristics. The daily series have similar characteristics: mean, standard

deviation and extreme values. The skewness is small in absolute value (from -.58 to .22) and

the kurtosis ranges from 2.42 to 2.94, slightly lower than 3 for the normal distribution. One

exception is the Treasury Bond Futures series, which has a high kurtosis value of 7.47. For

the realized volatility series, the skewness is more positive and the kurtosis somewhat higher

(between 2.72 and 4.70).
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3 The Basic Random Level Shift Model

The basic random level shift model is:

yt = a+ � t + ct (1)

where a is a constant, � t is the random level shift component and ct is a short memory process.

The level shift component is speci�ed by � t = � t�1 + �t, where �t = �t�t. Here, �t follows a

Bernoulli distribution that takes value 1 with probability � and value 0 with probability 1��.
If it takes value 1, then a level shift �t occurs drawn from a N(0; �

2
�) distribution. In general,

the short-memory component can be modelled as ct = C(L)et, with et � i:i:d: N(0; �2e) and
Ejetjr <1 for r > 2. The polynomial C(L) satis�es C(L) =

P1
i=0 ciL

i,
P1

i=0 ijcij <1 and

C(1) 6= 0. As pointed out by Lu and Perron (2010) and also documented in Section 4, once
the level shifts are accounted for, barely any serial correlation remains. Accordingly, we can

simply assume ct to be a white noise process.

The state space representation of this model involves an error term that is a mixture

of two normal distributions. With the normality assumption used to construct the quasi-

likelihood function, the level shift component � t can be represented as a random walk process

with errors following mixed normal distributions, namely

� t = � t�1 + �t

�t = �t�t = �t�1t + (1� �t)�2t

where �it � i:i:d: N(0; �2�i). Specifying �
2
�1 = �2� and �

2
�2 = 0, we recover the level shift

model. To cast the model in state-space form, note that the �rst di¤erences of yt are:

4yt = � t � � t�1 + ct � ct�1 = �t + ct � ct�1

and, for reasons mentioned above, the short-memory component is simply white noise, so

that ct = et. Hence, the state-space representation of the model is

4yt = HXt + �t

Xt = FXt�1 + Ut

where Xt = [ct;ct�1]
0, H = [1;�1],

F =

0@ 0 0

1 0

1A
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and Ut is a normally distributed random vector with mean zero and covariance matrix

Q =

0@ �2e 0

0 0

1A :
3.1 Fitted Level Shifts and Autocorrelation Functions

To provide stylized features of the series considered and motivate our subsequent modelling,

we consider the last 10,000 observations of the S&P500 series (02/25/1972-10/11/2011).

Figure 1 presents a plot of the autocorrelations up to lag 2000, which shows that it displays

a slow decay rate, akin to a long-memory process. To see if this long-memory feature can be

accounted for by level shifts, we follow Lu and Perron (2010) and estimate the basic random

level shift model presented in the previous section in order to extract the �tted level shift

component. The method of estimation is described in Lu and Perron (2010). The estimate

of the jump probability is 0.0029, so that the estimate of the number of jumps is 29.

To obtain the level shift component of the volatility process, we �rst need to estimate

the dates of the shifts and the means within each regime. Since the smoothed estimate of

the level shift component performs poorly in the presence of multiple changes, we use the

point estimate of the jump probability to get an approximation to the number of level shifts

and apply the method of Bai and Perron (2003) to obtain the estimates of the jump dates

and regime-speci�c means as the global minimizers of the following sum of squared residualsPm+1
i=1

PTi
t=Ti�1+1

[yt � �i]
2, wherem is the number of breaks (here 29), Ti (i = 1; :::;m) are the

candidate break dates with the convention that T0 = 0 and Tm+1 = T and �i (i = 1; :::;m+1)

are the means within each regime. Note that since we allow for consecutive level shifts, we

set the minimal length of a segment to just one observation. With the estimates of the break

dates fT̂i; i = 1; :::;mg and the regime-speci�c means fûi; i = 1; :::;m + 1g, the level shift
component is given by

Pm+1
i=1 ûiDUi;t, where DUi;t = 1 if T̂i�1 < t � T̂i and 0, otherwise.

It is plotted in Figure 2 along with a smoothed estimate of the original volatility process

(obtained using a nonparametric �t with a standard Gaussian kernel). As can be seen,

the general tendency of the �tted level shift component follows the major changes in the

volatility process, with a large level shift in both October 1987 and 2008, associated with

major events that a¤ected the stock markets.

To see whether the level shift component can explain the long-memory property of the

volatility process, we present in Figure 3 the sample autocorrelations of the residuals de-

�ned as the di¤erence between the original process and the �tted level shift component. A
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distinctive feature is that now the residuals essentially exhibit no serial correlation even at

small lags. Hence, when the level shifts are accounted for, the long-memory property of

volatility is no longer present. Although the shifts are rare, they account for almost all the

autocorrelations in volatility. As a result, modeling volatility as a short memory process plus

a random level shift component appears indeed an attractive avenue.

3.2 Clustering Jumps and Mean Reversion

A close look at the �tted level shift component reveals that some jumps tend to occur

within a short period of time. Those time periods are often associated with abnormal price

�uctuations, for example �nancial crashes or important macroeconomics or policy news.

There are also few spikes in the level shift process, e.g., 1974-1975, 1987, 1999, 2008-2010.

It is indeed expected that volatility jumps should be clustered during periods of �nancial

crises. This clustering phenomenon is interesting and indicates that the level shifts may not

be i:i:d: as originally modeled with a constant jump probability for all time periods. On

the contrary, the jump probability is likely to change depending on di¤erent circumstances.

For example, when �nancial markets are turbulent, it is more likely for the volatility process

to jump up. Accordingly, we shall model the probability of a shift as a function of some

covariates with the aim at better describing the clustering of jumps.

Another interesting observation is that the jump component seems to follow a mean

reverting process. It is indeed implausible that the volatility will jump in an arbitrary

manner. Upward shifts are often followed by downward shifts, so that a mean-reverting

process is present in the �tted level shift component. Hence, it is highly likely that a proper

modeling of this mean reverting mechanism could lead to improved forecasting performance.

Accordingly, we shall also introduce a mean-reverting component in the model.

4 Extensions of the Random Level Shift Model

As discussed in the previous section, two features that are likely to improve the �t and the

forecasting performance are to allow for changes in the probability of shifts and to model

explicitly the mean-reverting mechanism of the level shift component. In the �rst step,

we specify the jump probability to be pt = f(p; xt�1), where p is a constant and xt�1 are

covariates that would allow to better predict the probability of shifts in volatility, and f is

a function that ensures pt 2 [0; 1]. Note that xt�1 needs to be in the information set at time
t in order for the model to be useful for forecasting. As documented by, e.g., Martens et
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al. (2004), there is a pronounced relationship between current volatility and lagged returns,

sometimes referred to as the leverage e¤ect. A popular way to model this e¤ect is via the

�news impact curve�as suggested by Engle and Ng (1993). This usually takes the form

log(�2t ) = �0 + �1jrt�1j+ �2I(rt�1 < 0) + �3jrt�1jI(rt�1 < 0)

where �2t is a measure of volatility and I(A) is the indicator function of the event A. It is

typically the case that the estimate of �1 is not signi�cant (see, e.g., Martens et al, 2004).

Hence, we shall ignore this term. Also, since our aim is to model changes in the probability

of a shift in volatility and not volatility per se, it is more appropriate to use large negative

returns beyond some threshold a, say, stated in relation to the probability that a return

exceeds a. In our applications we shall consider negative returns that are at the bottom 1%,

2.5% or 5% of the sample distribution of returns. Hence, the functional form adopted is:

f(p; xt�1) = f
�(p+ 
11fxt�1 < 0g+ 
21fxt�1 < 0gjxt�1j) for jxt�1j > a

�(p) otherwise
(2)

where �(:) is a normal cdf function, so that f(p; xt�1) is between 0 and 1, as required.

The second step involves building a mean reverting mechanism to the level shift model.

The motivation for doing so is that we observe evidence that stock volatility does not jump

arbitrarily and that large upward movements tend to be followed by a decrease. This can

be seen in Figure 2, where overall the shift component tends to revert back to some long-

term mean value. This feature can be bene�cial to improve the forecasting performance if

explicitly modeled. The speci�cation we adopt is the following:

�1t = �(� tjt�1 �
_
� t) + e�1t

where e�1t � N(0; �2�), � tjt�1 is the �ltered estimate of the jump component at time t and _� t is
the mean of all the �ltered estimates of the jump component from the beginning of the sample

up to time t. This implies a mean-reverting mechanism provided � < 0, the magnitude of

� dictating the speed of reversion. Note that the speci�cation involves using data only up

to time t in order to be useful for forecasting. Also it will have an impact on forecasts since

being in a high (low) volatility state implies that in future periods volatility will be lower

(higher), and more so as the forecasting horizon increases. Hence, this speci�cation has an

e¤ect on the forecasts of both the sign and size of future jumps in volatility.
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5 Estimation Methodology

The estimation methodology follows Lu and Perron (2010) with appropriate modi�cations.

The main ingredient used is the augmentation of the states by the realizations of the mixture

at time t so that the Kalman �lter can be used to generate the likelihood function, condi-

tional on the realizations of the states. The latent states are then eliminated from the �nal

likelihood function by summing over all possible state realizations.

Let Yt = (�y1;�y2; : : : ;�yt) be the vector of data available up to time t and denote

the vector of parameters by � = [�2�; p; �
2
e; 
1; 
2; �]. The level shift model is fundamentally

di¤erent from the Markov switching models, especially since the number of states is deter-

mined by the data and none of the states need be revisited. Nevertheless, the two models

share similar features when constructing the likelihood function. To illustrate the similari-

ties we adopt the notation in Hamilton (1994), where 1 represents a (4� 1) vector of ones,
the symbol � denotes element-by-element multiplication, b�tjt�1 = vec(e�tjt�1) with the (i; j)th
element of e�tjt�1 being Pr(st�1 = i; st = jjYt�1; �) and !t = vec( e!t) with the (i; j)th element
of e!t being f(4ytjst�1 = i; st = j; Yt�1; �) for i; j 2 f1; 2g: Here st = 1 (resp., 2) when �t = 1
(resp., 0), i.e., a level shift occurs (resp., does not occur). The log likelihood function is

ln(L) =
TX
t=1

ln f(4ytjYt�1; �) (3)

where

f(4ytjYt�1; �) =
2X
i=1

2X
j=1

f(4ytjst�1 = i; st = j; Yt�1; �) Pr(st�1 = i; st = jjYt�1; �) (4)

� 10(b�tjt�1 � !t)
We �rst focus on the evolution of b�tjt�1. Applying rules for conditional probabilities, Bayes�
rule and the independence of st with past realizations, we have

e�ijtjt�1 � Pr(st�1 = i; st = jjYt�1; �) = Pr(st = j) 2X
k=1

Pr(st�2 = k; st�1 = ijYt�1; �) (5)

and

e�kit�1jt�1 � Pr(st�2 = k; st�1 = ijYt�1; �)

=
f(4ytjst�2 = k; st�1 = i; Yt�2; �) Pr(st�2 = k; st�1 = ijYt�1; �)

f(4yt�1jYt�2; �)
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Therefore, the evolution of b�tjt�1 is given by:26666664
e�11t+1jte�21t+1jte�12t+1jte�22t+1jt

37777775 =

26666664
pt+1(e�11tjt + e�21tjt)
pt+1(e�12tjt + e�22tjt)

(1� pt+1)(e�11tjt + e�21tjt)
(1� pt+1)(e�12tjt + e�22tjt)

37777775

=

26666664
pt+1 pt+1 0 0

0 0 pt+1 pt+1

(1� pt+1) (1� pt+1) 0 0

0 0 (1� pt+1) (1� pt+1)

37777775

26666664
e�11tjte�21tjte�12tjte�22tjt

37777775
or more compactly by �̂t+1jt = ��̂tjt with �̂tjt = [�̂tjt�1 � !t]=10(�̂tjt�1 � !t). The conditional
likelihood for 4yt is the following normal density:

e!tij = f(4ytjst�1 = i; st = j; Yt�1; �) = 1p
2�

��f ijt ��� 1
2 exp

(
�v

ij0

t (f
ij
t )

�1vijt
2

)
(6)

where vijt = 4yt �4yitjt�1 is the prediction error and f
ij
t = E(v

ij
t v

ij0
t ) is the prediction error

variance. Note that4yitjt�1 = E[4ytjst�1 = i; Yt�1; �] does not depend on the state j at time
t since we condition on time t� 1 information. However, 4yt does depend on st = j so that
the prediction error and its variance depend on both i and j: The best forecast for the state

variable and its variance conditional on past information and st�1 = i are

X i
tjt�1 = FX i

t�1jt�1 (7)

P itjt�1 = FP it�1jt�1F
0 +Q

The measurement equation is 4yt = HXt + �t, where the measurement error �t has mean
zero and a variance taking two possible values: R1 = �2�; with probability pt, or R2 = 0,

with probability 1 � pt. Hence, the prediction error is vijt = 4yt � HX i
tjt�1with variance

f ijt = HP
i
tjt�1H

0 +Rj. From the updating formulas, we have given st = j and st�1 = i,

X ij
tjt = X i

tjt�1 + P
i
tjt�1H

0(HP itjt�1H
0 +Rj)

�1(4yt �HX i
tjt�1) (8)

P ijtjt = P itjt�1 � P itjt�1H 0(HP itjt�1H
0 +Rj)

�1HP itjt�1

To reduce the dimension of the estimation problem, we adopt the re-collapsing procedure
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suggested by Harrison and Stevens (1976), given by

Xj
tjt =

P2
i=1 Pr(st�1 = i; st = jjYt; �)X

ij
tjt

Pr(st = jjYr; �)
=

P2
i=1
e�ijtjtX ij

tjtP2
i=1
e�ijtjt (9)

P jtjt =

P2
i=1 Pr(st�1 = i; st = jjYt; �)[P

ij
tjt + (X

j
tjt �X

ij
tjt)(X

j
tjt �X

ij
tjt)

0]

Pr(st = jjYr; �)

=

P2
i=1
e�ijtjt[P ijtjt + (Xj

tjt �X
ij
tjt)(X

j
tjt �X

ij
tjt)

0]P2
i=1
e�ijtjt

By doing so, !ijt is una¤ected by the history of states before time t� 1. Some modi�cations
are needed when including the mean reverting mechanism. In equation (6), the prediction

error vijt is originally normally distributed with mean 0 and a variance that depends on the

particular value of the state. But now the modi�ed model becomes:

yt = a+ ct + � t

4yt = � t � � t�1 + ct � ct�1
� t � � t�1 = �t[�(� tjt�1 �

_
� t) + e�1t] + (1� �t)�2t

At time t when �t = 1; we need to subtract the mean reversion term, which is known at

time t and independent from the realization of �t. Accordingly,

e!ijt = f(4ytjst�1 = i; st = j; Yt�1; �) =
1p
2�

��f ijt ��� 1
2 exp

(
�evij0t (f ijt )�1evijt

2

)
(10)

evijt =

8>>>>>><>>>>>>:

v11t � �(� 11tjt�1 �
_
�
11
t )

v12t

v21t � �(� 21tjt�1 �
_
�
21
t )

v22t

9>>>>>>=>>>>>>;
f ijt = E(evijt evij0t ) = HP itjt�1H 0 +Rj

Since yt = a + � t + ct; then � i1tjt�1 = yt � a� citjt�1 = yt � a� [0 1]0 X i1
tjt�1. Note that X

i1
tjt�1

being a state variable it can be updated every time period. Therefore, � i1tjt�1�
_
�
i1
t is known at

time t. Also R1 = �2� with probability pt and R2 = 0 with probability 1� pt. The standard
errors were computed from the numerical Hessian.
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6 Full Sample Estimation Results

We �rst consider full sample estimation results for sub-cases of the general model to highlight

the contributions of each components and compare our results with those of Lu and Perron

(2010). For this part, we consider only the same series as they do, namely S&P 500, Nasdaq,

DJIA and AMEX. We then consider the estimation results of the full model for all series.

6.1 Results for sub-models

We �rst present results from estimating the basic random level shift model using the U.S.

stock indices series in order to compare our results with those of Lu and Perron (2010) who

used a shorter sample. These are reported in Table 2. Note that the jump probability is

quite small, indicating that level shifts are relatively rare events. The point estimates for the

jump probability p imply the following number of shifts for each series: 65 for S&P 500, 32

for Nasdaq, 28 for DJIA and 29 for AMEX. Since our S&P 500 data covers a longer period,

our point estimate of the number of jumps is also higher. This is especially the case since

our sample further includes the period 2008 to 2011, a time during which stock markets

went through a turbulent period induced by the �nancial crisis in 2008. Hence, it is not

surprising, indeed expected, that level shifts happen more often with this extended sample.

The standard error of the short memory component remains the same, while the standard

error of the jump variable is smaller compared to the results in Lu and Perron (2010).

In Table 3, we report the estimation results when incorporating a time varying probability

into the RLS model. For each series, we consider three di¤erent threshold levels to assess

the robustness of the results. The threshold level adopted is the value a such that, say, x%

of the returns are below a with x = 1; 2:5 and 5. The results show that the estimates of both


1 and 
2 are positive. Since we use absolute values of negative returns in the speci�cation,

a positive 
2 is consistent with the evidence that large negative returns are associated with

higher volatility, in our case via a higher probability of a shift occurring. Furthermore, the

positive estimate of 
1 is consistent with the so-called �the news impact�e¤ect. Note that

the estimate of p is negative since we use a normal cdf functional form for pt. As the threshold

level decreases, we �nd that 
1 increases but 
2 decreases. However, the standard error of


1 increases while that of 
2 decreases, so that 
2 becomes more signi�cant and 
1 becomes

less signi�cant as the threshold level decreases; see, in particular the results for the Nasdaq

series. These results show that extreme bad news do indeed have a signi�cant e¤ect on the

jump probability. Note that for the AMEX series with a threshold value of 5% or 2.5%, the
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estimates of 
1 and 
2 are negative, though both are insigni�cant with large standard errors.

This may be due to the relatively smaller sample size available for the AMEX series. Figure

4 presents the smoothed estimates of the level shift component for the three threshold values

for the case of the S&P 500 index. What transpires from the results is that they are very

similar and all equally good in matching the smoothed estimate of the volatility process.

Hence, in what follows we shall present results only for the case of a 1% trimming. The same

features apply to the other U.S. stock market indices.

The estimation results obtained when adding only a mean reversion component in the

jump process are presented in Table 4. As a �rst step, we do not include the time varying

probabilities in order to assess separately the e¤ect of mean reversion. In all four cases, the

estimate of � is signi�cantly negative, indicating that mean reversion is indeed present in the

jump process. Note also that by adding a mean-reverting component, the estimate of the

probability of shifts increases compared to that in the basic random level shift model. Also,

the standard error of the jump variable is much smaller. This is due to the fact that the

mean reversion part accounts for a large amount of the total variation of the jump process,

leaving less to be accounted for by the jump variable itself. Figure 5 presents the smoothed

estimate of the level shift component � tjT , together with the volatility process for the case

of the S&P 500. Compared to the smoothed estimate of the level shift component for the

basic RLS model it contains more short-term variability, which explains why jumps in the

RLS model with mean reversion are estimated to occur more frequently.

6.2 Results for the full model

Table 5 presents the estimates of the modi�ed RLS model combining both time varying

probabilities and mean reversion, using a threshold value of 1% for the full set of 12 series

considered 4. First, in all cases the estimate of � is signi�cantly negative, indicating the

presence of a mean-reverting property for the level shift component for all series. In the case

of the S&P 500, Nasdaq, DJIA and AMEX series, the estimates are similar to those obtained

without allowing for time variation in the probability of shifts, showing some robustness

to our �ndings. The estimate of 
2, pertaining to the component 1fxt�1 < 0gjxt�1j in
the speci�cation of the functional form for the time-varying probabilities, is signi�cantly

4For the realized volatility series of the SPY and S&P 500 Futures, only the absolute value of the daily
returns was available to us. Hence, for these two series we used extreme absolute values of past returns
instead of extreme negative returns to forecast the probability of shifts. This should not a¤ect the results
given that we use the extreme 1% of the distribution of returns and very large negative returns are more
common than very large positive returns.
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positive, except for the AMEX index, the T-Bond and DTWEXM, though for the latter

two the values are very small. On the other hand, the estimates of 
1, pertaining to the

component 1fxt�1 < 0g are not signi�cant, except for DJIA, IBM and T-Bond (for Nikkei

225, it is signi�cant but very small). Hence, in the forecasting experiment reported below,

we shall omit this component.

The following results were obtained for the case of the S&P 500 series; similar results

apply to the other series and are therefore not reported. Figure 5 presents the smoothed

estimates of the volatility and of the level shift component for the four versions of the random

level shift model: the basic one, with time-varying probabilities only, with mean reversion

only and with time varying probabilities and mean reversion. Note that the smoothed

estimate of the level shift component is similar across all models and follows closely the

smoothed estimate of the volatility, indicating a good in-sample �t. But as we shall see, even

though the models have similar in-sample �t, the out-of-sample �t is not the same with the

model incorporating time-varying probabilities and mean reversion performing best. Figure

6 presents the autocorrelation function of the di¤erence between the volatility process and

the smoothed level shift component with both time-varying probabilities and mean reversion.

It clearly shows that the remaining noise is uncorrelated, thereby justifying the speci�cation

of the nature of the short-memory component and re-enforcing the conclusion that once level

shifts are taken into account the long-memory feature is no longer present.

7 Forecasting

We �rst discuss how to construct out-of-sample forecasts for the random level shift model,

assuming the short memory process to be just white noise. According to Varneskov and

Perron (2013), the � -step ahead forecasts of the basic random level shift model is given by

ŷt+� jt = yt +HF
� [

2X
i=1

2X
j=1

Pr(st+1 = j) Pr(st = ijYt)X ij
tjt]

where Et(yt+� ) = ŷt+� jt is the forecast of volatility at time t+� ; conditional on information at

time t. With our modi�ed RLS model, this forecasting formula still holds with appropriate

modi�cations for X ij
tjt and Pr(st+1 = j); see Section 5.

We compare the forecasting performance of our model with eight other models: 1)

the original RLS model; 2) the popular ARFIMA(1,d,1); 3) the ARFIMA(0,d,0); 4) the

GARCH(1,1) (Bollerslev, 1986); 5) the FIGARCH(1,1) (Baillie et al., 1996); 6) a two-state
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Markov regime switching model (Hamilton, 1994) de�ned by 5 yt = �St + "t where St = 1; 2

and "t � i:i:d: N(0; �2St) with an unconstrained transition matrix P ; 7) the HAR model

(Corsi, 2009, Chiriac and Voev, 2011):

z
(d)
t+1 = �+ �1z

(d)
t + �2z

(w)
t + �3z

(bw)
t + �4z

(m)
t + "

(d)
t

where d, w, bw and m stand for a daily, weekly (5 days), biweekly (10 days), and monthly

(22 days) sampling frequency, respectively, � is a constant and "(d)t � i:i:d:N(0; �2"). The

regressors on the right hand side are constructed as averages of past values, e.g., z(w)t =

(1=5)
P4

i=0 zt�i; 8) Multiple-Regime Smooth Transition Heterogeneous Autoregressive (HARST)

model (McAleer & Medeiros, 2008) 6. Let yt;h = (yt+yt�1+���+yt�h+1)=h; and � = (�1; :::; �p)0

be a set of indices where �1 < � � � < �p; and xt = (1; yt�1;�1 ; :::; yt�1;�p)0. A time series fytgTt=1
follows a HARST model with M + 1 limiting regimes if

yt = �
0
0xt +

MX
m=1

�0mxtf(zt; 
m; cm) + "t

where f(zt; 
m; cm) = [1 + exp(�
m(zt� cm))]�1 is the logistic function and zt is a covariate
that a¤ects the transitions. Here, we use xt = (1; yt�1; yt�1;5; yt�1;22) and zt = rt�1. The

value of M is selected according to a sequential testing procedure as described in McAleer

and Madeiros (2008, Section 4).

We use the following forecasting horizons: � = 1; 5; 10; 20; 50 and 100. For the multi-step

forecasts, we use the indirect or iterative method for all eight competing models. The mean

square forecast error (MSFE) criterion, analyzed by Hansen & Lunde (2006) and Patton

(2011), is:

MSFE�;i =
1

Tout

ToutX
t=1

(
_
�
2
t;� �

_
yt+�;ijt)

2

where Tout is the number of forecasts,
_
�
2
t;� =

P�
s=1 yt+s; and

_
yt+�;ijt =

P�
s=1 ŷt+s;ijt, with i

indexing the model. The relative performance of the models is assessed using the relative

MSFEs, which provides a consistent ranking. For the realized volatility series, we do not

include the GARCH(1,1) and FIGARCH(1,1) models as these are estimated from returns

series.

The forecasting experiment is as follows. We keep the last 1500 observations as the out-of-

sample period to be forecasted. The reasons for considering this period is that it contains very
5For the estimation, we used the Matlab codes based on MS_Regress, the MATLAB Package for Markov

Regime Switching Models by Marcelo Perlin.
6We used the code for estimation available on Marcelo Medeiros�website.
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di¤erent episodes of calm and turbulent periods, mostly as the result of the �nancial crisis in

2008. Hence, it is ideally suited as a particularly di¢ cult period to forecast volatility. Given

that estimating the RLS and RLS-modi�ed models is quite time consuming, we opted for a

�xed pre-forecast window whereby we estimate these two models once without the last 1500

observations. The forecasts are then made conditional on the parameter estimates obtained.

For the other models, we re-estimated them every period in order to make the results as

strong as possible. It is indeed the case that many models can adapt to changing structures

and provide better forecasts when estimated using all available observations. This was indeed

the case here. For the competing models, we tried three forecasting schemes: �xed (as for the

RLS and RLS-modi�ed), recursive and a 4-years rolling window. For all models, except the

GARCH(1,1), the recursive scheme provided the best forecast. The forecasts obtained using

the rolling window were noticeably inferior. These results concur with those of Brownlees et

al. (2012). In any event, the qualitative conclusions remained unchanged irrespective of the

forecasting scheme used for the competing models. For example, when using the �xed scheme

for all models, one can then compare their relative forecasting performance using the Model

Con�dence Set of Hansen et al. (2011). The results showed that our modi�ed RLS belong to

the 10%MCS using all comparisons for all assets and all forecast horizons. It also yielded the

smallest MSFE in 67 of 72 cases. Since we re-estimate the competing models every period

for the competing models, we cannot use the MCS of Hansen et al. (2012). Hence, we

simply report the MSFE and compare the various models using this criterion. Accordingly,

the results should be viewed as providing a lower bound on the relative advantage of our

modi�ed RLS model.

The results are presented in Table 6. The most striking feature is that the smallest

MSFE values are obtained with the modi�ed random level shift model in 64 out of the 72

cases. The cases for which our modi�ed RLS does not have the smallest MSFE are: 1) the

T-Bond at forecast horizons 5 and 10 days, the DTWEXM at horizon 1 day, the RV-S&P

500 at horizon 5 days and the SPY at horizon 1 day, in which cases the basic RLS model

performs best; 2) the Nasdaq at horizon 100 days and the RV-S&P 500 at horizons 50 and

100 days, in which case the HAR performs best. In these eight cases, the RLS-modi�ed is a

close second best.

Amongst the non-RLS models, the HAR performs best in 62 out of 72 cases, the HARST

in 8 and the ARFIMA(1,d,1) in 2. For the daily series, the worst performing models are the

GARCH(1,1) in 25 out of 54 cases and the FIGARCH in 29 cases. For the realized volatility

series, the worst performing models are the ARFIMA(1,d,1) in 14 cases, the HARST in 2
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cases and the Regime-Switching in 2 cases. Hence, a useful benchmark to assess the im-

provement in forecasting performance is to compare the relative MSFE of the RLS-modi�ed

and the HAR. For medium term forecasting horizons (5 to 20 days ahead), the MSFEs of the

modi�ed RLS is between 67% and 98% of those of the HAR models. This is strong evidence

that the RLS-modi�ed model provides substantial improvements in forecast accuracy over

a range of competing models. It does so for a wide variety of assets and a wide range of

forecast horizons. It also provides substantial improvements over the original RLS model,

which in turn outperforms all other models by a considerable margin, and more so as the

forecast horizon increases.

8 Conclusion

With the aim of improving the forecasting performance of the random level shift model of

Lu and Perron (2010), we proposed two modi�cations. The �rst is a structure to allow a

time-varying probability of shifts. We modelled the probability of a shift as a function of

the occurrence and magnitude of large negative lagged returns. The second modi�cation

is to incorporate a mean reverting mechanism so that the sign and magnitude of the jump

component changes according to the deviations of past jumps from their long run mean.

Apart from being a device that allows a better in-sample description, its advantage is that

the sign and magnitude of the jumps can be predicted to some extent. The full sample

estimates reveal interesting features useful to understand the behavior of various volatility

series. More importantly, the extended model allows much improved forecasts of volatility

when applied to a variety of assets. Hence, our results provide additional evidence that

random level shift models are serious contenders to model volatility and outperform the

popular class of standard long-memory models such as the commonly used ARFIMA model.
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Table 1: Summary Statistics of the Volatility Series 

 

 

 

 

 

 

 

 

Table 2: Maximum Likelihood Estimates of the Basic RLS Model 
 ση p σe 

S&P 500 0.49* 0.0042* 0.74* 

 (0.09) (0.002) (0.004) 

Nasdaq 0.66* 0.0031 0.75* 

 (0.23) (0.002) (0.005) 

DJIA 0.84* 0.0018 0.74* 

 (0.20) (0.001) (0.004) 

AMEX 0.54* 0.0071 0.73* 

 (0.16) (0.004) (0.008) 

 

 

 

Series Mean SD Max Min Skew Kur Period 
Number of 

Observations 

percentages 

of zero 

returns 

S&P 500 -5.21 0.81 -1.47 -6.91 0.04 2.57 01/05/1950-10/11/2011 15543 0.8% 

Nasdaq -5.06 0.87 -2.01 -6.91 0.10 2.63 02/09/1971-06/18/2012 10434 0.35% 

DJIA -5.19 0.80 -1.36 -6.91 -0.01 2.58 01/03/1950-06/15/2012 15752 0.64% 

AMEX -5.09 0.80 -2.07 -6.91 0.03 2.80 01/03/1996-06/18/2012 4137 0.12% 

Nikkei 225 -5.03 0.86 -1.82 -6.91 -0.05 2.55 05/18/1949-08/12/2013 16000 0.58% 

IBM -4.73 0.90 -1.34 -6.91 -0.34 2.89 01/06/1970-06/05/2007 9444 3.24% 

Oil -4.41 0.97 -0.90 -6.91 -0.38 2.94 01/06/1986-08/06/2013 6960 1.78% 

T-bond -1.82  1.38  1.30  -6.91  -1.80  7.47  01/05/1983-06/11/2009 6639 3.8% 

DTWEXM -5.72 0.65 -2.89 -6.91 0.22 2.42 01/04/1973-08/16/2013 10180 0.04% 

RV T-bond -2.16  0.81  1.83  -6.32  0.45  3.69  01/05/1983-06/11/2009 6639 0.00% 

RV S&P500 -0.56  0.87  6.41  -5.63  0.52  4.70  04/22/1982-03/02/2007 6261 0.00% 

SPY -0.34  0.47  1.44  -1.89  0.10  2.72  01/03/1997-07/02/2008 2913 0.00% 



Table 3: Maximum Likelihood Estimates of the RLS Model with Time Varying Probability 

Panel A: S&P 500 

Threshold ση p σe γ₁ γ₂ 

5% 0.27* -2.60* 0.74* 1.74* 0.76* 

 
(0.08) (0.56) (0.00) (0.49) (0.23) 

      
2.5% 0.24* -2.40* 0.74* 2.43 0.20* 

 
(0.07) (0.54) (0.00) (1.37) (0.03) 

      
1% 0.36* -2.57* 0.74* 2.27 0.12* 

 
(0.15) (0.66) (0.00) (1.48) (0.02) 

Panel B: Nasdaq 

 
ση p σe γ₁ γ₂ 

5% 
 

0.56* -2.79* 0.75* 1.02* 0.78* 

  
(0.10) (0.36) (0.01) (0.21) (0.32) 

       
2.5% 

 
0.49* -2.72* 0.75* 1.50* 0.52* 

  
(0.12) (0.43) (0.01) (0.45) (0.16) 

       
1% 

 
0.43* -2.59* 0.75* 2.08 0.35* 

  
(0.11) (0.48) (0.01) (1.10) (0.08) 

Panel C: DJIA 

 
ση P σe γ₁ γ₂ 

5% 0.38* -2.97* 0.74* 1.76* 0.10* 

 (0.13) (0.49) (0.00) (0.66) (0.01) 

      

2.5% 0.39* -2.78* 0.74* 1.90* 0.95 

 
(0.09) (0.38) (0.00) (0.51) (0.61) 

      
1% 0.48* -2.82* 0.74* 2.33* 0.10* 

 
(0.10) (0.35) (0.00) (0.74) (0.01) 

Panel D: AMEX 

 
ση p σe γ₁ γ₂ 

5% 0.15* -1.71* 0.73* 5.06 -4.97 

 
(0.03) (0.55) (0.01) (47.73) (32.49) 

      

2.5% 0.58* -2.50* 0.73* -1.44 0.58 

 
(0.17) (0.50) (0.01) (3.72) (0.46) 

      
1% 0.62* -2.60* 0.73* 2.31 0.30 

 
(0.26) (0.62) (0.01) (1.60) (0.24) 

 

 



Table 4: Maximum Likelihood Estimates of the RLS Model with Mean Reversion 

 

 

 

 

 

 

 

Table 5: Maximum Likelihood Estimates of RLS Model with Time Varying Probability of Shifts 

and Mean Reversion 
 ση p σe γ₁ γ₂ β 

S&P 500 
0.004 -1.46* 0.74* -2.32 0.67* -0.12* 

(0.01) (0.21) (0.00) (2.34) (0.16) (0.002) 

Nasdaq 
0.07 -1.88* 0.75* -2.02 0.31* -0.19* 

(0.13) (0.36) (0.01) (1.54) (0.09) (0.01) 

DJIA 
0.004 -2.41* 0.74* 1.80* 0.65* -0.27* 

(0.01) (0.47) (0.00) (0.41) (0.18) (0.02) 

AMEX 
0.0008 -1.12* 0.72* -4.09 -0.15 -0.14* 

(0.01) (0.29) (0.01) (23.87) (0.47) (0.004) 

Nikkei 225 
0.10* -1.74* 0.77* 0.01* 0.72* -0.19* 

(0.04) (0.28) (0.00) (0.00) (0.14) (0.01) 

IBM 
0.04 -2.15* 0.85* 0.70* 0.31* -0.15* 

(0.05) (0.73) (0.01) (0.26) (0.05) (0.01) 

Oil 
0.09* -1.37* 0.91* 0.31 0.23* -0.07* 

(0.03) (0.05) (0.01) (0.46) (0.04) (0.00) 

T-bond 
0.57* -2.84* 1.35* -0.41* -0.03* -0.21* 

(0.09) (0.38) (0.01) (0.14) (0.00) (0.01) 

DTWEXM 
0.06* -1.47* 0.60* -1.98 -0.001* -0.08* 

(0.02) (0.28) (0.00) (3.07) (0.00) (0.00) 

RV T-bond 
0.30*  -1.57*  0.57*  -1.99   0.01*  -0.22*  

(0.04)  (0.19)  (0.01)  5.74  (0.00)  (0.01)  

RV S&P500 
0.64* -1.45* 0.40* 0.30 0.52* -0.16* 

(0.05) (0.11) (0.01) (0.22) (0.04) (0.00) 

SPY 
0.15* -0.39* 0.20* 0.17 0.59 -0.18* 

(0.02) (0.14) (0.01) (2.36) (0.49) (0.01) 

 

 

 ση p σe β 

S&P 500 0.003 0.05* 0.74* -0.13* 

 (0.01) (0.02) (0.004) (0.003) 

Nasdaq 0.098 0.02* 0.75* -0.20* 

 (0.08) (0.01) (0.005) (0.010) 

DJIA 0.001 0.06* 0.74* -0.12* 

 (0.003) (0.02) (0.004) (0.002) 

AMEX 0.001 0.10* 0.72* -0.16* 

 (0.02) (0.04) (0.008) (0.005) 



Table 6: Out-of-Sample Forecast Comparisons based on Mean Square Forecast Errors 

   

S&P 500 

   

 

1_step 5_step 10_step 20_step 50_step 100_step 

RLS_modified 0.673* 3.95* 11.1* 37* 222* 1028* 

RLS 0.679 4.11 11.8 40 242 1141 

ARFIMA(1,d,1) 0.851 8.34 27.8 98 516 1811 

ARFIMA(0,d,0) 0.869 8.78 29.6 105 562 2008 

Regime Switching 0.810 7.40 24.3 86 465 1715 

HAR 0.686 4.41 13.1 46 301 1407 

HARST 0.683 4.21 12.5 51 418 1666 

GARCH(1,1) 1.015 12.75 46.5 180 1135 4771 

FIGARCH(1,1) 0.977 11.90 44.0 109 585 2283 

 
  

Nasdaq 
   

 

1_step 5_step 10_step 20_step 50_step 100_step 

RLS_modified 0.741* 4.20* 11.5* 38.0* 230* 1200 

RLS 0.742 4.23 11.6 38.4 234 1220 

ARFIMA(1,d,1) 0.858 7.13 22.5 76.0 385 1285 

ARFIMA(0,d,0) 0.881 7.70 24.7 85.1 441 1503 

Regime Switching 0.827 6.37 19.5 64.3 337 1292 

HAR 0.746 4.47 12.7 42.6 236 1072* 

HARST 0.755 4.56 13.2 49.4 361 1363 

GARCH(1,1) 1.037 11.90 43.0 169.0 1116 5191 

FIGARCH(1,1) 1.017 11.59 42.2 166.3 1063 4472 

 
  

DJIA 
   

 

1_step 5_step 10_step 20_step 50_step 100_step 

RLS_modified 0.696* 4.20* 12.1* 42* 271* 1310* 

RLS 0.706 4.49 13.3 47 311 1497 

ARFIMA(1,d,1) 0.875 8.58 28.7 101 533 1768 

ARFIMA(0,d,0) 0.889 8.95 30.2 107 570 1917 

Regime Switching 0.815 7.17 23.5 83 470 1700 

HAR 0.707 4.59 13.7 48 324 1420 

HARST 0.708 4.61 15.0 68 608 2545 

GARCH(1,1) 1.022 12.50 45.4 175 1102 4428 

FIGARCH(1,1) 1.016 12.51 46.5 185 1221 5051 

 
  

AMEX 
   

 

1_step 5_step 10_step 20_step 50_step 100_step 

RLS_modified 0.6333* 3.95* 10.9* 36* 199* 937* 

RLS 0.6334 3.96 11.1 37 219 1113 

ARFIMA(1,d,1) 0.7321 6.32 19.5 65 321 1060 

ARFIMA(0,d,0) 0.7499 6.76 21.3 72 365 1240 

Regime Switching 0.8089 8.11 26.3 90 475 1736 

HAR 0.6448 4.33 12.7 44 287 1305 

HARST 0.6374 4.47 14.6 59 440 1795 

GARCH(1,1) 0.8537 9.54 33.0 119 662 2486 

FIGARCH(1,1) 0.8618 10.06 36.1 140 869 3540 

 

Note: A * indicates the smallest Mean Squared Forecast Error across models for a given forecast horizon. 

 



Table 6 (cont’d): Out-of-Sample Forecast Comparisons based on Mean Square Forecast Errors 

   

Nikkei 225 

  

 

1_step 5_step 10_step 20_step 50_step 100_step 

RLS_modified 0.753*  4.56*  12.6*  39*  232*  1023*  

RLS 0.756  4.70  13.4  43  269  1172  

ARFIMA(1,d,1) 0.857  7.10  21.8  70  348  1137  

ARFIMA(0,d,0) 0.888  7.88  24.9  83  428  1475  

Regime Switching 0.829  6.38  19.0  61  328  1348  

HAR 0.758  4.93  14.2  46  290  1336  

HARST 0.868  5.76  17.0  56  879  1687  

GARCH(1,1) 1.059  12.27  44.0  168  1115  4768  

FIGARCH(1,1) 1.014  11.57  41.5  158  981  3771  

 
  

IBM 
   

 

1_step 5_step 10_step 20_step 50_step 100_step 

RLS_modified 0.659*  3.80*  9.5*  23.7*  102*  417*  

RLS 0.659*  3.81  9.6  24.0  108  466  

ARFIMA(1,d,1) 0.830  7.99  26.0  87.9  464  1604  

ARFIMA(0,d,0) 0.807  7.43  23.7  79.3  417  1449  

Regime Switching 0.774  6.62  20.6  67.3  360  1339  

HAR 0.678  4.34  12.0  35.5  210  950  

HARST 0.676  4.49  14.2  56.5  381  1350  

GARCH(1,1) 1.043  13.53  48.8  186.8  1224  5454  

FIGARCH(1,1) 1.087  15.06  56.2  220.8  1469  6418  

 
  

Oil 
   

 

1_step 5_step 10_step 20_step 50_step 100_step 

RLS_modified 0.811*  4.94*  11.3*  29*  149*  673*  

RLS 0.812  4.97  11.4  30  161  761  

ARFIMA(1,d,1) 0.944  8.18  24.1  80  428  1583  

ARFIMA(0,d,0) 0.921  7.60  21.8  70  367  1324  

Regime Switching 0.919  7.55  21.5  69  361  1307  

HAR 0.826  5.24  12.5  36  211  937  

HARST 0.820  5.26  13.3  44  289  1158  

GARCH(1,1) 1.197  14.70  51.3  197  1298  5819  

FIGARCH(1,1) 1.218  15.68  56.5  225  1615  8505  

 
  

T-Bond 
   

 

1_step 5_step 10_step 20_step 50_step 100_step 

RLS_modified 1.309*  6.86  13.74  30.8*  143*  517*  

RLS 1.309*  6.84*  13.71*  31.0  145  536  

ARFIMA(1,d,1) 1.364  8.20  19.33  54.0  274  954  

ARFIMA(0,d,0) 1.366  8.26  19.55  55.0  280  990  

Regime Switching 1.369  8.35  19.93  56.5  292  1048  

HAR 1.327  7.13  14.85  38.0  219  884  

HARST 1.325  7.33  16.03  43.5  268  1036  

GARCH(1,1) 1.850  20.52  69.63  262.2  1679  7151  

FIGARCH(1,1) 1.857  20.59  69.66  262.8  1692  7200  

 

 

 



Table 6 (cont’d): Out-of-Sample Forecast Comparisons based on Mean Square Forecast Errors 
       

 
 

 DTWEXM 
   

 

1_step 5_step 10_step 20_step 50_step 100_step 

RLS_modified 0.4531  2.258*  4.98*  14.2*  75*  317*  

RLS 0.4529*  2.264  5.04  14.4  77  324  

ARFIMA(1,d,1) 0.5033  3.563  10.19  33.7  176  618  

ARFIMA(0,d,0) 0.5041  3.581  10.26  33.9  178  620  

Regime Switching 0.4901  3.256  9.02  29.5  159  599  

HAR 0.4574  2.351  5.59  17.1  104  470  

HARST 0.4579  2.407  6.01  23.5  190  722  

GARCH(1,1) 0.6442  7.165  25.03  97.4  644  2855  

FIGARCH(1,1) 0.6283  6.643  22.52  83.9  513  2161  

 
  

RV T-bond 
  

 

1_step 5_step 10_step 20_step 50_step 100_step 

RLS_modified 0.389*  2.83*  8.3*  29.9*  203*  1012*  

RLS 0.391  2.86  8.4  30.4  214  1103  

ARFIMA(1,d,1) 0.930  16.19  61.0  235.6  1418  5455  

ARFIMA(0,d,0) 0.829  13.64  50.9  195.2  1169  4464  

Regime Switching 0.748  11.67  43.2  168.0  1064  4370  

HAR 0.403  3.14  9.6  37.4  319  1935  

HARST 0.397  4.25  20.7  109.7  898  3694  

 
  

RV SP500 
   

 

1_step 5_step 10_step 20_step 50_step 100_step 

RLS_modified 0.197*  3.14  12.95*  59*  481  2266  

RLS 0.198  3.12*  13.05  60  496  2349  

ARFIMA(1,d,1) 1.074  23.86  92.16  353  2046  7549  

ARFIMA(0,d,0) 1.035  22.90  88.36  338  1957  7224  

Regime Switching 0.431  8.00  30.13  119  816  3740  

HAR 0.242  3.70  14.16  60  439*  2126*  

HARST 0.242  5.86  34.26  186  2737  90535  

 
  

RV SPY 
   

 

1_step 5_step 10_step 20_step 50_step 100_step 

RLS_modified 0.044  0.80*  3.5*  17*  132*  632*  

RLS 0.043*  0.81  3.6  18  142  689  

ARFIMA(1,d,1) 0.242  5.39  20.7  79  444  1613  

ARFIMA(0,d,0) 0.241  5.38  20.7  79  443  1609  

Regime Switching 0.189  4.26  17.1  70  484  2149  

HAR 0.060  1.09  4.5  21  169  968  

HARST 0.065  1.68  9.0  46  346  1496  

 

 

 

 



Figure 1: Full Sample autocorrelations; S&P 500
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Figure 2: Fitted level shifts and volatility; S&P 500
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Figure 3: Sample autocorrelations of S&P 500 residuals
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Figure 4: Smoothed �lter of the level shift components for di¤erent
thresholds; S&P 500
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Figure 5: S&P Smoothed �lter of the level shift components for di¤erent
models
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Figure 6: Autocorrelation function of the residuals from the modi�ed RLS
with both mean reversion and changing probability; S&P 500
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