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Abstract

This paper studies robust Ramsey policy problems in a general discrete-time linear-
quadratic framework when the Ramsey planner faces three types of ambiguity. This
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forward-looking dynamics. We provide recursive characterizations and algorithms
to solve for robust policy. Applying our method to a basic New Keynesian model
of optimal monetary policy with persistent cost-push shocks, we find that (i) all
three types of ambiguity make optimal monetary policy more history-dependent
but for different reasons for each type; and (ii) they deliver qualitatively different
initial responses of inflation and the output gap following a cost-push shock.
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1 Introduction

The standard framework of Ramsey policy problems typically adopts the rational expectations

hypothesis. Under this hypothesis, a Ramsey planner (or the Stackelberg leader) and

a private sector (or the follower) share common beliefs about the state of the world

and these beliefs coincide with an objective probability model of the state of the world.

The rational expectations hypothesis has benefited economists and policymakers by not

only providing sharp predictions but also achieving simplicity through imposing internal

coherence of models. Given the possibility of model misspecification, however, rational

expectations can be seen as a particularly strong assumption since it is extremely difficult

to achieve a coincidence of beliefs among diverse agents with different levels of knowledge

about the true models. Following Hansen and Sargent (2001, 2008) and Anderson,

Hansen, and Sargent (2003), one can view economic models as an approximation of the

real world. Economic agents do not know the true models and their models may be

misspecified. They are averse to model ambiguity and want to seek decision making that

is robust to model misspecifications.1

The goal of our paper is to study how the Ramsey planner designs a robust policy in

the presence of model ambiguity. In a Ramsey problem, there are two types of agents,

the Ramsey planner and the private sector. One has to consider who faces ambiguity and

what the agents are ambiguous about. In this paper, we follow Hansen and Sargent (2012)

and consider three types of ambiguity. For all these types, only the Ramsey planner faces

ambiguity.2 Type I ambiguity refers to the case where the Ramsey planner has a concern

for robustness about both the exogenous shock processes and expectations of the private

sector. The planner chooses a robust policy based on the same distorted beliefs used

by itself and the private sector. For type II ambiguity, the Ramsey planner does not

trust its approximating model of the exogenous shock processes, but the private agents

trust this approximating model. Finally, for type III ambiguity originally suggested

by Woodford (2010), the planner fully trusts its approximating model of the exogenous

shock processes. But it does not have full confidence about the private agents’ beliefs. An

important implication of these three types of ambiguity is that types II and III generate

1The Hansen and Sargent approach is related to decision theory on ambiguity. Maccheroni, Marinacci,
and Rustichini (2006a,b) and Strzalecki (2011) have provided axiomatic foundations. See Gilboa and
Schmeidler (1989) for an alternative approach based on the maxmin expected utility model.

2See Karantounias (2013) for the modeling of the case where the private agents face ambiguity but
the policymaker does not.
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endogenous ex post belief heterogeneity, while type I does not.

To solve the three types of the robust Ramsey problems corresponding to the three

types of ambiguity, we adopt a recursive formulation using the recursive saddle point

method of Marcet and Marimon (2011). The key idea is to incorporate the Lagrange

multiplier associated with the forward-looking constraints as a state variable. For the

robust Ramsey problem, we also incorporate the planner’s belief distortion (formally,

the Radon-Nikodym derivative) as a state variable. For type I robust Ramsey problem,

we show that the value function has a homogeneity property so that we can reduce the

dimension of the state space. By suitably transforming the problem, we characterize

the robust policy using the standard linear-quadratic method. In particular, we prove

that the robust policy is a linear function of the predetermined state variable and the

Lagrange multiplier, like in the standard Ramsey problem with rational expectations.

For types II and III robust Ramsey problem, we can also reduce the dimension of

the state space by defining a belief-adjusted Lagrange multiplier as a state variable.

However, we cannot transform types II and III robust Ramsey problem into a standard

linear-quadratic form. In particular, the robust policy does not have a linear solution.

We have to use a nonlinear solution method. We apply the second-order approximation

around the non-stochastic steady state to derive numerical solutions. We implement this

method using the Dynare software.3

We apply our methods to a basic New Keynesian model of optimal monetary policy

with persistent cost-push shocks. We solve for robustly optimal monetary policies under

three types of ambiguity and compare these policies with the standard optimal policy

under rational expectations. In order to compare the three types of robust policy

quantitatively, we have to calibrate the robustness parameter consistently in the three

types of robust Ramsey problem. We use the same detection error probability for

discriminating between the approximating model and the endogenous worst-case model

associated with a particular robustness parameter in each of the three types of robust

Ramsey problem to calibrate this parameter.

Following Hansen and Sargent (2008), we compute the detection error probability

using likelihood ratio tests. Since type I robust Ramsey problem yields a linear solution,

we can use the Kalman filter to obtain the likelihood function. For types II and III

robust Ramsey problem, however, we cannot use the Kalman filter since solutions are in

3See Adjemian et al (2011).
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a nonlinear form. Instead, we use particle filtering to compute the likelihood.

We find that all three types of ambiguity make the robustly optimal monetary policy

more history-dependent than in the case of rational expectations, in line with Woodford

(2010), Hansen and Sargent (2012), and Kwon and Miao (2012). Woodford (2000) points

out that optimal commitment monetary policy under rational expectations is history-

dependent. That is, it not only depends on the current state of the economy but also

responds to past states. The intuition is that a history-dependent policy can affect the

expectation of private agents, and thus improving the performance of monetary policy.

Why does optimal monetary policy under ambiguity become more history-dependent?

Economic intuitions behind this feature are not the same across the three types of robust

Ramsey problem. In type I robust Ramsey problem, increased history-dependence comes

from the fact that the central bank (henceforth, CB) is concerned about the distortion of

both the cost-push shock and the private sector’s beliefs, generating ex post homogeneous

distorted beliefs. In types II and III robust Ramsey problem, the CB’s incentive to

better manage the expectations of the private sector is a major source of more history-

dependent monetary policy. Under the worst-case beliefs, the CB and the private sector

have disparate expectations so that the CB is more cautious to affect the private sector’s

expectations. Reflecting the CB’s caution, the robustly optimal monetary policy becomes

more history-dependent.

While these three types of ambiguity share the property that inflation dynamics

become more history-dependent, their implications for prices are different. Under the

rational expectations hypothesis, optimal monetary policy implies the CB undoes all the

effect of a cost-push shock and thus prices go back to the original level. However, this no

longer applies to types II and III robust Ramsey problem. We find that the CB adjusts

inflation more than under rational expectations and hence prices go below the original

level in the long run. In these two types of robust Ramsey problem, the fact that the CB

and the private sector have heterogeneous beliefs makes the dynamics of the price level

deviate from that under rational expectations. By contrast, in type I robust Ramsey

problem, both the CB and the private section share the same distorted beliefs about the

cost-push shock, causing prices to go back to the original level in the long run.

We also show that the initial responses of inflation and output gap to a positive

cost-push shock are different for different types of ambiguity. In type I robust Ramsey

problem, the CB increases the initial responses of both inflation and output. Under the

worst-case beliefs, the CB worries that the cost-push shock is distorted in mean so that
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the CB responds more aggressively as if the shock were greater compared to a shock in

the approximating model. In type II robust Ramsey problem, while the CB increases

the initial response of inflation, it decreases the initial response of output. The intuition

is that the CB worries about the unfavorable distortion in the cost-push shock, which

leads to an increase in the inflation response. On the other hand, the CB exploits the

fact that the private sector fully trusts its approximating model. The cost-push shock

in this model is believed to be less persistent than in the worst-case distorted model.

As a result, the CB faces a smaller tradeoff between inflation and output. In type III

robust Ramsey problem, the CB’s initial response of inflation to a cost-push shock is

less sensitive but the output responds more sensitively. The concern for robustness of

the expectations of the private sector makes the CB manage the inflation expectations

more cautiously. This is because a larger response of inflation would increase the extent

to which private agents may overforecast inflation, worsening the inflation and output

tradeoff. This result is in line with Woodford (2010) and Kwon and Miao (2013), who

study type III ambiguity in the timeless perspective instead of the Ramsey framework.

Our paper is closely related to Hansen and Sargent (2012). Hansen and Sargent

study three types of ambiguity in a continuous-time basic New Keynesian model of

monetary policy. One of our contributions is to extend their idea of the three types of

ambiguity to a Ramsey problem in a general discrete-time linear-quadratic framework.

This framework includes both exogenous and endogenous state variables. In addition, the

equilibrium system from the private sector contains both backward-looking and forward-

looking dynamics. Their methods cannot be readily applied to our general framework.

Our main contribution is to provide recursive characterizations and algorithms to solve

for the robustly optimal policy. In addition, unlike Hansen and Sargent (2012) who use

the same value of the robustness parameter to compare solutions in the three types of

Ramsey problem, we make comparisons by calibrating the context-specific robustness

parameter using the same detection error probability. Importantly, our finding of the

differences in impulse responses is unique and absent from their study.

Our paper is also related to Woodford (2010) and Kwon and Miao (2013). Woodford

(2010) studies type III ambiguity using a basic New Keynesian model in the timeless

perspective. Kwon and Miao (2013) generalize the Woodford model to a general linear-

quadratic framework. They all show that robustly optimal policy in the timeless perspective

is linear. However, this paper shows that the robust Ramsey policy is not linear. One

has to use a nonlinear method to derive numerical solutions.
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Finally, our paper is related to Hansen and Sargent (2003), Walsh (2004), Giordani

and Söderlind (2004), Hansen and Sargent (2008, Chapter 16), Leitemo and Söderström

(2008), Dennis (2008), and Olalla and Gomez (2011). The robust Ramsey models studied

in these papers are similar to our type I problem. These papers introduce perturbations

of the mean of the exogenous shock processes into the backward- and forward-looking

constraints and a quadratic penalty into the objective function. As Hansen and Sargent

(2012) point out, these models admit a better interpretation when described as type I

ambiguity.

The remainder of the paper proceeds as follows. Section 2 presents the general

framework. From section 3 to section 5 we present algorithms for solving robust Ramsey

problems in three types of ambiguity. In section 6, we apply our solution algorithms to

a canonical New Keynesian optimal monetary policy problem with persistent cost-push

shocks. Section 7 concludes. An appendix describes the procedure to compute detection

error probabilities.

2 A Linear-Quadratic Framework

2.1 Uncertainty and Beliefs

Uncertainty is generated by a stochastic process of shocks {εt}∞t=1 where εt is an nε × 1

vector of independently and identically distributed standard normal random variable.

Let εt = {ε1, ..., εt} . At date t, both the Ramsey planner and the private sector have

common information generated by εt and some initial state x0. They may not have

rational expectations in that their subjective beliefs may not coincide with the objective

probability distribution governing exogenous shocks {εt}∞t=1. One reason is that economic

agents view their model as an approximation and thus may be concerned about model

misspecification.

Model misspecification is described by a perturbation to the distribution of shocks.

We follow Hansen and Sargent (2008) to represent probability distortions. Let p (ε)

denote the standard normal density of εt. Let Π and Πt denote the induced distribution

over the full state space and the induced joint distribution of εt, respectively. Assume that

a distorted distribution is absolutely continuous with respect to the reference distribution

Π. We can then representing the belief distortion by Radon-Nikodym derivatives.

Let p̂ (ε|εt, x0) denote an alternative one-step-ahead density for εt+1 conditional on
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date t information. Form the likelihood ratio or the Radon-Nikodym derivative for one-

step-ahead distributions:

mt+1 =
p̂ (ε|εt, x0)

p (ε)
.

It satisfies the property

Et [mt+1] = 1, (1)

where Et denotes the conditional expectation operator with respect to the reference

distribution Π given date t information. Recursively define a martingale {Mt} :

Mt+1 = mt+1Mt, M0 = 1. (2)

Mt is a likelihood ratio of the joint densities of εt conditional on the initial information

x0 or the Radon-Nikodym derivative for joint distributions.

Following Hansen and Sargent (2008), we use relative entropy to measure the discrepancy

between the distorted distribution and the reference distribution. Define the relative

entropy (conditional on date zero information) of the distorted distribution associated

with Mt over date t information as E0 [Mt lnMt] . Define the discounted entropy over an

infinite horizon as

(1− β)E0

∞∑
t=0

βtMt lnMt = βE0

∞∑
t=0

βtMtEt (mt+1 lnmt+1) , (3)

where β ∈ (0, 1) is a discount factor and we have used (2) to derive the equality.

Model ambiguity is described by a set of joint densities {Mt}∞t=0 satisfying the following

constraint:

βE0

∞∑
t=0

βtMtEt (mt+1 lnmt+1) ≤ η, (4)

for some η > 0.

Woodford (2010) introduces a different measure of intertemporal entropy. First,

he defines the conditional relative entropy of a one-step-ahead distribution given date

t information as Et [mt+1 lnmt+1]. He then defines the expected discounted entropy

conditional on date zero information as

E0

∞∑
t=0

βt [Et (mt+1 lnmt+1)] = E0

∞∑
j=0

βtmt+1 lnmt+1. (5)
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In this case, model ambiguity is described by a set of one-step-ahead densities {mt}∞t=1

satisfying the constraint:

E0

∞∑
t=0

βtmt+1 lnmt+1 ≤ η0 (6)

for some η0 > 0.

2.2 Three Types of Robust Ramsey Problem

Suppose that the equilibrium system from the private sector can be summarized by the

following form:[
I 0
D21 D22

] [
xt+1

Êtyt+1

]
= Â

[
xt

yt

]
+ B̂ut +

[
Ĉx

0

]
εt+1, (7)

where x0 = x̄0 is exogenously given and Êt denotes the conditional expectation operator

given date t information based on the common beliefs of the private sector. The private

sector’s beliefs may not coincide with the “objective” probability distribution for {εt} ,
the reference distribution Π. Here, xt is an nx × 1 vector of predetermined variables in

the sense defined in Klein (2000), yt is an ny×1 vector of non-predetermined or forward-

looking variables, and ut is an nu × 1 vector of instrument or control variables chosen by

the Ramsey planner. We typically use xt to represent the state of the economy, which may

include productivity shocks, preference shocks, or capital stock. Note that xt may include

a component of unity in order to handle constants. The vector yt represents endogenous

variables such as consumption, inflation rate, and output. Examples of instruments ut

include interest rates and money growth rates. The equation for xt is backward looking

and represents the law of motion of state variables. The equation for yt is forward looking

and typically represents the first-order conditions from intertemporal optimization such

as Euler equations.

All matrices in (7) are conformable. For simplicity, we suppose that the matrix on

the left side of equation (7) is invertible,4 so that we can multiply both sides of this

equation by its inverse to obtain the system:[
xt+1

Êtyt+1

]
=

[
Axx Axy

Ayx Ayy

] [
xt

yt

]
+

[
Bx

By

]
ut +

[
Cx

0

]
εt+1, (8)

4The singular case can be handled by the QZ decomposition method, e.g., Klein (2000) and Sims
(2001).
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where we have partitioned matrices conformably.

The Ramsey planner has the period loss function

L (xt, yt, ut) =
1

2
[x′

t, y
′
t]

[
Qxx, Qxy

Q′
xy Qyy

] [
xt

yt

]
+

1

2
u′
tRut + [x′

t, y
′
t]

[
Sx

Sy

]
ut,

where the matrices R and

Q ≡
[
Qxx, Qxy

Q′
xy Qyy

]
are symmetric. In addition, suppose that Q is positive semidefinite.

If both the private sector and the Ramsey planner have rational expectations, then

they have common beliefs which coincide with Π, the probability distribution governing

exogenous shocks {εt} . In this case, the Ramsey problem is given by

max
{xt,yt,ut}

− E0

∞∑
t=0

βtL (xt, yt, ut) , (9)

subject to (8) in which the conditional expectation operator Êt is equal to Et, the

conditional expectation operator with respect to Π.

There is ample experimental and empirical evidence that documents the violation of

the rational expectations hypothesis. We consider three approaches to the modeling of

the departure from rational expectations in the policy analysis. These three approaches

give rise to three types of robust Ramsey policy problem, corresponding to the three types

of ambiguity analyzed by Hansen and Sargent (2012) in a continuous-time framework. In

these problems, the Ramsey planner believes that the private sector experiences no model

ambiguity. But the planner experiences ambiguity. They differ in what the planner is

ambiguous about and the private sector’s beliefs about the exogenous shocks.

Type I Robust Ramsey problem: In this type of problem, the Ramsey planner

has a set of models (probability distributions) centered on the reference model Π, or

the so called “approximating model” by Hansen and Sargent (2008). The Ramsey

planner is uncertain about both the evolution of the exogenous processes and how the

private sector views these processes. The planner thinks that the private sector knows

a model that is distorted relative to the planner’s approximating model. To cope with

its ambiguity, the Ramsey planner chooses a worst-case model among a set containing

the reference approximating model, while evaluating the private sector’s forward-looking
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equations using that model. Formally, the Ramsey planner chooses {mt} to minimize

and {xt, yt, ut} to maximize a multiplier criterion in the following program:5

max
{xt,yt,ut}

min
{mt+1}

− E0

∞∑
t=0

βtMtL (xt, yt, ut) + βθE0

∞∑
t=0

Mtβ
tmt+1 lnmt+1, (10)

subject to (1), (2) and[
xt+1

Et [mt+1yt+1]

]
=

[
Axx Axy

Ayx Ayy

] [
xt

yt

]
+

[
Bx

By

]
ut +

[
Cx

0

]
εt+1. (11)

The parameter θ > 0 penalizes martingales {Mt} with large relative entropies defined

in (3). It may be regarded as the Lagrange multiplier for the constraint (4). Following

Hansen and Sargent (2001, 2008), instead of solving for the constraint problem subject to

(4), we treat θ as a parameter, which measures the planner’s degree of concern for possible

departures from rational expectations, with a small value of θ implying a great degree of

concern for robustness, while a large value of θ implies that only modest departures from

rational expectations are considered plausible. When θ → ∞, the rational expectations

analysis is obtained as a limiting case.

Type II Robust Ramsey problem: In this type of problem, in the spirit of Hansen

and Sargent (2008, chapter 16), the Ramsey planner has a set of models surrounding

an approximating model that the private sector completely trusts. The private sector’s

beliefs are represented by the Ramsey planner’s approximating probability model Π. The

Ramsey planner chooses a worst-case probability model from its set of models, while

evaluating the forward-looking equations for the private sector using the approximating

model. Formally, type II Ramsey problem is described by

max
{xt,yt,ut}

min
{mt+1}

− E0

∞∑
t=0

βtMtL (xt, yt, ut) + θβE0Mt

∞∑
t=0

βtmt+1 lnmt+1, (12)

subject to (1), (2) and[
xt+1

Et [yt+1]

]
=

[
Axx Axy

Ayx Ayy

] [
xt

yt

]
+

[
Bx

By

]
ut +

[
Cx

0

]
εt+1. (13)

The interpretation of the parameter θ > 0 is the same as in type I robust Ramsey

problem.

5See Hansen and Sargent (2001, 2008), Maccheroni, Marinacci, and Rustichini (2006a,b), and
Strzalecki (2011) for interpretations and axiomatic foundations.
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Type III Robust Ramsey problem: This type of problem is based on Woodford

(2010). The Ramsey planner is assumed to have a single model of the exogenous

processes {εt} and thus no ambiguity along this dimension. Nevertheless, the planner

faces ambiguity because it knows only that the private sector’s model is within a set of

probability models surrounding its own model. The Ramsey planner evaluates the private

sector’s forward-looking equation using a worst-case model and solves the following

problem:

max
{xt,yt,ut}

min
{mt+1}

− E0

∞∑
t=0

βtL (xt, yt, ut) + θE0

∞∑
t=0

βtmt+1 lnmt+1, (14)

subject to (1) and (11). Unlike in type I robust Ramsey problem, here the parameter

θ > 0 penalizes one-step-ahead densities {mt} with large relative entropies defined in

(5). It may be regarded as the Lagrange multiplier for the constraint (6). Following

Hansen and Sargent (2001, 2008), instead of solving for the constraint problem subject

to (6), we treat θ as a parameter, which measures the planner’s degree of concern for

possible departures from rational expectations, with a smaller value of θ implying a

greater degree of concern for robustness, while a large value of θ implies that only modest

departures from rational expectations are considered plausible. When θ → ∞, the

rational expectations analysis is obtained as a limiting case.

3 Type I Robust Ramsey Problem

3.1 Recursive Formulation

Following Marcet and Marimon (2011) and Hansen and Sargent (2012), we characterize

type I robust Ramsey problem in a recursive form. First, define the Lagrangian expression

for (10) as

E0

∞∑
t=0

βt {Mt [−L (xt, yt, ut) + βθmt+1 lnmt+1]}

−E0

∞∑
t=0

βtMtμ
′
yt (Et [mt+1yt+1]− Ayxxt − Ayyyt − Byut) ,

where βtMtμyt is the Lagrange multiplier associated with the forward-looking equation

in (11) and the law of motion of the state variable is given by the upper block of equation
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(11), i.e.,

xt+1 = Axxxt + Axyyt +Bxut + Cxεt+1. (15)

Then, introduce a new variable

λyt+1 = μyt, (16)

and rewrite the above Lagrangian expression as

E0

∞∑
t=0

βt{Mt (−L (xt, yt, ut) + βθmt+1 lnmt+1)

+Mtμ
′
yt (Ayxxt + Ayyyt +Byut)− β−1Mtλ

′
ytyt},

where we have used Mt+1 = Mtmt+1. Note that at time zero, we set λy0 = μy,−1 = 0.

Now, we are ready to write type I robust Ramsey problem in a recursive form:

W (xt, λyt,Mt) = max
yt,ut

min
mt+1,μyt

r
(
xt, yt, ut, λyt, μyt,Mt

)
+βEt [W (xt+1, λyt+1,Mt+1) + θMtmt+1 lnmt+1] ,

subject to (1), (2), (15), and (16), where

r
(
xt, yt, ut, λyt, μyt,Mt

)
= −MtL (xt, yt, ut) +Mtμ

′
yt (Ayxxt + Ayyyt +Byut)− β−1Mtλ

′
ytyt.

Note that W satisfied the following linear homogeneity property:

W (xt, λyt,Mt) = MtV (xt, λyt) ,

for some function V. We then derive

V (xt, λyt) = max
yt,ut

min
mt+1,μyt

r
(
xt, yt, ut, λyt, μyt

)
(17)

+βEt [mt+1V (xt+1, λyt+1) + θmt+1 lnmt+1] ,

subject to (1), (15), and (16), where

r
(
xt, yt, ut, λyt, μyt

)
= −L (xt, yt, ut) + μ′

yt (Ayxxt + Ayyyt +Byut)− β−1λ′
ytyt.

This problem is a Robust control problem with backward-looking constraints. The state

variables are (xt, λyt) and the control variables are
(
yt, ut, μyt, mt+1

)
.
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As is well known from robust control theory (Hansen and Sargent (2008)), there is a

connection to risk-sensitive control. We now derive this connection. From the first-order

condition with respect to mt+1, we can show that

mt+1 =
exp

(−1
θ
V (xt+1, λyt+1)

)
Et

[
exp

(−1
θ
V (xt+1, λyt+1)

)] , (18)

where Et denotes the conditional expectation operator given the state (xt, λyt) . This

equation gives the worst-case density. Substituting it back to the preceding Bellman

equation yields:

V (xt, λyt) = max
yt,ut

min
μyt

r
(
xt, yt, ut, λyt, μyt

)
+ βRt (V ) (xt+1, λyt+1) , (19)

subject to (15) and (16), where

Rt (V ) (xt+1, λyt+1) = −θ ln

[
Et exp

(−1

θ
V (xt+1, λyt+1)

)]
.

The right-hand side of (19) is the objective function in a risk-sensitive control problem. It

is not a standard risk-sensitive control problem because it involves both maximization and

minimization. However, since first-order conditions are identical for both maximization

and minimization, this problem can be solved using the method described in Hansen

and Sargent (2008). In particular, the decision rule is linear and the value function is

quadratic in terms of state variables.

3.2 Solution Method

Define the new state vector x∗′
t =

(
x′
t, λ

′
yt

)
and the new control vector u∗′

t =
(
y′t, u

′
t, μ

′
yt

)
.

We can then write the state transition equation as

x∗
t+1 = A∗x∗

t +B∗u∗
t + C∗εt+1, (20)

where

A∗ =
[
Axx 0
0 0

]
, B∗ =

[
Axy Bx 0
0 0 I

]
, C∗ =

[
Cx

0

]
.

Conjecture that the value function takes the following form:

V (xt, λyt) = −1

2
x∗′
t Px∗

t −
1

2
d, (21)
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where P and d are to be determined. By (18) and (21), the worst-case likelihood ratio

m∗
t+1 satisfies

m∗
t+1 ∝ exp

[
1

2θ
ε′t+1C

∗′PC∗εt+1 +
1

θ
ε′t+1C

∗′P (A∗x∗
t +B∗u∗

t )

]
,

where ∝ means “proportional.” Thus, the worst-case density satisfies

p∗t+1 = pt+1m
∗
t+1 ∝ exp

[
−1

2
ε′t+1

(
I − 1

θ
C∗′PC∗

)
εt+1

+ε′t+1

(
I − 1

θ
C∗′PC∗

)
(θI − C∗′PC∗)−1

C∗′P (A∗x∗
t +B∗

t u
∗
t )

]
.

This implies that p∗t+1 is also a normal density with mean (θI − C∗′PC∗)−1C∗′P (A∗x∗
t +B∗u∗

t )

and covariance matrix
(
I − θ−1C∗′PC∗)−1

. In this computation, we must assume that

the matrix
(
I − θ−1C∗′PC∗) is nonsingular.

Given (21), we can compute that

Rt (V )
(
x∗
t+1

)
= −θ ln

[
Et exp

(
1

2θ
x∗′
t+1Px∗

t+1 +
1

2θ
d

)]

= −1

2
(A∗x∗

t +B∗u∗
t )

′
[
P + PC∗ (θI − C∗′PC∗)−1

C∗′P
]
(A∗x∗

t +B∗u∗
t )

−θ

2
ln det

(
I − 1

θ
C∗′PC∗

)−1

− d

2
.

Substituting this equation into (19), we can see that the objective function is quadratic.

Given the linear constraint (20), the optimized value will be quadratic and the decision

rule will be linear. This verifies the conjecture in (21). Matching coefficients in the

Bellman equation determines the solution for P , d and decision rules.

Instead of using this method, we solve another robust control problem. To this end,

define the return function as:

r∗ (x∗
t , u

∗
t ) = −1

2
x∗′
t Q

∗x∗
t −

1

2
u∗′
t R

∗u∗
t − x∗′

t S
∗u∗

t ,

where

Q∗ =
[
Qxx 0
0 0

]
, R∗ =

⎡
⎣ Qyy Sy −A′

yy

S ′
y R −B′

y

−Ayy −By 0

⎤
⎦ , S∗ =

[
Qxy Sx −A′

yx

β−1 0 0

]
.

The new control problem is given by

max
{yt,ut}

min
{wt+1,μyt}

E

∞∑
t=0

βtr∗ (x∗
t , u

∗
t ) +

θ

2
E

∞∑
t=0

βtw′
t+1wt+1, (22)
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subject to

x∗
t+1 = A∗x∗

t +B∗u∗
t + C∗ (εt+1 + wt+1) .

Adapting the arguments in Hansen and Sargent (2008), we can derive the following

result. We omit its proof.

Proposition 1 The decision rule and the value function for problem (22) are of the

following form:6

u∗
t = −Fux

∗
t , V ∗ (x∗

t ) = −1

2
x∗′
t Px∗

t −
1

2
d∗,

for some matrices Fu and P and constant d∗. The decision rule and the matrix P are

the same as those derived from problem (17) or (19). The solution w∗
t+1 to the problem

(22) gives the worst-case mean distortion derived from problem (17),

w∗
t+1 = (θI − C∗′PC∗)−1

C∗′P (A∗x∗
t +B∗

t u
∗
t ) ,

where u∗
t = −Fux

∗
t .

We use the method proposed by Giordani and Söderlind (2004) to solve problem (22).

Specifically, we rewrite this problem as a linear quadratic control problem:

max
{yt,ut}

min
{wt+1,μyt}

− 1

2
E

∞∑
t=0

β

(
x∗′
t Q

∗x∗
t +

1

2
ũ∗′
t R̃

∗u∗
t + x∗′

t S̃
∗u∗

t

)
,

subject to

x∗
t+1 = A∗x∗

t + B̃∗ũ∗
t + C∗εt+1,

where

R̃∗ =

[
R∗ 0
0 −θI

]
, u∗

t =

[
u∗
t

wt+1

]
,

S̃∗ =
[
S∗ 0

]
, B̃∗ =

[
B∗ C∗ ]

.

Because the first-order conditions are the same for maximization and for minimization,

we can use a standard method for solving a standard linear-quadratic control problem.

The solution takes the following form:

x∗
t+1 =

[
xt+1

λyt+1

]
= H

[
xt

λyt

]
+

[
Cx

0

]
εt+1,

6Note that d∗ is not equal to d.
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ũ∗
t =

⎡
⎢⎢⎣

yt
ut

μyt

wt+1

⎤
⎥⎥⎦ = −F

[
xt

λyt

]
,

for some matrices H and F.

4 Type II Robust Ramsey Problem

4.1 Recursive Formulation

We follow a similar strategy to derive a recursive formulation of type II robust Ramsey

problem. We first construct the Lagrangian expression for (12):

E0

∞∑
t=0

βt{Mt [−L (xt, yt, ut) + βθmt+1 lnmt+1]

−Mtμ
′
yt (Et [yt+1]− Ayxxt − Ayyyt − Byut)},

where Mtμyt is the Lagrange multiplier associated with the forward-looking equation in

(11). We then define λyt as in (16) and rewrite the above Lagrangian as

E0

∞∑
t=0

βt{Mt [−L (xt, yt, ut) + βθmt+1 lnmt+1]

+Mtμ
′
yt (Ayxxt + Ayyyt +Byut)− β−1Mt−1λ

′
ytyt}.

At time zero, we set λy0 = μy,−1 = 0.

Now, we can derive a recursive formulation of type II robust Ramsey problem:

W (xt, λyt,Mt) = max
yt,ut

min
mt+1,μyt

r
(
xt, yt, ut, λyt, μyt,Mt

)
+βEt [W (xt+1, λyt+1,Mt+1) + θMtmt+1 lnmt+1] ,

subject to (1), (2), (15), and (16), where

r
(
xt, yt, ut, λyt, μyt,Mt

)
= −MtL (xt, yt, ut) +Mtμ

′
yt (Ayxxt + Ayyyt +Byut)− β−1Mt−1λ

′
ytyt.

Let

W (xt, λyt,Mt) = MtV (xt, λyt, mt) .
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We the have

V (xt, λyt, mt) = max
yt,ut

min
mt+1,μyt

r
(
xt, yt, ut, λyt, μyt, mt

)
+βEt [mt+1V (xt+1, λyt+1, mt+1) + θmt+1 lnmt+1] ,

subject to (1) and (15), where

r
(
xt, yt, ut, λyt, μyt, mt

)
= −L (xt, yt, ut) + μ′

yt (Ayxxt + Ayyyt +Byut)− β−1m−1
t λ′

ytyt.

We can reduce the dimension of the state space by defining

ξyt = m−1
t λyt = m−1

t μyt−1. (23)

Now, the Bellman equation becomes

V
(
xt, ξyt

)
= max

yt,ut

min
mt+1,μyt

r
(
xt, yt, ut, ξyt, μyt

)
(24)

+βEt

[
mt+1V

(
xt+1, m

−1
t+1μyt

)
+ θmt+1 lnmt+1

]
,

subject to (1) and (15), where

r
(
xt, yt, ut, ξyt, μyt

)
= −L (xt, yt, ut) + μ′

yt (Ayxxt + Ayyyt +Byut)− β−1ξ′ytyt. (25)

Unlike the solution to type I robust Ramsey problem, here the decision rule is not

linear and the value function is not quadratic. One way to solve type II robust Ramsey

problem is to use a nonlinear method to solve the above dynamic programming problem.

Another method is to use perturbation around θ = ∞ or γ = 1/θ = 0 (Hansen and

Sargent (2012)).

4.2 Solution Method

Set up the Lagrangian expression for (24):

r
(
xt, yt, ut, ξyt, μyt

)
+ βEt

[
mt+1V

(
xt+1, m

−1
t+1μyt

)
+ θmt+1 lnmt+1

]
−φt (Etmt+1 − 1)− Etξ

′
xt+1 (xt+1 −Axxxt − Axyyt −Bxut) ,
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where φt and ξxt+1 are the Lagrange multipliers associated with (1) and (15). First-order

conditions are given by7

mt+1 : 0 = β
[
V
(
xt+1, m

−1
t+1μyt

)−m−1
t+1μ

′
ytV2

(
xt+1, m

−1
t+1μyt

)
+ θ (1 + lnmt+1)

]− φt,

(26)

yt : 0 = −L2 (xt, yt, ut) + A′
yyμyt − β−1ξyt + A′

xyEtξxt+1, (27)

ut : 0 = −L3 (xt, yt, ut) +B′
yμyt +B′

xEtξxt+1, (28)

μyt : 0 = Ayxxt + Ayyyt +Byut + βEtV2

(
xt+1, m

−1
t+1μyt

)
, (29)

xt+1 : 0 = βmt+1V1

(
xt+1, m

−1
t+1μyt

)− ξxt+1. (30)

Envelope conditions are given by

V1

(
xt, ξyt

)
= −L1 (xt, yt, ut) + A′

yxμyt + EtA
′
xxξxt+1, (31)

V2

(
xt, ξyt

)
= −β−1yt. (32)

Leading (32) by one period and substituting it into (26) and (29), we obtain

mt+1 : 0 = β
[
Vt+1 + β−1m−1

t+1μ
′
ytyt+1 + θ (1 + lnmt+1)

]− φt, (33)

μyt : 0 = Ayxxt + Ayyyt +Byut −Etyt+1. (34)

Taking one period lag in equation (30) and using (31), we obtain

xt+1 : 0 = βmt

(−L1 (xt, yt, ut) + A′
yxμyt + EtA

′
xxξxt+1

)− ξxt. (35)

Using (33) and (1), can can derive

mt+1 =
exp

(−1
θ

[
V
(
zt+1, ξyt+1

)
+ β−1ξ′yt+1yt+1

])
Et exp

(−1
θ

[
V
(
zt+1, ξyt+1

)
+ β−1ξ′yt+1yt+1

]) . (36)

We then obtain a system of 8 equations, (15), (23), (27), (28), (34), (35), (36), and

Vt = r
(
xt, yt, ut, ξyt, μyt

)
+ βEt [mt+1Vt+1 + θmt+1 lnmt+1] ,

for 8 variables xt, yt, ut, μyt, ξxt, ξyt, mt+1, and Vt. The predetermined variables are xt

and ξyt. The other variables are nonpredetermined. We can use Dynare to solve for a

second-order approximate solution.

7By definition of L, we can compute

L1 (xt, yt, ut) = Qxxxt +Qxyyt + Sxut,

L2 (xt, yt, ut) = Qyyyt +Q′
xyxt + Syut,

L3 (xt, yt, ut) = Rut + S′
xxt + S′

yyt.
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4.3 An Equivalence Result

The following proposition shows that Type II robust Ramsey problem is equivalent to a

standard Ramsey problem with recursive utility or risk-sensitive utility.

Proposition 2 Type II robust Ramsey problem is equivalent to the following problem:

max
{xt,yt,ut}

V0

subject to (13), where Vt satisfies

Vt = −L (xt, yt, ut) + βRt (Vt+1) , for all t ≥ 0.

We omit its proof. The basic idea is to define Vt as

Vt = −L (xt, yt, ut) + min
{mt+1:Etmt+1=1}

β (Etmt+1Vt+1 + θmt+1 lnmt+1)

= −L (xt, yt, ut) + βRt (Vt+1) ,

where the second line follows from a straightforward computation. By a dynamic programming

argument (e.g., Hansen and Sargent (2008) and Maccheroni, Marinacci, and Rustichini

(2006a)), V0 satisfies

V0 = min
{mt+1}

− E0

∞∑
t=0

βtMtL (xt, yt, ut) + θβE0Mt

∞∑
t=0

βtmt+1 lnmt+1.

Therefore, we obtain Proposition 2.

5 Type III Robust Ramsey Problem

5.1 Recursive Formulation

Form the Lagrangian expression for problem (14):

E0

∞∑
t=0

βt
{−L (xt, yt, ut) + θmt+1 lnmt+1 − μ′

yt (Et [mt+1yt+1]− Ayxxt − Ayyyt − Byut)
}
,

where βtμyt is the Lagrange multiplier associated with the forward-looking equation in

(11). We then define λyt as in (16) and rewrite the above Lagrangian as

E0

∞∑
t=0

βt{−L (xt, yt, ut) + θmt+1 lnmt+1 + μ′
yt (Ayxxt + Ayyyt +Byut)− β−1λ′

ytmtyt},
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At time zero, we set λy0 = μy,−1 = 0.

Now, we can derive a recursive formulation of type III robust Ramsey problem:

V (xt, λyt, mt) = max
yt,ut

min
mt+1,μyt

r
(
xt, yt, ut, λyt, μyt, mt

)
+Et [βV (xt+1, λyt+1) + θmt+1 lnmt+1] ,

subject to (1) and (15) where

r
(
xt, yt, ut, λyt, μyt, mt

)
= −L (xt, yt, ut) + μ′

yt (Ayxxt + Ayyyt +Byut)− β−1λ′
ytmtyt.

We can reduce the dimension of the state space by defining

ξyt = mtλyt = mtμyt−1. (37)

Then, the Bellman equation becomes

V
(
xt, ξyt

)
= max

yt,ut

min
mt+1,μyt

r
(
xt, yt, ut, ξyt, μyt

)
(38)

+Et

[
βV

(
xt+1, mt+1μyt

)
+ θmt+1 lnmt+1

]
,

subject to (1) and (15), where

r
(
xt, yt, ut, λyt, μyt, mt

)
= −L (xt, yt, ut) + μ′

yt (Ayxxt + Ayyyt +Byut)− β−1ξ′ytyt.

Comparing this Bellman equation with that for type II robust Ramsey problem, we find

that the period return function is identical. But the continuation values are different

because the belief-adjustment is different as revealed by (23) and (37).

5.2 Solution Method

Set up the Lagrangian expression for (38):

r
(
xt, yt, ut, ξyt, μyt

)
+ Et

[
βV

(
xt+1, mt+1μyt

)
+ θmt+1 lnmt+1

]− φt (Etmt+1 − 1)

−Etξ
′
xt+1 (xt+1 − Axxxt −Axyyt − Bxut) ,

where φt and ξxt+1 are the Lagrange multipliers associated with (1) and (15). First-order

conditions are given by

mt+1 : 0 = βμ′
ytV2

(
xt+1, mt+1μyt

)
+ θ (1 + lnmt+1)− φt, (39)
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yt : 0 = −L2 (xt, yt, ut) + A′
yyμyt − β−1ξyt + EtA

′
xyξxt+1, (40)

ut : 0 = −L3 (xt, yt, ut) +B′
yμyt +B′

xEtξxt+1, (41)

μyt : 0 = Ayxxt + Ayyyt +Byut + βEtmt+1V2

(
xt+1, mt+1μyt

)
, (42)

xt+1 : 0 = βV1

(
xt+1, mt+1μyt

)− ξxt+1. (43)

Envelope conditions are given by

V1

(
xt, ξyt

)
= −L1 (xt, yt, ut) + A′

yxμyt + A′
xxEtξxt+1, (44)

V2

(
xt, ξyt

)
= −β−1yt. (45)

Leading (45) by one period and substituting it into (39) and (42) yields:

mt+1 : 0 = θ (1 + lnmt+1)− μ′
ytyt+1 − φt, (46)

μyt : 0 = Ayxxt + Ayyyt +Byut −Etmt+1yt+1 (47)

Taking one period lag in (43) and using (44) yields:

xt+1 : ξxt = β
(−L1 (xt, yt, ut) + A′

yxμyt+1 + A′
xxEtξxt+1

)
. (48)

Using (1) and (46), we can derive

mt+1 =
exp

(
θ−1μ′

ytyt+1

)
Et

[
exp

(
θ−1μ′

ytyt+1

)] . (49)

We then obtain a system of 7 equations (15), (37), (40) (41), (47), (48), and (49) for 7

variables xt, yt, ut, μyt, ξxt, ξyt, and mt+1. The predetermined state variables are xt

and ξyt. The other variables are nonpredetermined. We can use Dynare to solve for a

linear approximate solution or a second-order approximate solution.

6 Applications to Monetary Policy

In this section, we apply our general theory to the study of robustly optimal monetary

policy in a basic New Keynesian model. The objective function of the central bank (or

CB) under rational expectations is given by

max
{xt,πt}

−1

2
E0

∞∑
t=0

βt

[
π2
t + λ(xt − x∗)2

]
, (50)

20



where πt and xt denote inflation and the output gap, respectively, β is the discount factor

of the private sector and λ is a weight the CB places on the stabilization of the output

gap variability. Here, x∗ ≥ 0 denotes the distortion in the objective of the CB towards

a positive output gap. A positive x∗ implies that the CB has a pro-growth bias.

Under rational expectations, the CB faces the following New Keynesian Phillips Curve

(hereafter, NKPC):

πt = κxt + βEtπt+1 + zt. (51)

where β is a discount factor shared with the policymaker. Here, zt denotes the cost-push

shock which is assumed to follow an AR(1) process:

zt = ρzzt−1 + σzεt, εt ∼ N (0, 1), (52)

where ρz ∈ [0, 1) denotes the AR(1) coefficient and σz > 0 represents the standard

deviation of a new innovation in cost-push shocks. Here, εt is an independently and

identically distributed standard normal random variable.

6.1 Robust Ramsey Policy

Now, consider robust Ramsey policy. We use the methods introduced in Sections 3-5 to

derive this policy for the three types of robust Ramsey monetary policy problem. For

type I ambiguity, we can derive the first-order conditions:

πt = β−1
(
μt − μt−1

)
, (53)

μt = −λβ

κ
(xt − x∗) , (54)

where μt is the Lagrange multiplier associated with distorted NKPC:

πt = κxt + βEt [mt+1πt+1] + zt. (55)

The above first-order conditions are the same as in the case of rational expectations. The

difference is that the distribution of the shock process is distorted. Substituting (53) and

(54) into (55), we obtain a difference equation for μt. Unlike in the case of rational

expectations, type I ambiguity causes the expectation in this difference equation to be

distorted. Under the worst-case distribution, the density is given by

mt+1 =
exp

(−1
θ
V (zt+1, μt)

)
Et

[
exp

(−1
θ
V (zt+1, μt)

)] ,
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where V is the value function for type I ambiguity. This means that the CB attaches

more weight to states when continuation values are low. As we show in Section 3.2, V

is quadratic, mt+1 is a normal density, and type I robust policy is linear in the state

variables zt and μt. The state variable μt encodes the history and generates history

dependency of the optimal monetary policy.

For type II ambiguity, the first-order conditions are given by (54),

πt = β−1 (μt − ξt) , (56)

φt = βV
(
zt+1, ξt+1

)
+ ξt+1πt+1 + βθ (1 + lnmt+1) , (57)

where μt and φt are the Lagrange multipliers associated with (51) and (1), respectively,

and ξt is the belief-adjusted Lagrange multiplier defined as

ξt = m−1
t μt−1, t ≥ 1, ξ0 = μπ,−1 = 0.

Here, V is the value function for type II ambiguity. Using (1) to eliminate φt yields

mt+1 =
exp

(−θ−1
[
V
(
zt+1, ξt+1

)
+ β−1ξt+1πt+1

])
Et exp

(−θ−1
[
V
(
zt+1, ξt+1

)
+ β−1ξt+1πt+1

]) .
This equation implies that the CB puts more weight on the states with low continuation

values. Type II robust policy is a nonlinear function of the state variables, the shock zt

and the belief-adjusted Lagrange multiplier ξt.

Substituting (56) into (51), we obtain a difference equation for ξt. To solve this

equation, we need to know the belief distortion represented by the density mt, which in

turn must be solved jointly with the value function V.

For type III ambiguity, the first-order conditions are still given by (54) and (56), but

where μt is the Lagrange multiplier associated with the distorted NKPC (55) and

ξt = mtμt−1, t ≥ 1, ξ0 = μ−1 = 0.

We can solve for the distorted belief as

mt+1 =
exp

(
θ−1μtπt+1

)
Et

[
exp

(
θ−1μtπt+1

)] . (58)

Equations (54), (55), (56) and (58), together with the definition of ξt determine πt, xt,

mt, ξt, and μt.We can eliminate μt and represent the type III robust policy as a nonlinear

function of the predetermined state variables zt and ξt.
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Note that equation (58) implies that when the Lagrange multiplier μt is positive, the

CB’s concern for robustness causes it to assign higher probabilities to more inflationary

states. Similarly, when μt < 0, the CB worries that less inflationary or more deflationary

states are more likely than under its approximating model. Clearly, the above equations

imply that type III robust policy is nonlinear. This is different from the linear robust

policy in the timeless perspective studied by Woodford (2010) and Kwon and Miao

(2013).

6.2 Calibration

To illustrate the quantitative impact of a concern for robustness, we take the same

parameter values as in Woodford (2010) and Kwon and Miao (2013): β = 0.99, κ = 0.2,

λ = 0.08, x∗ = 0.05.8 Also we assume that ρz = 0.5 and σz = 0.02.

Now the only remaining parameter to be calibrated is θ, which measures the degree

of concerns for robustness. We apply the detection error probability method proposed by

Hansen and Sargent (2008). The detection error probability gives the probability that

an econometrician cannot correctly deduce the true data generating process (DGP) after

observing a series of data, especially when she has two competing candidates of the DGP.

If two models (or DGPs) are almost identical, the detection error probability is close to

50%, which implies that there is roughly a 50-50 chance to make an error about which

model generates an observed series of data. In other words, it is almost impossible to

differentiate the two models. The detection error probability becomes close to zero when

two competing models are very different so that the econometrician can almost always

detect the true DGP. Specifically, the detection error probability can be computed using

log-likelihood ratios:

1

2
Pr

(
log

LA

LW
> 0

∣∣∣∣W
)
+

1

2
Pr

(
log

LW

LA
> 0

∣∣∣∣A
)
,

where LA (LW ) denotes the likelihood of model A (W ). One can consider A represents

an approximating model and W represents the worst-case model. Pr (·|A) denotes the

probability conditional on the hypothesis that model A is a true one.

For type I robust Ramsey problem, the detection error probability can be easily

computed using the Kalman filter since the solution is linear and the shock process

is Gaussian.9 Since we solve type II and type II robust Ramsey problems using the

8Hansen and Sargent (2012) also used similar values.
9See Giordani and Söderlind (2004) for detailed information.
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second-order approximation method, solutions to these types are not linear any more.

Not surprisingly, it is generally very difficult to find the exact likelihood even if the

shock process is Gaussian. Therefore, we approximate likelihoods using particle filtering.

The particle filter enables us to evaluate the likelihood numerically via the sequential

Monte Carlo algorithm when a model is non-linear and/or non-Gaussian. Fernández-

Villaverde and Rubio-Ramı́rez (2007) show that particle filtering can be used to calculate

likelihoods of DSGE models when solved with non-linear methods, particularly in their

case, a second-order approximation. More recently, Bidder and Smith (2010) apply this

method to compute the detection error probability. Appendix A details our computation

procedure.

We calibrate θ such that the detection error probability is approximately 10% for

each type of robust Ramsey problem. We use simulated time series of 150 periods and

simulate 1,200 times to calculate the detection error probability.10 Also we use 100,000

particles to evaluate the likelihood. Note that since type I ambiguity yields a linear

solution, we use the Kalman filter to obtain the likelihood function in a state space

framework. Table 1 shows calibrated values of θ.

Table 1: Calibrated values of θ

Type I Type II Type III

0.0069 0.7611 0.0151

6.3 Numerical Results

Figures 1-3 plot the impulse responses of inflation and the output gap following a positive

unexpected one standard deviation cost-push shock for the three types of robust Ramsey

problem and the Ramsey problem under rational expectations with θ = ∞.

An important finding is that optimal monetary policy becomes more history-dependent

when the policymaker faces model ambiguity irrespective of its type. More history

10Note that there is a tradeoff between accuracy and speed as the number of particles increases.
Exploiting Matlab parallel computing with 32 cores, it took about 40 minutes for 1,200 simulations
using 100,000 particles to compute the detection error probability corresponding to a single value of
θ. Bidder and Smith (2012) use as many as 160,000 particles. We also checked the detection error
probability corresponding to our calibrated vaule of θ using 160,000 particles but the difference between
the two results was negligible.
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Figure 1: Impulse responses of inflation and output under type I ambiguity.
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dependent monetary policy implies that it takes a longer time for the policymaker to

return inflation and the output gap to their steady state levels. Although monetary

policy becomes more history dependent for all three types of ambiguity, there are subtle

differences in reasons behind this result. For type I ambiguity, the CB faces ambiguity

about both the shock process and private agents’ expectations. As we show in Section 6.1,

the private sector’s expectations in the difference equation for μt or the commitment value

are distorted under the worst-case beliefs. This makes the robustly optimal monetary

policy more history dependent than that under rational expectations.

For type II ambiguity, the CB does not suffer from ambiguity about private agents’

beliefs but it does not trust its approximating model of the exogenous shock process. The

CB believes that the cost-push shock is more persistent than under rational expectations,

causing the robust monetary policy to be more history dependent. Note that even though

the Ramsey policymaker fully trusts the private sector’s beliefs, its concern for robustness

leads to a change in the policy rule for inflation as shown in (56). Type II ambiguity

generates endogenous belief heterogeneity. The state variable that encodes the history

is the belief-adjusted Lagrange multiplier associated with the NKPC. The evolution of

this state variable explains the more history dependence of Type II robust policy.

For type III ambiguity, the CB fully trusts its approximating model of the shock
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Figure 2: Impulse responses of inflation and output under type II ambiguity.
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Note: Dashed lines represent impulse responses under rational expectations. Solid lines plot impulse
responses under type II ambiguity. The time period is quarterly.

process, but is uncertain about agents’ beliefs. More history-dependence comes from

the CB’s concern for robustness of agents’ beliefs. This can better manage agents’

expectations as Woodford (2010) argues. The state variable that encodes history is

the belief-adjusted Lagrange multiplier associated with the distorted NKPC. Like type

II ambiguity, type III ambiguity also generates endogenous belief heterogeneity. But

the belief adjustment and the evolution of the belief-adjusted Lagrange multiplier are

different.

Even though all three types of ambiguity share the common feature of making

monetary policy more history dependent, the implications for the price level are not

the same across all three types. The left panel of Figure 4 plots the impulse responses

of the price level under type I ambiguity (solid line) and under rational expectations

(dashed line). The robust policy for inflation implies that once a cost-push shock hits

the economy, it is optimal to undo all the changes in the price level so that it returns to

its steady state level. This implies that type I robustly optimal monetary policy is price

level targeting, just like in the case of rational expectations. The middle and right panels

of Figure 4 plot the impulse responses for types II and III ambiguity. The robust policy

indicates that in response to a positive cost-push shock the CB adjusts the inflation

rate to a degree so that the price level goes below its original level. This implies that
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Figure 3: Impulse responses of inflation and output under type III ambiguity.
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Note: Dashed lines represent impulse responses under rational expectations. Solid lines plot impulse
responses under type III ambiguity. The time period is quarterly.

under types II and III ambiguity, price level targeting is not an optimal policy any more.

Note that our finding is in line with Woodford (2010) and Kwon and Miao (2013). The

difference is that they find this feature of monetary policy under type III ambiguity in

the timeless perspective instead of the Ramsey framework as in this paper.

Figure 5 shows the initial responses of inflation and output gap for various values

of the robustness parameter θ. The inverse θ−1 describes the degree of concerns for

robustness or ambiguity aversion. The initial responses under rational expectations

correspond to θ−1 = 0. Note that when θ is smaller than around 0.3, the solution reaches

the breakdown point pointed out by Hansen and Sargent (2008) and hence we restrict

solution for type II problem in a small interval.

An interesting and important finding is that different types of ambiguity deliver

different initial responses to a positive cost-push shock. For type I ambiguity, the

initial responses of inflation and the output gap are larger than those under rational

expectations. Since type I ambiguity is related to the overall model misspecification, in

the worst case scenario, the CB worries that the cost-push shock is distorted in mean so

that the CB responds more aggressively as if the shock were greater compared to that

in the approximating model. At the same time the CB concerns that the private agents’

expectations are distorted to a higher level too.
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Figure 4: Impulse responses of the price level.
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Note: Dashed lines represent impulse responses under rational expectations. Solid lines plot impulse
responses under three types of ambiguity. The time period is quarterly.

For type II ambiguity, the initial response of inflation is also greater than under

rational expectations. The difference between type I and type II lies in the initial response

of the output gap. While type I ambiguity makes the initial response of the output gap

greater than under rational expectations, type II ambiguity leads to a less responsive

output gap. The intuition is the following: The CB worries about the unfavorable

distortion in the cost-push shock, leading to an increase in the inflation response. On

the other hand, the CB exploits the fact that the private sector fully trusts its model and

in its model the cost-push shock is believed less persistent than under the CB’s distorted

beliefs. As a result, the CB faces a smaller tradeoff between inflation and output.

Finally, for type III ambiguity, the CB’s initial response of inflation to a positive cost-

push shock is less sensitive but the initial response of the output gap is more sensitive.

The concern for robustness of the expectation of the private sector makes the CB manage

the inflation expectation more cautiously. In other words, the CB puts in more effort to

stabilize inflation and the inflation expectation since it worries that the private agents’

inflation expectations are biased upward. In this case, the CB faces a larger tradeoff

between inflation and the output gap. This result is in line with Woodford (2010) and

Kwon and Miao (2013). In these papers, they focus on the linear class of policy rules

in the timeless perspective. Our research shows that their findings are still valid in the

Ramsey framework.
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Figure 5: Initial responses of inflation and output
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7 Conclusion

In this paper, we study three types of robust Ramsey problem corresponding to three

types of ambiguity pointed by Hansen and Sargent (2012) in a general linear-quadratic

framework. We provide recursive characterizations and algorithms to solve the robust

Ramsey policy. We apply our methods to a basic New Keynesian model of optimal

monetary policy with persistent cost-push shocks.

There are three main findings. First, robust Ramsey monetary policy for all three

types of ambiguity generates more history dependence than under rational expectations.

Second, in response to a positive cost-push shock, the price level eventually returns to

the initial level for type I ambiguity and rational expectations. But the sign of the

initial price level effect is eventually reversed for types II and III ambiguity. Third,

the initial response of inflation is more aggressive for types I and II ambiguity than

for rational expectations, but it is less aggressive for type III ambiguity. The initial
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response of the output gap is more aggressive fort types I and III ambiguity than for

rational expectations, but it is less responsive for type II ambiguity.

Our type III ambiguity corresponds to that studied by Woodford (2010) and Kwon

and Miao (2013), who study linear robust monetary policy in the timeless perspective.

We show that robust Ramsey monetary policy is nonlinear, but the general properties of

robust policy (history dependence, price level dynamics, and impulse responses) found

in their papers are still valid in our Ramsey framework.

Our analysis highlights the importance of modeling who faces ambiguity and what

the policymaker is ambiguous about because different types of ambiguity generate very

different policy responses to shocks.

For future research, it would be interesting to study micro-founded models of robust

policy. Adam and Woodford (2012) solve an optimal monetary policy problem under

type III ambiguity with a micro-founded model. They use linear approximation methods

to solve the model. It would be interesting to study different types of ambiguity in a

micro-founded model with non-linear solutions.
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Appendix

A Computing Detection Error Probabilities

We can write the solution to a robust Ramsey problem in a state space representation:

st = F (st−1, εt),

ỹt = G(st),

where st and ỹt denote unobservable hidden states and endogenous variables at time t,

respectively. F (·) and G(·) are system and observation functions, respectively, which are

possibly non-linear. Here, εt denotes a system innovation. To apply the particle filtering

algorithm, we assume that the endogenous variables are observable with measurement

errors:

yt = G(st) + vt, (A.1)

where vt is a measurement error.

Note that according to Bayes’ theorem the likelihood of yt ≡ {y0, y1, · · · , yt} under

the hypothesis of θ ∈ Θ is given by

p
(
yt ; θ

)
= p (y0 ; θ)

t∏
k=1

p
(
yk

∣∣ yk−1 ; θ
)
, (A.2)

where p (y0 ; θ) denotes a prior probability which is assumed to be known. Generally,

one cannot compute the likelihood analytically. The key idea of the particle filtering

algorithm is to approximate the likelihood through Monte Carlo simulation.

More concretely, note that one can rewrite the last term of (A.2) as

p
(
yk

∣∣ yk−1 ; θ
)
=

∫
p
(
yk

∣∣ sk ; θ) p (sk ∣∣ yk−1 ; θ
)
dsk,

which can be approximated using discrete samples:

p
(
yk

∣∣ yk−1 ; θ
) ≈ 1

N

N∑
i=1

p
(
yk

∣∣ sik ; θ) p (sik ∣∣ yk−1 ; θ
)
.

Now let {wi
k, s

i
k}Ni=1 be a swarm of particles such that sit is randomly drawn from
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p
(
sik

∣∣ sik−1 ; θ
)
and also the importance weight wi

t is computed recursively 11 by

wi
t = p

(
yk

∣∣ sik ; θ) wi
k−1∑
wi

k−1

.

It is important to notice that {wi
k, s

i
k}Ni=1 is a discrete approximation to the distribution

p
(
yk

∣∣ sk ; θ) p (sk ∣∣ yk−1 ; θ
)

which is justified by the law of large numbers as the number of particles N increases.

Thus, one can find that the likelihood function can be approximated by

p
(
yk

∣∣ yk−1 ; θ
) ≈ 1

N

N∑
i=1

wi
t.

Notice that if one resamples sjk from {wi
k, s

i
k}Ni=1 with replacement one can update a

swarm of particles to
{
N−1, sjk

}N

j=1
. This procedure is called the sampling importance

resampling.12

To sum up, we implement the particle filtering algorithm using the following procedure:

• FOR t = 2 : T , given a swarm of particles {wi
t, s

i
t}Ni=1, draw sit+1 ∼ p

(
s
∣∣ sit ; θ) .

• Update wi
t+1 = p

(
yt+1

∣∣ sit+1 ; θ
)
wi

t (
∑

wi
t)

−1
.

• Compute the conditional likelihood Lt+1 = N−1
∑

wi
t+1.

• Resample
{
wi

t+1, s
i
t+1

}N

i=1
from

{
wj

t+1, s
j
t+1

}N

j=1
with replacement such that sit+1 ∼

i.i.d.
{
wi

t+1, s
i
t+1

}N

i=1
and wi

t+1 = N−1.

11By using q
(
sik

∣∣ yk−1
)
as the importance sampling distribution of p

(
sik

∣∣ yk) one can find that the
importance weight wi

t can be expressed recursively:

wi
k ∝ p

(
sik

∣∣ yk)
q
(
sik

∣∣ yk−1
) ∝ p

(
yk

∣∣ sik) p (sik ∣∣ sik−1

)
q
(
sik

∣∣ sik−1, y
t−1

) p
(
sik−1

∣∣ yk−1
)

q
(
sik−1

∣∣ yk−2
) ∝ wi

k−1p
(
yk

∣∣ sik) .
Since q

(
sik

∣∣ yk−1
)
can be chosen arbitrarily, one can easily sample sik such that

sik i.i.d.
˜

q
(
sk

∣∣ yk−1
) ⇒ q̂

(
s
∣∣ yk−1

)
=

1

N

∑
δsik(s),

where δ (·) is the Dirac delta function.
12There are various approaches to resampling but in this paper we follow an algorithm called systemic

resampling suggested by Kitagawa (1996).
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• t = t + 1.

• END FOR.

While implementing particle filtering, an issue needing our caution is that in type

II robust Ramsey problem, the worst-case shock process is different from the reference

process. Note that for type III, the shock process is not distorted but only the beliefs

of a Ramsey planner about private agents’ expectations are distorted. To derive the

worst-case distribution, Bidder and Smith (2012) generate Monte-Carlo simulations and

compute the one-step-ahead likelihood ratio, mt+1(st+1). Then they draw the distorted

shock according to the distorted probability. The problem is it makes the computing time

very long. Instead we take a more simple and practical way to draw distorted shocks. By

the second-order approximation we can express mt+1 in terms of state variables. Then

we can compute the conditional mean of distorted shock by

Et[mt+1et+1] = Et [Gm (st, et+1) et+1] (A.3)

where Gm (·) denotes decision rule for mt+1 given st. Note that the distortion in mean

at time t+1 depends on state variables at time t and a innovation shock et+1. Thus the

After finding the conditional mean, we generate the worst-case shocks for each state by

randomly drawing a number from the normal distribution N (Et [mt+1et+1] , 1). In other

words, we simply assume that the worst-case distribution distorts only the mean of the

shock process. We confirm this assumption by Monte-Carlo simulations following Bidder

and Smith (2012). We find that the variance of the worst-case shock is not different

from that of the reference shock process and we cannot not find any significant difference

between two distributions except for the mean. The gain from reducing computing time,

however, is very significant.

Finally, the likelihood can be computed as

L (yT ; θ) =
T∏
t=1

Lt.

In order to implement particle filtering, we first generate a set of simulated time series

using the solution to the robust Ramsey problem. In our model, there are three hidden

state variables (zt, μt, ξt) and two observable variables πt and xt. We assume that the

measurement error of each observable variable follows a normal distribution with the
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standard deviation of 20% unconditional counterpart of each variable, i.e.,[
xt

πt

]
= G(st) +

[
σxex,t
σπeπ,t

]
,

[
ex
eπ

]
∼ N

([
0
0

]
,

[
1 0
0 1

])
.
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