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Abstract

An ever growing body of evidence regarding observed changes in the climate system has been
gathered over the last three decades and large modeling efforts have been carried to explore
how climate may evolve during the present century (IPCC, 2001; 2007a). The impacts from
both observed weather and climate endured during the 20th century and the magnitude of the
potential future impacts of climate change have made this phenomenon of high interest for
policy-makers and the society at large (IPCC, 2007b). Two fundamental questions arise for
understanding the nature of this problem and the appropriate strategies to address it: is there
a long-term warming signal in the observed climate, or is it the product of natural variability
alone? if so, how much of this warming signal can be attributed to anthropogenic activities? As
discussed in this review, these questions are intrinsically related to the study of the time-series
properties of climate and radiative forcing variables and of the existence of common features such
as secular co-movements. This paper presents a brief summary of how detection and attribution
studies have evolved in the climate change literature and an overview of the time series and
econometric methods that have been applied for these purposes.
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1 A brief review of time series based detection and attribution of climate change.

We first review work related to the detection and attribution of climate change based on time series

techniques. We start with early studies related to the statistical properties of temperatures. We

then review the work using cointegration techniques assuming temperatures and forcing variables

to be unit root processes. Finally, we cover recent work arguing that the series of interest are

better described as stationary fluctuations around a trend function with changes in slope. In such

cases, attribution consists in establishing the existence of a common non-linear trend between

temperatures and radiative forcings. All technical concepts are presented in subsequent sections.

1.1 Early studies on the detection and attribution of climate change.

Since the late 1970 different research groups have published different estimates of global and hemi-

spheric temperatures based on the available observational data. Large improvements in information

recovery and processing/analysis techniques have occurred in the last decades, leading to longer

temperature records based on more accurate estimates and to a better assessment of their uncertain-

ties (e.g., Hansen et al., 2010; Morice et al., 2012; IPCC, 2007a). These efforts have permitted the

analysis of observed global warming through econometric methods that is reviewed here. Two main

types of stochastic processes have been proposed to represent global temperature series: difference-

stationary and trend-stationary. In earlier studies of the time-series properties of observed global

temperatures, the presence of a deterministic trend was interpreted as evidence for a long-term,

human-induced, global warming process. In contrast, under a stochastic trend, the recent warming

trend was interpreted as a manifestation of the low-frequency variability and high persistence of

climate, indicating that it is temporal and should not be expected to continue in the long-term. In

this case, no human interference with the climate system had occurred and no mitigation strategies

to avoid further changes are justified. Some recent publications continue to propose this interpre-

tation (Mills, 2010a,b). For instance, based on standard Augmented Dickey-Fuller (ADF) test,

Galbraith and Green (1992) found evidence in favor of global temperature series being a trend-

stationary process with a positive slope. Their main conclusions supported the idea of a lasting

global warming process. In the same vein, Bloomfield (1992) concluded that statistical models

consisting of a trend plus serially correlated noise may be fitted to temperature data and estimated

a constant growth rate ranging from .2 to .8 degree Celsius per century, providing evidence for the

presence of global warming during the last century. Zheng and Basher (1999) reported evidence

reinforcing the view that global temperatures are affected by a long-term warming that is not of

natural origin or at least that the existence of a linear trend cannot be ruled out.
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In contrast, some argued that temperature data are better described by ARIMA (integrated

autoregressive model average) models, e.g., Woodward and Gray (1993). Their conclusions gave

support to the hypothesis that the upward trend in temperature was the product of random fluc-

tuations and that no global warming was in effect. Moreover, Woodward and Gray (1995) fitted

an ARIMA model to three different reconstructions of global temperature series, concluding that

the series are better modeled as integrated processes, although a deterministic trend could also

be present. Further evidence was provided by Kärner (1996) who argued that a unit root process

could explain the trends and the variability of temperatures over the last century. Short-term trends

are inevitable and may have little in common with increasing CO2 concentrations. Such findings

increased the support in favor of the unpredictability and randomness of temperature patterns.

To a lesser extent, fractionally integration has also been advanced as a possible representation

of the data generating process of global and hemispheric temperature series (Gil-Alana, 2008a,b;

Rea et al., 2011; Mann, 2011; Qu, 2011). Nevertheless, it is important to note that the use of

fractionally integrated models have been limited to the detection of climate change and the notion

of fractional cointegration has not yet been applied to investigate the attribution of climate change.

1.2 Cointegration approach: testing for a common stochastic trend.

In light of such results, the Intergovernmental Panel on Climate Change (IPCC; Folland et al., 1992)

concluded that present statistical tests were not able to resolve the question of statistically signif-

icant relationships given the differences in the time-series properties of possibly trend-stationary

temperature series and the concentrations of greenhouse gases series assumed to be integrated

processes. This gave rise to a second stage in the time series analysis of global and hemispheric

temperatures, in which efforts concentrated on the issue of the attribution of climate change. The

application of cointegration techniques to global and hemispheric temperature series and to radia-

tive forcing variables provided a breakthrough on this issue (Richards, 1993; Tol and de Vos, 1993;

Tol, 1994; Stern and Kaufmann 1997a,b). These papers changed the view of how a stochastic trend

in temperature series should be interpreted. The presence of a unit root was no longer seen as

evidence against anthropogenic global warming, but rather as confirmation that mean global tem-

peratures were driven by anthropogenic forcing. According to Stern and Kaufmann (1997b) the

evidence of cointegration provided statistically rigorous and direct attribution of climate change to

anthropogenic activity. Furthermore, it provided an alternative method for estimating the climate

sensitivity (i.e., the amount of warming expected as a result of a doubling of the atmospheric carbon

dioxide concentrations; see Skinner, 2012) from observed data.

The use of cointegration techniques seemed to have ended the debate on the data generating
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process of global and hemispheric temperatures and on the statistical approach to estimate their

relationship with forcing variables. Therefore, this representation became widely accepted in the

climate change literature and has been used also to model the long-run relationships of different

climate variables, e.g., global temperatures and sea level (Schmidth et al., 2012). Nevertheless, the

problem of identifying the order of integration of temperature and radiative forcing variables was not

solved. This lead to publications arguing different orders of integration without following adequate

procedures: 1) according to unit root tests, temperatures were trend stationary processes [I(0)] but

it was concluded that they must be integrated of order one [I(1)] because a cointegration relationship

between them and radiative forcing (identified as I(1)) could be found (Stern and Kauffman, 1997a);

2) temperatures are I(1) based on evidence of a standard ADF unit root test applied to a longer

sample which includes more recent records of global temperature values (Kaufmann et al., 2006a,b);

3) temperatures are integrated of order two [I(2)], meaning that they are characterized by having two

independent stochastic trends (Stern and Kauffman, 1997b). Some authors have applied the concept

of polynomial cointegration 1, leading to opposing conclusions regarding the role of anthropogenic

forcing in the observed warming (Beenstock et al., 2012; Liu and Rodriguez, 2005) and questioning

the validity of previous results found within the cointegration framework assuming I(1) processes.

Not being able to identify the order of integration of a time series has strong implications for

cointegration analysis. In this case, cointegration techniques are not reliable (e.g., Gonzalo and Lee,

1998; Elliot, 1998; Leybourne and Newbold, 2003). It has been shown in the econometric literature

that cointegration methods tend to find spurious cointegration, with probability approaching one

asymptotically, when the correct order of integration is uncertain and when there are structural

breaks in the trend function (Gonzalo and Lee, 1998).

As discussed in Estrada et al. (2010), the lack of a proper analysis of the time-series properties of

climate variables is a fundamental problem that bedevils the application of cointegration techniques

for the attribution of climate change studies, as also is the lack of physical mechanisms that would

support the existence of a unit root process in temperature series. Although cointegration offered a

formal way to study the attribution of climate change, results reported in the literature pointed to

the need of revising the assumptions regarding the univariate time-series properties of temperature

and radiative forcing variables. This is as a necessary first step for the multivariate modeling that

could be employed to investigate the attribution of observed climate change.

1Multicointegration extends the cointegration methodology to integrated variables of higher order than one and
to variables integrated of different order.
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1.3 Trend stationarity and co-trending: testing for common nonlinear secular trends.

The presence of breaks in global and hemispheric temperatures has been discussed extensively

(e.g., Seidel and Lanzante, 2004; IPCC, 2007a). The rate of warming of the 20th century can

hardly be considered constant and therefore a linear trend provides an inadequate representation

to describe the secular movement of global and hemispheric temperatures. Consequently, research

on the properties of temperature series extended the deterministic linear trend plus stationary noise

to more realistic specifications of the trend function that allow the presence of nonlinearities.

Using recent time-series techniques and unit root tests that allow for the presence of a structural

break (Kim and Perron, 2009; Perron, 1997), Gay et al. (2009) showed that global and hemispheric

annual temperature series are better represented as trend stationary processes with an “exogenous

and permanent” change in the rate of growth that cannot be interpreted as part of the natural

variability occurring during the 20th century. Their main results can be summarized as follows:

1) there is strong statistical evidence against the existence of a stochastic trend in global and

hemispheric temperatures: their data-generating process can adequately be described as trend

stationary with a single change in slope occurring at different dates and with different magnitudes

for the various series. In general, the results show evidence for a “two stages” warming trend, the

first a moderate one and the other rapid and of much larger magnitude; 2) the time-series properties

of annual global and hemispheric temperatures suggest that, at least for these spatial scales and data

frequency, climate change has manifested itself as a “change-in-the-mean phenomenon”, variability

has not changed with climate change; 3) in terms of Article 2 of the Framework Convention on

Climate Change significant anthropogenic interference with the climate system has already occurred

and; 4) inference methods, such as cointegration, which assume that temperatures are integrated

processes should be revised. This meant that a new approach to relate temperature and radiative

forcing series was needed to investigate the anthropogenic contribution to the warming.

Other authors also offered evidence supporting trend stationarity around nonlinear trends as a

better representation of the data generating process of temperature series. Harvey and Mills (2001,

2002) showed that global and hemispheric temperatures can be better represented as stationary

processes around one or two smooth transitions in the linear trend. Holt and Teräsvirta (2012)

provided further evidence in favor of trend stationarity by applying a unit root test that uses Fourier

series to approximate any unspecified shifts in the trend (Becker et al., 2006).

Based on the work of Perron (1989), Gay et al. (2009) provided an explanation for the inability

of standard unit root tests to determine the order of integration of temperature series. Using

proper tests for structural breaks (Perron and Yabu, 2009a), they provided strong evidence for the

existence of a break in the slope of the trend function irrespective of the order of integration of
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temperature series. The recursive ADF tests shown in Gay et al. (2009; Fig. 1) suggest that the

existence of a break can explain why standard unit root tests find temperatures either integrated

or trend-stationary depending on whether the sample includes observations from the last two to

three decades of the 20th century. The effects of breaks in the trend function on the behavior of

unit root tests was established by Perron (1989) who showed that the sum of the autoregressive

coefficients is highly biased towards unity if there is a shift in the trend function. In this case, the

unit root null is hardly rejected even if the series is composed of white noise disturbances around

the trend. If the break occurs in the slope of the trend, unit root tests are not consistent, i.e., the

null hypothesis of a unit root cannot be rejected even asymptotically.

Gay et al. (2009) generated a new phase in the debate of identifying the type of data generating

process for temperature series. Shortly after its publication, Kaufmann et al. (2010) argued in

favor of the cointegration approach mainly based on the potential usefulness of this technique for

attribution studies as, if this representation was indeed adequate, it would offer “the possibility of

greater insights regarding the potential causes of climate change and efforts to slow its progression”.

By means of structural time-series models, Mills (2010a,b) supports the unit root hypothesis, but

reaches very different results from those in Stern and Kaufmann (1997a,b), Kaufmann and Stern

(1997) and Kaufmann et al (2006a,b; 2010) regarding the detection and attribution of climate

change. According to this author, global temperature is better represented as a simple random

walk, where the lack of a drift indicates that there is no long-term warming trend, and that what

was observed during the 20th century were realizations of natural variability.

In the light of the results of Gay et al. (2009), Harvey and Mills (2001; 2002) and Holt and

Teräsvirta (2012), the difference in the order of integration between temperatures (trend stationary)

and radiative forcing variables, commonly assumed as integrated, seemed to preclude the possibility

of establishing empirical evidence on attribution through current statistical methods.

Estrada et al. (2013a) investigated the time-series properties of radiative forcing variables and

found that like temperature series they are trend stationary processes with time ordered breaks in

the slope of their trend function. A new approach to conduct detection and attribution studies

was introduced and it was shown that global temperatures and radiative forcing share a common

nonlinear secular movement. This approach is based on “common features” concepts such as

co-trending and co-breaking (Engle and Kozicki, 1993) and uses the nonparametric nonlinear co-

trending test of Bierens (2000). Cointegration analysis is only one possibility for relating trends

of non-stationary variables: relationships between nonstationary variables can be established when

linear combinations of different time series cancel out common features such as trends and co-

breaks in trend. It was shown that climate models’ simulations and observed global temperature
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series share a common nonlinear trend that is imparted mainly by the radiative forcing of well-

mixed greenhouse gases. This paper provided an approach that is both adequate for the time-series

properties of temperature and radiative forcing variables and consistent with the physics of climate.

Holt and Teräsvirta (2012) found Northern and Southern Hemispheres temperature series to

be trend stationary processes and they use a Shifting-Mean Vector Autoregression (SM-VAR) to

provide evidence in favor of a deterministic co-shifting between Northern and Southern temperature

series. This modeling allows the possibility that shifts in the underlying data occurred gradually

and that one or more of these shifts are common to both series. They argue that for hemispheric

temperatures the evidence of co-shifting is particularly strong since the early 1980s.

Recent advances in the understanding of low-frequency variability modes have shown that the

60- to 90-years natural oscillations produced by the Multidecadal Atlantic Oscillation (AMO) can

mask or exaggerate the warming trend depending its phase (Wu et al., 2011; Swanson et al., 2009).

Estrada et al. (2013b) showed that after filtering out the effects of AMO, the secular movement

of global, northern and southern hemisphere temperatures is characterized by a common warming

trend with a break in its slope near 1955, marking the onset of sustained global warming. Using

co-trending analysis they show that the nonlinear warming trend is of anthropogenic origin mostly

driven by the radiative forcing of well-mixed greenhouse gases. Also, the analysis of the common

warming trend imparted by the radiative forcing indicate that human interventions contributed

to slowing down global warming in two occasions: the first is related to the large socioeconomic

disruptions caused by the two World Wars and the Great Crash which contributed to the cooling in

the mid 20th century; and the second is associated to the Montreal Protocol and the technological

change in agricultural production in Asia. Both of these changes in greenhouse emissions are major

drivers of the slowdown in the warming that has been experienced since the late 1990s.

2 Difference stationary, trend stationary and fractionally integrated processes.

Consider a time series yt with the following decomposition: yt = τ t+zt, where τ t is the deterministic

trend function and zt is the noise component. A process is said to be integrated of order d or I(d)

if the dth difference of the noise zt, ∆
dzt = (1 − L)dzt, is stationary. To illustrate this concept

consider an ARIMA process such that A(L)zt = B(L)et with et ∼ i.i.d. (0, σ2e), where A(L) and

B(L) are polynomials in the lag operator L (defined as Lzt = zt−1). It is assumed that the roots of

B(L) = 0 are outside the unit circle so that the process is identified, stationary and invertible. If

a time series is stationary around an appropriately defined trend τ t its order of integration is zero

or I(0). This occurs when all the roots of A(L) = 0 are outside the unit circle. The process is said

to be I(1) if the deviations from the trend have to be differenced once to achieve stationarity, in
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which case one of the roots of A(L) is one. Similarly, it is said to be I(2) if the deviations have to

be differenced twice to achieve stationarity, in which case A(L) has two unit roots.

2.1 Unit roots.

Consider the first-order autoregressive model

zt = αzt−1 + et, et ∼ i.i.d.
�
0, σ2

�
. (1)

An example of a unit root process is when α = 1. Then, ∆zt = zt − zt−1 = et. The first difference

of the process is i.i.d. This model has the following implications. First, each shock et has a long-

term effect on the level of zt. To see this, write (1) with α = 1 as (by recursive substitution)

zt = z0+
�t

j=1 ej . Since each shock has a permanent effect on future levels of zt, a 1% unexpected

increase in zt today increases our predicted value of future zt’s by 1% for all future periods. In

this simple example, with et ∼ i.i.d., zt is called a random walk, the best predictor of zt tomorrow

being zt today, i.e., E [zt+1|Ft] = E [zt|Ft] + E [et+1|Ft] = 0, where Ft is all information known at

time t, given that zt ∈ Ft and et+1 is whie noise. The most important implication of a unit root

is the permanent effect of shocks. Assuming this type of process as a representation of global and

hemispheric temperatures implies that the secular movement of the series is determined by the sum

of random shocks: all shocks have permanent effects on temperature series and even shocks in the

distant past are as important as present variations to determine the current trend. The long-term

forecast is always influenced by historical events, and temperature predictability is limited, even

if forcing factors are held constant (Estrada et al., 2013a; Gay et al., 2009; 2007). The second

implication is that the variance of zt increases with t since V ar (zt) = V ar(
�t

j=1 ej) = tσ2 if z0 is

fixed. This is a nonstationary process since its second moment depends on t. Hence, a unit root

process is non-stationary in variance. The process can cross any line within a long enough period.

2.2 Difference versus trend-stationary models.

The random walk model is quite restrictive. Most of the time, allowing for additional short-run

correlation is needed; i.e., having ∆zt = vt, where vt is a stationary process exhibiting some

correlation (without a unit root itself). For example, if vt is a MA(1), a moving-average of order

one, vt = et + θet−1. Then, zt = zt−1 + et + θet−1. Suppose that there is a unit shock et = 1

today and none thereafter, then at time t, zt increases by 1 and by θ at time t + 1 and stays like

that thereafter. So, the overall effect in the long run is to increase zt by (1 + θ). In general, we

can specify vt as a stationary and invertible ARMA model (autoregressive moving-average model)

A (L) vt = B (L) et with et ∼ i.i.d.(0, σ2). Since vt is a stationary and invertible process, it can
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be represented as an MA(∞), i.e., vt = A (L)−1B (L) et ≡ ψ (L) et. Then, in analogy with the

MA(1) case, the long-run effect of a unit shock et on the level of zt is given by the sum of the MA

coefficients, i.e.,
�∞

i=0 ψi = ψ (1).

2.3 Random walk with drift or DS process.

A wide variety of time series have a tendency to show secular movements over time. Hence, it is

common to specify the trend function as τ t = µ + βt. Here, β is the slope of the trend function,

sometimes called the drift. Then, ∆yt = β+vt with A (L) vt = B (L) et, and yt = µ+βt+
�t

j=1 vj .

The trend function of yt is then composed of two parts: i) a deterministic part given by the

drift term, ii) a stochastic part given by the permanent effect of each shock et on the level of

yt. Since shocks have a permanent effect, they change our long term forecast of the level of the

series which is a plausible definition of the trend of a series. In this case, the trend function shifts

every period and is, hence, stochastic. For this reason, such models are called stochastic trend

models (also called difference stationary models, DS). The trend function can be obtained using

the so-called Beveridge-Nelson decomposition. Consider the moving-average representation of ∆yt

given by ∆yt = β + ψ (L) et. Now decompose ψ (L) as ψ (L) = ψ (1) + (1 − L)ψ∗ (L), where

ψ∗ (L) = −
�∞

i=0 ψ
∗
iL

i with ψ∗i =
�∞

j=i+1 ψj. Then, ∆yt = β + [ψ (1) + (1− L)ψ∗ (L)]et or

yt = µ+ βt+ ψ (1)
�t

j=1 ej +wt (2)

where wt = ψ∗ (L) et is a stationary random variable. A plausible definition of a trend function is

the long term conditional forecast, E(yt+k|ys; s ≤ t) for k large. Using (2), we have

E(yt+k|ys; s ≤ t) = µ+ β(t+ k) + ψ (1)
�t

j=1 ej . (3)

since wt is stationary. Hence, we can view the component µ+ βt+ψ (1)
�t

j=1 et as the trend with

µ+ βt the deterministic part and ψ (1)
�t

j=1 et, a scaled random walk, the stochastic part.

2.4 The trend stationary model (TS).

An alternative to model variables that increase over time is with a purely deterministic trend, i.e.,

yt = c + βt + wt, where C (L)wt = D (L) et with et ∼ i.i.d.
�
0, σ2

�
and all the roots of C(L) and

D(L) outside the unit circle. This is called the TS model because the deviations from the trend

function are transitory, i.e., the shocks et have no permanent long run effects. Note that in this

case ψ (1) in (3) is 0 so that the trend has no stochastic component. Distinguishing between a TS

and DS process is the so-called unit root testing problem.
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2.5 Trend function with breaks.

A particular case of the trend stationary process that has been discussed in the climate change

literature is when breaks in the trend function are present. In general, the trend parameters and

their structural changes need not to be assumed deterministic (Perron, 1989; Perron and Wada,

2009; see Perron, 2006 for a survey). In order to illustrate the class of models that applies in such

cases, consider the framework offered in Perron and Wada (2009):

yt = µt + βtt+ zt

where µt = µt−1 + vt and βt = βt−1 + ut. The intercept and slope of the trend function are time

varying stochastic processes. The noise components are modeled as mixtures of normal distributions

where the realizations from the variables are drawn from one of two normal distributions, one

with high and the other with small or zero variance. These processes can be described as: ut =

λtγ1t+(1−λt)γ2t and vt = κtδ1t+(1−κt)δ2t, where γit ∼ i.i.d. N(0, σ2γi), δit ∼ i.i.d. N(0, σ2δi) while

λt and κt are Bernoulli variables that take value one with probability αλ and ακ, and value zero

with probability (1−αλ) and (1−ακ), respectively. One can then obtain a model with infrequent

changes in the slope and intercept parameters when αλ and ακ are close to one and σ2γ1 and σ2δ1

are zero. If σ2γ1 > 0, there will be occasional changes in the slope, and correspondingly if σ2δ2 > 0

there will be infrequent changes in the intercept. When only one break occurs, it becomes difficult

to model the change with a stochastic structure. Hence, the common approach in the literature

has been to consider the change as being ‘exogenous’ in the sense of intervention analysis (Box and

Tiao, 1975) and they are not explicitly modeled via a parametric stochastic structure. Under this

parameterization, there are only some shocks that can change the long-term behavior of the time

series, as opposed to the case of a unit root process where all shocks have long-term changes. In

the climate context, long-term changes are not frequent in the scale of the sample under analysis

and are produced by important changes in key external forcing factors such as Earth orbit changes,

solar irradiance, and greenhouse gases concentrations (Estrada et al., 2013a; Gay et al., 2009).

2.6 Fractionally integrated processes.

Fractionally integrated processes occur when the order of difference d needed to achieve stationarity

is not necessarily an integer but can be any real value (Granger and Joyeux, 1980). The most

commonly used fractionally integrated models are ARFIMA processes, which are a generalization

of ARIMA models when d is not an integer. In this case, the fractional differencing term can be
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written as an infinite order moving-average (MA) process using the binomial expansion:

(1− L)d = 1− dL+
d(d− 1)

2!
+
d(d− 1)(d− 2)

3!
+ ... =

∞�

k=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)

where Γ(g) =
�∞
0 yg−1e−ydy is the gamma function. The autocorrelation function of this process is

given by ρτ = [Γ(1−d)Γ(τ +d)]/[Γ(d)Γ(τ +1−d)] ≈ cτ2d−1 for some c. Hence, the autocorrelation

function decays at a slow hyperbolic rate when 0 < d < 0.5. For such processes, yt is stationary and

invertible if the roots of A(L) and B(L) lie outside the unit circle and |d| < 0.5. If the integration

order is 0 < d < 0.5, the process displays long memory (much longer persistence than that of an

I(0) process with similar ARMA parameters). When the integration order is 0.5 < d < 1, the

process is non stationary. Although its variance does not have a finite sum, the effect of a unit

shock on the level of the series does decay to zero implying that the memory of the process is not

infinite, as in the case of a I(1) process, and that it exhibits mean-reversion. In the case d ≥ 1 the

process is not mean reverting and nonstationary (see Maddala and Kim, 1998; Baillie, 1996).

2.7 Examples.

Figure 1 shows the global mean surface temperature (G) with the effects of the AMO filtered out

(see Estrada et al., 2013b), the total radiative forcing (TRF), and three simulated temperature series

representing: 1) a TS process with a break in its slope (Temp_TSB), calibrated from unfiltered G

from the NASA dataset, and generated by Temp_TSBt = −0.3200 + 0.0039t + 0.0129DT ∗t + ut

with ut = 0.3987ut−1+et and et ∼ i.i.d. N (0, 0.0083), where DT ∗t = t−Tb if t > Tb and Tb = 1978;

2) a DS process (Temp_DS) generated by Temp_DSt = 0.01+Temp_DSt−1+ut with ut ∼ i.i.d.

N (0, 0.01) and; 3) a stationary process (Temp_S) generated by Temp_St = 0.7Temp_St−1 + ut

with ut ∼ i.i.d. N (0, 0.01). The filtered version of G is used since, as shown in the literature

(Wu et al., 2011; Swanson et al., 2009; Estrada et al., 2013b), the AMO can mask or exaggerate

the warming trend depending its phase. The unfiltered G as well as TRF are available from

http://data.giss.nasa.gov/, while AMO is available from http://www.esrl.noaa.gov/. With the

exception of AMO and Temp_S all series show a trending behaviour and visual inspection suggests

the existence of a break in the slope of their trend functions, including Temp_DS and Temp_S

even though by construction they do not include one. This illustrates the potential pitafalls of

relying on visual inspection or curve fitting to indentify breaks. As will be shown, formal statistical

tests reliably povide the correct results.
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3 Testing for a unit root.

The most commonly used unit root test is the ADF test (Dickey and Fuller, 1979; Said and Dickey,

1984). Leaving aside the deterministic components for a moment, suppose that the data generating

process is an AR(p) process of known order p, i.e.,

yt =
�p

i=1 aiyt−i + et

or A(L)yt = et with A(L) = 1 − a1L− ...− apL
p. If the process has an autoregressive unit root,

then A(L) = (1 − L)A∗(L) where A∗(L) is a polynomial of order p − 1 with all roots outside the

unit circle. Hence, A(1) = 0, which implies that
�p

i=1 ai = 1. Now reparameterize the model as:

yt = αyt−1 +
�p−1

i=1 di△ yt−i + et (4)

with α =
�p

i=1 ai and di = −
�p

j=i+1 ai. The test is based on estimating (4) and using the t-

statistic for testing the null hypothesis that α = 1. More generally, in the presence of deterministic

components denoted now by xt, the regression is

yt = βxt + αyt−1 +
�p−1

i=1 di△ yt−i + et.

Which deterministic components to include depends on the series analyzed. If the data are not

trending (e.g., stratospheric aerosols, North Atlantic Oscillation, etc.), only a constant is included.

If the data are trending (e.g., temperatures, greenhouse gases, etc.), a constant and a time trend

need to be included. The importance of the correct specification of the deterministic components is

discussed in Campbell and Perron (1991) and Perron (1988). The limit distribution of the t-statistic

is non-standard and depends on the nature of the deterministic components included (see Dickey

and Fuller, 1979). The tests remain valid under more general processes such as ARMA or linear

processes. The idea is to approximate the process by a AR(k) for k suitably chosen so that the

residuals are approximately uncorrelated. The validity of the t-statistic was analyzed by Said and

Dickey (1984) when the noise is an ARMA(p, q) process of unknown order with i.i.d. innovations.

Their conditions were relaxed by Ng and Perron (1995) and Chang and Park (2002).

Several extensions have been proposed to reduce size distortions and improve the power of stan-

dard unit root tests such at the ADF and Phillips and Perron (1988) tests. Some relevant variants

include the development of efficient unit root tests that use quasi-differentiation and detrending via

a Generalized Least Squares (GLS) method to improve power against persistent local alternatives

(Elliot et al., 1996; Ng and Perron, 2001) and the modification of information criteria (e.g., AIC,

BIC) used to determine the appropriate lag length to correct for serial correlation in the residuals
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(Ng and Perron, 2001). Here, we shall discuss the widely used tests of Ng and Perron (2001), which

adopt the GLS-detrending approach of Elliot et al. (1996). Suppose that yt = γxt + vt, where

vt = αvt−1 + ut. If the errors {ut} are i.i.d. N(0, σ2u), then the most powerful test of the null

hypothesis α = 1 versus the alternative hypothesis that α = ᾱ, is given by the likelihood ratio test

which reduces to L(ᾱ, 1) = S(ᾱ)−S(1), where S(α) = infγ
�T

t=1(y
α
t −γx

α
t )
2 =

�T
t=1(y

α
t −γ̂

GLSxαt )
2

with yαt = yt − αyt−1 and xαt = xt − αxt−1 for t = 2, ..., T and yα1 = y1, xα1 = x1. The estimate

γ̂GLS is the GLS estimate of γ from the model yt = γxt + vt assuming that vt is an AR(1) with

parameter α. Hence, the likelihood ratio test compares the sum of squared residuals from two GLS

regressions with autoregressive parameters 1 and ᾱ. Assuming that the true value α = ᾱ, and using

the local to unity parameterization ᾱ = 1 + c̄/T the local asymptotic power function of the LR

test gives a local asymptotic power envelop, i.e., the maximum that can be achieved under normal

errors. In practice the true value of α is unknown. A sensible recommendation by Elliot et al.

(1996) is to choose ᾱ such that the asymptotic power is 50% evaluated at c̄. This implies c̄ = −7.0

when xt = 1 and c̄ = −13.5 when xt = (1, t). In the presence of serial correlation, a feasible point

optimal test with the same asymptotic properties is PT = [S(ᾱ) − ᾱS(1)]/s2AR, with s2AR defined

below. Denote the GLS detrended data by �yt = yt − γ̂GLSxt. Consider the ADF test constructed

with GLS detrended data, i.e., the t-statistic for testing that α = 1 in the regression

�yt = α�yt−1 +
�k

i=1 bi∆�yt−i + etk (5)

Elliot et al. (1996) found that it has an asymptotic power function very close to the maxi-

mum power possible under normal errors. Ng and Perron (2001) considered modified versions

of the Phillips and Perron (1988) unit root tests and others suggested by Stock (1999). The

MZα test constructed with GLS detrended data is MZGLS
α = [T−1�y2T − s2AR]/[2T

−2
�T

t=1 �y2t−1]
where s2AR is an autoregressive spectral density estimator given by s2AR = σ̂2ek/(1 −

�k
i=1 b̂i)

2

where σ̂2ek = T−1
�T

t=k+1 ê
2
tk with b̂i and êtk obtained from (5). They also considered the al-

ternative tests MSBGLS = (T−2
�T

t=1 �y2t−1/s2AR)
1/2 and MZGLS

t = MSBGLS ∗MZGLS
α . These

tests are collectively referred to as the MGLS tests. The limit distributions of the tests are non-

standard but critical values are presented in Ng and Perron (2001). To have tests with good

properties they proposed selecting the lag order k using a Modified Information Criterion given

by MIC(k) = ln(σ̂2ek) + CT (τT (k) + k)/T , where τT (k) = (σ̂2ek)
−1b̂20T

−2
�T

t=1 �y2t−1. We have the

MAIC when CT = 2 and the MBIC when CT = ln(T ). They recommend using the MAIC. Perron

and Qu (2007) further refined the procedure by suggesting to select k using OLS-detrended data

but constructing s2AR with GLS-detrended data once the order is selected.

Many tests were also proposed to test the null hypothesis of stationarity versus the alternative
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of a unit root (e.g., Kwiatkowski et al., 1992). But since the unit root tests described above are

nearly optimal, they offer no added advantages to discriminate between I(0) and I(1) processes.

The results of applying a battery of standard unit root tests indicate that the unit root hypothe-

sis cannot be rejected for G, TRF, Temp_TSB and Temp_DS (Table 1). However, the existence of

breaks in the trend functions of some series could lead to incorrectly classify them as DS processes.

As discussed in the next sections, structural break tests and unit root tests that allow for a break

in the trend function are required to investigate the data generating process of this type of series.

4 Unit root tests that allow for the presence of structural changes in the trend.

The standard unit root tests for the existence of stochastic trends provided a first step to investi-

gate the time-series properties of global and hemispheric temperatures and radiative forcing series.

Nevertheless, it is important to note that they can be severely affected when the trend function is

subject to changes in level and/or slope. Perron (1989) showed that the sum of the autoregressive

coefficients is highly biased towards unity if there is a shift in the trend function. In this case, the

unit root null hypothesis is hardly rejected even if the series is composed of white noise disturbances

around the trend. Also, if the break occurs in the slope of the trend, standard unit root tests are

not consistent, i.e., the null hypothesis of a unit root cannot be rejected even asymptotically. As a

consequence, standard unit root tests are not adequate to investigate the data generating process

of series which exhibit such behavior. Several tests have been devised to allow for structural breaks,

we shall focus on the Kim-Perron test (2009) and briefly mention other methods that have been

applied when investigating global and hemispheric temperatures.

To motivate the problem addressed, it is useful to look at some basic properties of unit root

and trend-stationary processes. As discussed earlier a DS process is such that the trend function

changes every period (i.e., all shocks have a permanent effect on the future level of the series). On

the other hand, for a TS process the trend never changes. Hence, one can view the unit root versus

trend-stationary problem as addressing the following question: do the data support the view that

the trend is changing every period or never? The question is then why restrict the comparison

to ‘never’ or ‘always’? Would it not be preferable to make a comparison between ‘always’ and

‘sometimes’? Ideally, the proper question to ask would be ‘what is the frequency of permanent

shocks?’. This is a question for which no satisfactory framework has been provided.

The basic motivation for the work initiated by Perron (1989, 1990) is to take a stand on what

is ‘sometimes’. The specific number chosen then becomes case-specific. His argument was that

in many cases of interest, the relevant number of changes is relatively small, and often only one.

These changes are then associated with important historical events. As far as statistical modelling
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is concerned, the main conceptual issue is to view such changes as possibly stochastic but of a

different nature than shocks that occur every period, i.e., drawn from a different distribution.

However, since such large changes are infrequent, it is difficult to specify and estimate a probability

distribution for them. The approach is then to model these infrequent large changes in the trend

as structural changes. The question asked by unit root tests is then: ‘do the data favor a view that

the trend is ‘always’ changing or is changing at most occasionally?’ or ‘if allowance is made for the

possibility of some few large permanent changes in the trend function, is a unit root present in the

stochastic component?’. Note two important qualifications. First, the setup allows but does not

impose such large changes. Second, by “permanent” what should be understood is not that it will

last forever but that, given a sample of data, the change is still in effect.

Perron (1989) proposed an extension of the ADF test that allows for a one-time break in the

trend function of a univariate time series. Three different model specifications were considered: the

“crash” model that allows for a change in the level of the series; the “changing growth” model that

permits a change in the rate of growth; and a third model that allows both changes. When analyzing

global and hemispheric temperatures and radiative forcing variables the “changing growth” model

is of interest, which can be briefly described as follows. In this case, the model is:

yt = µ1 + β1t+ (β2 − β1)DT
∗
t + ut

where DT ∗t = t − T1 if t > T1 and 0 otherwise. The null hypothesis is that ut is I(1) and the

alternative hypothesis is that ut is I(0). The “changing growth” model takes an “additive outlier”

approach in which the change is assumed to occur rapidly and the regression strategy consists in

first detrending the series according the following regression:

yt = µ+ βt+ γDT ∗t + �yt (6)

where γ = β2 − β1 and �yt is accordingly defined as the detrended series. The test is based on the

value of the t-statistic for testing that α = 1 in the following autoregression:

�yt = α�yt−1 +
�k

i=1 ai∆�yt−i + et (7)

In the original Perron (1989) test the break is assumed to occur at a known date. Later, this test

was generalized to allow the break to occur at an unknown date to be determined endogenously

from the data (Zivot and Andrews, 1992; Perron 1997). The break date was originally proposed

to be selected by 1) minimizing the t-statistic to test for a unit root; 2) minimizing/maximizing

the t-statistic of the parameter associated with γ in regression (6) or; 3) maximizing the absolute

value of the t-statistic for γ in regression (6). The resulting unit root test is then the t-statistic for
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testing that α = 1 in regression (7) estimated by OLS using �yt defined according to the estimate

of the break date. Note that procedures (2) and (3) yield the same estimate of the break date and,

hence, the same unit root test (it is also equivalent to select the estimate by minimizing the sum

of squared residuals from regression (6)). However, (2) allows one to impose a prior on the sign of

the change. This affects the limit distributions and leads to tests with higher power. The critical

values of the tests have been tabulated in Perron (1997), see also Zivot and Andrews (1992).

A problem with most procedures for testing for unit roots in the presence of a one-time break

occurring at an unknown date is that the change in the trend is allowed only under the alternative

hypothesis of a stationary noise component (Perron, 1997; Zivot and Andrews, 1992; Vogelsang

and Perron, 1998). Consequently, it is possible that a rejection occurs when the noise is I(1) and

there is a large change in the slope of the trend function. A method that avoids this problem is

that of Kim and Perron (2009). Their procedure is based on a pre-test for a change in the trend

function, namely the Perron and Yabu (2009a) test described below. If this pre-test rejects, the

limit distribution of the unit root test is then the same as when the break date is known (Perron,

1989; Perron and Vogelsang, 1993; Kim and Perron, 2009). This is very advantageous since when a

break is present the test then has much greater power. It was also shown in simulations to maintain

good size in finite samples and that it offers improvements over other commonly used methods.

As mentioned above, the presence of structural changes can have considerable implications when

investigating time-series properties by means of unit root tests (Perron, 1989) and at the same time

most tests for structural breaks require to correctly identify whether the data generating process

is stationary or integrated. This creates a circular problem: depending on whether the process is

I(0) or I(1) the limit distributions of these tests are different and if the process is misidentified

the unit root tests will have poor properties. The Perron-Yabu test (Perron and Yabu, 2009a) was

designed explicitly to address the problem of testing for structural changes in the trend function of a

univariate time series without any prior knowledge as to whether the noise component is stationary

or contains an autoregressive unit root. Their approach builds on previous work which analyzed the

problem of hypothesis testing on the slope coefficient of a linear trend model when no information

about the nature, I(0) or I(1), of the noise component is available (Perron and Yabu, 2009b).

4.1 Perron-Yabu testing procedure for structural changes in the trend function.

We present the case of a model with a one-time structural break in the slope of the trend function

with an autoregressive noise component of order one (AR(1)). A more detailed presentation of

this case and of other structural change models and extensions can be found in Perron and Yabu
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(2009a). Consider the following data generating process:

yt = x′tΨ+ ut, ut = αut−1 + et,

for t = 1, ..., T , et ∼ i.i.d.
�
0, σ2

�
, xt is a (r × 1) vector of deterministic components, and Ψ

is a (r × 1) vector of unknown parameters which are model specific and described in the next

paragraphs. The initial condition u0 is assumed to be bounded in probability. The autoregressive

coefficient is such that |α| ≤ 1 and therefore, both integrated and stationary errors are allowed.

The interest resides in testing the null hypothesis RΨ = γ where R is a (q × r) full rank matrix and

γ is a (q × 1) vector, where q is the number of restrictions. The restrictions are used to test for the

presence of a structural change in the trend function. For this purpose, Perron and Yabu (2009a)

consider three models where a change in intercept and/or slope in the trend function occurs. In

what follows, the break date is denoted T1 = [λT ] for some λ ∈ (0, 1), where [·] denotes the largest

integer that is less than or equal to the argument and 1 (·) is the indicator function.

The model to test for a one-time change in the slope of the trend function is specified with

xt = (1, t,DT ∗t )
′ and Ψ = (µ0, β0, β1)

′ where DT ∗t = 1 (t > T1) (t− T1) so that the trend function

is joined at the time of the break. The hypothesis of interest is β1 = 0. The testing procedure

is based on a Quasi Feasible GLS approach with a superefficient estimate of α when α = 1. The

estimate of α is the OLS estimate obtained from an autoregression applied to detrended data and

is truncated to take a value 1 when the estimate is in a T−δ neighborhood of 1. This makes the

estimate “super-efficient” when α = 1 and implies that in the case of a known break date, inference

on the slope parameter can be performed using the standard Normal or Chi-square distribution

whether α = 1 or |α| < 1. Theoretical arguments and simulation evidence show that δ = 1/2 is the

appropriate choice. When the break date is unknown, the limit distribution is nearly the same in

the I(0) and I(1) cases when considering the Exp functional of the Wald test across all permissible

dates, see Andrews and Ploberger (1994). Hence, it is possible to have a test with nearly the same

size in both cases. To improve the finite sample properties of the test, they also use a bias-corrected

version of the OLS estimate of α as suggested by Roy and Fuller (2001). The testing procedure

suggested is: 1) for any given break date, detrend the data by OLS to obtain the residuals ût;

2) estimate an AR(1) model for ût yielding the estimate α̂; 3) use α̂ to get the Roy and Fuller

(2001) biased corrected estimate α̂M ; 4) apply the truncation α̂MS = α̂M if |α̂M − 1| > T−1/2 and

α̂MS = 1 if |α̂M − 1| ≤ T−1/2; 5) apply a Generalized Least Squares (GLS) procedure with α̂MS to

obtain the estimates of the coefficients of the trend and the long-run variance of the residuals and

construct the standard Wald-statistic WFMS; 6) since the break date is assumed to be unknown,

these 5 steps must be repeated for all permissible break dates to construct the Exp functional of the
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Wald test denoted by Exp-WFS = log[T−1
�
Λ exp(WFMS (λ) /2)] where Λ = {λ; ǫ ≤ λ ≤ 1 − ǫ}

for some ǫ > 0. A commonly used value is ǫ = 0.15.

The results of applying the Perron-Yabu test to the series in Figure 1 confirm the existence of a

break in the slope of the trend function for G, TRF and Temp_TSB, while no evidence for a break

is found for AMO, Temp_DS and Temp_S (Table 2). The Perron-Yabu test correctly indicates

that the breaks suggested by the visual inspection of Temp_DS and Temp_S are not part of their

data generating process. The results in Tables 1 and 2 allow to conclude without further testing

that Temp_DS has a unit root and that Temp_S and AMO are stationary, since when no break

in trend is present the standard unit root tests reported in Table 1 are reliable. In contrast, the

results strongly suggest that the analysis of the order of integration of G, TRF, Temp_TSB needs

to be extended using unit root tests that allow for a break in their trend function.

4.2 Kim-Perron unit root tests with a one-time break in the trend function

As mentioned, a problem with most tests for unit roots in the presence of a one-time break occurring

at an unknown date is that the change in the trend function is allowed only under the alternative

hypothesis of a stationary noise component. Hence, it is possible that a rejection occurs when the

noise is I(1) and there is a large change in the slope of the trend. A procedure that avoids this

problem is that of Kim and Perron (2009). It is based on a pre-test for a change in the trend

function, namely the Perron and Yabu (2009a) test. If this pre-test rejects, the limit distribution

of the unit root test is then the same as if the break date was known (Perron and Vogelsang, 1993).

This is very advantageous since when a break is present the test has much greater power. The

testing procedure under the additive outlier approach for the changing growth model consists in

the following steps: 1) obtain an estimate of the break date T̂1 = λ̂T by minimizing the sum of

squared residuals using regression (6). Then construct a window around that estimate defined by

a lower bound Tl and an upper bound Th. A window of 6 observations is common. Note that, as

shown by Kim and Perron (2009), the results are not sensitive to this choice; 2) create a new data

set {ynt } by removing the data from to Tl+1 to Th, and shifting down the data after the window by

S (T ) = yTh − yTl ; hence, y
n
t = yt if t ≤ Tl and ynt = yt+th−tl − S (T ) if t > Tl; 3) perform the unit

root test using the break date Tl. This is the t-test statistic for testing that �α = 1 in the following

regression estimated by OLS, denoted by tα(λ̂
AO

tr ):

�ynt = �α�ynt +
�k

i=1 ci∆�ynt−i + �et (8)

where λ̂tr = Tl/Tr, Tr = T − (Th − Tl) and �ynt is the detrended value of ynt . The number of lags

in (8) can be chosen by means of different information criteria for model selection such as the BIC

and AIC. Extensions of this test are presented in Carrion-i-Silvestre et al. (2009).

17



Other unit root tests that allow for nonlinear trends that can accommodate structural changes

have been applied to global and hemispheric temperatures. Becker, Enders and Lee (2006) proposed

a stationarity test that allows for an unknown number of intercept shifts by using a selection of

terms from a Fourier approximation. Harvey and Mills (2002) proposed a unit root test that allows

for double smooth transitions to accommodate non-instantaneous breaks.

Table 3 shows the results of applying the Kim-Perron test to the series in Figure 1 for which

evidence of a break in the slope of their trend function was found (i.e., G, TRF, Temp_TSB). In all

cases, once a better description of the deterministic trend is allowed, the unit root null is strongly

rejected, reversing the results of the standard unit root tests in Table 1.

5 Perron-Zhu methodology for estimating a confidence interval for the break date

Perron and Zhu (2005) analyzed the consistency, rate of convergence and limiting distributions of

parameter estimates in models where the trend exhibits a slope change at some unknown date and

the noise component can be either stationary or have an autoregressive unit root. Their results

are of particular relevance when considering the problem of selecting the break date when testing

for structural changes and for deriving the limiting distributions of unit root tests that allow for a

one-time structural change that occurs at an unknown date, such as in the Kim and Perron (2009)

test. Another important practical application of deriving the limiting distribution of the estimate

of the break date is that it permits forming a confidence interval for the break date.

Perron and Zhu (2005) considered a total of six models with deterministic and stochastic trends.

The random component was assumed to be either stationary or to contain a unit root, while for the

deterministic component three cases were considered: 1) a first-order linear trend with a one-time

change in the slope such that the trend function is joined at the time of the break; 2) a local

disjoint broken trend and; 3) a global disjoint broken trend. The case of interest here is the first

specification with a stationary noise component. The interested reader is referred to Perron and

Zhu (2005) for the specifications and limiting distributions for the other models considered. The

deterministic part is specified as τ t = µ+βt+γDT ∗t , where DT
∗
t = t−T1 if t > T1 and 0 otherwise

with T1 = λT the break date and λ the break fraction. Note that at the time of the break, the

slope coefficient changes from β to β + γ but that the trend function is continuous at T1. This

specification is therefore referred to as the “joint broken trend”. The estimation method is simply

to select the break date that minimizes the sum of squared residuals from a regression of the series

of interest yt (t = 1, ..., T ) on the regressors {1, t,DT ∗t }, i.e., applying OLS to the model

yt = µ+ βt+ γDT ∗t + ut (9)
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Denote the estimate by T̂1 and the associated estimate of the break fraction by λ̂ = T̂1/T . They

showed the limit distribution to be T 3/2(λ̂ − λ) →d N(0, 4σ2/[λ0 (1− λ0)
�
γ0
�2
]) where γ0 is the

true value of the change in the slope parameter and σ2 = limT→∞E(
�T

t=1 ut)
2 is the so-called

long-run variance of ut. Hence, it is easy to construct a confidence interval using the estimates of

σ2, γ0 and λ0. A common estimate of σ2 is based on a weighted sum of the autocovariance function

of ut of the form Ŝw,T = R̂u(0) + 2
�T−1

j=1 w(j,m)R̂u(j), where R̂u(j) = T−1
�T

t=j+1 ûtût−j with ût

the OLS residuals from regression (9). Here, w(j,m) is some weight function. A popular choice

is the Bartlett triangular weight with w(j,m) = 1 − j/(m + 1) if j ≤ m and 0 otherwise. Other

choices are available such as the Parzen or Quadratic Spectral. The parameter m is a bandwidth

or truncation parameter. A popular method to select this parameter is due to Andrews (1991).

To illustrate the use of this procedure with observed climate variables, the 95% confidence

intervals for the estimated break dates of G and TRF were constructed. The confidence interval for

G is (1946, 1966) and for TRF is (1956, 1964), which overlap considerably suggesting that the break

in the slope of their trend functions is a common feature shared by both variables. The long-run

variance was estimated using the Bartlett kernel with Andrews’ bandwidth selection method.

6 Cointegration

A set of integrated variables is said to be cointegrated if there exists a linear combination of them

that is stationary (Engle and Granger, 1987). Cointegration implies that there is a long-run equi-

librium relationship between two or more variables because they share a common stochastic trend

(Stock and Watson, 1988). To illustrate this concept consider the following integrated processes:

xt = µxt + εxt and zt = µzt + εzt where µxt and µzt are unit root processes which contain a sto-

chastic trend and εxt, εzt are stationary noise processes. For these two variables to be cointegrated

there must exist a linear combination α1xt + α2zt (with α1 and α2 different from zero) such that

µxt − (α2/α1)µzt is stationary, indicating that the stochastic trends µxt and µzt are identical up

to a scalar. Consequently, xt and zt share a common secular movement and a regression between

these two variables will produce stationary residuals.

In general, the n variables yt = (y1t, ..., ynt) are said to be cointegrated of order d, b, or yt ∼

CI(d, b), if all of the variables are integrated of order d and there exists a cointegrating vector β

such that the linear combination β′yt is integrated of order (d− b), with b > 0. Granger and Lee

(1990) showed that multicointegration can also occur where an equilibrium relationships among

sets of variables that have different orders of integration can occur. For example, if two of the

variables in yt are I(2) and the others are I(1) an equilibrium relationship can hold if the two I(2)

variables are CI(2, 1) and this linear combination cointegrates with the other I(1) variables.
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The tests that have been devised to analyze the existence of cointegration relationships can be

classified in three types: single equation residual based, single equation error correction and multiple

equations based. These three types of tests have been used to investigate the existence of a common

secular stochastic trend in global and hemispheric temperatures and radiative forcing data. The

most widely used residual based test is the Engle and Granger (1987) two-steps procedure. Consider

the OLS regression partitioning yt into y1t and y∗t = (y2t, ..., ynt):

y1t = c+ β′y∗t + et (10)

where (1,−β′) is the cointegration vector normalized to have value of 1 for the variable y1t, which

assumes that y1t is part of the set of variables that are cointegrated. Note also that usually only

a constant is included, which implies that the cointegrating vector that eliminates the stochastic

non-stationarity also eliminates the non-stationarity due to the deterministic trends in the variables

(see Campbell and Perron, 1991). The second step is to test if et is I(0) by means of a unit root

test such as the ADF or the Phillips-Perron tests applied to the OLS residuals from (10). The

critical values of the cointegration test follow a non-standard distribution and are different from

those of the original unit root tests. The critical values depend on the number of I(1) regressors

included in (10) and on whether a constant and/or a linear trend is included and, if only a constant

is included, on whether the data are trending. Note also that this test is valid only if the vector of

variables y∗t is not cointegrated (see, Phillips and Ouliaris, 1989, and Hansen, 1992).

To illustrate other tests and features of cointegrated systems, it is useful to adopt a Vector

Autoregressive (VAR) model yt = µ+
�p

i=1Aiyt−i+ et, with et ∼ i.i.d. (0,Σ). It can be written as

△yt = c+Πyt−1 +
�p−1

i=1 Γi △ yt−i + et (11)

where Π = −(I −
�p

i=1Ai) and Γi = −
�p

j=i+1Aj . The set of variables yt is cointegrated if

rank(Π) = r for some 0 < r < n. We then have the decomposition Π = αβ′ where α and β are

n× r matrices and β is the matrix of cointegrating vectors. We can then write (11) as

△yt = c+ αβ′yt−1 +
�p−1

i=1 Γi△ yt−i + et = c+ αzt−1 +
�p−1

i=1 Γi△ yt−i + et (12)

where zt−1 = β′yt−1 is the disequilibrium error at time t− 1. The representation (12) is called an

error correction model (ECM) and the matrix α consists of the vectors of adjustment coefficients.

For simplicity, suppose that there is a single cointegrating vector so that r = 1 and α and β are

vectors of dimension n. Now, suppose that α = (α1, 0, ..., 0). Then, y
∗
t = (y2t, ..., ynt) is said to be

weakly exogenous. While this appears to be a special case, it is highly relevant in the context of

climate change. Suppose we have two series with y1t temperatures and y2t some forcing variable

20



(e.g., well-mixed greenhouse gases). Then, from standard physics of climate change, y2t is weakly

exogenous. A test for cointegration can then be based on the first equation of the ECM (12):

∆y1t = c+ α′1∆y
∗
t + γ0ẑt−1 + γ′1y

∗
t−1 +

�k
i=1(π

′
i∆y

∗
t−i + φi∆y1t−i) + ǫt. (13)

where ẑt−1 = β̂
′
yt−1 with β̂ the estimate of the cointegrating vector. Using the representation (13),

there is cointegration if γ0 �= 0. Hence, a test of no-cointegration amounts to testing H0 : γ0 = 0,

using a standard t-statistic; see, Kremers et al. (1992), Banerjee et al. (1993), Banerjee et al.

(1986), Banerjee et al. (1998) and Ericsson and Mackinnon (2002). It is also possible to do a joint

test H0 : (γ0, γ
′
1)
′ = 0 using a Wald test (see Boswijk, 1994). These tests were shown to have much

higher power when the condition of weakly exogenous regressors is satisfied.

The most popular system-based tests for cointegration were proposed by Johansen (1988) and

Johansen and Juselius (1990) and are based on the VAR model (11). To describe them as well as the

method to obtain the Maximum Likelihood Estimates (MLE) of the cointegrating vectors, define

the following: R0t (resp., R1t) as the residuals from a regression of △yt (resp., yt−1) on a constant

and the lags of△yt; Sij = T−1
�T

t=1RitR
′
jt. Then the model (11) can be written as R0t = ΠR1t+et.

Suppose that β is known, then R0t = α(β′R1t) + et and the MLE (assuming normal errors) of α

and Σ conditional on β are α̂(β) = S01β(β
′S00β)

−1 and Σ̂(β) = S00 − S01β(β
′S11β)

−1β′S01. The

MLE of β is then obtained by minimizing |Σ̂(β)|. This is achieved by solving the eigenvalue system

��λS11 − S10S
−1
00 S01

�� = 0 (14)

subject to the restrictions β′S11β = Ir. Note that these impose r(r+1)/2 restrictions on β, which are

needed since only the space spanned by the cointegrating vectors is identified. The system (14) has n

eigenvalues, represented in decreasing orders as λ̂1 � λ̂2 � ... � λ̂r � λ̂r+1 � ... � λ̂n. The estimates

of the cointegrating vectors are then the eigenvectors corresponding to the r largest eigenvalues. For

testing, note that if the rank of Π is r then the population values of the n− r smallest eigenvalues

are zero. Hence, this leads to two testing procedures. The first is H0 : rank(Π) = r versus

H1 : rank(Π) > r and the test statistic, called the trace test, is T
�n

i=r+1 ln(1 − λ̂i). The second

test had a different alternative hypothesis so that H0 : rank(Π) = r and H1 : rank(Π) = r + 1,

and the test statistic, called the maximum eigenvalue test, is T ln(1− λ̂r+1). This test is especially

useful to devise a strategy to estimate the number of cointegrating vectors r. Both tests have

non-standard distributions, which however depend only on n and r.

In the application of cointegration techniques to climate variables the common stochastic trend

has been interpreted as the fingerprint of anthropogenic activities in global and hemispheric tem-

peratures. It should be noted, however, that a requirement for this concept is the existence of

stochastic trends with data having a linear deterministic time trend.
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Figure 2(a) illustrates the concept of cointegrated series. DS_1 and DS_2 are simulated DS

series that share a common stochastic trend which determines their secular movement, and although

DS_1 and DS_2 can show deviations from this trend, these are only temporary. These were

generated byDS_1t = Temp_DSt+e1t with e1t ∼ i.i.d. N (0, 0.09) andDS_2t = Temp_DSt+e2t

with e2t ∼ i.i.d. N (0, 0.0025) where Temp_DSt is as defined in Section 2.7. In contrast, Figure

2(b) shows two simulated DS series with independent stochastic trends (DS_3 and DS_4). These

were generated by DS_3t = 0.01 + DS_3t−1 + e3t with e3t ∼ i.i.d. N (0, 0.01) and DS_4t =

0.01+DS_4t−1+e4t with e4t ∼ i.i.d. N (0, 0.01) (e1t through e4t are mutually independent). These

series deviate persistently from each other, precluding the existence of any linear combination that

could be stationary. Two of the most widely used cointegration tests were applied to DS_1 and

DS_2 and DS_3 and DS_4. The results (Table 3) correctly reflect the true data generating process

used to construct the simulations: both the Johansen (trace and max-eigenvalue statistics) and the

Engle-Granger tests indicate the existence of a cointegrating relationship between DS_1 and DS_2,

while clearly rejecting it for DS_3 and DS_4.

7 Co-trending

We now discuss various procedures to test for the presence of a common non-linear trend. We

start with Bierens’ nonparametric nonlinear co-trending test. Nonlinear co-trending is special

case of the more general “common features” concept described by Engle and Kozicki (1993). As

mentioned, cointegration analysis is only one possibility for investigating secular co-movements

of non-stationary variables. A long-run equilibrium relationship can be established when linear

combinations of different time series cancel out “common features” such as trends and co-breaks

in trend. Nonlinear cotrending aims to formally establish the existence of a secular co-movement

between time series that are stationary processes around nonlinear deterministic trends.

The advantage of the test proposed by Bierens (2000) is that the nonlinear trend does not

have to be parameterized. The nonlinear trend stationarity model considered can be expressed

by zt = g (t) + ut with g (t) = β0 + β1t + f (t), where zt is a k-variate time series, ut is a k-

variate zero-mean stationary process and f (t) is a deterministic k-variate general nonlinear trend

function that allow, in particular, structural changes. Nonlinear co-trending occurs when there

exists a non-zero vector θ such that θ′f (t) = 0. Hence, the null hypothesis is that the multivariate

time series zt is nonlinear co-trending, implying that there is one or more linear combinations of

the time series that are stationary around a constant or a linear trend. Note that this test is a

cointegration test in the case when it is applied to series that contain unit roots. The nonparametric

test for nonlinear co-trending is based on the eigenvalues of the matrices M1 and M2 defined by
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M1 = T−1
�T

t=1 F̂ (t/T )F̂ ((t/T ))′ where F̂ (x) = T−1
�[Tx]

t=1 (zt−β̂0−β̂1t) if x ∈
�
T−1, 1

	
, F̂ (x) = 0

if x ∈
�
0, T−1

�
with β̂0 and β̂1 being the estimates of the vectors of intercepts and slope parameters

in a regression of zt on a constant and a time trend; also

M2 = T−1
�T

t=m[m−1�m−1
j=0 (zt−j − β̂0 − β̂1 (t− j))][m−1�m−1

j=0 (zt−j − β̂0 − β̂1 (t− j))]′

where m = Tα with T is the number of observations and α = 0.5 as suggested by Bierens (2000).

Solving |M̂1 − λM̂2| = 0 and denoting the solution λ̂r, the test statistic is T 1−αλ̂r. The null

hypothesis is r co-trending vectors against the alternative of r − 1 co-trending vectors. This test

has a non-standard distribution and the critical values have been tabulated by Bierens (2000). The

existence of r co-trending vectors in r + 1 series indicates the presence of r linear combinations of

the series that are stationary and that these series share a single common nonlinear deterministic

trend. Such a result indicate a strong secular co-movement in the r + 1 series.

Another procedure used to investigate long term co-movements of hemispheric temperatures is

that of co-shifting (Holt and Teräsvirta, 2012), based on the Shifting Mean Vector Autoregression,

a generalization of the Shifting Mean Autoregressive model of González and Teräsvirta (2008).

A simple approach can also be used to test for a common long-run path in the bivariate context.

Assume two trend stationary variables of the form: yt = dt + ut and xt = wt + vt, where dt and

wt are nonstationary components which may be composed of a wide class of linear and nonlinear

trends, with changes in slopes or intercepts, and ut and vt are stationary noise components. The

procedure is based on testing for remaining nonstationarities in the residuals of the following re-

gression estimated by OLS: yt = α+ βxt + εt. If the individual nonstationary components dt and

wt are not present in εt, that is the residuals are found to be stationary, then it is said that yt and

xt share the same long-run path. The existence of remaining non-common nonstationarities can be

evaluated by applying standard unit root tests. This procedure is similar to the Engle and Granger

(1987) two-steps cointegration test but it does not require the assumption of unit roots in radiative

forcing and temperature variables. Also, since all series are trend-stationary, the relevant critical

values are those tabulated for standard unit root tests with no deterministic terms included.

G and TRF can be used to illustrate the concepts of co-trending and common long-run path

described above. The results the Bierens nonparametric nonlinear co-trending test indicate the

existence of one co-trending vector and the existence of a common secular trend between G and

TRF, as expected by climate physics (Table 4). This finding is also supported by the results of the

simple common long-run path test based on applying an ADF test to the residuals of a regression

of G on TRF (test statistic value equal to -7.36, significant at the 1% level).
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8 Conclusions

As evidenced in this review, the time-series based study of the detection and attribution of cli-

mate change has been an active area of research and the application of econometric methods had

a prominent role. With few exceptions, recent publications have shown compelling evidence based

on both observations and climate models’ simulations supporting the existence of a warming trend.

Furthermore, although strong methodological differences have characterized these studies and a

wide variety of tests and models have been applied, the results are remarkably in agreement re-

garding the dominant role of human intervention with the climate system. Whatever the evolution

of climate change during this century turns out to be, the time-series and econometric approach

will be of importance in understanding the changes in the climate system as they occur as well as

their linkage to human and natural drivers. Global warming will continue to provide a fertile field

for the development and application of new statistical models, tests and methods.
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Figure 1. Global temperatures (filtered; panel a), TRF (panel b), AMO (panel c), Temp_TSB

(panel d), Temp_DS (panel e) and Temp_S (panel f).
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Figure 2. Cointegrated (panel a) and not cointegrated (panel b) simulated difference stationary

series.
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Tables

Table 1. Standard unit root/trend stationary tests applied to G, TRF and simulated temperature

series Temp_TSB, Temp_DS and Temp_S.

Series ADF DF-GLS KPSS ERS-PO Ng-Perron

G -2.79 (3) -2.68 (3) 0.26 (8) 7.18 (3) -5.47[MZa]; -1.64[MZt]; 0.30[MSB]; 16.61[MPT ] (8)

TRF -2.73 (12) -2.21 (11) 0.32 (9) 0.10 (12) -6.51[MZa]; -1.71[MZt]; 0.26[MSB]; 14.04[MPT ] (9)

AMO -3.31 (2) -2.45 (2) 0.10 (9) 2.16 (2) -7.09 [MZa]; -1.83 [MZt]; 0.26 [MSB]; 3.66 [MPT ] (4)

Temp_TSB -2.60 (2) -2.43 (2) 0.25 (8) 8.70 (2) -8.26[MZa]; -1.85[MZt]; 0.22[MSB]; 11.61[MPT ] (3)

Temp_DS -2.93 (0) -1.97 (0) 0.21 (9) 14.16 (0) -6.63[MZa]; -1.73[MZt]; 0.26[MSB]; 13.80[MPT ] (1)

Temp_S -4.92 (0) -4.81 (0) 0.10 (7) 0.79 (0) -28.46[MZa]; -3.75[MZt]; 0.13[MSB]; 0.93[MPT ] (4)

The model specification includes a constant and a trend, with the exception of AMO and Temp_S for which

only a constant term is included. The lag length and bandwidth shown in parenthesis. Figures in bold and italics

indicate that the statistic is significant at the 5% and 10% levels, respectively. For the ADF and DF-GLS tests the

lag length was selected via the Akaike Information Criterion. For the KPSS test, the Bartlett kernel is used with the

bandwidth selected using the Newey-West method. For the ERS-PO, the autoregressive spectral density estimator is

used with the lag length selected via the Akaike Information Criterion. For the Ng-Perron tests, the long-run varaince

is estimated using an autoregressive spectral density estimation method with GLS-detrended and the lag length was

selected via the Modified Akaike Information Criterion.

Table 2. Perron-Yabu test applied G, TRF and simulated temperature series Temp_TSB,

Temp_DS and Temp_S.

Series Exp-Wald statistic value

G 12.34

TRF 7.92

AMO 0.28

Temp_TSB 19.50

Temp_DS 0.15

Temp_S -0.31

Bold figures denote statistical significance at the 1% level.
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Table 3. Tests for a unit root allowing for a one-time break in the trend function applied to

filtered G, TRF and simulated temperature series Temp_TSB.

Series Tb k 
µ 
β 
γ 
α t�α tα
�
λAO
tr

�

G 1956 0 -0.27 (-15.94) 0.0031 (9.01) 0.0063 (8.28) 0.34 -7.98a -7.30a

TRF 1960 1 -0.09 (-5.34) 0.0064 (20.82) 0.0221 (28.98) 0.84 -4.58a -4.11b

Temp_TSB 1978 0 -0.34 (-18.61) 0.0040 (13.20) 0.0129 (9.51) 0.31 -8.17a -7.79a

The regression model for the unit root tests is defined in regression (6). The symbols used are defined as follows:

Tb is the estimate of the break date; k is the number of lagged differences added to correct for serial autocorrelation;


µ, 
β and 
γ are the regression coefficients of the trend function and the corresponding t-statistic values are shown

in parenthesis. Bold numbers denote statistical significance at the 5% levels. 
α is the estimate of the sum of the

autoregressive coefficients and t�α is the Perron (1997) unit root test statistic. tα
�
λAO
tr

�
is the Kim-Perron (Kim

and Perron, 2009) unit root test statistic. a, b denote statistical significance at the 1% and 5% levels, respectively.

Table 4. Cointegration tests applied to simulated variables DS_1 and DS_2, and DS_3 and

DS_4.

Series Trace statistic Max-eigenvalue statistic Engle-Granger ADF test statistic

DS_1, DS_2 27.91 27.11 -11.61

DS_3, DS_4 4.25 3.77 -1.70

Bold numbers denote statistical significance at the 1% level.

Table 5. Test for nonlinear co-trending between filtered G and TRF.

r Test statistic 10% critical region 5% critical region

1 0.07 >0.12 >0.15

2 0.32 >0.17 >0.20

Bold numbers denote statistical significance at the 10% level.
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