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Abstract

This paper considers constructing confidence intervals for the date of a structural
break in linear regression models. Using extensive simulations, we compare the per-
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totic distribution under a shrinking shift framework, Elliott and Müller (2007) based
on inverting a test locally invariant to the magnitude of break, Eo and Morley (2013)
based on inverting a likelihood ratio test, and various bootstrap procedures. On the
basis of achieving an exact coverage rate that is closest to the nominal level, Elliott
and Müller’s (2007) approach is by far the best one. However, this comes with a very
high cost in terms of the length of the confidence intervals. When the errors are se-
rially correlated and dealing with a change in intercept or a change in the coeffi cient
of a stationary regressor with a high signal to noise ratio, the length of the confidence
interval increases and approaches the whole sample as the magnitude of the change
increases. The same problem occurs in models with a lagged dependent variable, a
common case in practice. This drawback is not present for the other methods, which
have similar properties. Theoretical results are provided to explain the drawbacks of
Elliott and Müller’s (2007) method.
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1 Introduction

Both the statistics and econometrics literature contain a vast amount of work on issues related

to structural changes with unknown break dates (see, Perron, 2006, for a detailed review).

In this paper, we consider the problem of constructing confidence intervals for the break

date in a linear regression model. Important early contributions about the limit distribution

of the estimate of the break date, from which confidence intervals can be obtained, include

Bai (1994) for a change in mean in a linear process and Bai (1997) for a one time change in

some coeffi cients in a linear regression model. These results have been extended to multiple

structural changes by Bai and Perron (1998, 2003) for the linear regression model, Perron and

Qu (2006) for the case with restrictions on the parameters (and relaxations of the conditions

on the regressors and errors), Perron and Yamamoto (2013a) for the case of linear models

with endogenous regressors estimated by two-stage least squares and Perron and Yamamoto

(2013b) for linear models estimated via band spectral regression. In all cases, the limit

distributions of the estimates of the break dates have a common structure and are obtained

using an asymptotic framework whereby the magnitude of the change shrinks as the sample

size increases. The limiting distribution is non-standard, but quantiles can be obtained

numerically. Simulation results presented by Bai and Perron (2006) show that the coverage

rate is adequate for moderate to large breaks. Stock and Watson (2002) applied such a

procedure to construct confidence intervals of the break date for a change in parameters in

simple regression models for various economic time series.

Recently, Elliott and Müller (2007) considered constructing confidence intervals for the

date of a single structural break in linear time series regressions, focusing on breaks with small

magnitude. They criticized Bai’s (1997) approach on the basis that the empirical coverage

rates of the confidence intervals obtained from the asymptotic distribution of the estimate

of the break date are below the nominal rates when the magnitude of the break is small.

They suggested constructing confidence intervals by inverting a test statistic, labelled ÛT
and related to Nyblom (1989) test, that is locally invariant to the magnitude of break. They

showed, via simulations, that the resulting confidence intervals have exact coverage rates

very close to the nominal level, for a variety of models including a change in unconditional

variance, serial correlation and/or heteroskedasticity in the errors.

More recently, Eo and Morley (2013) generalized Siegmund’s (1988) method to a system

of multivariate regressions, which is based on inverting the Likelihood Ratio test to obtain a

confidence set, labelled ILR. Using results from Qu and Perron (2007), they considered the
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problem in the context of a system of multivariate equations. They advocated this approach

based on the fact that it provides confidence intervals with smallest length compared to other

methods.

Another possible avenue is to use some bootstrap procedures. When the errors are

independent and identically distributed, a standard residual bootstrap procedure is possible;

when the errors are heteroskedastic, the wild bootstrap approach of Liu (1988) can be applied;

and with serially correlated errors, the sieve bootstrap procedure analyzed by Chang and

Perron (2013) is applicable.

The goal of this paper is to compare the relative merits of these various procedures to

form confidence intervals in terms of exact coverage rates and lengths. To do so, we resort to

extensive simulation experiments involving models with a wide variety of features: change

in mean, change in the coeffi cient of a stationary regressor, heteroskedastic errors, serially

correlated errors and models with a lagged dependent variable. Our setup builds upon the

simulation design of Elliott and Müller (2007) but extends it in several dimensions. Without

loss of generality, we consider models with a single break.

Our findings can be summarized as follows. On the basis of achieving an exact coverage

rate that is closest to the nominal level, Elliott and Müller’s (2007) approach is by far the

best one. In all cases, the exact coverage rate is indistinguishable from the nominal level.

For small breaks, Bai’s method and the ILR can exhibit liberal distortions, exact coverage

rates below nominal level. They can also be conservative. The bootstrap procedure are

never liberal but can also be conservative. However, this superior performance of Elliott and

Müller’s (2007) approach in terms of coverage rates comes at very high costs in terms of

the length of the confidence intervals. When the errors are serially correlated and dealing

with a change in intercept or a change in the coeffi cient of a stationary regressor with a high

signal to noise ratio, the length of the confidence interval increases and approaches the whole

sample as the magnitude of the change increases. The same problem occurs in models with

a lagged dependent variable, a common case in practice. This drawback is not present for

the other methods.

The procedure that strikes the best balance between coverage rate and length is the

bootstrap. The ILR and Bai’s method do have some liberal size distortions but mostly for

small breaks, in which case the lengths are relatively large. The issue then is whether, for

all practical purposes, it matters if these procedures state that the uncertainty about the

location of the break date is, say, 50% instead of the correct 70% given the liberal size

distortions. In either case, the answer is the same from a practical perspective, namely that
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the data are not informative about the location of the break and we should not view the

estimate as reliable. If one adopts this view, the performances of the ILR, Bai and bootstrap

methods are comparable.

For Elliott and Müller’s (2007) approach, we show theoretically why the length of the

confidence interval approaches the whole sample as the break magnitude increases when

dealing with a regression with potentially serially correlated errors or when dealing with a

regression with a lagged dependent variable included as regressor. Given that the simulation

results are case specific, the theoretical results presented make clear the exact features of the

data generating process that give rise to this problem.

The main problem in Elliott and Müller’s (2007) approach is the adoption of a local

asymptotic framework in which the test being inverted is locally invariant to the magnitude

of the break. In the literature, such a framework is prevalent. In finite samples, however, it

has been shown that it cannot be a reliable guide under various circumstances. The problem

here is related to some earlier studies. Deng and Perron (2008) studied the power functions of

the CUSUM and CUSUM of squares tests and showed that the relative properties of those

two tests can be different from what the local asymptotic framework used by Ploberger

and Krämer (1990) suggested when the errors are serially correlated or a lagged dependent

variable is included as a regressor in the model. Kim and Perron (2009) considered the

local asymptotic framework used by Andrews and Ploberger (1994). They compared the

asymptotic relative effi ciency of the LM, Wald and LR based statistics using the criterion

of the relative approximate Bahadur slopes of the tests. They showed LM-based procedures

to be ineffi cient. Perron and Yamamoto (2012) considered the so-called optimal ˆqLL test

of Elliott and Müller’s (2006) for general parameter variations in which a local asymptotic

framework is also adopted. The power function of this test goes to zero as the magnitude

of the break increases under the same circumstances. It was also shown that the sup-Wald

test, though not optimal, has better power, unless the magnitude of the break is very small

in which case the differences in power are very minor.

The structure of the paper is as follows. Section 2 lays out the model under consideration

and reviews the various procedures to construct the confidence intervals. Section 3 presents

the results of the simulation experiments. Section 4 provides theoretical results about the

properties of Elliott and Müller’s (2007) approach. Section 5 offers brief conclusions and an

appendix contains technical derivations.
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2 The model and procedures

We consider a linear regression model with a single structural break at T 0
1

yt = x′tβt + z′tγ + ut, (1)

βt = β + δ1t>T 01 (2)

for t = 1, . . . , T where 1A denotes the indicator function for the event A. Here, yt is the

observed dependent variable, xt (p× 1) and zt (q× 1) are vectors of covariates, and (β, δ, γ)

are the corresponding vectors of coeffi cients; ut is the disturbance. As usual, we assume that

each regime is a fixed proportion of the sample size so that T 0
1 = [Tλ0] for some λ0 ∈ (0, 1);

[·] is the greatest smaller integer function. Note that we allow for a partial structural change
model since γ is not subject to change. A pure structural change model is a special case

with q = 0.

The issue of interest is to form a confidence interval for the break date T 0
1 . Below, we

review several procedures that have been proposed.

2.1 Bai’s (1997) approach

Bai (1997) considered estimating the break date using

T̂1 = arg min T1SSR(T1) (3)

where SSR(T1) is the sum of squared residuals from the unrestricted regression (1) and (2)

evaluated at the candidate break date T1. Using T1 as the break date, we can write (1) as

yt = x1(T1)′tβ + x2(T1)′tψ + z′tγ + ut (4)

where x1(T1)t = xt if t ≤ T1 and 0 otherwise and x2(T1)t = xt if t > T1 and 0 otherwise.

Here, ψ = β + δ. In matrix notations,

Y = [X̄, Z]Γ + U

where Y = (y1, . . . , yT )′, Z = (z1, . . . , zT )′, and U = (u1, . . . , uT )′. X̄ is the matrix which

diagonally partitions X at T1, i.e., X̄ = diag(X1, X2) with X1 = (x1, . . . , xT1)
′ and X2 =

(xT1+1, . . . , xT )′, and Γ = (Γ′1, γ
′)′ = (β′, ψ′, γ′)′. Let T1 = [Tλ] with λ ∈ Λε = (ε1, 1 − ε2).

Define

F (T1) =

(
T − 2p− q

p

)
Γ̂′1H

′(H(X̄ ′MZX̄)−1H ′)−1HΓ̂1

SSR(T1)
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where Γ̂1 = (β̂
′
, ψ̂
′
)′ is the OLS estimate from (4), H is the conventional matrix such that

(HΓ1)′ = (ψ′ − β′) = δ′ and MZ = I − Z(Z ′Z)−1Z ′. In a pure structural break model, MZ

reduces to a T × T identity matrix. With a single structural break,

T̂1 = arg max T1∈ΛF (T1).

Amemiya (1985) and Bai (1997) showed that the break date that maximizes the Wald test is

the same as the break date that minimizes the sum of squared residuals from the unrestricted

regression model defined in (3). As noted in Bai (1997), the estimator of the break fraction

λ̂ is T -consistent even with serially correlated errors.

In Bai (1997), the limiting distribution of the estimate of the break date was derived

under various assumptions. If the magnitude of break is fixed, the limiting distribution de-

pends on the exact distributions of both the regressors and the errors which are unknown

in general. To avoid this problem, a common approach is to use an asymptotic frame-

work with shrinking magnitudes of shifts. To describe the limit distribution that applies

in this case, we need to define some notations. For the true structural break date T 0
1 ,

Q = p limT→∞ T
−1
∑T

t=1 E(xtx
′
t), Q1 = p limT→∞(T 0

1 )−1
∑T 01

t=1E(xtx
′
t), Q2 = p limT→∞(T −

T 0
1 )−1

∑T
t=T 01+1E(xtx

′
t),

ω2 = lim
T→∞

T−1E[
T∑
t=1

x′tut][
T∑
t=1

x′tut]
′,

ω2
1 = lim

T→∞
(T 0

1 )−1E[

T 01∑
t=1

x′tut][

T 01∑
t=1

x′tut]
′,

ω2
2 = lim

T→∞
(T − T 0

1 )−1E[
T∑

t=T 01+1

x′tut][
T∑

t=T 01+1

x′tut]
′.

Let ⇒ denote weak convergence under the Skorohod topology. Under some conditions, Bai

(1997) showed that the limit distribution of the estimate of the break date is given by:

(δ′Q1δ)
2

δ′ω2
1δ

(T̂1 − T 0
1 )⇒ arg max s∈RV (s) (5)

where V (s) = W1(−s) − |s|/2 if s ≤ 0 and V (s) =
√
φW2(s) − ξ|s|/2 if s > 0, where

ξ = δ′Q2δ/δ
′Q1δ and φ = δ′ω2

2δ/δ
′ω2

1δ. Also, Wi(s), i = 1, 2, are two independent standard

Wiener processes defined on [0,∞), starting at the origin when s = 0. The cumulative

distribution function of argmaxV (s) is derived in Bai (1997) (see Appendix B therein).
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Since δ, Qi, and ω2
i for i = 1, 2 are unknown, consistent estimates are needed. These are

given by δ̂ = ψ̂ − β̂, Q̂1 = T̂1
−1
∑T̂1

t=1 xtx
′
t, Q̂2 = (T − T̂1)−1

∑T
t=T̂1+1 xtx

′
t and an estimate of

ωi can be constructed using a HAC estimator applied to the vector {xtût} and using data
over segment i only.

As a special case, suppose that {xt, ut} is second-order stationary for the whole sample
and the errors are uncorrelated, then Q1 = Q2 = Q, ω2

1 = ω2
2 = σ2Q and

δ′Qδ

σ2
(T̂1 − T 0

1 )⇒ arg max s∈R|W (s)− |s|/2|.

This can be evaluated using the estimates Q̂ = T−1
∑T

t=1 xtx
′
t and σ̂

2 = T−1
∑T

t=1 û
2
t . A

100(1− a)% confidence interval is constructed as[
T̂1 −

[
ζ/L̂

]
− 1, T̂1 +

[
ζ/L̂

]
+ 1
]

(6)

where ζ is the (1− a/2)th quantile of the random variable arg max |W (s)− |s|/2| and L̂ =

δ̂
′
Q̂δ̂/σ̂2; [ζ/L̂] is the integer part of ζ/L̂. The asymptotic distributions are also available

under various assumptions on both the regressors and the disturbances, see Bai (1997) and

Bai and Perron (1998, 2003, 2006). When the errors are serially correlated and the regressors

are identically distributed across segments, ξ = φ = 1, and

(δ′Qδ)2

δ′ω2δ
(T̂1 − T 0

1 )⇒ arg max s∈R|W (s)− |s|/2|.

where Q = Q1 = Q2 and ω = ω1 = ω2. An estimate of ω can be constructed using a

HAC estimator applied to the vector {xtût} using data over the whole sample. On the other
hand, if the errors are uncorrelated but heteroskedastic and the regressors are identically

distributed across segments, then

δ′Qδ

σ2
1

(T̂1 − T 0
1 )⇒ arg max s∈R|W (s)− |s|/2|,

where σ2
1 can be estimated using σ̂

2
1 = T̂−1

1

∑T̂1
t=1 û

2
t .

2.2 Elliott and Müller’s (2007) approach

The method proposed by Elliott and Müller (2007) is based on inverting the following test

statistic:

UT (T1) = T−2
1

T1∑
t=1

(
t∑

s=1

vs

)′
ω−2

1

(
t∑

s=1

vs

)

+ (T − T1)−2

T∑
t=T1+1

(
t∑

s=T1+1

vs

)′
ω−2

2

(
t∑

s=T1+1

vs

)
(7)
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where vt = xtût with ût the OLS residuals from the regression (4). The procedure for

constructing the confidence interval of the break date is as follows. For every T1 ∈ {2p +

1, . . . , T − 2p− 1}, perform the following steps:

• Step 1: Obtain the OLS residuals ût from the regression (4).

• Step 2: Construct a consistent estimate of ω2
1 and ω

2
2, the p × p long-run covariance

matrices of vt = xtût, for each sub-samples defined by T1. For serially correlated er-

rors, the automatic bandwidth estimator of Andrews (1991) or Andrews and Monahan

(1992) is recommended.

• Step 3: Compute ÛT (T1) as in equation (7) with ω2
1 and ω

2
2 replaced by ω̂

2
1 and ω̂

2
2,

respectively.

• Step 4: Test the null hypothesis H0 : T1 = T 0
1 . T1 is included in the 100(1 − a)%

confidence set if ÛT (T1) < cva and is excluded otherwise, where cva is the asymptotic

critical value of ÛT at the significance level a. The relevant limit distribution is given

by

ÛT (T 0
1 )⇒

∫ 1

0

B(s)′B(s)ds

where B(s) is a 2p× 1 vector standard Brownian bridge.

2.3 Bootstrap Methods

Bootstrap methods are popular alternatives to approximate the exact distribution of es-

timators and can be used to construct confidence intervals. We consider three variants

depending on the regressors and assumptions about the errors: 1) a simple residual-based

method applicable when the errors are assumed to be i.i.d.; 2) a sieve bootstrap applicable

when the errors are potentially serially correlated; 3) a wild bootstrap method to account

for heteroskedasticity in the errors. The data-generating process is again

yt = x′tβ + x′tδ1t>T 01 + ut. (8)

for t = 1, ..., T .

1) The case with i.i.d. errors. Consider estimating (8) by OLS with estimated residuals
ût = yt − x′tβ̂ − x′tδ̂1t>T̂1 for t = 1, . . . , T . Define ¯̂u = T−1

∑T
t=1 ût and construct a set

Û = {û1− ¯̂u, û2− ¯̂u, . . . , ûT − ¯̂u}. Draw a random sample from Û with replacement and label
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it as Û∗(b) = {û∗1, . . . , û∗T} for b = 1, . . . , B, where B is the number of bootstrap replications.

Under the assumption that the errors are i.i.d., we can construct a new process {y∗t } as

y∗t = x′tβ̂ + x′tδ̂1t>T̂1 + û∗t

for t = 1, . . . , T and obtain the OLS estimates β̂
∗
(b), δ̂

∗
(b), and T̂ ∗1(b) associated with each

bootstrap sample Û∗(b). Note that we allow for the change to estimate the residuals used

to generate the bootstrap samples. This allows replicating the distribution under the null

hypothesis of no change whether a change is present or not. If the change is not allowed and

one occurs, the estimated residuals will be contaminated and the procedure will not replicate

correctly the distribution under the null hypothesis.

This approach is also valid in the case with a lagged dependent variable included as a

regressor. We again re-sample û∗t for Û
∗ and construct y∗t recursively, using

y∗t = α̂y∗t−1 + x′tβ̂ + x′tδ̂1t>T̂1 + û∗t

for t = 1, . . . , T and y∗0 = y0. For each bootstrap sample, we estimate the break date T̂ ∗1(b),

for b = 1, . . . , B.

2) The case with serially correlated errors. To account for potential serial correlation in
the errors, whose nature is assumed to remain constant throughout the sample, we consider

the sieve bootstrap as suggested by Bühlmann (1997). Suppose that the error term ut is

generated by the linear process

ut = ψ(L)εt (9)

where L is the usual lag operator and ψ(z) =
∑∞

k=0 ψkz
k. By Wold’s theorem, a one-

sided infinite order MA representation of the form (9) holds if ut is a real-valued stationary

process with expectation Eut = µu, and is purely stochastic; see Brockwell and Davis (1989).

In this case, the process is invertible and we can express ut as a one-sided infinite-order

autoregression

εt = φ(L)ut (10)

where φ(z) =
∑∞

k=0 φkz
k. We approximate the process by a finite autoregression of order p,

i.e.,

ut = φ1,Tut−1 + . . .+ φp,Tut−p + εt (11)

We estimate φ = (φ1,T , . . . , φp,T )′ using the Yule-Walker equations since this method yields

a stationary process by construction. These are defined by Γpφ = γp and σ
2 = γ(0)− φ′γp,
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where Γp = [γ(i− j)]pi,j=1 and γp = (γ(1), . . . , γ(p))′. Hence, we can estimate φ̂ and σ̂2 from

γ̂(1), . . . , γ̂(p), defined by γ̂(s) = T−1
∑T

t=s+1 ûtût−s. The sieve bootstrap will be valid under

the following conditions.

• Assumption SB1 ut =
∑∞

j=0 ψjεt−j, ψ0 = 1 (t ∈ Z) where {εt}t∈Z is an i.i.d. sequence
with E(εt) = 0, E|εt|r <∞ for some r > 4.

• Assumption SB2 ψ(z) 6= 0 for all |z| ≤ 1, and
∑∞

j=0 |j|s|ψj| <∞ for some s ≥ 1.

• Assumption SB3 Let p = pT → ∞ and pT = o((T/ log T )1/2) as T → ∞ and

φ̂p = (φ̂1,T , . . . , φ̂p,T )′ satisfy the empirical Yule-Walker equations

Γ̂pφ̂p = γ̂p

where Γ̂p = [γ̂(i− j)]pi,j=1 and γ̂p = (γ̂(1), . . . , γ̂(p))′.

We use the Akaike Information Criterion (AIC) to select the order of the autoregression

pT since it is compatible with Assumption SB3. We can then obtain the estimated residuals

as

ε̂t,T =

pT∑
j=0

φ̂j,T ût−j

where φ̂0,T = 1. We center the estimated residuals so that their sample mean is zero:

ε̃t,T = ε̂t,T − (T − p)−1

T∑
t=p+1

ε̂t,T

and denote the empirical CDF of {̃εt,T}Tt=p+1 by

F ∗(z) = (T − p)−1

T∑
t=p+1

1ε̃t,T≤z (12)

We can re-sample, for any t ∈ Z, ε∗t i.i.d. from F ∗, and define û∗t by recursion,

pT∑
j=0

φ̂j,T û
∗
t−j = ε∗t (13)

with approximately chosen p-initial values of u∗t . To that effect, we initially set the initial

values to zero and construct the AR(pT ) process from (13) for a suffi ciently long period to
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ensure stationarity of the process. We then discard the initial values to have a sample of size

T + pT . Then, y∗t is constructed as

y∗t = x′tβ̂ + x′tδ̂1t>T̂1 + û∗t

and can estimate the break date, T̂ ∗1(b) for each replications b = 1, . . . , B.

3) The case with heteroskedastic errors. To account for potential heteroskedasticity,
we adopt the wild bootstrap method of Liu (1988). The bootstrap sequence {y∗t ; t = 1, ..., T}
is generated by:

y∗t = x′tβ̂ + x′tδ̂1t>T̂1 + û∗t ,

where û∗t = ft(ût)εt, with

εt =


−(
√

5−1)
2

with prob. p = (
√

5 + 1)/(2
√

5)

(
√

5+1)
2

with prob. 1− p,

so that εt is a random variable with mean zero and variance one. Also, we set ft(ût) =

(T/(T − 2))1/2ût. Again, we estimate the break date T̂1,(b) from the bootstrap samples

{y∗t , xt} for each replication b = 1, . . . , B. For details about the wild bootstrap, see Liu

(1988) and Davidson and Flachaire (2008).

In all cases the “percentile bootstrap confidence interval”is constructed as follows. First,

sort the estimated break dates T̂ ∗1(b) from every bootstrap sample in ascending order (the

estimate T̂1 should be included in the sorted set). Denote the quantiles of interest, a/2 and

(1 − a/2), for equal-tailed probability intervals, by qL and qH . The 100(1 − a)% percentile

bootstrap confidence interval (PB) is defined as PB ≡ [qL, qH ].

2.4 Likelihood-based Method

Siegmund (1988) suggested a likelihood-based method to construct a confidence set for a

structural break date. He considered a change in mean model with independent normal

observations. Recently, Eo and Morley (2013) generalized Siegmund’s (1988) method to a

system of multivariate regressions. We review the so-called Inverted Likelihood Ratio (ILR)

confidence set for the case of a linear model with no serial correlation in the errors but

allowing the variance to change across regimes. The reader is referred to Eo and Morley

(2013) for details about the case with serial correlation in the errors.
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The parameters are estimated by restricted quasi-maximum likelihood based on the as-

sumption of i.i.d. errors; see Qu and Perron (2007). The quasi-likelihood function is

LT (T1, β, δ, σu,1, σu,2) =

T1∏
t=1

f(yt|xt; β, δ, σu,1) +

T∏
t=T1+1

f(yt|xt; β, δ, σu,2)

where for j = 1, 2, where

f(yt|xt; β, δ, σu,j) =
1√

2πσu,j
exp

(
− 1

2σu,j
(yt − x′tβ − x′t1t>T1δ)2

)
.

Then, the likelihood ratio test statistic is given by

lnLRT (T1, β, δ, σu,1, σu,2) =

(
T1∑
t=1

ln f(yt|xt; β, δ, σu,1) +

T∑
t=T1+1

ln f(yt|xt; β, δ, σu,2)

)

−

 T 01∑
t=1

ln f(yt|xt; β, δ, σu,1) +
T∑

t=T 01+1

ln f(yt|xt; β, δ, σu,2)


= lr(T1 − T 0

1 )

where, letting r = T1 − T 0
1 ,

lr(r) = 0 for r = 0,

lr(r) = −r(lnσu,2 − lnσu,1)− 1

2

T 01∑
t=T1+1

{(yt − x′tβ − x′tδ)2σ−2
u,2 − (yt − x′t)2σ−2

u,1)} for r < 0,

lr(r) = −r(lnσu,1 − lnσu,2)− 1

2

T 01∑
t=T1+1

[(yt − x′t)2σ−2
u,1 − (yt − x′tβ − x′tδ)2σ−2

u,2)} for r > 0.

When there is a structural break in either the conditional mean or the unconditional variance,

under some assumptions,

lr(T̂1 − T 0
1 )⇒ max

ν
{−1

2
|ν|+W (ν)} for ν ∈ (−∞,∞)

where W (·) is a standard Wiener process; see Corollaries 1 and 2 in Eo and Morley (2013).
The ILR confidence set can be obtained as ILR = {T1|lr(T̂1−T1) < κ} where κ denotes the
critical value of a 100(1−a)% ILR confidence set. Bhattacharya and Brockwell (1976) showed

that Ξ1 = supν≤0{−|ν|/2 + W (ν)} and Ξ2 = supν>0{−|ν|/2 + W (ν)} are i.i.d. exponential
random variables, and P (Ξ1 ≤ z) = P (Ξ2 ≤ z) = 1− exp(−z), z > 0. Hence,

P

(
sup
ν
{−|ν|/2 +W (ν)} ≤ κ

)
= P (max{Ξ1,Ξ2} ≤ κ) = P (Ξ1 ≤ κ)P (Ξ2 ≤ κ)

= (1− exp(−κ))2 = 1− a
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and the critical value of the likelihood ratio test is given by κ = − ln(1− (1− a)1/2).

3 Simulation Experiments

In this section, we present simulation results in a non-local perspective on the coverage

rate and the length of the confidence interval for the various procedures. All models in

the simulations reported in Elliott and Müller (2007) are revisited and expended. For the

regression models without a lagged dependent variable, the data generating process (DGP)

is specified as:

yt = x′tβ + x′tδ1t>T 01 + z′tγ + ut (14)

for t = 1, . . . , T with T = 100. The true break date is T 0
1 = [Tλ0] and λ0 = 0.5. The

magnitude of a change, δ, is defined by δ ≡ dT−1/2 where d ∈ {4, 8, . . . , 50}, or equivalently
δ ∈ {0.4, 0.8, . . . , 5}. Without loss of generality, we set β = 0. The different DGPs considered

are the following:

• M1: a change in mean, xt = 1, zt = 0, and ut ∼ i.i.d.N(0, 1);

• M2: same as M1, but with a change in unconditional variance that quadruples at T 0
1 ;

• M3: same as M1, but with AR(1) errors, ut = 0.3ut−1 + εt, εt ∼ i.i.d.N(0, 0.49);

• M4: same as M1, but with MA(1) errors, ut = εt − 0.3εt−1, εt ∼ i.i.d.N(0, 2.04);

• M5: xt is a stationary Gaussian AR(1) process, i.e., xt = 0.5xt−1+ξt, ξt ∼ i.i.d.N(0, 0.75),

and zt = 1, and {ut} ∼ i.i.d.N(0, 1) independent of {xt};

• M6: Same as (M5), but with heteroskedastic errors such that ut = εt|xt|, where εt ∼
i.i.d.N(0, 0.333) and independent of xt;

• M7: Random regressor, xt = µ+ 0.5xt−1 + ξt with µ = 5 and ξt ∼ i.i.d.N(0, 0.75), and

AR(1) errors ut = 0.3ut−1 + εt, εt ∼ i.i.d.N(0, 0.49);

• M8: Random regressor, xt = µ+ 0.5xt−1 + ξt with µ = 5 and ξt ∼ i.i.d.N(0, 0.75), and

MA(1) errors ut = εt − 0.3εt−1, εt ∼ i.i.d.N(0, 2.04).

We also consider a dynamic regression model, given by

yt = αyt−1 + δ1t>T 01 + εt, εt ∼ i.i.d.N(0, 1),
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where y0 = 0. Model D1 sets α = 0.8 and for Model D2 α = 0, the latter corresponding to

the case in which an irrelevant lagged dependent variable is included.

We considered two versions of ÛT : ÛT .eq which imposes the long-run variances pre-

and post- break to be the same and ÛT .neq which allows ω2
1 6= ω2

2. Since the results are

quatitatively similar, we only report results for ÛT .neq.

The results for 95% coverage rates are presented in Figures 1 for the various DGPs.

Consider first the coverage rates for the various methods. The Elliott and Müller’s (2007)

(EM) method yields, overall, exact coverage rates that are the closest to 95% across all

methods. It is never liberal, though it can be conservative in some cases (e.g., M3, M4).

The bootstrap methods also have exact coverage rates close to 95% but the extent to which

they can be conservative is greater, e.g., M1, M3, M4, M8 and M5 through M7, D1, D2 for

large breaks. The method of Bai and the Inverted Likelihood Ratio (ILR) exhibit liberal

distortions (coverage rates below 95%) in some cases when the break is small. For Bai’s

method, this occurs for M1, M2, M5, M6, D1 and D2. The liberal distortions can remain

to some extent even for large break in the case of M5 and D1. The ILR also has cases with

liberal coverage rates (M1, M3, M5, M6 for very small breaks, D1 and D2). The distortions

are especially severe for M3 with small breaks. It can also be conservative (M4, M8, and

most cases for large breaks). Overall, for small breaks, the ILR delivers more liberal coverage

rates compared to Bai (M1, M3, M5, M7, D1, D2). Bai’s method is more liberal than ILR

for small breaks with M2, M6 and for large break with M5 and D1.

Consider now the length of the confidence intervals. For large breaks, the differences

between those delivered by Bai, ILR and the bootstrap are minor. For small breaks, the ILR

has more often smaller length (M1, especially M2, M3, D2) but Bai’s method yields smaller

lengths in some cases (M4, M6). The bootstrap method delivers confidence intervals with

lengths that are, in general, a close second relative to the best of ILR and Bai.

The most striking feature of the results is the length of the confidence intervals delivered

by EM. They are, in almost all cases and for any values of the magnitude of the break, the

widest amongst all methods. More importantly, in many cases the average length increases

as the magnitude of the break increases and even covers the whole sample for large breaks.

This occurs for M3 (change in mean model with serial correlation in the errors), M7 and M8

(models with serial correlation and a random regressors such that the signal to noise ratio is

high), and D1 and D2 (models with a lagged dependent included). It also occurs for M4 with

larger values of δ from unreported simulations. The length can be more than half the whole

sample even for moderate breaks in the case of M7. For Model D1, with an autoregressive
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coeffi cient taking value 0.8, common in practice, the length of the confidence interval is the

whole sample for any value of the magnitude of the break.

On the basis of the simulations, which procedure is to be recommended? If one insists on

having a coverage rate that is closest to the nominal level, then EM’s approach is clearly the

preferred one. But the price in terms of the average lengths that it delivers is way too high.

It always has the longest confidence interval, which in important practical cases can increase

to be the whole sample as the magnitude of the break increases. The procedure that strikes

the best balance between coverage rate and length is the bootstrap. It is, on the other hand,

obviously more computationally intensive. The ILR and Bai’s method do have some liberal

size distortions but most often for small breaks only, in which case the lengths are relatively

large given the fact that there is little information in the data. The issue then is whether,

for all practical purposes, it matters if these procedures state that the uncertainty about

the location of the break date is, say, 50% instead of the correct 70% given the liberal size

distortions. In either case, the answer is the same from a practical perspective, namely that

the data are not informative about the location of the break and we should not view the

estimate as reliable. If one adopts this view, the performances of the ILR, Bai and bootstrap

methods are comparable, though for small breaks the bootstrap achieves a better balance

between coverage rates and lengths of the confidence intervals.

It remains to understand why EM’s method performs so badly, in important cases, in

terms the length of the confidence interval. This is addressed theoretically in the next section.

4 Theoretical Results about Elliott and Müller’s (2007) approach

We now provide theoretical explanations for some of the simulation results pertaining to

the properties of Elliott and Müller’s (2007) approach to construct confidence intervals. Of

interest is to show theoretically why the length of the confidence interval approaches the

whole sample as the break magnitude increases when dealing with a regression with poten-

tially serially correlated errors or when dealing with a regression with a lagged dependent

variable included as regressor. Since the simulation results are case specific, the theoretical

results will make clear the exact features of the DGP that give rise to this problem.

4.1 Static Regression with Serially Correlated Errors

The data generating process (DGP) is defined as follows:

yt = x′tβt + z′tγ + ut; βt = β + δ1t>T 01 (15)
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where T 0
1 = [Tλ0] for some λ0 ∈ (0, 1). We impose the following assumptions on the errors

and the regressors:

• Assumption A1: The errors ut are stationary and ergodic with E(ut|Ft) = 0,

E(u2
t |Ft) = σ2

u andE(u4
t ) <∞, whereFt is the σ-field generated by {xt−s, zt−s, ut−s−1|s ≥

0}.

• Assumption A2: The regressors xt satisfy p lim T→∞T
−1
∑T

t=1 xt = c, some constant

p × 1 vector and p lim T→∞T
−1
∑[Tr]

t=1 xtx
′
t = R(r), where R(r) is a nonsingular non-

random p× p matrix (as a matter of notation, R(1) ≡ R).

• Assumption A3: The regressors zt satisfy sup0≤s≤1 ‖T−1/2
∑[Ts]

t=1 ztut‖ = Op(1) and

T−1
∑[Ts]

t=1 ztx
′
t = sΣZX uniformly in 0 ≤ s ≤ 1.

Assumptions A1-A3 are standard high level assumptions in the literature. They are

general enough to allow for heteroskedasticity and serial correlation in both the regressors

and the errors, as well as lagged dependent variables provided the errors are a martingale

difference sequence. Note that we consider the case of equal variance across segments, for

simplicity as none of the results depend on it.

To account for potentially serially correlated errors, we use the following estimate of the

long-run variance, based on a weighted sum of autocovariances,

ω̂2 = γ̂0 + 2
T−1∑
j=1

k(j,m)γ̂j (16)

with γ̂j = T−1
∑T

t=j+1(ût− ¯̂u)(ût−j− ¯̂u), where ût are the OLS residuals from regression (15),
¯̂u is their sample average, k(j,m) is some kernel function and m is the bandwidth. In the

simulations, we use the Bartlett kernel k(j,m) = 1−j/m if j ≤ m and 0 otherwise. Following

Andrews (1991), we adopt an AR(1) approximation for ut so that the data-dependent rule

for the bandwidth is such that m = (C(δ)T )1/θ where, e.g., θ = 3 for the Bartlett kernel and

C(δ) = 4ρ̂(δ)2/(1 − ρ̂(δ)2)2 with ρ̂(δ) the OLS estimate from a regression of ût on ût−1. In

the general case, the kernel function k(j,m) satisfies the condition
∑T−1

j=1 |k(j,m)| = O(m).

Note that using an estimate that assumes ω2
1 = ω2

2 is inconsequential as explained below.

The same results will hold using a different estimate for each candidate sub-samples.

It is useful to define the following condition on the regressors, given that the theoretical

results crucially depend on whether it holds or not.
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• Condition C1:
δ′R1δ

δ′R0δ
→ 1 as ‖δ‖ → ∞

where Rj ≡ p lim T→∞T
−1
∑T

t=j+1 xtx
′
t−j.

Note that C1 holds when the only regressor subject to change is a constant. It also

holds approximately as the signal to noise ratio increases. The main results, proved in the

appendix, are stated in the following theorem.

Theorem 1 Let the data be generated by (15) satisfying A1-A3 and consider a candidate
break date T1 = [Tλ] with λ ∈ (0, 1) such that λ 6= λ0 (i) if C1 is satisfied:

T
1
θ
−1ÛT (T1) =

(1−λ0)2(λ0−λ)2

3(1−λ)4
δ′R′Rδ

Op(‖δ‖
4
θ

+2)
+ op(1), (17)

where θ = 3 for the Bartlett kernel and 5 for the quadratic kernel and others. (ii) if C1 is

not satisfied,

T
1
θ
−1ÛT (T1) =

(1−λ0)2(λ0−λ)2

3(1−λ)3
δ′R′Rδ

Op(‖δ‖2)
+ op(1). (18)

This theorem is informative about the power property of ÛT and, hence, about the width

of the confidence interval obtained by inverting it. The main result of interest is that the

limit of ÛT will be zero as the magnitude of the break, δ, increases if condition C1 is satisfied,

see equation (17). Hence, in this case the length of the confidence interval will be the whole

sample. This provides a theoretical explanation of the simulation results presented in Section

3, which showed the length of the confidence interval to increase in the case of testing for

a change in mean with serially correlated errors (Model M3) or in the case of testing for

a change in the coeffi cient of a stationary regressor when the signal to noise ratio is large

(Models M7 and M8).

The intuition behind this result follows the analysis in Perron (1990). For any candidate

break date T1 not equal to the true break date, the estimated residuals ût used to construct

ÛT are contaminated by the shift. Accordingly, a change in mean will induce a bias of ρ̂(δ)

toward unity and more so as δ increases. In this context, this biased estimate ρ̂(δ) affects the

bandwidth selected via the data-dependent method. Since the bandwidth is proportional to

C(δ) = 4ρ̂(δ)2/(1− ρ̂(δ)2)2, it gets larger as ρ̂(δ) approaches one. As a result, the estimate ω̂2

of the long-run variance includes more covariances that are proportional to the magnitude

of the change δ, so that ω̂2 is an increasing function of δ. Therefore, the value of the test ÛT
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goes to zero eventually as the magnitude of the change increases. Note that the same result

holds if one uses separate estimates ω̂2
1 and ω̂

2
2 for each candidate sub-samples, since one or

the other will be contaminated by the unaccounted shift.

When condition C1 does not hold, the limit of the test statistic is bounded above zero

and the power in the limit will depend on various factors, see equation (18). In general, the

power of the test will approach one as δ increases and the length of the confidence interval is

accordingly not the whole sample, in accordance with the simulations results (e.g., Models

M1, M2, M5, M6).

4.2 Dynamic Regression

Often lagged dependent variables are introduced as regressors to account for serial correlation

in the dependent variable. In this section, we consider the simple case in which a single lagged

dependent variable is included, so that the regression is defined as follows:

yt = αyt−1 + x′tβt + ut, βt = β + δ1t>T 01 (19)

for t = 1, . . . , T , where y0 = 0 for simplicity. Note that no change in the coeffi cient of

the lagged dependent variable, α, is allowed without loss of generality. The errors ut are

independent and identically distributed (i.i.d.) with variance σ2
u. The main result, proved in

the appendix, is presented in the following theorem.

Theorem 2 Suppose the data are generated by (19) with the regressors xt satisfying A1-A3
and ut ∼ i.i.d. (0, σ2

u). Then, for a candidate break date T1 = [Tλ] with λ ∈ (0, 1) such that

λ 6= λ0,

T−1ÛT (T1) =

(1−λ0)2(λ0−λ)2

3(1−λ)3
δ′R′Rδ

σ2
u + (1 + λ− λ0)(λ0 − λ)δ′Rδ

+ op(1) = Op(1)

uniformly in ‖δ‖, where R = T−1
∑T

t=1 xtx
′
t.

Note that the limit value of ÛT (T1) is uniformly bounded in ‖δ‖. For such a dynamic
regression model, Perron and Yamamoto (2012) showed that the sup-Wald test (supW ) is

an increasing function of ‖δ‖, that is, supW = Op(‖δ‖2). The two tests diverge with T

and are accordingly consistent for any fixed δ. However, for any fixed T , the expansion in

Theorem 2 suggests that the power of the test ÛT (T1) will be very different from that of the

supW as ‖δ‖ increases. The power of ÛT (T1) will depend on whether the limit value exceeds

the critical value used. If for some configuration of parameters, the limit value is below the
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critical value for all T1, the length of the confidence interval will be the whole sample. To

analyze this issue, we present the limit value as stated in Theorem 2 for a variety of cases.

In Figure 2, the limit rejection probabilities of ÛT (T1) are plotted for three different

values of α ∈ {0.3, 0.5, 0.8}. Panels (a) and (b) show the rejection probabilities of ÛT (T1)

for two candidate break dates T1 = [0.3T ] and T1 = [0.7T ], respectively. The test ÛT (T1)

has some power with small changes, but power is reduced to zero as the magnitude of a

change increases for all values of α. This implies that the candidate break dates T1 = [0.3T ]

and T1 = [0.7T ] will be included in the confidence set when the magnitude of the change

is large. Since power is increasing as T1 gets further away from the null value T 0
1 = [0.5T ],

this implies that the length of the confidence interval will be at least [0.3T ] to [0.7T ]. Of

importance is the fact that the power function decreases substantially when α increases. For

instance, when α = 0.8, power is less than size for all values of the break magnitude. Hence,

the length of the confidence interval will approach the whole sample more quickly as ‖δ‖
increases, the closer α is to one. Finally, note that even if the included lagged dependent

variable is redundant (α = 0), the same problem remains albeit, as expected, with the power

reversal occurring for larger values of ‖δ‖.
Figure 3 presents the graphs of the limit of ÛT (T1) as a function of α, for a break

magnitude of δ ∈ {0.4, 1.6, 3.2, 5.0} in each panel. The values reported are the median from
3,000 replications. Again, we consider two cases with λ = {0.3, 0.7} whose results are broadly
similar. Consider the case with α close to zero. For a candidate break date [0.3T ] the test

ÛT (T1) would reject when δ = 1.6, but not when δ = 5, which confirms the non-monotonic

power of the test. Again, the power of ÛT (T1) decreases as α is approaches one.

Figure 4 shows the limits of ÛT ([Tλ]) when λ = 0.3 for various combinations of α ∈
{0.3, 0.5, 0.8} and T ∈ {100, 250, 500, 1000}. The limit value of ÛT ([Tλ]) increases with the

sample size T as explained in Theorem 2. It is clear, however, that the power of the test is

non-monotonic for every combination of α and T . While the limit value of the ÛT (T1) initially

increases with ‖δ‖, it quickly reverts back to stabilize at a small value which is below the
relevant critical value (0.745). This again explains why the length of the confidence interval

approaches the whole sample in a model with a lagged dependent variable as ‖δ‖ increases,
and faster when α is closer to one. When α = 0.8, a common value in practice, the procedure

is virtually uninformative for any sample size considered yielding a confidence interval that

is essentially the whole sample available.

The intuition behind this result follows again from the analysis in Perron (1990). For any

candidate break date T1 not equal to the true break date, the estimated residuals ût used
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to construct ÛT are contaminated by the shift. Accordingly, a change will induce a bias of

α̂ toward unity and more so as δ increases. This makes the structural change appears as an

outlier and, hence, diffi cult to detect.

5 Conclusion

This paper considered constructing confidence intervals for the date of a structural break

in linear regression models. Using extensive simulations, we compared the performance of

various procedures in terms of exact coverage rates and lengths of the confidence intervals.

On the basis of achieving an exact coverage rate that is closest to the nominal level, Elliott

andMüller’s (2007) approach is by far the best one. However, this comes with a very high cost

in terms of the length of the confidence intervals. When the errors are serially correlated and

dealing with a change in intercept or a change in the coeffi cient of a stationary regressor with

a high signal to noise ratio, the length of the confidence interval increases and approaches

the whole sample as the magnitude of the change increases. The same problem occurs in

models with a lagged dependent variable, a common case in practice. This drawback is not

present for the other methods, which have similar properties.

Our results are related to other studies dealing with the power of tests for structural

changes. The basic underlying reason for the drawbacks of Elliott and Müller’s (2007)

approach is the fact that the test which is inverted to obtain the confidence intervals is

motivated by optimal properties under a local asymptotic framework whereby the test is

locally invariant to the magnitude of break. It is also a partial-sums type test for which

only a model restricted to satisfy the null hypothesis of no change is used. It has been

shown that tests based on such features have serious non-monotonic power problems; see,

e.g., Deng and Perron (2008), Kim and Perron (2009), Perron and Yamamoto (2012). In the

context of structural change tests, one should be skeptical of the use of some local asymptotic

frameworks whereby the breaks are local to zero to devise testing procedures. These types

of frameworks do not yield useful predictions about the finite sample properties of tests.

Second, as argued in Perron (2006), one should also abandon partial-sums type tests for

which only a model restricted to satisfy the null hypothesis of no change is used. These

include the CUSUM, LM and ˆqLL (Elliott and Müller, 2006) tests, among many others.

These tests are plagued by the problem of a non-monotonic power function such that the

power of the test can go to zero as the magnitude of change increases. The ÛT (T1) test of

Elliott and Müller’s (2007) is another example of such tests, which upon inversion yields

confidence intervals with poor properties.
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Appendix

Proof of Theorem 1: The data generating process is defined as follows. For t = 1, . . . , T ,

yt = x′tβ + x′tδ1t>T 01 + z′tγ + ut,

or, in matrix notation,

Y =



x′1 0 z′1
...

...
...

x′
T 01

0 z′
T 01

x′
T 01+1

x′
T 01+1

z′
T 01+1

...
...

...

x′T x′T z′T




β

δ

γ

+ U =
[
X0 Z

]
β

δ

γ

+ U = M0Γ + U.

Let X1 denote X0 replacing T 0
1 by an arbitrary break date T1 and define M = [X1, Z]. The

OLS estimator of Γ is given by

Γ̂ = (M ′M)−1M ′Y = (M ′M)−1M ′(M0Γ + U)

= (M ′M)−1M ′(MΓ−MΓ +M0Γ + U)

= Γ− (M ′M)−1M ′(M −M0)Γ + (M ′M)−1M ′U.

and the OLS residuals are

Û = Y − Ŷ = U +M0Γ−M Γ̂

= U +MΓ−M Γ̂−MΓ +M0Γ = U −M(Γ̂− Γ)− (M −M0)Γ

= U +M(M ′M)−1M ′(M −M0)Γ−M(M ′M)−1M ′U − (M −M0)Γ

= [I −M(M ′M)−1M ′][U − (M −M0)Γ]. (A.1)

By partitioned inversion applied to M ′M , we have

M(M ′M)−1M ′ = X1(X ′1X1)−1X ′1 + Z̃(Z̃ ′Z̃)−1Z̃ ′

where {z̃t} are the OLS residuals from the regression of z′t on {x′t, x′t1t>T1}. We can then
write (A.1) as:

Û = (I −X1(X ′1X1)−1X ′1 − Z̃(Z̃ ′Z̃)−1Z̃ ′)U

− (I −X1(X ′1X1)−1X ′1 − Z̃(Z̃ ′Z̃)−1Z̃ ′)(M −M0)Γ. (A.2)
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Using a Weak Law of Large Numbers (WLLN), it is suffi cient to consider the second term
in (A.2). Note that (M −M0)Γ = (0, . . . , 0, (x′T1+1δ)

′, . . . , (x′
T 01
δ)′, 0, . . . , 0)′ and,

X1(X ′1X1)−1X ′1 =



x′1Ax1 . . . x′1AxT1 0 . . . 0
...

...
...

...
...

...

x′T1Ax1 . . . x′T1AxT1 0 . . . 0

0 . . . 0 x′T1+1BxT1+1 . . . x′T1+1BxT
...

...
...

...
...

...

0 . . . 0 x′TBxT1+1 . . . x′T1+1BxT


where A = (

∑T1
t=1 xtx

′
t)
−1 and B = (

∑T
t=T1+1 xtx

′
t)
−1. Let T1 = [Tλ] and T 0

1 = [Tλ0]. For

0 < s ≤ λ, T−1
∑[Ts]

t=1 xtût = op(1). For λ < s ≤ λ0,

T−1

[Ts]∑
t=[Tλ]+1

xtût = −T−1

[Ts]∑
t=[Tλ]+1

xtx
′
tδ

+

T−1

[Ts]∑
t=[Tλ]+1

xtx
′
t

T−1

T∑
t=[Tλ]+1

xtx
′
t

−1T−1

[Tλ0]∑
t=[Tλ]+1

xtx
′
tδ


+

T−1

[Ts]∑
t=[Tλ]+1

xtz̃
′
t

T−1

T∑
t=[Tλ]+1

z̃tz̃
′
t

−1T−1

[Tλ0]∑
t=[Tλ]+1

z̃tx
′
tδ

 .

From the uniform convergence of T−1
∑[Ts]

t=1 xtz
′
t and T

−1
∑[Ts]

t=1 xtx
′
t in s, we have

sup
λ

∣∣∣∣∣∣
 [Ts]∑
t=[Tλ]+1

xtz̃
′
t

 T∑
t=[Tλ]+1

z̃tz̃
′
t

−1 [Tλ0]∑
t=[Tλ]+1

z̃tx
′
tδ


−

 [Ts]∑
t=[Tλ]+1

xtž
′
t

 T∑
t=[Tλ]+1

žtž
′
t

−1 [Tλ0]∑
t=[Tλ]+1

žtx
′
tδ

∣∣∣∣∣∣ p→ 0

where žt = zt − ΣzxR
−1xt and Σzx = T−1

∑T
t=1 ztx

′
t. Note that žt does not depend on T1.

Therefore,

T−1

[Ts]∑
t=[Tλ]+1

xtût
p→ −(s− λ)Rδ + (s− λ)R(1− λ)−1R−1(λ0 − λ)Rδ

= (s− λ)

(
λ0 − 1

1− λ

)
Rδ.

21



Similarly, for λ0 < s ≤ 1,

T−1

[Ts]∑
t=[Tλ]+1

xtût = −T−1

[Tλ0]∑
t=[Tλ]+1

xtx
′
tδ

+

T−1

[Ts]∑
t=[Tλ]+1

xtx
′
t

T−1

T∑
t=[Tλ]+1

xtx
′
t

−1T−1

[Tλ0]∑
t=[Tλ]+1

xtx
′
tδ


p→ (s− 1)

(
λ0 − λ
1− λ

)
Rδ.

It is easy to show that

Û ′Û = [U − (M −M0)Γ]′[I −M(M ′M)−1M ′][U − (M −M0)Γ]

= U ′U − U ′M(M ′M)−1M ′U − U ′(M −M0)Γ + U ′M(M ′M)−1M ′(M −M0)Γ

− Γ′(M −M0)′U + Γ′(M −M0)′M(M ′M)−1M ′U

+ Γ′(M −M0)′[I −M(M ′M)−1M ′](M −M0)Γ.

Hence,

γ̂0 = T−1Û ′Û
p→ γ0 + (λ0 − λ)

1− λ0

1− λ δ
′Rδ,

and

γ̂1 = T−1

T∑
t=2

ûtût−1
p→ γ1 + (λ0 − λ)

1− λ0

1− λ δ
′R1δ

where Rj = p lim T→∞T
−1
∑T

t=j+1 xtx
′
t−j and R0 ≡ R. Using these results, the estimate of

the first-order autocorrelation of the errors is such that

ρ̂(δ) =
T−1

∑T
t=2(ût − ¯̂u)(ût−1 − ¯̂u)

T−1
∑T

t=2(ût−1 − ¯̂u)2

p→
γ1 + (λ0 − λ)1−λ0

1−λ δ
′R1δ

γ0 + (λ0 − λ)1−λ0
1−λ δ

′Rδ
.

The test statistic evaluated at a candidate break date T1 = [Tλ] can be expressed as:

ÛT (T1) =
T 2

[Tλ]2

[Tλ]∑
t=1

(
T−1

t∑
s=1

xsûs

)′
ω̂−2

(
T−1

t∑
s=1

xsûs

)

+
T 2

(T − [Tλ])2

T∑
t=[Tλ]+1

T−1

t∑
s=[Tλ]+1

xsûs

′ ω̂−2

T−1

t∑
s=[Tλ]+1

xsûs

 .

A popular data-dependent method to select the bandwidth m for a kernel function is pro-
posed by Andrews (1991). For simplicity, we use the Bartlett kernel, k(j,m) = 1 − j/m if
j ≤ m and 0 otherwise, and Andrews’s AR(1) approximation so that m ∝ (C(δ)T )1/3 where
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C(δ) = 4ρ̂(δ)2/(1− ρ̂(δ))2 with ρ̂(δ) the OLS estimate from a regression of ût on ût−1. Using
the fact that

∑T−1
j=1 k(j,m) = O(m),

ω̂2 = γ̂0 + 2
T−1∑
j=1

k(j,m)γ̂j

=

(
γ0 + 2

T−1∑
j=1

k(j,m)γj

)
+ (λ0 − λ)

1− λ0

1− λ

(
δ′Rδ + 2

T−1∑
j=1

k(j,m)δ′Rjδ

)
+ op(1)

= h(0) + (λ0 − λ)
1− λ0

1− λ

(
δ′Rδ + 2

T−1∑
j=1

k(j,m)δ′Rjδ

)
+ op(1)

≤ h(0) + (λ0 − λ)
1− λ0

1− λ

(
δ′Rδ + 2

T−1∑
j=1

k(j,m)δ′Rδ

)
+ op(1)

≤ h(0) + (λ0 − λ)
1− λ0

1− λ δ
′RδO(m) + op(‖δ‖2),

where h(0) = limT→∞ var(T
−1/2

∑T
t=1 ut), which is equivalent to (2π times) the spectral

density at frequency zero of ut when the latter is a stationary process. If the condition C1
holds, then ρ̂(δ)

p→ 1 as ‖δ‖ increases such that C(δ) = Op(‖δ‖4) since 1−ρ̂(δ)2 = Op(‖δ‖−2),
m = Op(‖δ‖4/θT 1/θ), and ω̂2 = Op(‖δ‖

4
θ

+2T
1
θ ) where θ = 3 for the Bartlett kernel and 5 for

the quadratic spectral and others. If C1 does not hold, ρ̂(δ)
p→ κ < 1, say, as ‖δ‖ increases

such that C(δ) = Op(1), m = Op(T
1/θ), and ω̂2 = Op(‖δ‖2T

1
θ ). This completes the proof.

Proof of Theorem 2: In matrix notation, (19) can be written as

Y =
[
X0 Y−1

]
β

δ

α

+ U = M0Γ + U.

with X0 as defined in the proof of Theorem 1. We know that

Γ̂− Γ = (M ′M)−1M ′U − (M ′M)−1M ′(M −M0)Γ.

Hence,

T−1Û ′Û = T−1U ′U + δ′

T−1

T 01∑
t=T1+1

xtx
′
t

 δ

− δ′
T−1

T 01∑
t=T1+1

xtx
′
t

(T−1

T∑
t=T1+1

xtx
′
t

)−1
T−1

T 01∑
t=T1+1

xtx
′
t

 δ + op(1)

p→ σ2
u + (λ0 − λ)δ′Rδ − (λ0 − λ)2δ′Rδ

= σ2
u + (1 + λ− λ0)(λ0 − λ)δ′Rδ.
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On the other hand,

Û = [I −X1(X ′1X1)−1X ′1 − Ỹ−1(Ỹ ′−1Ỹ−1)−1Ỹ ′−1]U−
− [I −X1(X ′1X1)−1X ′1 − Ỹ−1(Ỹ ′−1Ỹ−1)−1Ỹ ′−1](M −M0)Γ.

Using aWLLN, it is suffi cient to consider the second term in Û . For 0 < s < λ, T−1
∑[Ts]

t=1 xtût =

op(1). Moreover, under Assumptions A2, we can show that T−1
∑[Ts]

t=1 yt−1x
′
t

p→ sΣyx, given
y0. Hence, for λ < s ≤ λ0,

T−1

[Ts]∑
t=[Tλ]+1

xtût
p→ (s− λ)

(
−1 + λ0

1− λ

)
Rδ,

and for λ0 < s ≤ 1,

T−1

[Ts]∑
t=[Tλ]+1

xtût
p→ (s− 1)

(
λ0 − λ
1− λ

)
Rδ.

Therefore,

T−1ÛT (T1) =

1
(1−λ)2

{(
1−λ0
1−λ

)2 ∫ λ0
λ

(s− λ)2ds+
(
λ0−λ
1−λ

)2 ∫ 1

λ0
(s− 1)2ds)

}
(δ′R′Rδ)

σ2
u + (1 + λ− λ0)(λ0 − λ)(δ′Rδ)

+ op(1),

which completes the proof.
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Figure 1: Coverage Rate and Average Length of Con�dence Intervals
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Figure 2: Power Functions of ÛT ([T�]) in Dynamic Regression Models. T =
100; �0 = 0:5
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Figure 3: Limits of ÛT ([T�]) in Dynamic Regression Models. T = 100; � =
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Figure 4: Limits of ÛT ([T�]) in Dynamic Regression Models. �0 = 0:5; � =
0:3


