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Abstract

Individual players in a simultaneous equation binary choice model act differently in

different environments in ways that are frequently not captured by observables and a

simple additive random error. This paper proposes a random coefficient specification to

capture this type of heterogeneity in behavior, and discusses nonparametric identification

and estimation of the distribution of random coefficients. We establish nonparametric

point identification of the joint distribution of all random coefficients, except those on the

interaction effects, provided the players behave competitively in all markets. Moreover,

we establish set identification of the density of the coefficients on the interaction effects,

and provide additional conditions that allow to point identify this density. Since our iden-

tification strategy is constructive throughout, it allows to construct sample counterpart

estimators. We analyze their asymptotic behavior, and illustrate their finite sample be-

havior in a numerical study. Finally, we discuss several extensions, like the semiparametric

case, or correlated random coefficients.
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1 Introduction

Motivation. Heterogeneity across cross sectional units is ubiquitous in situations of strategic

interaction. The behavior of an airline, for instance, may vary dramatically across markets

in ways that are only partially explicable by observable factors, like market size or average

income. Similarly, there are profound differences in the work decisions of married couples that

are not entirely reflected by, say, the number of children, ethnic background, or age. Many of

the determinants for these different decisions are unobserved to the applied researcher. Yet,

understanding the extent of these differences is crucially important as many important policy

questions depend on them.

In this paper, we adopt a random coefficients approach to model such heterogeneity of

players across different cross sectional units, like market environments or families. To start out

with, we consider the most basic model of strategic interaction in a bivariate, two player one-

shot complete (perfect) information game in its reduced form, as a linear dummy endogenous

simultaneous equation model. This model has been extensively analyzed with nonrandom

coefficients, see Amemiya (1974), Heckman (1978), and Bjorn and Vuong (1985). More recently,

Bresnahan and Reiss (1990, 1991) and Tamer (2003) also analyze this model, but elaborate on

the derivation from a simple static two player game of complete information.

In this game, there are two players, denoted player 1 and 2, each of which can choose among

two actions, denoted 0 and 1. To fix ideas, think of the popular example where the two players

are two firms, and the decision is whether or not to enter a market. Alternatively, the two

players may be husband and wife in a married couple, and the decision in question would be

whether or not to work. International trade may give other examples, where the two players

are bilateral trade partners, and the players are a large, respectively a small, partner (e.g., USA

- Costa Rica would be one observation, Japan - Bhutan another, etc).

Each of the two players bases her decision in parts on factors that are observed to the

econometrician, denoted by Z̃j, and indexed by the number of the player j ∈ {1, 2} , to indicate

that these may not just include observable factors of the market (say, market size), but also

variables that might be specific to the player. Moreover, each player takes the actions of the

other player into account when making her decision. Importantly, she also bases her decision

on variables that are unobserved to the econometrician, and that may impact the way in which

she acts on observables.

Throughout this paper, we assume that in every cross section unit, from now on called

“market”, each player forms a latent net utility Y ∗j of choosing action 0 or 1, and that they

each pick action 1, provided this latent net utility is above a threshold (which we normalize to be

0). In each market, the players relate the net utility of being in the market in a linear fashion to

2



the determining variables (Z̃j, Y−j). The coefficients in this relationship are denoted β̃j and ∆̃j,

which we consider fixed in any given market. Moreover, we allow for a market and player specific

intercept ũj. The key innovation in this paper is that we allow for all of these variables, including

the coefficients (β̃j, ∆̃j), to vary across markets, and that we provide a framework in which we

point identify and estimate the distribution of these random parameters1. Random coefficients

models are commonly used to capture unobserved heterogeneity across cross-sectional units.

Recent work on the identification of these models includes Ichimura and Thompson (1998),

Berry and Haile (2009), Hoderlein, Klemelä, and Mammen (2010, HKM), Fox, Ryan, Bajari,

and Kim (2012), Gautier and Hoderlein (2012), and Gautier and Kitamura (2013, GK). In our

setting, the random coefficients allow us to flexibly model unobserved heterogeneity in firms’

profit structure and strategic interactions between them across different markets.

Summarizing, the reduced form model is as follows

Y ∗1 = Z̃ ′1β̃1 + Y2∆̃1 + ũ1 (1.1)

Y ∗2 = Z̃ ′2β̃2 + Y1∆̃2 + ũ2,

Yj =

1 if Y ∗j > 0

0 otherwise
, j = 1, 2,

where we assume that the factors Z̃ = (Z̃1, Z̃2) are fully independent of all unobserved random

variables (β̃, ∆̃, ũ). Because we think of the system (1.1) as a system of simultaneous equations,

we refer to Z̃ as instruments - variables that provide the exogenous variation which is needed

to identify the object of interest, the distribution of random parameters.

As is well known in the literature, the properties of the model change fundamentally with the

sign of ∆̃1 and ∆̃2, see, e.g., Bresnahan and Reiss (1991), or Tamer (2003). Indeed, in the entry

game, ∆̃1, ∆̃2 ≤ 0 is a natural choice arising from economic theory, while other specifications

are difficult to reconcile with economic theory. This makes the aim to identify, say, the density

of ∆̃1 over the entire space R both problematic and economically questionable. Therefore, we

focus largely on subcases. In particular, we start out with the case of ∆̃1, ∆̃2 ≤ 0, almost surely,

i.e., for every single market. This case is called “strategic substitutes”, and is central to the

literature on market entry. In our setup, this means that there is always a negative externality

from a player entering the market on the net utility of the other player, but to varying degree

across markets.

In this setup, we provide conditions under which the joint density of all random coefficients

is point identified. An important point is that we identify the joint distribution of random

coefficients, and hence also the marginals, using the entire distribution of the data, and not

1We sometimes loosely refer to distribution, when we actually mean probability density function.

3



just those observations for which one player’s entry decision is determined with probability 1.

A key insight here is that point identification is satisfied if the sign of a linear combination of

the random parameters for each player is given, which is for instance satisfied, if the sign of

one of the random coefficients is the same across all markets. This generalizes identification

in the exogenous binary random coefficients model as in Ichimura and Thompson (1998); the

important insight is that no added constraint is required, even though more than just the

two marginal distributions for each player are identified. The key identifying restriction is the

aforementioned full independence assumption, and it allows to point identify the joint densities

of (β̃, ∆̃ + ũ) and (β̃, ũ), respectively. However, this implies that the joint density of the

interaction effects, f∆̃1,∆̃2
is only set identified in general, unless one is willing to invoke an

additional condition that we provide, and which allows to obtain point identification.

Since our aim is to recover the entire distribution of random coefficients, it is not surprising

that we require a large support assumption on the distribution of Z̃. This is a common feature in

all nonparametric random coefficient models that aim at recovering the density of parameters,

see Ichimura and Thompson (1998), HKM (2010), Gautier and Hoderlein (2012), and GK

(2013), and should not be confused with “identification at infinity”, as we are using the entire

distribution of the data. However, we discuss the case where some of the instruments are

discrete in another extension. Another important restriction required for identification in the

baseline scenario is that all instruments are player specific. This restriction, too, is relaxed in

an extension.

The identification principle put forward is constructive and based on the inversion of op-

erators. Regularized versions of these inverses can be used to construct sample counterpart

estimators, and an important part of the analysis in this paper is concerned with their asymp-

totic behavior. But our intention is not only to contribute to the understanding of these models

on an abstract level, but also to provide feasible versions of our approach that are useful in

applications. To this end, we discuss semiparametric versions of our approach where some of

the coefficients are deterministic in another extension.

After clarifying what can be learned in the case where ∆̃1, ∆̃2 < 0, we consider various

extensions. We first consider the scenario where ∆̃1, ∆̃2 > 0 holds across all markets, a scenario

called “strategic complements”and then discuss a more general setup where ∆̃ is allowed to

have a point mass. We then discuss an extension of our analysis to games with more than two

players. Further, we introduce and discuss a semiparametric version of our model, with fixed

and random coefficients, which will be more relevant for applications, as it also allows to deal

with discrete Z. We also discuss ways in which the interaction effects may depend on observable

variables, as well as the case of correlated random coefficients that cause the covariates to be

endogenous. We further explain how to obtain structural objects including average structural
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functions and the probability of a specific action profile being a Nash equilibrium. Finally, we

discuss the case that some or all of the instruments are the same for both players, i.e. Z1 = Z2.

Contributions relative to the Literature. Simultaneous discrete response models have

been studied extensively. Much of the literature has focused on identification and estimation

of structural parameters that are assumed to be fixed across markets. Ciliberto and Tamer

(2009), for example, estimate an entry model of airline markets assuming that the parameters

in the airlines’ profit functions are either fixed or depend only on observable characteristics of

the markets. A novel feature of our model is that the structural parameter may vary across

markets following a distribution which is only assumed to satisfy mild assumptions.

A key challenge for the econometric analysis of this class of models is the presence of a region

in which each value of payoff relevant variables may correspond to multiple outcomes. Tamer

(2003) calls such a region the region of incompleteness. Early work in the literature including

Amemiya (1974), Heckman (1978), and Bjorn and Vuong (1985) assume that a unique outcome

is selected with a fixed probability. More recently, Bresnahan and Reiss (1990, 1991) and Tamer

(2003) show that structural parameters can be identified without making such an assumption.

The former treats the multiple outcome as a single event and identifies the structural parameters

by analyzing the likelihood function (while our approach is non-parametric in nature, we follow

this general approach). The latter treats multiple outcome as is, but requires the existence

of special covariates that are continuously distributed with full supports, see also Berry and

Tamer (2006) for extensions.

As already mentioned, we nonparametrically identify the distribution of the random coeffi-

cients without making any assumption on the equilibrium selection mechanism, but utilize the

assumption that covariates are continuously distributed with full supports. Other recent work

on identification in complete information games includes Bajari, Hong, and Ryan (2010), who

establish identification of model primitives including an equilibrium selection mechanism using

exclusion restrictions, Beresteanu, Molchanov, and Molinari (2011) and Chesher and Rosen

(2012), who apply the theory of random sets to characterize the sharp identification region of

structural parameters, and Kline and Tamer (2012), who derive sharp bounds on best response

functions without parametric assumptions. Less closely related is the work on identification,

estimation and testing in games of incomplete information, see e.g., Aradillas-Lopez (2010), de

Paula and Tang (2012), and Lewbel and Tang (2012).

Our model is closely related to index models with random coefficients. In particular, as

already discussed, it is widely related to the work on the linear model in Beran, Hall and

Feuerverger (1994), HKM (2010), Gautier and Hoderlein (2012), and Masten (2012). Since we

are considering a binary dependent variables, our approach is particularly close to the approach

of GK (2013), who generalize the nonparametric approach of Ichimura and Thompson (1998).
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However, to the best of our knowledge, nonparametric identification of the distribution of ran-

dom coefficients in a simultaneous system of binary choice models has not been considered.

This paper therefore also contributes to the literature of nonparametric identification in simul-

taneous equation models, see e.g., Matzkin (2008), Berry and Haile (2011), Matzkin (2012),

and Masten (2012).

Recent developments on nonparametric identification and estimation in random coefficients

models show that recovering the density of random coefficients can be viewed as solving an

ill-posed inverse problem, see HKM (2010), GK (2013), and Gautier and Le Pennec (2012). We

show that recovering the joint density of random coefficients in a complete information game is

also a linear inverse problem. Our identification strategy is more closely related to GK (2013):

To recover the joint distribution of random coefficients including the strategic interaction effects,

we develop a procedure to invert tensor products of hemispherical transforms. We further

provide a conditional deconvolution method to disentangle the distribution of the strategic

interaction effects from the distribution of the remaining coefficients.

Empirical studies have shown that the firm heterogeneity plays an important role in en-

try decisions (See Reiss and Spiller (1989), Berry (1992), Ciliberto and Tamer (2009) among

others). This paper considers heterogeneity in the variable cost and the interaction effects.

In particular, we allow for unobserved heterogeneity in both of them. There have been re-

cent independent attempts to introduce unobserved heterogeneity into the interaction effects.

To the best of our knowledge, Kline (2011) is the first paper that has explicitly allowed for

one-dimensional unobservable heterogeneity in the interaction effects. Fox and Lazatti (2012)

consider a complete information game with multiple players and study its relation to the de-

mand of bundles, while allowing for unobservable heterogeneity as in Kline (2011). In contrast,

we focus on the two player game with possibly multidimensional unobservable heterogeneity.

Structure of the Paper. In the second section, we first define the baseline setup consid-

ered in this paper, a heterogeneous game of complete information, in the case where the inter-

action effects ∆̃1, ∆̃2 are negative, as is typical for entry models. We show that the marginal

distribution of each player’s random coefficients is nonparametrically identified. In the third

section, we extend this analysis to recover the joint distribution of random coefficients of both

players in the same setup, and establish how to identify the joint density of ∆̃1, ∆̃2. This section

is arguably the main innovation in this paper, and requires new functional analytic tools. In the

forth section, we discuss estimation by sample counterparts. More specifically, we suggest an

estimator, and discuss its large sample properties. The fifth section discusses extensions. The

sixth section provides a numerical study that illustrates the applicability of the tools introduced

in this paper. Finally, an outlook concludes.
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2 The general structural model and preliminaries

In this section we introduce the basic building blocks of our model. We start by providing formal

notation, and clarify and discuss the assumptions. One key assumption is that the interaction

effects are negative. Based on the insight of Bresnahan and Reiss (1991), we separate the

outcome space into three cases, no entry, duopoly and monopoly. This provides us with two

separate conditional probabilities - the third is determined once we know the first two - which

we invert to obtain the joint distribution of (β̃1, ũ1, β̃2, ũ2) and that of (β̃1, ũ1 +∆̃1, β̃2, ũ2 +∆̃2).

From these individual pieces we recover the joint density of (∆̃1, ∆̃2)′ by deconvolution. We

conjecture that it is possible to incorporate Tamer’s (2003) insight and use at least some of the

information in the monopoly case by distinguishing between the players. However, this would

lead to a very different approach that we are pursuing in a separate paper.

2.1 Basic definitions and assumptions

We consider a simultaneous game of complete information with two players. Our first assump-

tion describes the implied data generating process (DGP).

Assumption 2.1. Let (Ω,F, P ) be a complete probability space. Let k1, k2 ∈ N. For each j =

1, 2, let Z̃j : Ω→ Rkj be a Borel measurable map. Further, for each j = 1, 2, let β̃j : Ω→ Rkj ,

∆̃j : Ω→ R, and ũj : Ω→ R be Borel measurable maps.

For each j = 1, 2, Z̃j is player j’s observable characteristics. The binary outcome variables

Y1, Y2 are generated as follows.

Y ∗1 = Z̃ ′1β̃1 + Y2∆̃1 + ũ1, (2.1)

Y ∗2 = Z̃ ′2β̃2 + Y1∆̃2 + ũ2, (2.2)

Yj =

1 if Y ∗j > 0

0 otherwise
, j = 1, 2. (2.3)

For each player, the coefficient β̃j captures the marginal impact of player j’s own covariates

Z̃j on the latent variable Y ∗j , while ũj captures the effect of other unobservable characteristics.

The strategic interaction effect ∆̃j captures the impact of the other player’s decision on the net

utility player j obtains. Assumption 2.1 allows (β̃j, ∆̃j, ũj)
′ to vary across markets. This allows

us to flexibly model unobserved heterogeneity in strategic interactions across different markets.

In what follows, we let Z∗j ≡ (1, Z̃ ′j)
′, β∗j ≡ (ũj, β̃

′
j)
′, and θ∗j ≡ (∆̃j + ũj, β̃

′
j)
′ for j = 1, 2.

We start with the case in which firms compete across markets, i.e., the utility of each player

is adversely affected by the other players choosing action 1:
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Assumption 2.2. (i) ∆̃1 ≤ 0, ∆̃2 ≤ 0, P−almost surely; (ii) The distribution of ∆̃ ≡ (∆̃1, ∆̃2)′

have the density f∆̃ with respect to Lebesgue measure.

We here assume that ∆̃ is continuously distributed for simplicity. It is, however, possible to

allow ∆̃ to have a point mass at some point. For example, ∆̃j can be 0 for one of the players

with positive probability, in which case the well-known coherency condition holds. We will

discuss this possibility in Section 6.

Table 1 summarizes the payoffs of the game. In each market, the primitives of the game

{(Z̃j, β̃j, ∆̃j, ũj)}j=1,2 are assumed to be common knowledge among the players. Our solution

concept for this complete information game is the pure strategy Nash equilibrium. Depending

on the realizations of {(Z̃j, β̃j, ∆̃j, ũj)}j=1,2, there exist four possible equilibrium outcomes:

(Y1, Y2) = (0, 0), no entry ; (0, 1), (1, 0), monopoly ; and (1, 1), duopoly. In case of multiple

equilibria, we assume that one of them is selected by some equilibrium selection mechanism,

which we do not explicitly specify. Each player’s decision Yj and instruments Zj are assumed to

be observable. Our goal is then to recover the distribution of the random coefficients (β̃′j, ∆̃j, ũj)
′

nonparametrically from the observables.

Y2 = 0 (no entry) Y2 = 1 (entry)

Y1 = 0 (no entry) (0, 0) (0, Z̃ ′2β̃2 + ũ2)

Y1 = 1 (entry) (Z̃ ′1β̃1 + ũ1, 0) (Z̃ ′1β̃1 + ∆̃1 + ũ1, Z̃
′
2β̃2 + ∆̃2 + ũ2)

Table 1: The Entry Game Payoff Matrix

Since only the angles of β∗j and Z∗j , j = 1, 2 and (θ∗j and Z∗j , j = 1, 2) matter for the binary

decisions, we define the normalized coefficients and instruments by βj ≡ β∗j /‖β∗j ‖, θj ≡ θ∗j/‖θ∗j‖
and Zj ≡ Z∗j /‖Z∗j ‖. Hence, the normalized random coefficients and instruments take values

in a unit sphere. This normalization will be also instrumental for us to analyze identification

from a linear inverse problem perspective, which we elaborate in the next section.

Below, we introduce additional notation. Let ` ∈ N. Let S` denote the unit sphere in R`+1.

For each c ∈ S`, let Hc ≡ {x ∈ S` : c′x ≥ 0} be the `-dimensional hemisphere. Let σ` denote the

spherical Lebesgue measure on S` and let L2(S`) denote the set of square integrable functions

on S`. The product measure on S`1 × S`2 is denoted by σ ≡ σ`1 ⊗ σ`2 . Let L2(S`1 × S`2) denote

square integrable functions on S`1 × S`2 with respect to σ.

Throughout, we assume that β and θ have well-defined densities with respect to σ.

Assumption 2.3. The distributions of β = (β′1, β
′
2)′ and θ = (θ′1, θ

′
2)′ are absolutely continuous

with respect to σ with densities fβ ∈ L2(Sk1 × Sk2) and fθ ∈ L2(Sk1 × Sk2).
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We let fβ1 , fβ2 denote the marginal probability density functions of β1 and β2 with respect

to σk1 and σk2 respectively. The marginal densities fθ1 , fθ2 are similarly defined. One of our

key identification assumptions is the following exogeneity of covariates.

Assumption 2.4. (β′1, β
′
2,∆1,∆2)′ is independent of Z ≡ (Z ′1, Z

′
2)′.

This is the central exogeneity assumption we employ. It states that the instruments Z are

fully independent of all unobservables in the system. This is a natural extension of assumptions

made in the literature in the fixed coefficients case (e.g., Bresnahan and Reiss (1991), Tamer

(2003)). Since we are explicitly considering random coefficients, in our case this is less restrictive

than the commonly assumed full independence of a scalar additive unobservable from the

instruments, as we allow for this leading type of heteroskedasticity. However, this assumption

rules out a heteroskedastic measurement error, and correlation between Z and the random

unobservables. We remark that this correlation could be handled through a control function

approach as in Blundell and Powell (2004), but we defer the discussion of this complication to

a later section, and focus on the core innovation here.

Let r(y1,y2)(z) ≡ P ((Y1, Y2) = (y1, y2)|Z = z) be the probability of observing (y1, y2) condi-

tional on Z = z. Under Assumption 2.4, we may write

r(1,1)(z) = T (fθ)(z) ≡
∫
Sk1×Sk2

1{z′1t1 > 0}1{z′2t2 > 0}fθ(t1, t2)dσ(t1, t2) (2.4)

r(0,0)(z) = S(fβ)(z) ≡
∫
Sk1×Sk2

1{z′1b1 ≤ 0}1{z′2b2 ≤ 0}fβ(b1, b2)dσ(b1, b2). (2.5)

Here, T and S are integral transforms that map the joint densities fθ, fβ ∈ L2(Sk1 × Sk2) to

the conditional entry probabilities r(1,1)(z), r(0,0)(z) ∈ L2(Sk1 × Sk2), respectively. As we show

below, these transforms are closely related to an integral transform called the hemispherical

transform. This is helpful for analyzing the properties of T and S.

2.2 The hemispherical transform and random coefficients binary

choice model

We briefly review the hemispherical transform and its properties relevant for studying identi-

fication issues in a random coefficients binary choice model. Details can be found in Groemer

(1996), Rubin (1999), and GK (2013). Toward this end, we introduce additional notation.

For each real valued function ϕ on S`, let the odd part and even part of ϕ be defined by

ϕ−(x) ≡ (ϕ(x) − ϕ(−x))/2 and ϕ+(x) ≡ (ϕ(x) + ϕ(−x))/2. Similarly, for each real valued
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function ϕ on S`1 × S`2 , let the component-wise odd part of ϕ be defined by2:

ϕ−−(x1, x2) ≡ 1

4

{
ϕ(x1, x2)− ϕ(−x1, x2)− ϕ(x1,−x2) + ϕ(−x1,−x2)

}
. (2.6)

For each ` ∈ N, the hemispherical transform HS` : L2(S`)→ L2(S`) is defined pointwise by

HS`(s)(z) ≡
∫
S`

1{z′b > 0}s(b)dσ`(b). (2.7)

Let α : Ω → R` be random coefficients with a density function fα with respect to σ`. Let

Z : Ω→ R` be a vector of instruments and let Y be generated as

Y = 1{Z ′α > 0}.

When α is independent of Z, the conditional choice probability is given by: P (Y = 1|Z = z) =

HS`fα(z). This implies fα is identified if HS` is injective. However, the hemispherical transform

is known to have a nontrivial null space. Rubin (1999) shows that its null space is

N (HS`) =

{
f ∈ L2(S`) : f is an even function,

∫
S`
f(a)dσ`(a) = 0

}
. (2.8)

Therefore, restrictions have to be imposed to identify fα. GK (2013) show that fα is fully

determined by its odd-part and therefore can be identified by inverting HS` if the support of

fα is contained in some hemisphere, i.e., there is a vector c ∈ S` such that P (c′α > 0) = 1.

A direct application of GK (2013) to our setting would allow to recover the marginal dis-

tributions of the random coefficients. We illustrate this for the case of duopoly. Suppose that

for each j, there is a known cj ∈ supp(Zj) such that P (c′jθj > 0) = 1. Then, we may reduce

(2.4) to two separate binary choice equations. To see this, consider conditioning on the event

{ω : Z1 = z1, Z2 = c2} or {ω : Z1 = c1, Z2 = z2} for some z1 ∈ Sk1 , z2 ∈ Sk2 . Assumption 2.4

then implies:

r(1,1)(z1, c2) =

∫
Sk1

1{z′1t1 > 0}fθ1(t1)dσk1(t1) = HSk1 (fθ1)(z1), (2.9)

r(1,1)(c1, z2) =

∫
Sk2

1{z′2t2 > 0}fθ2(t2)dσk2(t2) = HSk2 (fθ2)(z2). (2.10)

We may invert the hemispherical transforms to recover the odd parts of fθj , j = 1, 2, which

determine the marginals fθj , j = 1, 2. The analysis of no entry is similar. This suggests

2Similarly, other parts of ϕ, including the component-wise even part, the part of ϕ that is odd in the first
argument and even in the second argument and vice versa can be defined, but they will not be used in our
analysis.
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that, employing the results of GK (2013), we may (only) identify the marginals but not the

joint distribution fθ. Hence, we will develop an extended framework that allows us to study

identification of fθ. We also note that an identification strategy as the one outlined above would

use only a subset of the data, and be akin to identification at infinity. In contrast, we will show

in the next section how to identify the joint distribution of random coefficients, and hence also

the marginals, using the entire distribution of the data, and not just those observations for

which one player’s entry decision is determined with probability 1.

3 Identification of the joint densities in the case of strate-

gic substitutes

In this section we show that the joint density of all random coefficients can be recovered. We

present the result for the case of duopoly, from which we can recover fθ. We then employ the

case of no entry to recover fβ. From a combination of both objects, the density f∆ can be

partially identified generally and point identified under additional assumptions. There is an

important technical innovation: The analysis of tensor products of linear operators, a key steps

in our identification analysis.

3.1 Duopoly

In this section, we establish that fθ is identified from the conditional probability of duopoly

outcomes. Our analysis proceeds in two steps. In a first step, we assume that we know the

function r(1,1) on the whole domain Sk1 × Sk2 . We show that fθ is identified by (2.4), through a

more general form of operator inversion. As we will see shortly, r(1,1) can only be observed on

a part of the domain. Hence, it must be extended to rest of it. How this can be done in a way

that is consistent with identification is shown in a second step.

3.1.1 Identification of fθ given knowledge of r(1,1) on the whole domain Sk1 × Sk2

We start by considering the operator equation (2.4), which can be written as

r(1,1) = T fθ.

We assume that the function r(1,1) in (2.4) is known on Sk1×Sk2 and lies in the range of T . The

first step of the identification analysis is to show that T is a tensor product of two hemispherical

transforms. This allows for a convenient characterization of its null space.
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To this end, let p ∈ L2(Sk1×Sk2) be a function which can be written as a product p(t1, t1) =

p1(t1)p2(t2). Then, T becomes a product of hemispherical transforms, i.e.,

T p(z1, z2) =

∫
Sk1

1{z′1t1 > 0}p1(t1) dσk1(t1)

∫
Sk2

1{z′2t2 > 0}p2(t2) dσk2(t2).

As L2(Sk1 × Sk2) = L2(Sk1)⊗ L2(Sk2), this implies T = HSk1 ⊗HSk2 , where HSk1 and HSk2 are

hemispherical transforms as defined in (2.7).3 The null space of T is then given by

N (T ) =
{
f̃ ∈ L2(Sk1 × Sk2)

∣∣ f̃ = f̃1 + f̃2 with f̃1(·, t2) ∈ N (HSk1 ) for all t2

and f̃2(t1, ·) ∈ N (HSk2 ) for all t1
}
.

To see this, let ϕi be the Hilbert basis of spherical harmonics of L2(Sk1) and ψj the same for

L2(Sk2). For any function f ∈ L2(Sk1 × Sk2), there exist uniquely determined coefficients ai,j

such that f =
∑
ai,jϕiψj. By Lemma 2.3. in Rubin (1999) ϕi is either inN (HSk1 ) or orthogonal

to it. The same is true for ψj and N (HSk2 ). Now if f ∈ N (T ) and ai,j 6= 0 then T (ϕiψj) = 0.

Hence, HSk1 (ϕi) = 0 or HSk2 (ψj) = 0. For additional information on tensor products of Hilbert

spaces, we refer to Reed and Simon (1980).

The spaces N (HSk1 ) and N (HSk2 ) are determined by (2.8). It implies that every f ∈ N (T )

is the sum of two functions f̃1 and f̃2, such that f̃1(·, t2) is even and integrates to 0 for all t1,

and f̃2(t1, ·) is even and integrates to 0 for all t2. Both kinds of functions are orthogonal to

a function, which is odd in both variables like ϕ−− in (2.6). Furthermore, we can write the

orthogonal complement of the null space as

N (T )⊥ =
{
f ∈ L2(Sk1 × Sk2)

∣∣ f(t1, t2) = f−−(t1, t2) + f−1 (t1) + f−2 (t2) + c

with f−−, f−1 and f−2 odd in t1 and t2
}
,

(3.1)

where c is a constant, and f−−, f−1 , and f−2 satisfy the following equations

f−1 (t1) = −f−1 (−t1) (3.2)

f−2 (t2) = −f−2 (−t2) (3.3)

f−−(t1, t2) = −f−−(−t1, t2) = −f−−(t1,−t2) = f−−(−t1,−t2). (3.4)

It is easy to verify that f−−, f−1 , f−2 , and a constant function c are pairwise orthogonal. Hence,

the representation of f ∈ N(T )⊥ as f−−(t1, t2) + f−1 (t1) + f−2 (t2) + c is unique.

3We are grateful to Thorsten Hohage who suggested to make use of the tensor product structure of the
operator T .
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Let PN(T )⊥ be the orthogonal projection on N(T )⊥. Clearly, the operator T is injective on

N (T )⊥. As a consequence, f̄θ ≡ PN(T )⊥(fθ) ∈ N (T )⊥ is identified by Equation (2.4).

In order to identify fθ, we have to determine f̃θ ≡ fθ − PN(T )⊥(fθ) ∈ N (T ) given f̄θ.

For this purpose, some additional information about fθ needed. If we know that fθ is in a

subspace Xθ ⊂ L2(Sk1 × Sk2) for which the intersection P−1
N(T )⊥

(f)∩Xθ is a singleton for every

f ∈ L2(Sk1 × Sk2), fθ is identified. Our main example for such a set is given by the following

support assumption.

Assumption 3.1. There exists (c1, c2) ∈ supp(Z) such that supp(fθ) ⊆ Hc1 ×Hc2 .

This assumption requires that the support of θj is contained in some known hemisphere Hθj .

As Ichimura and Thompson (1998) argue, this assumption is sensible in many applications. For

example, if one of the coefficients has a known sign and if Zj has a full support, the assumption

is satisfied. A slight difference from their assumption (See Theorem 1.(iii) in Ichimura and

Thompson (1998)) is that Assumption 3.1 requires the normal vector cj of the hemisphere to

be in the support of Zj. This requirement is not necessary for the following result, but will be

used in the next section.

Lemma A.2 in the appendix shows that Assumption 3.1 implies

fθ(t1, t2) = 4f−−θ (t1, t2)1{f−−θ (t1, t2) > 0, f−θ1(t1) > 0, f−θ2(t2) > 0}, (3.5)

for all (t1, t2) ∈ Sk1 × Sk2 . This allows us to recover fθ from functions in N (T )⊥.

Remark 3.1. Restrictions on the support are not the only possibility to guarantee identification

of fθ. Some function classes are as well uniquely determined by its component-wise odd part.

The most obvious example are component-wise odd functions. Further examples are functions

which are symmetric to some hyperplanes through the origins, e.g., symmetric densities.

3.1.2 Extending r(1,1) to Sk1 × Sk2

The argumentation of the last section has still a small gap. The operator equation (2.4) can

only identify f̄θ, if the function r(1,1) is uniquely determined on Sk1 × Sk2 , but r(1,1) is not well

defined outside the support of Z. For this reason, we make the following assumption. For each

j, let nj ≡ (1, 0, · · · , 0)′ ∈ Skj .

Assumption 3.2. The support of Z is Hn1 ×Hn2.

This is equivalent to the assumption that the support of Z̃j is Rkj for j = 1, 2. A similar

assumption is also invoked in Ichimura and Thompson (1998) and GK (2013) for the simple
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binary choice model. This assumption requires that the distribution of kj non-constant instru-

ments is supported on Rkj and does not degenerate on a set of smaller dimension. This, for

example, excludes the case in which Z1 and Z2 have a variable in common, or some variables

are discrete. We discuss how this assumption can be relaxed in Section 5.

Under Assumptions 3.1 and 3.2, there is a unique extension R(1,1) of r(1,1), which is given

by

R(1,1)(z1, z2) =



r(1,1)(z1, z2) for (z1, z2) ∈ Hn1 ×Hn2

r(1,1)(c1, z2)− r(1,1)(−z1, z2) for (z1, z2) ∈ Hc
n1
×Hn2

r(1,1)(z1, c2)− r(1,1)(z1,−z2) for (z1, z2) ∈ Hn1 ×Hc
n2

1−
(
r(1,1)(−z1, c2) + r(1,1)(c1,−z2)

)
+ r(1,1)(−z1,−z2) for (z1, z2) ∈ Hc

n1
×Hc

n2
.

(3.6)

In addition, we note that T maps f−−θ to the component-wise odd part of R(1,1). That is, it

holds that

R−−(1,1)(z1, z2) = T f−−θ (z1, z2).

This suggests that we may apply T −1 to R−−(1,1) to recover f−−θ . Further, f−θ1 , and f−θ2 can be

recovered by inverting hemispherical transforms in (2.4)-(2.5) using the results of GK (2013).

The joint density fθ can be recovered by (3.5). This closes the gap in the argumentation

mentioned at the beginning of this section and gives therefore the following theorem.

Theorem 3.1. In the entry model defined by Equations (2.1) and (2.2), the density fθ is point

identified, if Assumptions 2.1-3.2 hold.

3.2 No entry

Identification of fβ in the case of a no entry can be shown by exactly the same argument as

above. In this case we have to consider the operator equation r(0,0) = Sfβ defined in (2.5). It

follows immediately from the definitions of S and T , that

S = T ◦M−1.

HereM−1 is the operator which multiplies every function pointwise with −1. As the null space

of T is invariant under M−1 we have

N (T ) = N (S) and N (T )⊥ = N (S)⊥.
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Hence, S is injective on the same subspaces as T and the operator equation (2.5) can identify

the same class of functions as (2.4). The following Assumption is made to identify fβ through

functions in N (T ).

Assumption 3.3. There exists (e1, e2) ∈ supp(Z) such that supp(fβ) ⊆ H−e1 ×H−e2 .

By using Assumption 3.3 instead of 3.1, the argumentation in Section 3.1.1 can be applied

to fβ as well. When we follow the argumentation of Section 3.1.2 for extending r(0,0) to Sk1×Sk2

and substitute again Assumption 3.1 by 3.3 we get

R(0,0)(z1, z2) =



r(0,0)(z1, z2) for (z1, z2) ∈ Hn1 ×Hn2

r(0,0)(e1, z2)− r(0,0)(−z1, z2) for (z1, z2) ∈ Hc
n1
×Hn2

r(0,0)(z1, e2)− r(0,0)(z1,−z2) for (z1, z2) ∈ Hn1 ×Hc
n2

1−
(
r(0,0)(−z1, e2) + r(0,0)(e1,−z2)

)
+ r(0,0)(−z1,−z2) for (z1, z2) ∈ Hc

n1
×Hc

n2
.

(3.7)

The rest of the identification arguments is the same as the duopoly case. Hence, we obtain the

following result.

Theorem 3.2. In the entry model defined by Equations (2.1) and (2.2), the density fβ is point

identified if Assumptions 2.1-2.4, 3.2, and 3.3 hold.

3.3 Recovering the joint density of ∆1,∆2

We note that the unnormalized coefficients satisfy

θ∗j ≡ β∗j + ∆̃jnj for j = 1, 2. (3.8)

This relationship suggests that the density of the strategic interaction effects can be partially

identified generally through Makarov bounds (see Fan and Park (2010) and Gautier and Hoder-

lein (2012)) and can be fully recovered from fθ and fβ under an additional independence as-

sumption.

Assumption 3.4. ∆̃ ⊥ β∗

If this assumption holds, the unnormalized coefficient θ∗ is the convolution of β∗ and the

vector (∆̃1n1, ∆̃2n2)′. In the following, we let ∆ ≡ (∆̃1/‖θ∗1‖.∆̃2/‖θ∗2‖)′ denote the normalized

interaction effects and let f∆ denote its density. We note that the scale of the interaction effects

is not identified because the entry observations are only informative about the normalized

coefficients. Assumption 3.4 gives an integral equation that ties the three densities (fβ, fθ, f∆).
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We may then use a deconvolution technique to disentangle the distribution of the interaction

effects from fθ and fβ.4

The following theorem characterizes the integral equation and gives a sufficient condition

for point identification of f∆.

Theorem 3.3. Suppose the conditions of Theorems 3.1 and 3.2 hold. Suppose further that

Assumption 3.4 holds. Then, fβ, fθ, and f∆ satisfy fθ = Kf∆, where K : L2([−1, 0]2) →
L2(Sk1 × Sk2) is an operator defined by:

Kh(t1, t2) =

∫
(−1,0)2

K(t1 − w1n1, t2 − w2n2)h(w1, w2)dw1dw2 (3.9)

where

K(u1, u2) = fβ

( u1

‖u1‖
,
u2

‖u2‖

)
‖u1‖−k1−1‖u2‖−k2−1. (3.10)

Moreover, if ΨK(s1, s2) ≡
∫
Sk1×Sk2

K(u1, u2)eis
′
1u1+is′2u2dσ(u1, u2) 6= 0 almost everywhere in

Rk1+1 × Rk2+1, f∆ is identified.

The regularity condition imposed on K is an analog of the condition in Devroye (1989) and

Carrasco and Florens (2010).

Remark 3.2. To construct a convenient estimator, we have assumed full independence of ∆

from other coefficients β, but this is stronger than necessary for identification. In fact, it suffices

to have (ũ1, ũ2) ⊥ ∆̃, but an estimator based on this weaker condition requires marginalization of

fβ and fθ to obtain the distributions of (ũ1/‖β∗1‖, ũ2/‖β∗2‖) and ((ũ1 +∆̃1)/‖θ∗1‖, (ũ2 +∆̃2)/‖θ∗2‖)
which can be done numerically in practice (See GK, 2013). The estimator based on the full

independence condition does not require this extra step.

4 Estimation

This section establishes that the identification principle put forward in this paper can be used

directly to construct a sample counterparts estimator. We specify assumptions to construct

such an estimator and analyze its large sample behavior.

4Deconvolution problems are common in both statistics and econometrics; see Caroll and Hall (1988), Devroye
(1989), Hu and Ridder (2007), and Carrasco and Florens (2010) among others.
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4.1 Overview

Throughout, we let fZ , fZ1 , fZ2 , fZ1|Z2 , fZ2|Z1 denote the joint, marginal, and conditional den-

sities of Z1 and Z2. We construct estimators of fθ and fβ using developments in GK (2013).

Although we do not pursue here, construction of an alternative estimator may also be possible.

For instance, Gautier and Le Pennec (2011) develop an adaptive estimator for the density of

random coefficients in binary choice models using the recent theory of needlets.

Below, we take fθ as an example. First, we rewrite R−−(1,1) as

R−−(1,1)(z1, z2) =
∞∑
p1=0

∞∑
p2=0

{
E

[
(4W + 1)

fZ(Z1, Z2)
q2p1+1,2p2+1,k1,k2(z1, z2, Z1, Z2)

]
− E

[
q2p1+1,k1(z1, Z1)

fZ1(Z1)

]
E

[
2Wq2p2+1,k2(z2, Z2)

fZ2|Z1(Z2|c1)

∣∣∣∣Z1 = c1

]
− E

[
q2p2+1,k2(z2, Z2)

fZ2(Z2)

]
E

[
2Wq2p1+1,k1(z1, Z1)

fZ1|Z2(Z1|c2)

∣∣∣∣Z2 = c2

]}
, (4.1)

where W = Y1Y2, and qn1,n2,k1,k2 , qn1,k1 , and qn2,k2 are all known functions that will be defined

shortly. We then construct a sample counterpart estimator R̂−−(1,1) by replacing expectations

with sample averages and unknown densities with their nonparametric estimators.

In the second step, we invert the operator T to obtain f̂−−θ = T −1R̂−−(1,1). We also obtain

estimators f̂θ1 , f̂θ2 of marginal densities, using GK (2013). In the final step, we estimate fθ by

f̂θ ≡ 4f̂−−θ (t1, t2)1{f̂−−θ (t1, t2) > 0, f̂−θ1(t1) > 0, f̂−θ2(t2) > 0}. An estimator for fβ can be con-

structed in the same way. Based on the estimators of fθ and fβ, we take another deconvolution

step to estimate f∆.

4.2 Condensed harmonic expansion

As a main building block, we use the condensed harmonic expansion in L2(Sk1 × Sk2) to derive

(4.1). The motivation for using this expansion is as follows. First, any function f ∈ L2(Sk1×Sk2)

can be represented as the sum of its projections to orthogonal subspaces Hn1,k1+1 ⊗Hn2,k2+1,

where Hn,d is the space of functions, called spherical harmonics of degree n and dimension d.5

T −1 applied to any function in Hn1,k1+1 ⊗Hn2,k2+1 is then a simple multiplication by a known

constant. This allows us to reduce the computational cost of our estimator.

Formally, the condensed harmonic expansion of f ∈ L2(Sk1 × Sk2) is defined by

∞∑
n1=0

∞∑
n2=0

Qn1,n2,k1,k2f.

5Details on the spherical harmonics and related objects are provided in Appendix B. See also GK.
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Here, the map Qn1,n2,k1,k2 defined by

(Qn1,n2,k1,k2f)(z1, z2) ≡
∫
Sk1×Sk2

qn1,n2,k1,k2(z1, z2, z̃1, z̃2)f(z̃1, z̃2)dσ(z̃1, z̃2), (4.2)

projects f ∈: L2(Sk1 × Sk2) to the subspace Hn1,k1+1 ⊗ Hn2,k2+1. The kernel qn1,n2,k1,k2 of this

map can be written as qn1,n2,k1,k2(z1, z2, z̃1, z̃2) = qn1,k1(z1, z̃1)×qn2,k2(z2, z̃2) with: qnj ,kj(zj, z̃j) =

h(nj, kj + 1)L
kj+1
nj (z′j z̃j)/|Skj |, where |Skj | is the surface area of the sphere, and the constant

h(n, d) and the polynomial Ldn are defined in Appendix B.

4.3 A sample counterpart estimator

The following theorem shows R−−(1,1) has a representation that suggests a simple sample coun-

terpart estimator.

Theorem 4.1. Suppose Assumptions 2.1, 3.1-3.2 hold. Then, Eq. (4.1) holds.

Theorem (4.1) suggests estimating R−−(1,1) by

R̂−−(1,1)(z1, z2) ≡ 1

N

N∑
i=1

4Wi + 1

f̂Z(Z1i, Z2i)

∞∑
p1=0

∞∑
p2=0

q2p1+1,k1(z1, Z1i)q2p2+1,k2(z2, Z2i)

− 1

N

N∑
i=1

∑∞
p1=0 q2p1+1,k1(z1, Z1i)

f̂Z1(Z1i)
ÊN

[
2Wi

∑∞
p2=0 q2p2+1,k2(z2, Z2i)

f̂Z2|Z1(Z2i|c1)

∣∣∣∣Z1 = c1

]

− 1

N

N∑
i=1

∑∞
p2=0 q2p2+1,k2(z2, Z2i)

f̂Z2(Z2i)
ÊN

[
2Wi

∑∞
p1=0 q2p1+1,k1(z1, Z1i)

f̂Z1|Z2(Z1i|c2)

∣∣∣∣Z2 = c2

]
,

(4.3)

where f̂Z , f̂Zj , f̂Zj |Z−j and ÊN are suitable estimators of their population counterparts.

We note here that recovering f−−θ from R−−(1,1) is an ill-posed inverse problem. To see this,

we note that qn1,n2,k1,k2(·, ·, z̃1, z̃2) belongs to Hn1,k1+1 ⊗ Hn2,k2+1, which in turn implies by

Proposition 2.4 in GK (2013),

T −1qn1,n2,k1,k2(z1, z2, z̃1, z̃2) = λ(n1, k1 + 1)−1λ(n2, k2 + 1)−1qn1,n2,k1,k2(z1, z2, z̃1, z̃2),

where λ(n, d) is an eigenvalue of HSd+1 , which tends to 0 as n increases. Hence, as is standard

in the literature, we regularize the inverse. Specifically, for each j = 1, 2, let Tj ∈ N and

KTj(zj, z̃j) be the smoothed projection kernel defined by

KTj(zj, z̃j) ≡
Tj∑
nj=0

χj(nj, Tj)qnj ,kj(zj, z̃j), (4.4)
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where χj(nj, Tj) tends to 0 as nj increases. Similarly, let K−Tj be the odd part of KTj defined

by

K−Tj(zj, z̃j) ≡
Tj−1∑
pj=0

χj(2pj + 1, 2Tj)q2pj+1,kj(zj, z̃j).

Truncating the sum and introducing the coefficients χj regularize the inverse when T −1 is

applied to the smoothed projection kernel.

Unknown densities are also estimated using the smoothed projection kernel. Specifically,

the joint and marginal distributions are estimated by

f̂Z(z1, z2) ≡ 1

N

N∑
i=1

KT1(z1, Z1i)KT2(z2, Z2i), and f̂Zj(zj) ≡
1

N

N∑
i=1

KTj(zj, Zji) for j = 1, 2.

(4.5)

The estimator of fZ1|Z2 is then given by f̂Z1|Z2(z1|z2) ≡ f̂Z(z1, z2)/f̂Z2(z2) and similarly for

fZ2|Z1 . Since the unknown densities are in the denominators in Eq. (4.1), we use trimmed

estimators to handle the random denominator problem. For this, let aN = (lnN)−r for some

positive r > 0 and define f̂aZ ≡ f̂Z ∨ aN , f̂aZj ≡ f̂Zj ∨ aN , and f̂aZj |Z−j ≡ f̂Zj |Z−j ∨ aN . We further

define the estimator of the conditional mean E[V |Zj] of a random variable V by

ÊN [V |Zj = c] ≡ 1

N

N∑
i=1

ViKTj(c, Zji)

f̂aZj(Zji)
. (4.6)

These estimators can be viewed as variants of the projection estimator studied in Hendriks

(1990).

Summarizing, our estimator of f−−θ is defined by

f̂−−θ (t1, t2) ≡ 1

N

N∑
i=1

4Wi + 1

f̂aZ(Z1i, Z2i)
H−1

Sk1
(K−T1

(·, Z1i))(t1)H−1
Sk2

(K−T2
(·, Z2i))(t2)

− 1

N

N∑
i=1

H−1
Sk1

(K−T1
(·, Z1i))(t1)

f̂aZ1
(Z1i)

1

N

N∑
i=1

2WiH−1
Sk2

(K−T2
(·, Z2i))(t2)KT1(c1, Z1i)

f̂aZ2
(Z2i|c1)f̂aZ1

(Z1i)

− 1

N

N∑
i=1

H−1
Sk2

(K−T2
(·, Z2i))(t2)

f̂aZ2
(Z2i)

1

N

N∑
i=1

2WiH−1
Sk1

(K−T1
(·, Z1i))(t1)KT2(c2, Z2i)

f̂aZ1
(Z1i|c2)f̂aZ2

(Z2i)
. (4.7)

Based on (3.5), our estimator of fθ is now defined pointwise by

f̂θ(t1, t2) ≡ 4f̂−−θ (t1, t2)1{f̂−−θ (t1, t2) > 0, f̂−θ1(t1) > 0, f̂−θ2(t2) > 0}. (4.8)

An estimator f̂β of fβ can be constructed in the same manner.
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4.4 Asymptotic properties of f̂θ

In order to investigate asymptotic properties of our estimator, we need additional regularity

conditions. First, we assume that the densities of interest belong to a suitable smoothness class.

For this, let s ≥ 0. For each f ∈ L2(S`), define the Sobolev norm by

‖f‖2
Ws

2
≡

∞∑
n=0

(1 + ζn,`)
s‖Qn,`f‖2

L2 ,

where ζn,` ≡ n(n+ `− 2). We define the Sobolev space by Ws
2(S`) ≡ {f : ‖f‖Ws

2
<∞}.

Assumption 4.1. There exist s1, s2 ≥ 0 such that f−−θ ∈Ws1
2 (Sk1)⊗Ws2

2 (Sk2).

Our assumptions on the smoothed projection kernel and the densities of the covariates are

analogous to those made in GK (2013) and collected in the appendix (Assumptions C.1 and

C.2). For each j = 1, 2, let ρj ≡ (2kj+1)/sj. The following theorem establishes the convergence

rate of our density estimator in the L2-norm.

Theorem 4.2. Suppose the conditions of Theorem 3.1 hold. Suppose further that Assumptions

C.1 and C.2 hold. If Tj satisfies

Tj �
(

N

(lnN)2r

) 1
sj(ρ1+ρ2+2)

, j = 1, 2, (4.9)

then,

‖f̂θ − fθ‖L2 = Op

((
N

(lnN)2r

) −1
ρ1+ρ2+2

)
. (4.10)

4.5 Estimation of f∆

The joint density of the strategic interaction terms f∆ is of particular interest. Theorem 3.3

shows that this density is related to fβ and fθ by the following formula

fθ

(
(t1, b1)

‖(t1, b1)‖
,

(t2, b2)

‖(t2, b2)‖

)
=

∫ 0

−1

∫ 0

−1

fβ

(
(t1 − r1, b1)

‖(t1 − r1, b1)‖
,

(t2 − r2, b2)

‖(t2 − r2, b2)‖

)
(4.11)

‖(t1 − r1, b1)‖−k1−1‖(t2 − r2, b2)‖−k2−1f∆(r1, r2) dr1 dr2.

Here tj, rj ∈ R and (tj, bj) ∈ Rkj+1 is a value of β∗j . Note that this relation holds for every fixed

value b = (b1, b2) of β̃. Hence, we can integrate the last equation over b. This will reduce the

curse of dimensionality for the estimator we want to construct. To state the integrated form of
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the last equation we define the functions

K(t1, t2) ≡
∫
Rk1

∫
Rk2

fβ

(
(t1, b1)

‖(t1, b1)‖
,

(t2, b2)

‖(t2, b2)‖

)
‖(t1, b1)‖−k1−1‖(t2, b2)‖−k2−1 db1 db2

gθ(t1, t2) ≡
∫
Rk1

∫
Rk2

fθ

(
(t1, b1)

‖(t1, b1)‖
,

(t2, b2)

‖(t2, b2)‖

)
db1 db2. (4.12)

This enables us to derive from (4.11) the following integral equation which is the tensor product

of two convolutions

gθ(t1, t2) =

∫ 0

−1

∫ 0

−1

K(t1 − r1, t2 − r2)f∆(r1, r2) dr1 dr2

=
(
K(∗ ⊗ ∗)f∆

)
(t1, t2). (4.13)

Thereby the estimation of f∆ requires the solution of this special deconvolution problem. The

eigenvectors of a usual convolution operator are the Fourier basis functions. Hence, the eigen-

vectors of the tensor product of two convolution operators is the tensor product basis of two

Fourier bases. For the domain [−1, 1]2 it is

ϕm1,m2(t1, t2) =
1

2
exp

(
πi(m1t1 +m2t2)

)
m1,m2 ∈ Z.

Hence,

f∆(t1, t2) =
∑

(m1,m2)∈Z2

〈gθ, ϕm1,m2〉L2

〈K,ϕm1,m2〉L2

ϕm1,m2(t1, t2).

Our estimator for f∆ uses the estimators f̂β and f̂θ introduced in the last section and is defined

by

K̂(t1, t2) ≡
∫
Rk1

∫
Rk2

f̂β

(
(t1, b1)

‖(t1, b1)‖
,

(t2, b2)

‖(t2, b2)‖

)
‖(t1, b1)‖−k1−1‖(t2, b2)‖−k2−1 db1 db2 (4.14)

ĝθ(t1, t2) ≡
∫
Rk1

∫
Rk2

f̂θ

(
(t1, b1)

‖(t1, b1)‖
,

(t2, b2)

‖(t2, b2)‖

)
db1 db2 (4.15)

f̂∆(t1, t2) ≡
∑

(m1,m2)∈Z2

wm1,m2

〈ĝθ, ϕm1,m2〉L2

〈K̂, ϕm1,m2〉L2

ϕm1,m2(t1, t2). (4.16)

Here wm1,m2 ∈ [0, 1] are weights that are smoothing the solution to overcome the ill-posedness

of the deconvolution. The weights can be chosen in accordance to some smoothed projection

kernel, in accordance to Tikhonov regularization with regularization parameter αn depending
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on the sample size n

wm1,m2 =

(
1 + αn

〈ĝθ, ϕm1,m2〉L2

〈K̂, ϕm1,m2〉L2

)−1

,

or adaptively by asymptotically minimizing the mean integrated square error

wm1,m2 = max

{
0, 1−

〈K̂, ϕm1,m2〉2L2

n〈ĝθ, ϕm1,m2〉2L2

}
.

In addition wm1,m2 is usually set to 0 if |m1| or |m2| exceed some thresholds.

5 Extensions

In this section, we discuss various extensions of our identification results.

5.1 The case of strategic complements

We now investigate identification when the sign of the interaction effects is known to be positive.

In this case, each of the two the monopoly outcomes (0, 1) (or (1,0)) realizes as a unique pure

strategy Nash equilibrium. Under Assumptions 2.1, 2.3-2.4, the conditional entry probabilities

are given by:

r(0,1)(z) = U1(fβ1,θ2)(z) ≡
∫
Sk1×Sk2

1{z′1b1 ≤ 0}1{z′2t2 > 0}fβ1,θ2(b1, t2)dσ(b1, t2) (5.1)

r(1,0)(z) = U2(fθ1,β2)(z) ≡
∫
Sk1×Sk2

1{z′1t1 > 0}1{z′2b2 ≤ 0}fθ1,β2(t1, b2)dσ(t1, b2). (5.2)

Letting M−1,kj a map that multiplies a function on Skj by -1 pointwise, the maps U1,U2 can

be equivalently written as:

U1 = (HSk1 ◦M−1,k1)⊗HSk2 and U2 = HSk1 ⊗ (HSk2 ◦M−1,k2).

Since the mapsM−1,kj , j = 1, 2 do not affect the null space, this implies that N (U1) = N (U2) =

N (T ). Therefore, our previous identification argument applies. Under Assumptions 3.1-3.3,

we may uniquely extend the conditional entry probabilities to define R(0,1) and R(1,0) on Sk1 ×
Sk2 . Further, Assumptions 3.1 and 3.3 imply that there exist (e1, c2) ∈ Hn1 × Hn2 such that

supp(fβ1,θ2) ⊆ H−e1 ×Hc2 . Similarly, there exist (c1, e2) ∈ Hn1 ×Hn2 such that supp(fθ1,β2) ⊆
Hc1 ×H−e2 . These conditions ensure that fβ1,θ2 and fθ1,β2 are determined by their component-

wise odd parts. These functions can be recovered by applying the inverse of the operators to
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R−−(0,1) and R−−(1,0). Therefore, in the case of strategic complements, the densities fβ1,θ2 and fθ1,β2

are point identified under Assumptions 2.1, 2.3-3.3.

Identification of the marginal densities f∆1 , f∆2 of the interaction effects are possible. For

each j, the three marginal densities (fθj , fβj , f∆j
) can be shown to be related through the

integral equation:

fθj(tj) = Kjf∆j
(tj) =

∫
(−1,0)

Kj(tj − wjn1)f∆j
(wj)dµ(wj), (5.3)

where Kj(uj) = fβj(
uj
‖uj‖)‖uj‖

−kj−1. Provided that the inverse Fourier transform of Kj is

non-zero a.e., we may then identify the marginal distributions of the interaction effects by

deconvolution. A crucial difference from the competitive case is that we may not identify

the joint distribution. This is because the conditional entry probability of (0, 1) (or (1,0)) is

informative about only one of the interaction effects. Still, as we will see in Section 5.8, the

marginal density is useful for studying various structural objects including the average effect

of the other player’s entry. Further, functionals of the joint density can be partially identified.

For example, we may obtain bounds on a measure of dependence between ∆1 and ∆2 using

the Fréchet-Hoeffding bounds. Results on these bounds are well known. See, for example,

Heckman, Smith, and Clements (1997) and Fan and Zhu (2009).

5.2 Interaction effects with point masses

For the identification result and for the estimator we assumed that the ∆̃ has a Lebesgue density.

However, in some markets, the opponent’s action may not affect a player’s payoff. In such a

case, ∆̃j is degenerated at 0. Nevertheless, the distribution of ∆̃ is identified by our model.

Motivated by this example, we generalize our results in a way which allows the probability

measure of ∆̃j to be any Radon measure. As above, we distinguish the cases of strategic

substitutes and strategic complements. We present only the case of strategic substitutes. The

other case can be studied as in the previous section.

To generalize the identification result, Assumption 2.2 (ii) is replaced by the assumption

that f∆̃ ∈ D′(R2) is a distribution, i.e. a generalized function. Here D′ (R2) is the dual space of

all infinitely smooth functions with compact support C∞c (R2). It contains all Radon measures.

This new assumption is not in conflict with Assumption 2.3. If for example f∆̃ has compact

support and fũ ∈ L2(R2), then ∆̃ + ũ has a L2 density, since f∆̃ ∗ fũ ∈ L2(R2). Hence, θ can

have a L2 density as well.

Therefore, the identification analysis of fθ and fβ presented above need not to be changed.

Only the identification result for f∆ has to be generalized as f∆ is now a distribution with

support in [−1, 0]. Hence, f∆ is a distribution with compact support, i.e. f∆ ∈ E ′(R2). This
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makes the generalization straightforward, because it implies that the convolution of f∆ with

any L2 function is again in L2 and that the convolution theorem holds. The operator K in

Theorem 3.3 is a convolution operator with the convolution kernel K ∈ L2(Rk1+1 ×Rk2+1). So

the extension of the operator to K : E ′(R2)→ L2(Sk1 × Sk2) is well defined. Under Assumption

3.4 the first assertion of Theorem 3.3 that fθ = Kf∆ is still valid for f∆ ∈ E ′(R2). Furthermore,

as the convolution theorem can be applied, the second assertion of Theorem 3.3 is true as well.

I.e. f∆ is identified in E ′(R2) if the Fourier transform of the convolution kernel is nonzero

F(K) 6= 0 almost everywhere.

For the numerical implementation of the deconvolution our main interest is in distributions,

which have a small number of point masses at some points and are continuously distributed

elsewhere in [−1, 0]. So we assume f∆ has the form

f∆(w) = g∆(w) +
M∑
m=1

dmδxm(w),

with g∆ ∈ L1([−1, 0]) non negative, δxm is a Dirac delta at xm ∈ [−1, 0], dm ≥ 0, and∫
g∆(x)dw+

∑
dm = 1. Let us denote by SM the set of all these distributions with at most M

point masses.

The class of distribution we consider now does not admit a representation by Fourier series

as f∆ in Section 4.5. Therefore, we propose an other estimator for the deconvolution problem

which uses Tikhonov regularization to overcome the ill-posedness of the deconvolution.

f̂∆ := argmin
f∈SM

(‖fθ −Kf‖L2 + αR(f)) (5.4)

Note that the approximate solution f̂∆ ∈ SM is by definition a probability distribution. Since

fθ ∈ L2 and Kf ∈ L2, it is quite natural to evaluate the data misfit (the first term on the

r.h.s.) by the L2-norm. Other convex distance measures like the Kullback-Leibler divergence

are possible as well. The regularization functional R is supposed to be convex and α ≥ 0

is a regularization parameter that has to be chosen carefully. An appropriate choice for the

regularization functional is R(f∆) = ‖g∆‖L2 +
∑M

m=1 dm. Alternatively, g∆ can be regularized

by a Sobolev norm or by maximum entropy.

The minimization problem (5.4) is convex and has therefore a unique solution under mild

assumptions. This solution can be calculated by convex optimization algorithms like the semi-

smooth Newton method or sequentially quadratic programming among others. Convergence

rates and parameter choice strategies for α in algorithms with similar regularization functionals

can be found in Eggermont (1993), Burger and Osher (2004), Resmerita (2005), and Grasmair,

Haltmeier, Scherzer (2008).
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5.3 Games with more than 2 players

So far, our analysis has focused on the case with two players. Our identification analysis on fβ

and fθ can be extended to the case with J players where J ≥ 3. In the case of strategic sub-

stitutes with more than two players, the no entry outcome (0, · · · , 0) and “full entry” outcome

(1, · · · , 1) still arise as unique equilibria. These give the following two integral equations that

involve J-fold tensor products of hemispherical transforms.

r(1,··· ,1)(z) =

∫
Sk1×···×SkJ

1{z′1t1 > 0} · · · 1{z′JtJ > 0}fθ(t1, · · · , tJ)dσ(t1, · · · , tJ) (5.5)

r(0,··· ,0)(z) =

∫
Sk1×···×SkJ

1{z′1b1 ≤ 0} · · · 1{z′JbJ ≤ 0}fβ(b1, · · · , bJ)dσ(b1, · · · , bJ). (5.6)

Inverting them yields identification of random coefficients except the interaction effects provided

that we have a sign restriction for each player. With J players, however, the interaction effects

become quite high-dimensional. This raises a challenge for identification. We expect that our

identification strategy, which recovers f∆ through deconvolution of fθ and fβ does not extend

readily to this general case, however, identification of f∆ may be possible under additional

symmetry restrictions e.g. the existence of a potential function, see Fox and Lazzati, (2012)

for details.

5.4 Semiparametric specification

The full random coefficient specification is appealing but requires strong identifying assump-

tions. In particular, all instruments need to be continuously distributed with full supports. In

this section, we consider a semiparametric specification, which allows us to relax this assump-

tion.

Below, we classify instruments into three categories. For each j, let Z̃FD
j : Ω → RkFDj be

instruments with potentially limited supports. Here, we allow Z̃FD
1 and Z̃FD

2 to be discrete.

We also allow them to have variables in common. It is, however, assumed that their coeffi-

cients β̃FDj are non-random. Similarly, let Z̃FC
j : Ω → RkFCj be instruments with full supports

whose coefficients β̃FCj are non-random. Further, let Z̃R
j : Ω→ RkRj denote instruments whose

coefficients β̃Rj are random. We assume that (Z̃R
1 , Z̃

R
2 ) are continuously distributed with full

supports.
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Our semiparametric model is then given by

Y ∗1 = Z̃R′
1 β̃

R
1 + Z̃FC′

1 β̃FC1 + Z̃FD′
1 β̃FD1 + Y2∆̃1 + ũ1 (5.7)

Y ∗2 = Z̃R′
2 β̃

R
2 + Z̃FC′

2 β̃FC2 + Z̃FD′
2 β̃FD2 + Y1∆̃2 + ũ2,

Yj =

1 if Y ∗j > 0

0 otherwise
, j = 1, 2.

Again, we normalize the coefficients and variables. For j and z̃FDj , let

γ̃j(z̃
FD
j ) ≡ ũj + z̃FD′j β̃FDj (5.8)

δ̃j(z̃
FD
j ) ≡ ũj + ∆̃j + z̃FD′j β̃FDj . (5.9)

Further, for each j and z̃FDj ∈ RkFDj , let W ∗
j ≡ (1, Z̃R′

j , Z̃
FC′
j )′, β∗j (z̃

FD
j ) ≡ (γ̃j(z̃

FD
j ), β̃R′j , β̃

FC′
j )′,

and θ∗j (z̃
FD
j ) ≡ (δ̃j(z̃

FD
j ), β̃R′j , β̃

FC′
j )′. For each j, we then use Wj, βj(z̃

FD
j ), and θj(z̃

FD
j ) to denote

their normalized versions.

We make the following assumptions.

Assumption 5.1. (β∗1(Z̃FD
1 ), β∗2(Z̃FD

2 ), ∆̃1, ∆̃2) ⊥ W |Z̃FD.

Assumption 5.2. There exists (c1, c2) : supp(fZ̃FD)→ Sk1×Sk2 such that (c1(Z̃FD), c2(Z̃FD)) ∈
supp(fW1,W2|Z̃FD) and supp(fθ(Z̃FD)|Z̃FD) ⊆ Hc1(Z̃FD) ×Hc2(Z̃FD) almost surely.

Assumption 5.3. There exists (e1, e2) : supp(fZ̃FD)→ Sk1×Sk2 such that (−e1(Z̃FD),−e2(Z̃FD)) ∈
supp(fW1,W2|Z̃FD) and supp(fβ(Z̃FD)|Z̃FD) ⊆ H−e1(Z̃FD) ×H−e2(Z̃FD) almost surely.

Assumption 5.4. The support of fW1,W2|(Z̃FD1 ,Z̃FD2 ) is Hn1 × Hn2 almost surely, where Hnj ⊂
SkRj +kFCj is the hemisphere as in Assumption 3.2.

The identification strategy is the same as before. Therefore, we just briefly sketch the

argument. Let fβ(Z̃FD)|Z̃FD be the density of β(Z̃FD) conditional on Z̃FD. For any (w1, w2),

Assumption 5.1 allows us to write

r(1,1)(w1, w2) = (T fθ(Z̃FD)|Z̃FD)(w1, w2) (5.10)

Assumption 5.2 ensures that fθ(Z̃FD)|Z̃FD is determined by its component-wise odd part, and

the odd part of the marginals. Assumption 5.4 ensures an extension of r(1,1) to Sk1 × Sk2

exists. Then, by inverting T , we may identify fθ(Z̃FD)|Z̃FD . A similar argument also applies to

identification of fβ(Z̃FD)|Z̃FD .
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For identification of f∆, we note that the following relationship holds:

θ∗j (Z̃
FD
j ) = β∗j (Z̃

FD
j ) + ∆̃jnj. (5.11)

This implies that fθ(Z̃FD)|Z̃FD , fβ(Z̃FD)|Z̃FD , and f∆|Z̃FD satisfy a convolution relationship under

the following assumption.

Assumption 5.5. ∆̃ ⊥ β∗(Z̃FD)|Z̃FD.

Together with a regularity condition on the Fourier transform of fβ(Z̃FD)|Z̃FD , Assumption

5.5 allows us to recover the conditional distribution f∆|Z̃FD by deconvolution. Since ZFD is

observable, one may estimate fZ̃FD . Then, f∆ can be recovered by integrating f∆|Z̃FD × fZ̃FD
over the support of Z̃FD

The knowledge of fβ(Z̃FD)|Z̃FD also allows us to recover the joint distribution of normalized

random coefficients: (β̃R1 /‖β∗1(z̃FD1 )‖, β̃R2 /‖β∗2(z̃FD2 )‖) conditional on Z̃FD. Marginalizing this

density using fZ̃FD gives the joint density of the normalized random coefficients.

We also note that the fixed coefficients are identified up to scale. For example, fβ1(Z̃FD1 )|Z̃FD

being identified implies that one knows

E

[
γ̃1(Z̃FD

1 )

‖β∗1(Z̃FD
1 )‖

∣∣∣Z̃FD = z̃FD

]
= E

[
ũ1

‖β∗1(Z̃FD
1 )‖

]
+ E

[
1

‖β∗1(Z̃FD
1 )‖

]
z̃FD′β̃FD1 .

With enough variation of Z̃FD, we may identify β̃FD1 up to scale. Similarly, the knowledge of

fβ1(Z̃FD1 )|Z̃FD=z̃FD also identifies β̃FC up to scale.

5.5 Discrete explanatory variables with random coefficients

The previous approach allows for discrete explanatory variables, but presupposes that the co-

efficient on these variables is fixed. However, often times discrete explanatory variables are

believed to have a heterogeneous impact, e.g., throughout the treatment effects literature. Be-

cause of this leading case, we focus in what follows on a binary explanatory variable, wlog

the first for the first player, denoted Z̃11. This allows us to study identification using develop-

ments in Gautier and Hoderlein (2012). Separating Z̃1 = (Z̃11, Z̃
′
−11)′, and analogously for the

coefficients, we obtain

Y ∗1 = Z̃11β̃11 + Z̃ ′−11β̃−11 + Y2∆̃1 + ũ1 (5.12)

Y ∗2 = Z̃ ′2β̃2 + Y1∆̃2 + ũ2,

Yj =

1 if Y ∗j > 0

0 otherwise
, j = 1, 2,
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Next, if we condition the choice probabilities on the events Z̃11 = 1, and Z̃11 = 0, we obtain four

conditional choice probabilities (instead of two), that allow us to recover the marginal densities

of
(
β̃−11, ũ1

)
,
(
β̃−11, ∆̃1 + ũ1

)
,
(
β̃−11, β̃11 + ũ1

)
, and

(
β̃−11, ∆̃1 + β̃11 + ũ1

)
. Much as before

with the density of the interaction effects, we can invoke (conditional) independence conditions,

to recover the density of fβ̃11
. In fact, analogous conditional independence conditions are amply

sufficient for identification, as there are several ways to recover fβ̃11
. The same is true for

Makarov-type bounds that may be obtained, if one is reluctant to invoke these independence

assumptions, see, e.g., Gautier and Hoderlein (2012), Section 3.3.

5.6 Interaction effects with observable components and multidimen-

sional unobservable heterogeneity

In what follows, we assume that non-constant variables that affect the interaction effects are

also included in the instrument Z̃ and denote them by X̃ = (X̃ ′1, X̃
′
2)′ ∈ Rl1 × Rl2 . We also

reorder Z̃ so that for each j, the first lj +1 components of Z̃j are given by (1, X̃j). The reduced

form model then becomes:

Y ∗1 = Z̃ ′1β̃1 + Y2(∆̃1 + X̃ ′1η̃1) + ũ1, (5.13)

Y ∗2 = Z̃ ′2β̃2 + Y1(∆̃2 + X̃ ′2η̃2) + ũ2, (5.14)

Yj =

1 if Y ∗j > 0

0 otherwise
, j = 1, 2, (5.15)

where η̃1 : Ω→ Rl1 and η̃2 : Ω→ Rl2 are random coefficients. We then let θ∗j ≡ (∆̃j + ũj, β̃1 +

η̃1, · · · , β̃lj + η̃lj , β̃lj+1, · · · , β̃kj). We make the following assumption, which replaces Assumption

2.2.

Assumption 5.6. For each x̃j ∈ supp(X̃j), ∆̃j + x′j η̃j ≤ 0 with probability 1.

Under this assumption, we may recover fβ from the conditional probability of the no entry

outcomes. Similarly, fθ can be recovered from the probability of the duopoly outcome. Define

the scaled coefficients γj ≡ (∆̃j/‖θ∗j‖, η̃j/‖θ∗j‖)′. fγ is partially identified generally and point

identified if γ ⊥ X̃ and γ ⊥ β∗ and additional regularity conditions hold. Specifically, under

independence, fβ, fθ, and fγ satisfy fθ = Lfγ, where L is an integral operator defined by:

Lh(t1, t2) =

∫
(−1,0)×(−1,1)l2×(−1,0)×(−1,1)l1

L(t1 − v1m1, t2 − v2m2)h(v1, v2)dµ(v1, v2),

28



where

L(u1, u2) = fβ

( u1

‖u1‖
,
u2

‖u2‖

)
‖u1‖−k1−1‖u2‖−k2−1.

Therefore, if ΨL(s1, s2) ≡
∫
Sk1×Sk2

L(u1, u2)eis
′
1u1+is′2u2dσ(u1, u2) 6= 0, a.e. , then fγ is identified.

5.7 Endogenous explanatory variables

To discuss endogenous explanatory variables, it is worthwhile to return to the reduced form of

the baseline model, but we let one of the explanatory variables, for simplicity the first denoted

Z̃11, be correlated with the vector β̃1. Separating Z̃1 = (Z̃11, Z̃
′
−11)′, and analogously for the

coefficients, we obtain

Y ∗1 = Z̃11β̃11 + Z̃ ′−11β̃−11 + Y2∆̃1 + ũ1 (5.16)

Y ∗2 = Z̃ ′2β̃2 + Y1∆̃2 + ũ2,

Yj =

1 if Y ∗j > 0

0 otherwise
, j = 1, 2,

If we have access to an excluded instrumental variable S, which, together with Z̃ ′−11, Z̃
′
2 is

fully independent of (Ũ , β̃, ∆̃), but which is related to the endogenous variable via a nonsepa-

rable equation

Z̃11 = ϕ(S, Z̃ ′−11, Z̃
′
2, V ),

where ϕ is strictly monotonic in the last argument V . If we strengthen the independence

condition to (S, Z̃ ′−11, Z̃
′
2) fully independent of (Ũ , β̃, ∆̃, V ), then this allows the construction of

a control function in the sense of Imbens and Newey (2009). This implies that Z̃ is independent

of (Ũ , β̃, ∆̃) conditional on V , and therefore allows to do the entire analysis performed above,

if we condition in addition on V = v for every v ∈ V . This procedure allows to recover the

conditional density fŨ ,β̃,∆̃|V and by integrating out V , allows to recover fŨ ,β̃,∆̃. See Hoderlein

and Sherman (2012) for a related procedure in the binary choice random coefficients model.

This assumption could be relaxed to allow for random coefficients in the selection equation, as

in Gautier and Hoderlein (2012), but we leave the details for future research.

5.8 Recovering structural objects

While the distribution of random coefficients is of interest in itself, and allows to determine

means, variances or other functionals of the distribution, often time the counterfactual choice

probabilities are at the center of interest. For instance, given an estimator for the density fθ1 ,
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we can estimate

Pc [Y1 = 1|Z1 = z, Y2 = 1] =

∫
1 {z′t1 > 0} fθ1(t1)dσk1(t1)

where the subscript c denotes counterfactuals. From this quantity, one may recover all deriva-

tives, respectively discrete differences, e.g.,

Pc [Y1 = 1|Z1 = z′, Y2 = 1]− Pc [Y1 = 1|Z1 = z, Y2 = 1] .

Another interesting object would be the probability of a specific action profile being a pure

strategy Nash equilibrium (NE).6 For example, as in Aradillas-Lopez (2012), we may estimate

Pc((1, 0) is a NE|(Z1, Z2) = (z1, z2))

=

∫
1{z′b1 > 0}1{z′2t2 ≤ 0}fβ1,θ2(b1, t2)dσ(b1, t2). (5.17)

This ensures that one may estimate related objects. For example, the aggregate propensity of

the equilibrium selection mechanism to select the action profile (1, 0) is given by the ratio of

the actual entry probability r(1,0)(z1, z2) and Pc((1, 0) is a NE|(Z1, Z2) = (z1, z2)).

5.9 Common explanatory variables

Thus far, we assumed that the explanatory variables Z̃1 and Z̃2 do not have elements in common.

However, the behavior of firms who are acting on the same market will at least partially depend

on the same environment, and one may hence want to choose explanatory variables that are

common to both players. To illustrate the limitations in the case of common explanatory

variables, we show that the operators T and S degenerate if Z ≡ Z1 = Z2 ∈ Sk. Afterward,

we discuss two additional sets of assumptions which allow to overcome these limitations: one

set that involves indivdiual specific covariates, and which is otherwise not restrictive, and one

where all variables are common. We only present the case of strategic substitutes in which the

interaction coefficients are non-positive.

Let us assume the function R(1,1) is known on Sk and that Z ≡ Z1 = Z2 ∈ Sk. As before,

the situation of a duopoly is described by the equation

R(1,1)(z, z) =

∫∫
Sk×Sk

1{z′t1 > 0}1{z′t2 > 0}fθ(t1, t2) dσ(t1, t2).

This can be written as an operator equation R(1,1)(z, z) = (Tcfθ)(z) where Tc : L2(Sk × Sk) →
6We are indebted to Andres Aradillas-Lopez for this point.
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L2(Sk). It is instructive to characterize the null space in the one dimensional case k = 1.

Theorem 5.1. Let λn := λ(n, 1) be the eigenvalues of the hemispherical transform HS1 to the

Fourier basis ϕn(t) = (2π)−1 exp(−int). The null space of Tc : L2(S1 × S1)→ L2(S1) is

N (Tc) = span
(
{λn1λn2ϕn1ϕn2 − λm1λm2ϕm1ϕm2|n1 + n2 = m1 +m2}

∪ {ϕ0ϕn − ϕnϕ0|n is even}

∪ {ϕn1ϕn2|n1 or n2 is even}
)
.

This theorem is a direct consequence of Theorem D.1. The last part of the null space

contains everything but the component-wise odd part and the odd part of the marginals. The

second part contains the difference between the odd part of the marginals f−θ1 − f
−
θ2

. Therefore,

we only get information about the sum of the odd part of the marginals f−θ1 + f−θ2 . This is also

true for higher dimensions as is shown in the Appendix. Finally, the first part of the null space

contains much of the dependence structure of f−θ1 and f−θ2 . Obviously, no useful information

about the dependence structure can be recovered. By an analogous argument, the same holds

true for f−β1
+ f−β2

if R(0,0)(z, z) is known in Sk. This illustrates that the information provided

by the data in the common covariates case is not sufficient to recover the joint or marginal

distribution of random parameters.

Indeed, these objects do not even provide enough information for recovering the distribution

of the interaction effects. To give an example of an assumption that allows identification of

f∆1 and f∆2 in the case when all covariates are common, we consider the following common

coefficient assumption:

Assumption 5.7. ∆1 = ∆2 almost surely.

With this assumption, f∆1 = f∆2 is related to fθ1 +fθ2 and fβ1 +fβ2 by a special convolution

similar to Theorem 3

(fθ1 + fθ2)(t) =

∫ 0

−1

(fβ1 + fβ2)
(
(t− wn1)/‖t− wn1‖

)
‖t− wn1‖k−1f∆1(w)dw.

For every t ∈ Sk this is a one dimensional deconvolution problem. It gives the same solution

f∆1 for every t, if it is identified. Hence, f∆1 is identified if for every n ∈ Z there is a t ∈ Sk,
such that the Fourier coefficient∫ 0

−1

(fβ1 + fβ2)
(
(t− wn1)/‖t− wn1‖

)
‖t− wn1‖k−1e−i2πnwdw 6= 0

does not vanish.
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The situation turns out to be much more benign in the case where some instruments coincide

for both players, and some do not. This case is arguably the most common in applications, and

can be shown to yield point identification under additional independence assumption. Let us

denote the common variables by Z̃c and player specific variables by Z̃1 and Z̃2. The coefficient

vectors β̃1 and β̃2 can be separated accordingly into coefficients β̃c,1 and β̃c,2 corresponding to

the common variables and coefficients β̃∗,1 and β̃∗,2 corresponding to Z̃1 and Z̃2. Hence, we can

write β̃′i = (β̃′c,i, β̃
′
∗,i). We will analyze this case only under the assumption that the coefficients

for the common variables are independent of the coefficients for the specific variables for each

player.

Assumption 5.8. β̃0i is independent of β̃∗i for i = 1, 2

One consequence of this assumption is that the term z′cβ̃c,i can be treated like an intercept

for each player. Hence, we can integrate it into the player specific intercept ũi of our model by

setting ũc,i ≡ ũi+ β̃′c,iZc. So, for every value zc of Z̃c the Equations (2.1) and (2.1) of the model

can be rewritten as

Y ∗1 = (z′c, Z̃
′
1)(β̃′c,1, β̃

′
∗,1)′ + Y2∆̃1 + ũ1 = Z̃ ′1β̃∗,1 + Y2∆̃1 + (ũc,1|zc),

Y ∗2 = (z′c, Z̃
′
2)(β̃′c,2, β̃

′
∗,2)′ + Y1∆̃2 + ũ2 = Z̃ ′2β̃∗,2 + Y1∆̃2 + (ũc,2|zc).

Where (ũc,1|zc) denotes the new intercept conditioned on zc. Treating the common variables

and its coefficients as an intercept transforms the problem formally into a problem with only

specific variables. For every zc we can apply the method presented in Chapters 3 and 4 to

estimate the densities of (θ|zc) and (β|zc). Marginalizing the density fβ|zc(t1, t2|zc) to the first

components of the vectors t1 and t2 gives the densities of (ũc,1/‖β∗1‖ |zc) and (ũc,2/‖β∗2‖ |zc). This

allows to recover the densities of the scaled coefficients β̃c,1/‖β∗1‖ and β̃c,2/‖β∗2‖ by inverting a

Radon transform. See HKM (2010). It is, however, not possible to recover the joint of β̃c,1/‖β∗1‖
and β̃c,2/‖β∗2‖ with this method because both coefficients can be observed only for one common

explanatory variable.

Furthermore, the joint densities of the scaled strategic interaction terms ∆1 and ∆2 can

be computed by deconvolving the densities of (θ|zc) and (β|zc). Under Assumption 3.4, the

interaction terms do not depend on zc. Hence, it is as well possible to compute first the densities

of θ and β with the unconditioned intercepts uc,i, and then the deconvolution.

6 A numerical study

We illustrate our estimation procedure through a numerical study. In this experiment, we

let Z∗j = (1, Z̃
(1)
j , Z̃

(2)
j ) for j = 1, 2, where (Z̃

(1)
j , Z̃

(2)
j )′ follows the standard bivariate normal
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distribution. Similarly, for each j, we generate (ũj, β̃
(1)
j ) as a standard bivariate normal vector.

We then let β̃
(2)
j = 1 for j = 1, 2. In this setting, Assumptions 3.1 and 3.3 are satisfied

with cj = (0, 0, 1) and ej = (0, 0,−1). The interaction effects are generated as (∆̃1, ∆̃2) =

(− exp(V1),− exp(V2)), where (V1, V2) is a bivariate normal vector with mean µ∆ and covariance

matrix Σ∆. We consider two specifications. Specification 1 sets µ∆ = (−0.7,−0.7)′ and Σ∆ to

the identity matrix. Specification 2 is the same as Specification 1 except that we introduce a

positive correlation between ∆1 and ∆2 by setting the off-diagonal components of Σ∆ to 0.9.

The entry outcomes are then generated according to (2.1)-(2.3). The sample size is n = 1000.

Our estimator of fθ is implemented using the smoothed projection kernel with

χj(n, T ) = (1− (ζn,kj+1/ζT,kj+1 + 1)s/2)l, (6.1)

where we use the tuning parameters s = 1, l = 9, and TN = 11.7 The trimming parameter is

r = 4. For the nonparametric estimators of unknown densities, we use the projection estimators

defined in (4.5) and (4.6) with the smoothed projection kernel with s = 2, l = 3, and TN = 5.

Figure 1 and 2 show the joint density of (θ
(1)
1 , θ

(2)
1 ) and that of (θ

(1)
1 , θ

(1)
2 ) respectively and

their estimates under Specification 1. These plots are produced by marginalizing the joint den-

sity fθ by numerical integration. Marginalization is carried out so that the resulting density is

evaluated on a one-dimensional unit sphere.8 For example, in Figure 1, the red curve represents

the true density f
θ
(1)
1 ,θ

(2)
1

. This density is defined on S1, which is depicted as a dashed circle in

the figure. Each evaluation point (t
(1)
1 , t

(2)
1 ) ∈ S1 of the density is then a point on this unit cir-

cle. For each (t
(1)
1 , t

(2)
1 ) ∈ S1, the red curve’s distance (or height) from the unit circle represents

the value of the density: f
θ
(1)
1 ,θ

(2)
1

(t
(1)
1 , t

(2)
1 ). In other words, its distance from the origin gives

1 + f
θ
(1)
1 ,θ

(2)
1

(t
(1)
1 , t

(2)
1 ). Similarly, the blue curve represents our estimate f̂

θ
(1)
1 ,θ

(2)
1

whose distance

from the unit circle corresponds to f̂
θ
(1)
1 ,θ

(2)
1

(t
(1)
1 , t

(2)
1 ). Overall, our estimator captures the shape

of the true density well. This is still true when the two interaction effects are correlated. Figure

3 shows the joint density of (θ
(1)
1 , θ

(1)
2 ) and its estimate under Specification 2. The shape of the

true density is also captured by the estimator in this case.

7 Conclusion and Outlook

This paper studies nonparametric identification of the joint distribution of random coefficients

in static games of complete information. We give conditions under which the joint distribution

of random coefficients except those on the interaction effects is identified. Moreover, we provide

7The smoothed projection kernel with χj in (6.1) is called the Riesz kernel. See Ditzian (1998) and GK
(2013) for details.

8See GK (2013) Section 5.1 for details on marginalization of densities defined on spheres.
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additional conditions that allow to point identify the joint density of the interaction effects. We

also discuss various ways to extend our main identification result. We further show that our

constructive identification strategy allows us to construct sample counterpart estimators. We

analyze their asymptotic properties, and illustrate their finite sample behavior in a numerical

study.

We have focused on nonparametric identification of the density of random coefficients from

uniquely predicted outcomes. An interesting direction would be to study possible efficiency

gains by considering simultaneously the two integral equality restrictions obtained from the

no entry and duopoly outcomes and additional integral inequality restrictions, which can be

obtained from the monopoly outcomes. We pursue this in another paper that studies a setting,

in which the density of random coefficients are partially identified by integral equality and

inequality restrictions.

Another interesting direction would be to apply the developed estimation procedure to

empirical examples in which heterogeneity plays an important role. Such examples include

airline markets, households’ labor supply decisions, and bilateral trade agreements.
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Supplemental Appendix

In this supplemental appendix, we include the proofs of results stated in the main text.

The contents of the supplemental appendix are organized as follows. Appendix A contains the

proof of Theorems 3.1, 3.2, and 3.3 and required auxiliary results. Appendix B gives a brief

review of Fourier series on spheres and the proof of auxiliary lemmas useful for constructing

our estimator in Section 4. Appendix C contains regularity conditions required by Theorem

4.2, auxiliary lemmas, and the proof of Theorem 4.2. Appendix D contains the results of the

numerical study.

Appendix A: Proof of Theorems 3.1, 3.2, and 3.3

Lemma A.1. Let k1, k2 ∈ N. Let f be a non-negative function on Sk1×Sk2. Suppose that supp(f) ⊆
Hv1 ×Hv2 for some (v1, v2) ∈ S`1 × S`2. Then,

f(z1, z2) =

4f−−(z1, z2) (z1, z2) ∈ Hv1 ×Hv2

0 otherwise.

Proof. Let (z1, z2) ∈ Hv1×Hv2 . Then, f(−z1, z2) = f(z1,−z2) = f(−z1,−z2) = 0, because supp (f) ⊆
Hv1 ×Hv2 . Therefore, by (2.6), f−−(z1, z2) = f(z1, z2)/4 on Hv1 ×Hv2 and vanishes elsewhere.

Lemma A.2. Suppose Assumptions 2.3 and 3.1 hold. Then,

fθ(t1, t2) = 4f−−θ (t1, t2)1{f−−θ (t1, t2) > 0, f−θ1(t1) > 0, f−θ2(t2) > 0}, for all (t1, t2) ∈ Sk1 × Sk2 .

Proof of Lemma A.2. By Assumption 3.1 and Lemma A.1,

fθ(t1, t2) =

4f−−θ (t1, t2) (t1, t2) ∈ supp(fθ) ⊂ Hc1 ×Hc2

0 otherwise.

For the conclusion of the Lemma, it then suffices to show that (t1, t2) ∈ supp(fθ) if and only if

f−−θ (t1, t2) > 0, f−θ1(t1) > 0, and f−θ2(t2) > 0. Toward this end, define

supp(fθ)
−+ ≡ {(t1, t2) ∈ Sk1 × Sk2 : (−t1, t2) ∈ supp(fθ)}

supp(fθ)
+− ≡ {(t1, t2) ∈ Sk1 × Sk2 : (t1,−t2) ∈ supp(fθ)}

supp(fθ)
−− ≡ {(t1, t2) ∈ Sk1 × Sk2 : (−t1,−t2) ∈ supp(fθ)}.

We examine the signs of f−−θ , f−θ1 , and f−θ2 on a partition of Sk1×Sk2 , which consists of the five disjoint

subsets: supp(fθ), supp(fθ)
−+, supp(fθ)

+−, supp(fθ)
−−, and the rest. Specifically, Assumption 3.1 and
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(2.6) imply

f−−θ (t1, t2) =



fθ(t1, t2)/4 (t1, t2) ∈ supp(fθ)

−fθ(−t1, t2)/4 (t1, t2) ∈ supp(fθ)−+

−fθ(t1,−t2)/4 (t1, t2) ∈ supp(fθ)+−

fθ(−t1,−t2)/4 (t1, t2) ∈ supp(fθ)−−

0 otherwise.

(A.1)

Similarly, f−θj (tj) being given by (fθj (tj)− fθj (−tj))/2 implies

f−θ1(t1) =



fθ1(t1)/2 (t1, t2) ∈ supp(fθ)

−fθ1(−t1)/2 (t1, t2) ∈ supp(fθ)−+

fθ1(t1)/2 (t1, t2) ∈ supp(fθ)+−

−fθ1(−t1)/2 (t1, t2) ∈ supp(fθ)−−

0 otherwise

, and f−θ2(t2) =



fθ2(t2)/2 (t1, t2) ∈ supp(fθ)

fθ2(t2)/2 (t1, t2) ∈ supp(fθ)−+

−fθ2(−t2)/2 (t1, t2) ∈ supp(fθ)+−

−fθ2(−t2)/2 (t1, t2) ∈ supp(fθ)−−

0 otherwise.

(A.2)

By (A.1)-(A.2), it holds that (t1, t2) ∈ supp(fθ) if and only if f−−θ (t1, t2) > 0, f−θ1(t1) > 0, and

f−θ2(t2) > 0. This establishes the claim of the lemma.

Lemma A.3. Suppose Assumptions 2.1-2.4, and 3.2 hold.

(i) If additionally Assumption 3.1 holds, then there exists a unique extension R(1,1) of r(1,1) defined

on Sk1 × Sk2, which is given by (3.6).

(ii) If additionally Assumption 3.3 holds, then there exists a unique extension R(0,0) of r(0,0) defined

on Sk1 × Sk2, which is given by (3.7).

Proof of Lemma A.3. For (i), we make use of Assumption 3.2 to reconstruct r(1,1) on the rest of

Sk1 × Sk2 . First, under Assumptions 2.1-2.4, fθ exists and satisfies equation (2.4). Equation (2.4) and

the definition of the hemispherical transform then imply

R(1,1)(−z1, z2) + r(1,1)(z1, z2) =

∫
Sk1×Sk2

1{z′2t2 > 0}fθ(t1, t2)dσ(t1, t2) = HSk2fθ2(z2).

Rewriting this yields

R(1,1)(−z1, z2) = HSk2fθ2(z2)− r(1,1)(z1, z2), (A.3)

and by symmetry,

R(1,1)(z1,−z2) = HSk1fθ1(z1)− r(1,1)(z1, z2). (A.4)
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Furthermore, the formula HSk1fθ1(−z1) = 1−HSk1fθ1(z1) yields

R(1,1)(−z1,−z2) = 1− (HSk1fθ1(z1, z2) +HSk2fθ2(z1, z2)) + r(1,1)(z1, z2). (A.5)

The last three equations define an unique extension of r on Sk1×Sk2 . But to make use of this extension,

we have to identify the hemispherical transforms of the marginal distributions in advance. As already

argued in Section 2.2 this is possible under Assumption 3.1. Since (c1, c2) ∈ Hn1 ×Hn2 ,

HSk1fθ1(z1) = r(1,1)(z1, c2) and HSk2fθ2(z2) = r(1,1)(c1, z2)

are well-defined on Hn1 and Hn2 respectively. We can extend these functions to Sk1 and to Sk2 by

using HSk1fθ1(−z1) = 1−HSk1fθ1(z1) and similarly HSk2fθ2(−z2) = 1−HSk2fθ2(z2). Finally, we can

write the extension of r(1,1) for arbitrary (z1, z2) ∈ Sk1 × Sk2 as:

R(1,1)(z1, z2) =



r(1,1)(z1, z2) for z1 ∈ Hn1 and z2 ∈ Hn2

r(1,1)(c1, z2)− r(1,1)(−z1, z2) for z1 /∈ Hn1 and z2 ∈ Hn2

r(1,1)(z1, c2)− r(1,1)(z1,−z2) for z1 ∈ Hn1 and z2 /∈ Hn2

1−
(
r(1,1)(−z1, c2) + r(1,1)(c1,−z2)

)
+ r(1,1)(−z1,−z2) for z1 /∈ Hn1 and z2 /∈ Hn2 .

The proof of (ii) is similar. Hence it is omitted.

Lemma A.4. Suppose Assumptions 2.1-2.4, and 3.1-3.2 hold. Then,

T f−−θ (z1, z2) = R−−(1,1)(z1, z2), HSk1f
−
θ1

(z1) = R−(1,1)(z1, c2), and HSk2f
−
θ2

(z2) = R−(1,1)(c1, z2). (A.6)

Proof of Lemma A.4. First, by Assumptions 2.1-2.4, and 3.1-3.2 and Lemma A.3 (i), R(1,1) exists. By

(2.6), it is then straightforward to show that

R−−(1,1)(z1, z2) =



r(1,1)(z1, z2)− 1
2r(1,1)(c1, z2)− 1

2r(1,1)(z1, c2) + 1
4 z1 ∈ Hn1 , z2 ∈ Hn2

−r(1,1)(−z1, z2) + 1
2r(1,1)(c1, z2) + 1

2r(1,1)(−z1, c2)− 1
4 z1 /∈ Hn1 , z2 ∈ Hn2

−r(1,1)(z1,−z2) + 1
2r(1,1)(c1,−z2) + 1

2r(1,1)(z1, c2)− 1
4 z1 ∈ Hn1 , z2 /∈ Hn2

r(1,1)(−z1,−z2)− 1
2r(1,1)(c1,−z2)− 1

2r(1,1)(−z1, c2) + 1
4 z1 /∈ Hn1 , z2 /∈ Hn2 .
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Let (z1, z2) ∈ Hn1 ×Hn2 . Then, again by (2.6),

T f−−θ (z1, z2) =
1

4

∫
Sk1×Sk2

1{z′1t1 > 0}1{z′2t2 > 0}

× (fθ(t1, t2)− fθ(−t1, t2)− fθ(t1,−t2) + fθ(−t1,−t2))dσ(t1, t2)

=
1

4

∫
Sk1×Sk2

1{z′1t1 > 0}1{z′2t2 > 0}(fθ(t1, t2)− fθ(−t1, t2))dσ(t1, t2)

− 1

4

∫
Sk1×Sk2

1{z′1t1 > 0}1{z′2t2 ≤ 0}(fθ(t1, t2)− fθ(−t1, t2))dσ(t1, t2)

=
1

4

∫
Sk1×Sk2

1{z′1t1 > 0}(2× 1{z′2t2 > 0} − 1)(fθ(t1, t2)− fθ(−t1, t2))dσ(t1, t2)

=
1

4

∫
Sk1×Sk2

(2× 1{z′1t1 > 0} − 1)(2× 1{z′2t2 > 0} − 1)(fθ(t1, t2))dσ(t1, t2)

= r(1,1)(z1, z2)− 1

2
r(1,1)(c1, z2)− 1

2
r(1,1)(z1, c2) +

1

4
= R−−(1,1)(z1, z2).

Similar calculations for the cases (z1, z2) ∈ Hc
n1
× Hn2 , (z1, z2) ∈ Hn1 × Hc

n2
, and (z1, z2) ∈ Hc

n1
×

Hc
n2

can be carried out to show that T f−−θ = R−−(1,1) on each of these subsets of Sk1 × Sk2 . Hence,

T f−−θ (z1, z2) = R−−(1,1)(z1, z2) for all (z1, z2) ∈ Sk1 × Sk2 .

Next, using 1{−c′2θ2 > 0} = 0, P − a.s., it is straightforward to show that

R(1,1)(z1, c2) =

r(z1, c2) z1 ∈ Hn1

1− r(z1, c2) z1 /∈ Hn1 .

By equations (3.2)-(3.4) in GK, the claim HSk1f
−
θ1

(z1) = R−(1,1)(z1, c2) then follows. HSk2f
−
θ2

(z2) =

R−(1,1)(c1, z2) can be established similarly.

Proof of Theorem 3.1. By Assumptions 2.1-2.4, 3.1-3.2, and Lemma A.3, R(1,1) exists. Since r(1,1) is

identified, R(1,1) is also identified. By Assumptions 2.1-2.4, and 3.1-3.2, and Lemma A.4, the functions

f−−θ , f−θ1 , f
−
θ2

are in N (T )⊥, and hence can be obtained by inverting the operator equations in (A.6).

Therefore, f−−θ , f−θ1 , f
−
θ2

are identified. By Assumptions 2.3, 3.1 and Lemma A.2, fθ is then identified.

This establishes the claim of the theorem.

Proof of Theorem 3.2. The proof of Theorme 3.2 is very similar to that of Theorem 3.1. Thus, it is

omitted for brevity.

Proof of Theorem 3.3. Let µ denote Lebesgue measure on Rk1+1×Rk2+1. Let fβ∗ , fθ∗ be the probabil-

ity density functions of β∗ and θ∗ with respect to µ, respectively. For any Borel subset E of Sk1 ×Sk2 ,

let

E∞ ≡ {(x1, x2) ∈ Rk1+1 × Rk2+1 : (x1/‖x1‖, x2/‖x2‖) ∈ E} (A.7)
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Then, for each Borel set E ⊆ Sk1 × Sk2 , Thoerem 2.49 in Folland (1999) implies∫
E
fθ(t1, t2)dσ(t1, t2) =

∫
E∞

fθ∗(t
∗
1, t
∗
2)dµ(t∗1, t

∗
2)

=

∫ ∞
0

∫ ∞
0

∫
E
fθ∗(t1r1, t2r2)rk1

1 r
k2
2 dσ(t1, t2)dr1dr2 (A.8)

Note that the integrals in (A.8) are with respect to σ-finite measures and that the integrand is jointly

measurable. Further, the integrands are non-negative, and the integrals are finite. By interchanging

integrals using Tonelli’s theorem and noting that E was arbitrary:

fθ(t1, t2) =

∫ ∞
0

∫ ∞
0

fθ∗(t1r1, t2r2)rk1
1 r

k2
2 dr1, dr2 (A.9)

for σ-almost all (t1, t2). Similarly, for almost all (b1, b2),

fβ(b1, b2) =

∫ ∞
0

∫ ∞
0

fβ∗(b1r1, b2r2)rk1
1 r

k2
2 dr1, dr2. (A.10)

By Assumption 3.4 and θ∗j = β∗j + ∆̃jnj for j = 1, 2, θ∗j is the convolution of β∗j and ∆̃jnj . Therefore,

one may write

fθ∗(t
∗
1, t
∗
2) =

∫ 0

−∞

∫ 0

−∞
fβ∗(t

∗
1 − w∗1n1, t

∗
2 − w∗2n2)f∆̃(w∗1, w

∗
2)dw∗1dw

∗
2. (A.11)

=

∫ 0

−1

∫ 0

−1
fβ∗((t

∗
1/‖t∗1‖ − w1n1)‖t∗1‖, (t∗2/‖t∗2‖ − w2n2)‖t∗2‖)f∆(w1, w2)dw1dw2, (A.12)

where w∗j = wj‖t∗j‖, and f∆̃(w∗1, w
∗
2) = f∆(w∗1/‖t∗1‖, w∗2/|t∗2‖) 1

‖t∗1‖
1
‖t∗2‖

. By letting tj = t∗j/‖t∗j‖ and

rj = ‖t∗j‖, we may then write

fθ∗(t1r1, t2r2) =

∫ 0

−1

∫ 0

−1
fβ∗((t1 − w1n1)r1, (t2 − w2n2)r2)f∆(w1, w2)dw1dw2. (A.13)

By (A.9), (A.10), (A.13), and the change of variables with sj = rj × ‖tj − wjn′j‖, j = 1, 2, we then
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obtain:

fθ(t1, t2) =

∫ ∞
0

∫ ∞
0

∫ 0

−1

∫ 0

−1
fβ∗((t1 − w1n1)r1, (t2 − w2n2)r2)f∆(w1, w2)dw1dw2r

k1
1 r

k2
2 dr1, dr2

(A.14)

=

∫ 0

−1

∫ 0

−1

∫ ∞
0

∫ ∞
0

fβ∗((t1 − w1n1)r1, (t2 − w2n2)r2)rk1
1 r

k2
2 dr1, dr2f∆(w1, w2)dw1dw2 (A.15)

=

∫ 0

−1

∫ 0

−1

∫ ∞
0

∫ ∞
0

fβ∗

(
t1 − w1n1

‖t1 − w1n1‖
s1,

t2 − w2n2

‖t2 − w2n2‖
s2

)
sk1

1 s
k2
2 ds1, ds2 (A.16)

× ‖t1 − w1n1‖−k1−1‖t2 − w2n2‖−k2−1f∆(w1, w2)dw1dw2 (A.17)

=

∫ 0

−1

∫ 0

−1
fβ(

t1 − w1n1

‖t1 − w1n1‖
,
t2 − w2n2

‖t2 − w2n2‖
)‖t1 − w1n2‖−k1−1‖t2 − w2n2‖−k2−1f∆(w1, w2)dw1dw2,

(A.18)

where the second equality follows from Tonelli’s theorem, which is applicable because the integrand

is jointly measurable, non-negative, and the integral equals fθ(t1, t2) < ∞. This establishes the first

claim of the theorem.

The proof of the second claim is similar to that in Devroye (1981) and Carrasco and Florens

(2010). Let D be the set of probability density functions in L2([−1, 0]2), i.e. {ϕ ∈ L2([−1, 0]2) :

ϕ ≥ 0, and
∫
ϕ(w1, w2)dw1dw2 = 1}. Let K|D be the restriction of K to D. Below, we show that

N (K|D) = {0}.
Define the map F : L2(Sk1 × Sk2)→ L2(Rk1+1 × Rk2+1) pointwise by

Ff(x1, x2) ≡
∫
Sk1×Sk2

f(u1, u2)ei(x
′
1u1+x′2u2)dσ(u1, u2). (A.19)

Note that (t1, t2, w1, w2) 7→ K(t1 − w1n1, t2 − w2n2)f∆(w1, w2)ei(x
′
1t1+x′2t2) is jointly measurable and

|K(t1 − w1n1, t2 − w2n2)f∆(w1, w2)ei(x
′
1t1+x′2t2)| ≤ |K(t1 − w1n1, t2 − w2n2)f∆(w1, w2)|. Further,∫ 0

−1

∫ 0

−1

∫
Sk1×Sk2

|K(t1 − w1n1, t2 − w2n2)f∆(w1, w2)|dσ(t1, t2)dw1dw2

= ‖K‖L1(Sk1×Sk2 )‖f∆‖L1([−1,0]2) <∞.

By Tonelli’s theorem and the change of variables with vj = tj − wjnj and dvj = dtj , we obtain:

F(K|Df∆)(x1, x2) =

∫
Sk1×Sk2

∫ 0

−1

∫ 0

−1
K(t1 − w1n1, t2 − w2n2)f∆(w1, w2)dw1dw2e

i(x′1t1+x′2t2)dσ(t1, t2)

(A.20)

=

∫ 0

−1

∫ 0

−1

∫
Sk1×Sk2

K(v1, v2)ei(x
′
1(v1+w1n1)+x′2(v2+w2n2))dσ(v1, v2)f∆(w1, w2)dw1dw2

(A.21)

= ΨK(x1, x2)Ψf∆
(x

(1)
1 , x

(1)
2 ) , (A.22)
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where Ψf∆
is the characteristic function of f∆. Suppose that there is another f ′ ∈ D such that

K|D(f∆ − f ′) = 0. Then, by (A.22) and linearity of K|D, this holds if and only if

ΨK(x1, x2){Ψf∆
(x

(1)
1 , x

(1)
2 )−Ψf ′(x

(1)
1 , x

(1)
2 )} = 0 , (A.23)

for all (x1, x2) ∈ Rk1+1×Rk2+1. Let S ≡ {(x(1)
1 , x

(1)
2 ) ∈ R2 : ΨK(x1, x2) = 0}. By (A.23), it must hold

that Ψf∆
(e1, e2) = Ψf ′(e1, e2) for all (e1, e2) /∈ S. By hypothesis, S has measure 0. Therefore, for any

ε > 0, there is a sequence of open sets In ⊂ R2 with positive Lebesgue measure such that S ⊂
⋃
n In

and
∑

n Leb(In) < ε. Then, for any (x1, x2) ∈ S and ε > 0, we may find an open neighborhood Iε of

(x1, x2) such that Ψf∆
(s1,ε, s2,ε) = Ψf ′(s1,ε, s2,ε) for any (s1,ε, s2,ε) ∈ Iε \ {(x1, x2)}. Now by letting

ε ↓ 0 and noting that the Ψf∆
and Ψf ′ are continuous (See Theorem 2.1.2 in Lukacs, 1960), it follows

that they must also coincide at all points in S. Since the characteristic functions determine their

densities, it must hold that f∆ = f ′. Thus, the second claim follows.

Appendix B: Proof of Theorem 4.1

This appendix introduces technical tools and auxiliary lemmas used to prove Theorem 4.1. Please

see Groemer (1996) for more details.

Let Rd be a Euclidean space. Let ∆ be the Laplace operator defined by ∆ ≡ ∂2/∂x2
1 +· · ·+∂2/∂x2

d.

A harmonic polynomial is a polynomial defined on Rd such that ∆f = 0. A spherical harmonic of

order n and dimension d is the restriction of a n−th order harmonic polynomial to Sd−1.

Let Hn,d be the space of all spherical harmonics of order n and dimension d, and let h(n, d) denote

the dimension of Hn,d, which is by Theorem 3.1.4 in Groemer (1996):

h(n, d) =
2n+ d− 2

n+ d− 2

(
n+ d− 2

d− 2

)
.

For each n1, n2 ≥ 0 and k1, k2 ≥ 2, let {ϕn1,l}
h(n1,k1+1)
l=1 and {ψn2,m}

h(n2,k2+1)
m=1 be orthonormal bases

of Hn1,k1+1 and Hn,k2+1 respectively. Let {Φj , j = 1, · · · } be a sequence such that for each n1 ≥ 0

it contains h(n1, k1 + 1) orthonormal spherical harmonics ϕn1,l, l = 1, · · · , h(n1, k1 + 1). Similarly, let

{Ψj , j = 1, · · · } be a sequence such that for each n2 ≥ 0 it contains h(n2, k2 +1) orthonormal spherical

harmonics ψn2,m, l = 1, · · · , h(n2, k2 + 1). These sequences are called the standard sequences and form

orthonormal bases of L2(Sk1) and L2(Sk2) respectively. We note that {ΦjΨk, j = 1, · · · , k = 1, · · · }

then forms an orthonormal basis in L2(Sk1×Sk2). (See for example Theorem II.10 in Reed and Simon,

1980.)

The harmonic expansion of any f ∈ L2(Sk1 × Sk2) is given by

f(z1, z2) =
∞∑
j=1

∞∑
k=1

(∫
Sk1×Sk2

f(z̃1, z̃2)Φj(z̃1)Ψk(z̃2)dσ(z̃1, z̃2)

)
Φj(z1)Ψk(z2). (B.1)
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Now, for each n1, n2 ≥ 0, z1, z̃1 ∈ Sk1 , and z2, z̃2 ∈ Sk2 , define

qn1,k1(z1, z̃1) ≡
h(n1,k1+1)∑

l=1

ϕn1,l(z1)ϕn1,l(z̃1) (B.2)

qn2,k2(z2, z̃2) ≡
h(n2,k2+1)∑

m=1

ψn2,m(z2)ψn2,m(z̃2) (B.3)

qn1,n2,k1,k2(z1, z2, z̃1, z̃2) ≡
h(n1,k1+1)∑

l=1

h(n2,k2+1)∑
m=1

ϕn1,l(z1)ψn2,m(z2)ϕn1,l(z̃1)ψn2,m(z̃2). (B.4)

Let Qn1,n2,k1,k2 : L2(Sk1 × Sk2)→ Hn1,k1+1 ⊗Hn2,k2+1 be the projection map defined by

(Qn1,n2,k1,k2f)(z1, z2) ≡
∫
Sk1×Sk2

qn1,n2,k1,k2(z1, z2, z̃1, z̃2)f(z̃1, z̃2)dσ(z̃1, z̃2). (B.5)

An alternative way to write (B.1) is

f(z1, z2) =

∞∑
n1=0

∞∑
n2=0

(Qn1,n2,k1,k2f)(z1, z2). (B.6)

As in the main text, we call this expansion the condensed harmonic expansion.

For all n ≥ 0, the Legendre polynomial Ldn of order n and dimension d is a polynomial on R, which

is uniquely defined by the following recurrence formula:

(n+ d− 2)Ldn+1(x)− (2n+ d− 2)xLdn(x) + nLdn−1(x) = 0, (B.7)

where Ld−1(x) = 0 and Ld0(x) = 1 for all x. For d ≥ 3, the Gegenbauer polynomial C
ν(d)
n of order n and

dimension ν(d) = (d− 2)/d is defined by C
ν(d)
n ≡

(
n+d−3
d−3

)
Ldn.

Lemma B.1. For every n1, n2 ≥ 0, z1, z̃1 ∈ Sk1 and z2, z̃2 ∈ Sk2,

qn1,n2,k1,k2(z1, z2, z̃1, z̃2) =
h(n1, k1 + 1)h(n2, k2 + 1)

|Sk1 ||Sk2 |
Lk1+1
n1

(z′1z̃1)Lk2+1
n2

(z′2z̃2) (B.8)

=
h(n1, k1 + 1)h(n2, k2 + 1)

|Sk1 ||Sk2 |
C
ν(k1+1)
n1 (z′1z̃1)C

ν(k2+1)
n2 (z′2z̃2)

C
ν(k1+1)
n1 (1)C

ν(k2+1)
n2 (1)

, (B.9)

where Ldn are Legendre polynomials of order n and dimension d, and Cνn are Gegenbauer polynomials

of order n and ν(d).

Proof of Lemma B.1. One may rewrite qn1,n2,k1,k2 as

qn1,n2,k1,k2(z1, z2, z̃1, z̃2) =

h(n1,k1+1)∑
l=1

ϕn1,l(z1)ϕn1,l(z̃1)

h(n2,k2+1)∑
m=1

ψn2,m(z2)ψn2,m(z̃2)

≡ qn1,k1(z1, z̃1)× qn2,k2(z2, z̃2).
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Now, Eq. (B.8) follows from Theorem 3.3.3 in Groemer (1996). Eq. (B.9) follows from Theorem 2.1

in GK.

Lemma B.2. For every n1 > 0, n2 > 0, z1 ∈ Sk1 and z2 ∈ Sk2,∫
Sk1

qn1,n2,k1,k2(z1, z2, z̃1, z̃2)dσk1(z̃1) = 0, ∀z̃2 ∈ Sk2∫
Sk2

qn1,n2,k1,k2(z1, z2, z̃1, z̃2)dσk2(z̃2) = 0, ∀z̃1 ∈ Sk1 .

Proof of Lemma B.2. For each z1 ∈ Sk1 , z̃1 7→ Lk1+1
n1

(z′1z̃1) is a k1 + 1-dimensional spherical harmonic

of order n1 > 0 by Theorem 3.3.3 in Groemer (1996). Thus, by Corollary 3.2.2 in Groemer (1996).∫
Sk1

Lk1+1
n1

(z′1z̃1)dσk1(z̃1) = 0. (B.10)

By (B.8) and (B.10), the first claim follows. The second claim can be proved in the same manner.

Lemma B.3. For every n1 > 0, n2 > 0, z1, z̃1 ∈ Sk1, and z2, z̃2 ∈ Sk2,

qn1,n2,k1,k2(z1, z2,−z̃1, z̃2) = (−1)n1qn1,n2,k1,k2(z1, z2, z̃1, z̃2)

qn1,n2,k1,k2(z1, z2, z̃1,−z̃2) = (−1)n2qn1,n2,k1,k2(z1, z2, z̃1, z̃2).

Proof of Lemma B.3. We first note that for each t, Cνn(−t) = (−1)nCνn(t) (See p.32 in GK). This,

together with (B.9), establishes the claim of the lemma.

Proof of Theorem 4.1. The proof of this theorem is similar to that of Theorem 4.1 in GK. We note

that R(1,1) is bounded and hence square integrable with respect to σ. Hence, it has the condensed

harmonic expansion:

R(1,1)(z1, z2) =
∞∑

n1=0

∞∑
n2=0

(Qn1,n2,k1,k2R(1,1))(z1, z2). (B.11)

By Lemma B.3 and Eq. (2.6), the condensed harmonic expansion of R−−(1,1) is then given by

R−−(1,1) =

∞∑
p1=0

∞∑
p2=0

(Q2p1+1,2p2+1,k1,k2R(1,1)). (B.12)
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By Eq. (3.6), we may write Qn1,n2,k1,k2R(1,1) as

(Qn1,n2,k1,k2R(1,1))(z1, z2) =

∫
Hn1×Hn2

qn1,n2,k1,k2(z1, z2, z̃1, z̃2)r(1,1)(z̃1, z̃2)dσ(z̃1, z̃2) (B.13)

+

∫
Hc

n1
×Hn2

qn1,n2,k1,k2(z1, z2, z̃1, z̃2){r(1,1)(c1, z̃2)− r(1,1)(−z̃1, z̃2)}dσ(z̃1, z̃2) (B.14)

+

∫
Hn1×Hc

n2

qn1,n2,k1,k2(z1, z2, z̃1, z̃2){r(1,1)(z̃1, c2)− r(1,1)(z̃1,−z̃2)}dσ(z̃1, z̃2) (B.15)

+

∫
Hc

n1
×Hc

n2

qn1,n2,k1,k2(z1, z2, z̃1, z̃2){1− r(1,1)(−z̃1, c2)− r(1,1)(c1,−z̃2) + r(1,1)(−z̃1,−z̃2)}dσ(z̃1, z̃2).

(B.16)

By Eqs. (B.13)-(B.16), and Lemma B.3,

(Qn1,n2,k1,k2R(1,1))(z1, z2) = 4

∫
Hn1×Hn2

qn1,n2,k1,k2(z1, z2, z̃1, z̃2)r(1,1)(z̃1, z̃2)dσ(z̃1, z̃2) (B.17)

− 2

∫
Hn1×Hn2

qn1,n2,k1,k2(z1, z2, z̃1, z̃2)r(1,1)(c1, z̃2)dσ(z̃1, z̃2) (B.18)

− 2

∫
Hn1×Hn2

qn1,n2,k1,k2(z1, z2, z̃1, z̃2)r(1,1)(z̃1, c2)dσ(z̃1, z̃2) (B.19)

+

∫
Hn1×Hn2

qn1,n2,k1,k2(z1, z2, z̃1, z̃2)dσ(z̃1, z̃2). (B.20)

Combining Eq. (B.17) and (B.20) yields∫
Hn1×Hn2

qn1,n2,k1,k2(z1, z2, z̃1, z̃2){4r(1,1)(z̃1, z̃2) + 1}dσ(z̃1, z̃2)

=

∫
Hn1×Hn2

qn1,n2,k1,k2(z1, z2, z̃1, z̃2)E

[
4W + 1

fZ(z̃1, z̃2)

∣∣∣∣Z1 = z̃1, Z2 = z̃2

]
fZ(z̃1, z̃2)dσ(z̃1, z̃2)

= E

[
4W + 1

fZ(Z1, Z2)
qn1,n2,k1,k2(z1, z2, Z1, Z2)

]
, (B.21)

where the last equality follows from the law of iterated expectations. Eq. (B.18) can be written as

−2

∫
Hn1×Hn2

qn1,n2,k1,k2(z1, z2, z̃1, z̃2)r(1,1)(c1, z̃2)dσ(z̃1, z̃2)

= −
∫
Hn1

qn1,k1,(z1, z̃1)

fZ1(z̃1)
fZ1(z̃1)dσk1(z̃1)

∫
Hn2

qn2,k2(z2, z̃2)

fZ2|Z1
(z̃2|c1)

E[2W |Z1 = c1, Z2 = z̃2]fZ2|Z1
(z̃2|c1)dσk2(z̃2)

= −E
[
qn1,k1(z1, Z1)

fZ1(Z1)

]
× E

[
2Wqn2,k2(z2, Z2)

fZ2|Z1
(Z2|c1)

∣∣∣∣Z1 = c1

]
. (B.22)
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Similarly, Eq. (B.19) can be written as

−2

∫
Hn1×Hn2

qn1,n2,k1,k2(z1, z2, z̃1, z̃2)r(1,1)(z̃1, c2)dσ(z̃1, z̃2)

= −E
[
qn2,k2(z2, Z2)

fZ2(Z2)

]
× E

[
2Wqn1,k1(z1, Z1)

fZ1|Z2
(Z1|c2)

∣∣∣∣Z2 = c2

]
.

(B.23)

By (B.17)-(B.23), we obtain

(Qn1,n2,k1,k2R(1,1))(z1, z2) = E

[
4W + 1

fZ(Z1, Z2)
qn1,n2,k1,k2(z1, z2, Z1, Z2)

]
(B.24)

− E
[
qn1,k1(z1, Z1)

fZ1(Z1)

]
E

[
2Wqn2,k2(z2, Z2)

fZ2|Z1
(Z2|c1)

∣∣∣∣Z1 = c1

]
(B.25)

− E
[
qn2,k2(z2, Z2)

fZ2(Z2)

]
E

[
2Wqn1,k1(z1, Z1)

fZ1|Z2
(Z1|c2)

∣∣∣∣Z2 = c2

]
. (B.26)

Therefore, (B.12) and (B.24)-(B.26) establish the claim of the Theorem.

Appendix C: Proof of Theorem 4.2

Throughout, we let c̄ denote a generic positive constant that may be different in different appear-

ances. In what follows, we write f̂−−θ as f̂−−θ = Â− B̂Ĉ − D̂Ê, where

Â(t1, t2) ≡ 1

N

N∑
i=1

4Wi + 1

f̂aZ(Z1i, Z2i)
H−1

Sk1
(K−T1

(·, Z1i))(t1)H−1
Sk2

(K−T2
(·, Z2i))(t2)

B̂(t1) ≡ 1

N

N∑
i=1

H−1
Sk1

(K−T1
(·, Z1i))(t1)

f̂aZ1
(Z1i)

Ĉ(t2) ≡ 1

N

N∑
i=1

2WiH−1
Sk2

(K−T2
(·, Z2i))(t2)KT1(c1, Z1i)

f̂aZ2
(Z2i|c1)f̂aZ1

(Z1i)

D̂(t2) ≡ 1

N

N∑
i=1

H−1
Sk2

(K−T2
(·, Z2i))(t2)

f̂aZ2
(Z2i)

Ê(t1) ≡ 1

N

N∑
i=1

2WiH−1
Sk1

(K−T1
(·, Z1i))(t1)KT2(c2, Z2i)

f̂aZ1
(Z1i|c2)f̂aZ2

(Z2i)
.
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Further, we let their population counterparts be defined by

A(t1, t2) ≡ E

 4W + 1

fZ(Z1, Z2)

∞∑
p1=0

∞∑
p2=0

(HSk1 ⊗HSk2 )−1q2p1+1,2p2+1,k1,k2(t1, t2, Z1, Z2)


B(t1) ≡ E

[∑∞
p1=0H

−1
Sk1
q2p1+1,k1(t1, Z1)

fZ1(Z1)

]

C(t2) ≡ E

[
2W

∑∞
p2=0H

−1
Sk2
q2p2+1,k2(t2, Z2)

fZ2|Z1
(Z2|c1)

∣∣∣∣Z1 = c1

]

D(t2) ≡ E

[∑∞
p1=0H

−1
Sk2
q2p2+1,k2(t2, Z2)

fZ2(Z2)

]

E(t1) ≡ E

[
2W

∑∞
p1=0H

−1
Sk1
q2p1+1,k1(t1, Z1)

fZ1|Z2
(Z1|c2)

∣∣∣∣Z2 = c2

]
.

The assumptions on the smoothed projection kernel are the same as GK’s. For easy reference, we

give them below.

Assumption C.1. (i) For each j and ‖KTj (zj , ·)‖L1 is uniformly bounded in Tj.

(ii) For each j, there exist constants c̄ > 0 and αj > 0, such that for all zj , z̃j , z̃
′
j ∈ Skj ,

|KTj (zj , z̃j)−KTj (zj , z̃
′
j)| ≤ c̄‖z̃j − z̃

′αj
j .

(iii) For each j and sj > 0, there exists a constant c̄ > 0 such that∥∥∥∥f(·)−
∫
Skj

KTj (·, z̃j)f(z̃j)dσkj (z̃j)

∥∥∥∥
L2

≤ c̄‖f‖Wsj
2
T
−sj
j , for all f ∈Wsj

2 (Skj ).

(iv) χj(·, Tj) takes values in [0, 1] and is such that there exists c̄ > 0 such that for all 0 ≤ n ≤

bTj/2c, χj(n, Tj) ≥ c̄.

Our assumptions the joint, conditional, and marginal densities of Z and their estimators are the

following.

Assumption C.2. (i) fZ is bounded on H1 ×H2.
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(ii) There exists a constant r > 0 such that

σ
(
{(z1, z2) : 0 < fZ(z1, z2) < (lnN)−r}

)
= o

((
N

(lnN)2r

)− ρ1+ρ2
2(ρ1+ρ2+2)

)
,

σkj
(
{zj : 0 < fZj (zj) < (lnN)−r}

)
= o

((
N

(lnN)2r

)− ρj
2(ρ1+ρ2+2)

)
, for j = 1, 2,

∫
S̄jN

fZj (zj)
−1dσkj (zj) = o

((
N

(lnN)2r

)− ρ−j
2(ρ1+ρ2+2)

)
, for j = 1, 2,

where S̄jN ≡ {zj : 0 < fZj (zj) < (lnN)−r}.
(iii) Further,

(
N

(lnN)2r

) (k1+1)/s1+(k2+1)/s2
2(ρ1+ρ2+2)

(lnN)r max
i=1,··· ,N

∣∣∣∣∣faZ(Z1,i, Z2,i)

f̂aZ(Z1,i, Z2,i)
− 1

∣∣∣∣∣ = op(1)

(
N

(lnN)2r

) (kj+1)/sj
2(ρ1+ρ2+2)

(lnN)r max
i=1,··· ,N

∣∣∣∣∣f
a
Zj

(Zj,i)

f̂aZj (Zj,i)
− 1

∣∣∣∣∣ = op(1)

(
N

(lnN)2r

) (kj+1)/sj
2(ρ1+ρ2+2)

(lnN)2r max
i=1,··· ,N

∣∣∣∣∣∣
faZj |Z−j (Zji|c−j)f

a
Z−j

(Z−ji)

f̂aZj |Z−j (Zji|c−j)f̂
a
Z−j

(Z−ji)
− 1

∣∣∣∣∣∣ = op(1).

The conditions above are similar to those assumed in GK and hold for a reasonable class of

distributions.

Lemma C.1. Let k1, k2 ≥ 2. Suppose Assumptions 4.1 and C.1 hold. Then,∥∥∥∥f(·)−
∫
Sk1×Sk2

KT1(·, z̃1)KT2(·, z̃2)f(z̃1, z̃2)dσ(z̃1, z̃2)

∥∥∥∥
L2

≤ c̄(T−s11 ∨ T−s22 )‖f‖Ws1
2 ⊗W

s2
2
,

for all f ∈Ws1
2 (Sk1)×Ws2

2 (Sk2).

Proof of Lemma C.1. By the triangle inequality,∥∥∥f(·, ·)−
∫
Sk1×Sk2

KT1(·, z̃1)KT2(·, z̃2)f(z̃1, z̃2)dσ(z̃1, z̃2)
∥∥∥2

L2(Sk1×Sk2 )

≤
∥∥∥f(·, ·)−

∫
Sk1

KT1(·, z̃1)f(z̃1, ·)dσk1(z̃1)
∥∥∥2

L2(Sk1×Sk2 )

+
∥∥∥∫

Sk1

KT1(·, z̃1)f(z̃1, ·)dσk1(z̃1)−
∫
Sk1×Sk2

KT1(z1, z̃1)KT2(z2, z̃2)f(z̃1, z̃2)dσ(z̃1, z̃2)
∥∥∥2

L2(Sk1×Sk2 )
.
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Note that∥∥∥f(·, ·)−
∫
Sk1

KT1(·, z̃1)f(z̃1, ·)dσk1(z̃1)
∥∥∥2

L2(Sk1×Sk2 )

=

∫
Sk1×Sk2

(f(z1, z2)−
∫
Sk1

KT1(z1, z̃1)f(z̃1, z2)dσk1(z̃1))2dσ(z1, z2)

=

∫
Sk2

‖f(·, z2)−
∫
Sk1

KT1(·, z̃1)f(z̃1, z2)dσk1(z̃1)‖2
L2(Sk1 )

dσk2(z2)

≤ (c̄T−s11 )2

∫
Sk2

‖f(·, z2)‖2Ws1
2
dσk2(z2)

≤ (c̄T−s11 )2‖f‖2Ws1
2 ⊗W

s2
2
,

where the last inequality follows from the following result.

∫
Sk2

‖f(·, z2)‖2Ws1
2
dσk2(z2) =

∫
Sk2

∞∑
n1=0

(1 + ζn1,k1)s1‖Qn1,k1f(·, z2)‖2
L2(Sk1 )

dσk2(z2)

=
∞∑

n1=0

(1 + ζn1,k1)s1
∫
Sk2

‖Qn1,k1f(·, z2)‖2
L2(Sk1 )

dσk2(z2)

=
∞∑

n1=0

(1 + ζn1,k1)s1
∫
Sk2

‖
∞∑

n2=0

Qn2,k2Qn1,k1f(·, z2)‖2
L2(Sk1 )

dσk2(z2)

=

∞∑
n1=0

(1 + ζn1,k1)s1
∫
Sk1

‖
∞∑

n2=0

Qn2,k2Qn1,k1f(·, z2)‖2
L2(Sk2 )

dσk1(z1)

=
∞∑

n1=0

∞∑
n2=0

(1 + ζn1,k1)s1
∫
Sk1

‖Qn2,k2Qn1,k1f(·, z2)‖2
L2(Sk2 )

dσk1(z1)

=
∞∑

n1=0

∞∑
n2=0

(1 + ζn1,k1)s1‖Qn1,k1,n2,k2f‖2L2(Sk1×Sk2 )
≤ ‖f‖2Ws1

2 ⊗W
s2
2
,

where the second equality follows from the monotone convergence theorem, the third equality follows

from Qn1,k1f(·, z2) ∈ L2(Sk2), the fourth equality follows from Tonneli’s theorem, the fifth equality

follows from Theorem 3.2.10 in Groemer (1996) and the monotone convergence theorem, and the last

inequality follows from the fact that (1 + ζn2,k2) ≥ 1 for all n2 ≥ 0.
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Similarly,∥∥∥∫
Sk1

KT1(·, z̃1)f(z̃1, ·)dσk1(z̃1)−
∫
Sk1×Sk2

KT1(·, z̃1)KT2(·, z̃2)f(z̃1, z̃2)dσ(z̃1, z̃2)
∥∥∥2

L2(Sk1×Sk2 )

=

∫
Sk1×Sk2

(

∫
Sk1

KT1(z1, z̃1)f(z̃1, z2)dσk1(z̃1)−
∫
Sk1×Sk2

KT1(z1, z̃1)KT2(z2, z̃2)f(z̃1, z̃2)dσ(z̃1, z̃2))2dσ(z1, z2)

=

∫
Sk1

‖
∫
Sk1

KT1(z1, z̃1)f(z̃1, ·)dσk1(z̃1)−
∫
Sk1×Sk2

KT1(z1, z̃1)KT2(·, z̃2)f(z̃1, z̃2)dσ(z̃1, z̃2)‖2
L2(Sk2 )

dσk1(z1)

≤ (c̄T−s22 )

∫
Sk1

‖
∫
Sk1

KT1(z1, z̃1)f(z̃1, ·)dσk1(z̃1)‖2Ws2
2
dσk1(z1)

≤ (c̄T−s22 )‖
∫
Sk1

KT1(·, z̃1)f(z̃1, ·)dσk1(z̃1)‖2Ws1
2 ⊗W

s2
2

≤ (c̄T−s22 )‖f‖2Ws1
2 ⊗W

s2
2
,

where the last inequality follows from the following result.

∫
Sk1

KT1(z1, z̃1)f(z̃1, z2)dσk1(z̃1) =

T1∑
n1=0

χ(n1, T1)Qn1,k1f(z1, z2)

=

T1∑
n1=0

∞∑
n2=0

χ(n1, T1)Qn1,k1,n2,k2f(z1, z2).

Hence,

‖
∫
Sk1

KT1(·, z̃1)f(z̃1, ·)dσk1(z̃1)‖2Ws1
2 ⊗W

s2
2

=

T1∑
n1=0

∞∑
n2=0

χ(n1, T1)(1 + ζn1,k1)s1(1 + ζn2,k2)s2‖Qn1,k1,n2,k2f‖2L2(Sk1×Sk2 )
≤ ‖f‖2Ws1

2 ⊗W
s2
2
,

where the last inequality holds because χ(n1, T1) ≤ 1 for all n1 by Assumption C.1.

Lemma C.2. Let f̂−−θ be given as in (4.8) and let q ≥ 1. Then, ‖fθ − f̂θ‖qLq(Sk1×Sk2 )
≤ c̄‖f−−θ −

f̂−−θ ‖
q

Lq(Sk1×Sk2 )
for some c̄ > 0.

Proof of Lemma C.2. The proof is very similar to that of Theorem 5.1 in GK (See p.39). Thus, it is

omitted.

The following lemma is an analog of Theorem 3.2 in GK.

Lemma C.3. For every k1, k2 ≥ 2, there exists a positive constant B(k1, k2) such that for any

function s ∈ L2(Sk1 × Sk2) of the form s = s1s2 with s1 ∈
⊕T1

p1=0H
2p1+1,k1 and s2 ∈

⊕T2
p2=0H

2p2+1,k2,

it holds that

‖(HSk1 ⊗HSk2 )−1s‖L2(Sk1×Sk2 ) ≤ B(k1, k2)T
(k1+1)/2
1 T

(k2+1)/2
2 ‖s‖L2(Sk1×Sk2 ).
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Proof of Lemma C.3. As in the proof of Theorem 3.2 in GK, we first write (HSk1 ⊗ HSk2 )−1 as a

combinations of unbounded operators with non-positive eigenvalues. Define

P1s ≡
∞∑
p1=0

∞∑
p2=0

1

λ1(4p1 + 3, k1)λ2(4p2 + 1, k2)

∫
Sk1×Sk2

q4p1+3,4p2+1,k1,k2(·, ·, z̃1, z̃2)s(z̃1, z̃2)dσ(z̃1, z̃2)

P2s ≡
∞∑
p1=0

∞∑
p2=0

1

λ1(4p1 + 1, k1)λ2(4p2 + 3, k2)

∫
Sk1×Sk2

q4p1+1,4p2+3,k1,k2(·, ·, z̃1, z̃2)s(z̃1, z̃2)dσ(z̃1, z̃2)

P3s ≡
∞∑
p1=0

∞∑
p2=0

1

λ1(4p1 + 1, k1)λ2(4p2 + 1, k2)

∫
Sk1×Sk2

q4p1+1,4p2+1,k1,k2(·, ·, z̃1, z̃2)s(z̃1, z̃2)dσ(z̃1, z̃2)

P4s ≡
∞∑
p1=0

∞∑
p2=0

1

λ1(4p1 + 3, k1)λ2(4p2 + 3, k2)

∫
Sk1×Sk2

q4p1+3,4p2+3,k1,k2(·, ·, z̃1, z̃2)s(z̃1, z̃2)dσ(z̃1, z̃2).

We then write (HSk1 ⊗ HSk2 )−1 = P1 + P2 − P3 − P4. By Theorem 3.2 in Ditzian (1998) and

the triangle inequality, there exists a constant B(k1, k2) such that for all s ∈ (
⊕T1

p1=0H
2p1+1,k1) ⊗

(
⊕T2

p2=0H
2p2+1,k2),

‖(HSk1 ⊗HSk2 )−1s‖L2(Sk1×Sk2 ) ≤
B(k1, k2)

λ(2T1 + 1, k1)λ(2T2 + 1, k2)
‖s‖L2(Sk1×Sk2 ).

The claim of the lemma then follows from Eq. (9.11) in GK.

Lemma C.4. Suppose Assumption 4.1 holds. Then, A ∈ Ws1
2 (Sk1) ⊗Ws2

2 (Sk2), B,D ∈ Ws1
2 (Sk1),

and C,E ∈Ws2
2 (Sk2).

Proof of Lemma C.4. Note that A,BC, and DE are in L2(Sk1 × Sk2). Since f−−θ = A + BC + DE,

the Sobolev norm of f−−θ being finite implies that the same must be true for A, BC, and DE. Hence,

A ∈ Ws1
2 (Sk1) ⊗Ws2

2 (Sk2). Since B only depends on t1 but not on t2, and C only depends on t2

but not on t1, ‖BC‖Ws1
2 (Sk1 )⊗Ws2

2 (Sk2 ) = ‖B‖Ws1
2 (Sk1 )‖C‖Ws2

2 (Sk2 ) < ∞. A similar result holds for DE.

Therefore, B,D ∈Ws1
2 (Sk1), and C,E ∈Ws2

2 (Sk2).

Proof of Theorem 4.2. First, by Lemma C.2, ‖fθ− f̂θ‖2L2(Sk1×Sk2 )
≤ c̄‖f−−θ − f̂−−θ ‖

2
L2(Sk1×Sk2 )

for some

c̄ > 0. Hence, it suffices to derive ‖f−−θ − f̂−−θ ‖
2
L2(Sk1×Sk2 )

. Notice that

‖f−−θ −f̂
−−
θ ‖L2(Sk1×Sk2 ) ≤ ‖Â−A‖L2(Sk1×Sk2 ) + ‖B̂‖L2(Sk1 )‖Ĉ − C‖L2(Sk2 ) (C.1)

+ ‖B − B̂‖L2(Sk1 )‖C‖L2(Sk2 ) + ‖D̂‖L2(Sk2 )‖Ê − E‖L2(Sk1 ) + ‖D − D̂‖L2(Sk2 )‖E‖L2(Sk1 ). (C.2)

Note that L2-norms of B,C,D, and E are finite by Lemma C.4. Further, as we show below,

‖B̂‖L2(Sk1 ) = Op(1) and ‖D̂‖L2(Sk2 ) = Op(1) since they converge to ‖B‖L2(Sk1 ) <∞ and ‖D‖L2(Sk2 ) <

∞ respectively.

We now work with ‖Â−A‖L2(Sk1×Sk2 ) in (C.1). First, we define two hypothetical estimators: ÂIT
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the “infeasible trimmed estimator” and ÂI the “infeasible estimator” defined by

ÂIT (t1, t2) ≡ 1

N

N∑
i=1

4Wi + 1

faZ(Z1i, Z2i)
H−1

Sk1
(K−T1

(·, Z1i))(t1)H−1
Sk2

(K−T2
(·, Z2i))(t2)

ÂI(t1, t2) ≡ 1

N

N∑
i=1

4Wi + 1

fZ(Z1i, Z2i)
H−1

Sk1
(K−T1

(·, Z1i))(t1)H−1
Sk2

(K−T2
(·, Z2i))(t2)

Now write

Â−A = (Â− ÂIT )− (ÂIT − E[ÂIT ])− (E[ÂIT ]− E[ÂI ])− (E[ÂI ]−A). (C.3)

The first term is the stochastic component due to plug-in; the second term is the stochastic com-

ponent of the infeasible trimmed estimator; the third term is trimming bias; and the forth term is

approximation bias.

For Â− ÂIT , by Lemma C.3 and the triangle inequality, it follows that:

‖Â− ÂIT ‖L2(Sk1×Sk2 ) (C.4)

=

∥∥∥∥∥(H1 ⊗H2)−1 1

N

N∑
i=1

4Wi + 1

faZ(Z1i, Z2i)
K−T1

(z1, Z1i)K
−
T2

(z2, Z2i)

(
faZ(Z1,i, Z2,i)

f̂aZ(Z1,i, Z2,i)
− 1

)∥∥∥∥∥
L2(Sk1×Sk2 )

(C.5)

≤ c̄T (k1+1)/2
1 T

(k2+1)/2
2 (lnN)r‖ 1

N

N∑
i=1

K−T1
(z1, Z1i)K

−
T2

(z2, Z2i)‖L2(Sk1×Sk2 ) max
i=1,··· ,N

∣∣∣∣∣faZ(Z1,i, Z2,i)

f̂aZ(Z1,i, Z2,i)
− 1

∣∣∣∣∣ .
(C.6)

We now decompose the L2-norm in (C.6) as ‖H1‖L2(Sk1×Sk2 ) + ‖H2‖L2(Sk1×Sk2 ), where

H1(z1, z2) ≡ 1

N

N∑
i=1

|K−T1
(z1, Z1i)K

−
T2

(z2, Z2i)| − E|K−T1
(z1, Z1i)K

−
T2

(z2, Z2i)|

H2(z1, z2) ≡ E|K−T1
(z1, Z1i)K

−
T2

(z2, Z2i)|.

Now, we calculate the convergence rate of H1. First, consider E[‖H1‖2L2 ]. Note that

E[‖H1‖2L2(Sk1×Sk2 )
] =

∫
Sk1×Sk2

E[H1(z1, z2)2]dσ(z1, z2).

Further,

E[H1(z1, z2)2] ≤ 1

N
E
(
|K−T1

(z1, Z1i)K
−
T2

(z2, Z2i)|2
)

≤ c̄

N
‖K−T1

(z1, ·)‖2L2(Sk1 )
‖K−T2

(z2, ·)‖2L2(Sk2 )
≤ c̄

N
T k1

1 T k2
2 ,

for some constant c̄ > 0, where the second inequality follows from Assumption C.2, and the third
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inequality follows from (9.15) and Lemma 9.2 in GK. Hence, it holds that

T
k1+1

2
1 T

k2+1
2

2 (lnN)r‖H1‖L2(Sk1×Sk2 ) = Op(N
−1/2(lnN)rT

2k1+1
2

1 T
2k2+1

2
2 ). (C.7)

Regarding H2, by Assumptions C.1 (i) and C.2,

‖H2‖L2(Sk1×Sk2 ) ≤ c̄‖‖K
−
T1

(·2, ·1)K−T2
(·2, ·1)‖L1(Sk1×Sk2 )‖L2(Sk1×Sk2 ) (C.8)

≤ c̄σ(Sk1 × Sk2)1/2‖K−T1
(·2, ·1)K−T2

(·2, ·1)‖L1(Sk1×Sk2 ) = O(1), (C.9)

where we used the fact that (z1, z2) 7→ ‖K−T1
(z1, ·1)K−T2

(z2, ·1)‖L1(Sk1×Sk2 ) is a constant map. By (C.6),

(C.7), and (C.9), it follows that

‖Â− ÂIT ‖L2(Sk1×Sk2 ) ≤ c̄
{
Op(N

−1/2(lnN)rT
2k1+1

2
1 T

2k2+1
2

2 ) +Op((lnN)rT
k1+1

2
1 T

k2+1
2

2 )

}
(C.10)

× max
i=1,··· ,N

∣∣∣∣∣faZ(Z1,i, Z2,i)

f̂aZ(Z1,i, Z2,i)
− 1

∣∣∣∣∣ . (C.11)

We now turn to ‖ÂIT − E[ÂIT ]‖L2 . By Lemma C.3, it follows that

‖ÂIT − E[ÂIT ]‖L2(Sk1×Sk2 ) ≤ c̄T
(k1+1)/2
1 T

(k2+1)/2
2 (lnN)r (C.12)

× ‖ 1

N

N∑
i=1

K−T1
(z1, Z1i)K

−
T2

(z2, Z2i)− E[K−T1
(z1, Z1i)K

−
T2

(z2, Z2i)]‖L2(Sk1×Sk2 ) (C.13)

= Op(N
−1/2(lnN)rT

2k1+1
2

1 T
2k2+1

2
2 ), (C.14)

where the last inequality follows from (C.7).

Now we consider the trimming bias: ‖E[ÂIT ] − E[ÂI ]‖L2(Sk1×Sk2 ). Let SN ≡ {(z1, z2) : 0 <

fZ(z1, z2) < (lnN)−r} and note that |fZ(z1, z2)(lnN)r − 1| ≤ 1 on this set. We may then write

E[ÂIT ]− E[ÂI ] =

∫
SN

E[4Wi + 1|Z1 = z1, Z2 = z2]

×H−1
Sk1

(K−T1
(z1, ·))(t1)H−1

Sk2
(K−T2

(z2, ·))(t2)(fZ(z1, z2)(lnN)r − 1)dσ(z1, z2).

By Proposition 2.2 in GK (applied twice), Lemma C.3, and by the fact that |fZ(z1, z2)(lnN)r−1| ≤ 1

on SN , it follows that

‖E[ÂIT ]− E[ÂI ]‖L2(Sk1×Sk2 )

≤ 5‖H−1
Sk1

(K−T1
(z1, ·))(t1)‖L2(Sk1 )‖H

−1
Sk2

(K−T1
(z1, ·))(t2)‖L2(Sk2 )σ(SN ) ≤ c̄T

k1+1
2

1 T
k2+1

2
2 σ(SN ), (C.15)

for some c̄ > 0. We note that, under the choice of T1 and T2 in (4.9), ‖E[ÂIT ] − E[ÂI ]‖L2(Sk1×Sk2 )

vanishes faster than other terms by Assumption C.2 (ii).
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For the approximation bias, we note that A ∈Ws1
2 (Sk1)⊗Ws2

2 (Sk2) by Assumption 4.1 and Lemma

C.4. Hence, Lemma C.1 ensures

‖E[ÂI ]−A‖L2(Sk1×Sk2 )

= ‖
∫
Sk1×Sk2

A(t̃1, t̃2)K−T1
(t1, t̃1)K−T1

(t2, t̃2)dσ(t̃1, t̃2)−A(t1, t2)‖L2(Sk1×Sk2 ) ≤ c̄(T
−s1 ∨ T−s2), (C.16)

for some c̄ > 0 by Assumption C.1 (iii). Now, by (C.11), (C.14), (C.15), and (C.16), we have

‖Â−A‖L2(Sk1×Sk2 ) =

{
Op(N

−1/2(lnN)rT
2k1+1

2
1 T

2k2+1
2

2 ) +Op((lnN)rT
k1+1

2
1 T

k2+1
2

2 )

}
(C.17)

× max
i=1,··· ,N

∣∣∣∣∣faZ(Z1,i, Z2,i)

f̂aZ(Z1,i, Z2,i)
− 1

∣∣∣∣∣ (C.18)

+Op(N
−1/2(lnN)rT

2k1+1
2

1 T
2k2+1

2
2 ) (C.19)

+O(T
k1+1

2
1 T

k2+1
2

2 σ(SN )) +O(T−s11 ∨ T−s22 ). (C.20)

A similar argument ensures that the stochastic orders of ‖B̂ −B‖L2Sk1 ) and ‖D̂ −D‖L2(Sk2 ) are

{
Op(N

−1/2(lnN)rT
2kj+1

2
j ) +Op((lnN)rT

kj+1

2
j )

}
× max
i=1,··· ,N

∣∣∣∣∣f
a
Zj

(Zj,i)

f̂aZj (Zj,i)
− 1

∣∣∣∣∣ (C.21)

+Op(N
−1/2(lnN)rT

2kj+1

2
j ) +O(T

kj+1

2
j σ(SjN )) +O(T

−sj
j ), (C.22)

where j = 1 for ‖B̂ − B‖L2(Sk1 ) and j = 2 for ‖D̂ −D‖L2(Sk2 ). We also note that these results follow

directly from Theorem 5.1 in GK.

Now, for Ĉ, we again define infeasible estimators as follows.

ĈIT (t2) ≡ 1

N

N∑
i=1

2WiH−1
Sk2

(K−T2
(·, Z2i))(t2)KT1(c1, Z1i)

faZ2
(Z2i|c1)faZ1

(Z1i)

ĈI(t2) ≡ 1

N

N∑
i=1

2WiH−1
Sk2

(K−T2
(·, Z2i))(t2)KT1(c1, Z1i)

fZ2(Z2i|c1)fZ1(Z1i)
.

Similar to the analysis of ‖Â − ÂIT ‖L2(Sk1×Sk2 ), the stochastic component of the plug-in estimator
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obeys

‖Ĉ − ĈIT ‖L2(Sk2 ) ≤ B(k2, 2)T
k2+1

2
2 (lnN)2r‖ 1

N

N∑
i=1

K−T2
(·, Z2i))(t2)KT1(c1, Z1i)‖L2(Sk2 ) (C.23)

× max
i=1,··· ,N

∣∣∣∣∣faZ2
(Z2i|c1)faZ1

(Z1i)

f̂aZ2
(Z2i|c1)f̂aZ1

(Z1i)
− 1

∣∣∣∣∣ (C.24)

= {Op(N−1/2(lnN)2rT
k2+1

2
2 ) +Op((lnN)2rT

k2+1
2

2 )} × max
i=1,··· ,N

∣∣∣∣∣faZ2
(Z2i|c1)faZ1

(Z1i)

f̂aZ2
(Z2i|c1)f̂aZ1

(Z1i)
− 1

∣∣∣∣∣ ,
(C.25)

where we used Lemma C.3 the fact that ‖KT1(c1, ·)‖∞ < ∞, which follows from (4.4), (B.8), and

t 7→ Lk1
n1

(t) being bounded on [0, 1]. Similarly, again by applying Lemma C.3, it follows that

‖ĈIT − E[ĈIT ]‖L2(Sk2 ) = Op(N
−1/2(lnN)2rT

k2+1
2

2 ). (C.26)

Below, we let S1N ≡ {(z1, z2) : 0 < fZ1(z1) < (lnN)−r} and U2N ≡ {(z1, z2) : 0 < fZ2(z2|c1) <

(lnN)−r}. For the trimming bias, we may then write

E[ĈIT ]− E[ĈI ] =

∫
Sk1×Sk2

E[2Wi|Z1 = z1, Z2 = z2]H−1
Sk2

(K−T2
(·, z2))(t2)KT1(c1, z1) (C.27)

×
{
fZ2(z2|c1)fZ1(z1)(lnN)2r − 1)1{(z1, z2) ∈ S1N ∩ U2N} (C.28)

+ (fZ2(z2|c1)(lnN)r − 1)1{(z1, z2) ∈ U2N \ S1N} (C.29)

+ (fZ1(z1)(lnN)r − 1)1{(z1, z2) ∈ S1N \ U2N}
}fZ2(z2|z1)

fZ2(z2|c1)
dσ(z1, z2). (C.30)

By Proposition 2.2 in GK (applied twice) and Lemma C.3, it then follows that

‖E[ĈIT ]−E[ĈI ]‖L2(Sk2 ) (C.31)

≤ 5B(k2, 2)T
k2+1

2
2 ‖K−T2

(·, z2)‖L2(Sk2 )‖KT1(c1, ·)‖L2(Sk2 ) ×
∫
S1N∪U2N

fZ2(z2|z1)

fZ2(z2|c1)
dσ(z1, z2)

(C.32)

≤ c̄T
k2+1

2
2 |fZ1(c1)|

∫
S̄1N

fZ1(z1)−1dσk1(z1), (C.33)

where S̄1N is the projection of S1N to Sk1 . Finally, by Assumption 4.1, we have C ∈Ws1
2 (Sk2). Hence,

by Assumption C.1 (iii),

‖E[ĈI ]− C‖L2(Sk2 ) = ‖
∫
Sk2

C(t̃2)K−T2
(t2, t̃2)dσk2(t̃2)− C(t2)‖L2(Sk2 ) ≤ c̄T

−s2 . (C.34)
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Bt (C.25), (C.26), (C.30), and (C.34), we have

‖Ĉ − C‖L2(Sk2 ) = {Op(N−1/2(lnN)2rT
k2+1

2
2 ) +Op((lnN)2rT

k2+1
2

2 )} × max
i=1,··· ,N

∣∣∣∣∣faZ2
(Z2i|c1)faZ1

(Z1i)

f̂aZ2
(Z2i|c1)f̂aZ1

(Z1i)
− 1

∣∣∣∣∣
(C.35)

+Op(N
−1/2(lnN)2rT

k2+1
2

2 ) +O(T
k2+1

2
2 )|fZ1(c1)|

∫
S1N

fZ1(z1)−1dσk1(z1)) +O(T−s2).

(C.36)

Similarly,

‖Ê − E‖L2(Sk1 ) = {Op(N−1/2(lnN)2rT
k1+1

2
1 ) +Op((lnN)2rT

k1+1
2

1 )} × max
i=1,··· ,N

∣∣∣∣∣faZ1
(Z1i|c2)faZ2

(Z2i)

f̂aZ1
(Z1i|c2)f̂aZ2

(Z2i)
− 1

∣∣∣∣∣
(C.37)

+Op(N
−1/2(lnN)2rT

k1+1
2

1 ) +O(T
k1+1

2
1 )|fZ2(c2)|

∫
S2N

fZ2(z2)−1dσk2(z2)) +O(T−s1),

(C.38)

where S̄2N ≡ {z2 ∈ Sk2 : 0 < fZ2(z2) < (lnN)−r}.
Given these results, we choose T1 and T2 so that we may balance the variance, which is of the

order Op(N
−1/2(lnN)r(T

2k1+1
2

1 + lnN + 1)(T
2k2+1

2
2 + lnN + 1)) and the bias, which is of the order

O(T−s11 ∨ T−s22 ). This leads to the choice of Tj in (4.9). Under this choice, the convergence rate in

(4.10) follows.

Appendix D: Proof of Theorem 5.1

Theorem D.1. Let λn := λ(n, 1) be the eigenvalues of the hemispherical transform HS1 to the

Fourier basis ϕn(t) = (2π)−1 exp(−int). A singular system (Φn, ϕn, σn) for non-zero singular values

of Tc is given by the singular values

σn ≡
1

2π

( ∑
n1+n2=n

λ2
n1
λ2
n2

) 1
2

n ∈ Z,

the following functions in L2(S1 × S1)

Φn ≡
1

2πσn

∑
n1+n2=n

λn1λn2ϕn1ϕn2 ,

and the Fourier basis ϕn ∈ L2(S1). I.e., TcΦn = σnϕn.

Proof of Theorem D.1. Note that all Φn and ϕn have norm 1. We show that Φn are the eigenfunctions
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of T ∗c Tc and σ2
n the corresponding eigenvalues. Let us start with the observation

Tc(ϕn1ϕn2) =
1

2π
λn1λn2ϕn1+n2

which allows to characterize T ∗c by

1

2π
λn1λn2 = 〈Tc(ϕn1ϕn2), ϕn1+n2〉L2(S1) = 〈ϕn1ϕn2 , T ∗c ϕn1+n2〉L2(S1×S1).

Hence,

T ∗c ϕn =
1

2π

∑
n1+n2=n

λn1λn2ϕn1ϕn2 .

This sum exists in L2(S1 × S1) because the λn are square-summable. Now we can compute

T ∗c Tc(Φn) = T ∗c Tc

(
1

2πσn

∑
n1+n2=n

λn1λn2ϕn1ϕn2

)

= T ∗c

(
1

4π2σn

∑
n1+n2=n

λ2
n1
λ2
n2
ϕn

)

=
1

8π3σn

( ∑
n1+n2=n

λ2
n1
λ2
n2

) ∑
ñ1+ñ2=n

λñ1λñ2ϕñ1ϕñ2

= σ2
n

(
1

2πσn

∑
ñ1+ñ2=n

λñ1λñ2ϕñ1ϕñ2

)
= σ2

nΦn.

Hence, all Φn are eigenfunctions to the eigenvalue σ2
n. In addition, the first step of the last computation

shows that Tc(Φn) = σnϕn. Thus, Tc is a bijection between span{Φn|n ∈ Z} and L2(S1). So, there

can be no further eigenfunction which is not in the null space of T ∗c Tc. This completes the proof.

Corollary D.1. If ϕn is an odd function on S1, i.e. n is an odd number, then σn = 2−1/2λn and

Φn(z1, z2) = (2
√

2π)−1(ϕn(z1) + ϕn(z2))

Proof of Corollary D.1. If ϕn is odd, then ϕn = 2πϕn1ϕn2 holds only if one of the functions is odd and

the other one is even. The eigenvalues λn vanish for even functions that are non constant. Hence, only

ϕn(z1)ϕ0(z2) and ϕ0(z1)ϕn(z2) contribute to the sums in the definitions of σn and Φn. This shows

the assertion.

Corollary D.2. If ϕn is an odd spherical harmonic on Sk and λn the corresponding eigen value of

the hemispehrical transform, then 〈Tcfθ, ϕn〉 = λn/2(a0,n + an,0).

Proof of Corollary D.2. The argument to proof this corollary is the same as for Corollary D.1. Hence,

it is omitted.
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Appendix E: Figures
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