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ABSTRACT

Consumer review websites such as Yelp.com leverage the wisdom of the crowd, with each product
being reviewed many times (some with more than 1000 reviews). Because of this, the way in which
information is aggregated is a central decision faced by consumer review websites. Given a set of reviews,
what is the optimal way to construct an average rating? We offer a structural approach to answering
this question, allowing for (1) reviewers to vary in stringency (some reviewers tend to leave worse
reviews on average) and accuracy (some reviewers are more erratic than others), (2) reviewers to be
influenced by existing reviews, and (3) product quality to change over time. We apply this approach
to reviews from Yelp.com to derive optimal ratings for each restaurant (in contrast with the arithmetic
average displayed by Yelp). Because we have the history of reviews for each restaurant and many
reviews left by each reviewer, we are able to identify these factors using variation in ratings within
and across reviewers and restaurants. Using our estimated parameters, we construct optimal ratings
for all restaurants on Yelp, and compare them to the arithmetic averages displayed by Yelp. As of
the end of our sample, a conservative finding is that roughly 25-27% of restaurants are more than 0.15
stars away from the optimal rating, and 8-10% of restaurants are more than 0.25 stars away from the
optimal rating. This suggests that large gains could be made by implementing optimal ratings. Much
of the gains come from our method responding more quickly to changes in a restaurant’s quality. Our
algorithm can be flexibly applied to many different review settings.
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1 Introduction

The digital age has transformed the way that consumers learn about product quality. Web-

sites ranging from Yelp and TripAdvisor to eBay and Amazon use crowdsourcing to generate

product ratings and reviews. This has dramatically increased the amount of information con-

sumers have when making a decision. The value of this information increases in the number

of reviews being left. However, the more reviews that are left, the more time-consuming and

di⇥cult it becomes for a consumer to process the underlying information. This calls for the

platform to generate an easy-to-understand metric that summarizes existing reviews on a spe-

cific subject. In this paper, we develop a method to analyze and aggregate reviews, and apply

this method to restaurant reviews from Yelp.com.

How should consumer review websites present information to readers? In principle, one

could simply present all of the underlying reviews and allow consumers to decide for themselves

how to aggregate information. In fact, there are some websites that do this, and hence avoid

the need to aggregate information. Yet a growing literature has demonstrated that the impact

of information depends not only on the informational content but also on the salience and

simplicity of the information (Brown et al 2010, Luca and Smith forthcoming , Pope 2009). In

the case of Yelp, for instance, consumers respond directly to the average rating even though

this is coarser than the underlying information (Luca 2011). Because of consumer inattention,

the method chosen to aggregate information is of first-order importance.

Currently, many review websites (including Yelp) present an arithmetic mean of all reviews

written for a given product. Implicitly, this method of aggregation treats each review as

an equally informative noisy signal of quality. In other words, arithmetic average is only

optimal under very restrictive conditions - such as when reviews are unbiased, independent,

and identically distributed signals of true quality.

The goal of this paper is to move toward optimal aggregation of consumer reviews. We

consider an aggregate rating to be optimal if two conditions are met. First, observable prefer-

ences and biases of di�erent types of consumers must be separated from a consumer’s vertical

signal of quality. Second, reviews must be weighted to account for informational content, with

more weight endogenously assigned to reviews containing more information. This includes

both the fact that some reviewers may be more accurate than others and the fact that prod-

uct quality may change over time. The product of this paper is a single aggregated measure

of vertical quality.

To derive an optimal aggregation algorithm, we develop a structural framework that allows

reviewers to vary in accuracy (some reviewers are more erratic than others), stringency (some

reviewers leave systematically lower ratings), and reputational concerns (some reviewers care

more about reputation on Yelp than others, and hence prefer not to deviate from prior reviews).

Our framework also accounts for the fact that a restaurant’s quality can change over time,

which implies that concurrent restaurant quality is better reflected in recent reviews than in

early reviews.
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Because we have the entire history of reviews for each restaurant and many reviews left

by each reviewer, we are able to identify these factors using variation in ratings within and

across reviewers and restaurants. For example, stringency of a reviewer can be identified

using restaurant and reviewer-type fixed e�ects. Similarly, accuracy of a reviewer can be

identified by variation in how far di�erent reviewers are (in expectation) from the long-run

average rating of the restaurants they review. To identify changes in restaurant quality, we

impose the assumption that the evolution of restaurant quality follows a martingale process

by calendar time, and estimate the underlying parameters. Our model also allows restaurant

ratings to follow a common time trend since the first Yelp review of a restaurant, which could

capture a linear trend of reviewer stringency relative to the first review of the same restaurant,

or a linear trend of true quality in addition to the martingale evolution of quality.

Using our estimated parameters, we then construct optimal average ratings for each restau-

rant on Yelp, and compare them to the simple arithmetic mean by Yelp. The results depend

on how we interpret a significant downward trend of ratings within a restaurant. If this “chill-

ing” e�ect is interpreted as reviewer bias only (relative to the first review), we find that, by the

end of the sample, more than half of restaurants have their Yelp-style simple average ratings

di�er from the optimal by more than 0.15 stars, and more than one-quarter of restaurants

have Yelp-style average ratings di�er from the optimal by more than 0.25 stars. If the above

chilling e�ect is interpreted as changes in true quality, the absolute di�erence between simple

and optimal average ratings is still more than 0.15 stars for 25-27% of restaurants, and more

than 0.25 stars for 8-10% of restaurants by the end of the data sample.

Most of the optimal-vs-simple-average di�erence is driven by evolution of restaurant qual-

ity. This is because the simple average weights a restaurant’s first review the same as it

weights the thousandth review. In contrast, our algorithm reduces the weight assigned to

early reviews and hence more quickly adapts to changes in quality. Reviewer reputation, on

the other hand, has little impact on the optimal average in the Yelp setting, even though

reputational concerns may be an important part of the decision to become a Yelp reviewer to

begin with. For example, "elite" status is a designation given by Yelp to prolific reviewers,

who leave what Yelp deems to be higher quality reviews.1 Our model shows that elite and

non-elite reviewers have di�erent signal precision and reputational concerns. Elite reviewers

provide ratings with higher precision; these ratings are also closer to a restaurant’s long-run

average rating. Moreover, estimates suggest that elite reviewers are more likely to incorporate

previous reviews of the same restaurant, which can be explained by elite reviewers having a

greater reputation concern on Yelp. These reputation concerns (i.e. popularity concerns), as

well as the high signal precision of elite reviewers, suggest that the aggregate rating should

give more weight to elite reviews. However, at least in our data, reviewer heterogeneity in

signal precision and reputational concern explain much less of the optimal-vs-simple-average

1Elite status initiates from a nomination from the Yelp reviewers (can be the reviewer herself), and the
final designation decision is made by Yelp based on the reviewer’s Yelp activeness.
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di�erence than the martingale evolution of restaurant quality and the overall time trend in

consumer reviews.

Although our algorithm is derived from Yelp reviews, it could be applied to virtually any

website that relies on consumer ratings to convey information of product or service quality.

This contributes to the small, but growing literature on information aggregation as well as the

literature on consumer reviews. Li and Hitt (2008) find that book reviews on Amazon tend

to trend downward overtime, which they attribute to selection, with early purchasers tending

to be those who have the strongest preferences for the book, providing further motivation for

the need for optimal aggregation. Glazer et al. (2008) have theoretically considered optimal

ratings in the context of health plan report cards. Another approach to aggregate the in-

formation is via demand estimation. Based on hotel reservation data from Travelocity.com,

which include consumer-generated reviews from Travelocity.com and TripAdvisor.com, Ghose,

Ipeirotis and Li (forthcoming) estimate consumer demand for various product attributes and

then rank products according to estimated “expected utility gain.” In comparison, we at-

tempt to aggregate consumer reviews without complementary data on how consumers use

such reviews when they choose a product. This situation is faced by many opinion generation

websites that o�er consumer ratings but do not sell the rated products. Readers interested in

consumer usage of Yelp reviews can refer to Luca (2011) who combines the same Yelp data

as in this paper with restaurant revenue data from Seattle2. Finally, our model of reputation

concerns is also related to the vast literature on information cascade and the growing literature

on observation learning (e.g. Banerjee 1993).

The rest of the paper is organized as follows. Section 2 presents the model and describes

how we estimate and identify key parameters in the model. Section 3 describes the data and

presents reduced-form results. Section 4 presents structural estimates. Section 5 presents

counterfactual simulations, and compares optimal average ratings to arithmetic average rat-

ings. Section 6 concludes.

2 Model and Estimation

Consider a consumer review website that has already gathered many consumer reviews on

many products over a period of time. Our goal is to optimally summarize existing reviews

into a single metric of concurrent quality for each product. Simple average assumes that every

consumer review follows an i.i.d. distribution around a stable level of true product quality.

This assumption can be violated if true quality evolves over time, if reviews are sequentially

2More generally, there is strong evidence that consumer reviews are an important source of information in
a variety of settings. Chevalier and Mayzlin (2006) find predictive power of consumer rating on book sales.
Both Godes and Mayzlin (2004) and Duan, Gu, and Whinston (2008) find the spread of word-of-mouth a�ect
sales by bringing the consumer awareness of consumers, the former measure the spread by the “the dispersion
of conversations across communities” and the latter by the volume of reviews. Duan et al. (2008) argues that
after the endogenous correlation among ratings, online user reviews has no significant impact on movies’ box
o⇥ce revenues.
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correlated, and if reviewers di�er in stringency and accuracy. This section presents a structural

model that captures all these elements in a coherent framework. Our goal in the model is to

incorporate economically important parameters while maintaining econometric tractability.

2.1 Basic Setup

Consider reviewer i who writes a review for restaurant r at calendar time tn.3 As the nth

reviewer of r, she observes her own signal srtn as well as all the n� 1 reviews of r before her

{xr1, xr2, ..., xrn�1}. srtn is assumed to be an unbiased but noisy signal of the true quality

µrtn such that srtn = µrtn + ⌅rn where ⌅rn ⌃ N(0,↵2
i ). We assume the noise has the same

variance when reviewer i visits di�erent restaurants. This way, we can denote the precision

of reviewer i’s information as vi =
1
⇤2
i
. Because r and n jointly identify a unique reviewer, we

use i interchangeably with the combination of r and n.

We consider two incentives for reviewer i to report. The first incentive is to speak out her

own emotion and obtain personal satisfaction from it. If satisfaction comes from expressing

the true feeling, this incentive motivates her to report her own signal. If i obtains psychological

gains from reporting the signal with certain deviation, which we denote as stringency ⌃rn �= 0,

then she will be motivated to report her signal plus her stringency measure.4 The second

incentive of submitting a Yelp review is to make a best guess of restaurant quality so that she

can earn popularity or reputation in the future. For simplicity, we assume popularity is defined

by the extent to which Yelp readers agree with her review. If there are many more readers

than reviewers and each reader expresses her true feeling when she collates her experience with

the review, popularity of i would decrease with the distance between her review xrtn and the

restaurant’s actual quality µrtn .5 Combining the above two incentives, reviewer i, as the nth

reviewer of restaurant r, chooses her review xrtn in order to minimize the following objective

function:

Frn = (1� ⌦i)(xrtn � srtn � ⌃rn)
2 + ⌦i[xrtn � E(µrtn |xrt1 , xrt2 , ...xrtn�1 , srtn)]

2

where E(µrtn |xrt1 , xrt2 , ...xrt{n�1} , srtn) is the posterior belief of true quality µrtn and ⌦i is the

weight that i puts on her popularity on Yelp. The optimal review to minimize Frn is:

xrtn = (1� ⌦i)(⌃rn + srtn) + ⌦iE(µrtn |xrt1 , xrt2 , ..xrtn�1 , srtn)

= ⌥rn + (1� ⌦i)srtn + ⌦iE(µrtn |xrt1 , xrt2 , ..xrtn�1 , srtn)

where ⌥rn = (1 � ⌦i)⌃rn represents the stringency or bias of reviewer i for restaurant r.

3We assume that a reviewer submits one review for a restaurant. Therefore, the order of the review indicates
the reviewer’s identity. On Yelp.com, reviewers are only allowed to display one review per restaurant.

4Some reviewers are by nature generous and obtain psychological gains from submitting reviews that are
more favorable than what they actually feel. In this case, �rn > 0 represents leniency.

5In this sense the reviewer is a truth seeker. Another interpretation of the popularity incentive is the desire
to contribute to a public good by submitting the best estimate of restaurant quality.
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Note that popularity weight ⌦i can be negative if reviewer i enjoys being far away from the

best estimate of restaurant quality. This incentive to deviate is di�erent from stringency ⌃rn

because ⌃rn is independent of any reviewer before i but the incentive to deviate due to negative

⌦i depends on the reviews available before tn.

Popularity weight ⌦i allows sequential correlations among reviews of the same restaurant,

even after taking out restaurant fixed e�ects. This is because a reviewer that cares about

popularity on Yelp will extract useful information from past reviews and incorporate them into

her own estimate of restaurant quality. This assumption is consistent with the findings of Chen

et al. (2010), who use a field experiment on MovieLens to show that some users dramatically

change their movie ratings when they are presented with some social information (e.g. the

median user’s total number of movie ratings). Of course, this is not the only explanation for

correlations across reviews; one can argue that the first review attracts certain types of patrons

who have similar (or opposite) tastes to the first reviewer and this selection process generates

correlations across reviews. Without external information to pin down such selection, the

resulting sequence of reviews can be observationally equivalent to what arises from popularity

concerns. In this sense, we would like readers to take popularity weight ⌦i as an indicator of

how a review correlates with past reviews. As long as later reviews capture information from

past reviews, optimal aggregation needs to weigh early and late reviews di�erently.

2.2 Restaurant Quality Change

If restaurant quality is constant over time and every reviewer is unbiased, then aggregation

of consumer reviews is straightforward: even a simple average of reviews will generate an

unbiased indicator of true quality, and optimal aggregation can only improve e⇥ciency by

giving more weight to more precise reviewers or reviewers with greater popularity concerns.

However, the assumption of constant restaurant quality is unrealistic. The restaurant

industry is known for high labor turnover as well as high entry and exit rates. A new chef or

a new manager could change a restaurant significantly; even a sloppy waiter could generate

massive consumer complaints in a short time. In reality, consumer reviews and restaurant

quality may move together because reviews reflect restaurant quality, or restaurant owners

may adjust a restaurant’s menu, management style, or labor force in response to consumer

reviews. Without any direct data on restaurant quality, it is di⇥cult to separate the two.

In light of the di⇥culty, we impose an independent structure on restaurant quality change

and shy away from an endogenous generation of restaurant quality in response to consumer

reviews. This way, we focus on measures of restaurant quality rather than reasons underlying

quality change.

In particular, we assume quality evolution follows a martingale process:

µrt = µr(t�1) + �t
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where t denotes the units of calendar time since restaurant r has first been reviewed and the

t-specific evolution �t conforms to �t ⌃ i.i, d N(0,↵2
⇥ ). This martingale process introduces a

positive correlation of restaurant quality over time,

Cov(µrt, µrt⇤) = E(µr0 +
tX

⌅=1

�⌅ � E(µrt))(µr0 +
t⇤X

⌅=1

�⌅ � E(µrt⇤))

= E(
tX

⌅=1

�⌅

t⇤X

⌅=1

�⌅ ) =
tX

⌅=1

E(�2⌅ ) if t < t⇤,

which increases with the timing of the earlier date (t) but is independent of the time between

t and t⇤.

Recall that xrtn is the nth review written at time tn since r was first reviewed. We can

express the nth reviewer’s signal as:

srtn = µrtn + ⌅rn

where µrtn = µrtn�1 + �tn�1+1 + �tn�1+2 + ...+ �tn.

Signal noise ⌅rn is assumed to be i.i.d. with V ar(srtn |µrtn) = ↵2
i where i is the identity of the

nth reviewer. The variance of restaurant quality at tn conditional on quality at tn�1 is,

V ar(µrtn |µrtn�1) = V ar(�tn�1+1 + �tn�1+2 + ...+ �tn) = (tn � tn�1)↵
2
⇥ = �tn↵

2
⇥ .

Note that the martingale assumption entails two features in the stochastic process: first, con-

ditional on µrtn�1 , µrtn is independent of the past signals {srt1 , ..., srtn�1}; second, conditional

on µrtn , srtn is independent of the past signals {srt1 , ..., srtn�1}. As shown later, these two

features greatly facilitate reviewer n’s Bayesian estimate of restaurant quality. This is also

why we choose martingale over other statistical processes (such as AR(1)).

2.3 Reviewer Heterogeneity and Reviewer-Restaurant Match

In addition to random changes of restaurant quality and random noise in reviewer signal,

reviewers may di�er in stringency, popularity concern, and signal precision. Optimal informa-

tion aggregation - in our definition - would correct for these di�erences. For the purposes of

this paper, we are estimating match based on characteristics that we observer - which is the

review history for each reviewer and their Yelp-granted elite status.

Yelp assigns elite status to a subset of reviewers who have been nominated - either by

themselves or by other Yelp users - due to a perceived high quality of reviews. We take Yelp

“elite” as a signal of a reviewer’s type, and hence take elite status as given. We then allow elite

reviewers to have {⌦e,↵2
e} while all non-elite reviewers have {⌦ne,↵2

ne}. If elite reviewers are

able to obtain more precise signals of restaurant quality and care more about their reputation

on Yelp, we expect ⌦e > ⌦ne and ↵2
e < ↵2

ne. Elite and non-elite reviewers could also di�er in
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stringency ⌥e and ⌥ne. However, we do not know true restaurant quality and can at best only

identify the stringency di�erence between elite and non-elite reviewers.

In theory, reviewer stringency, popularity concern and signal precision can all vary over

time. From observed reviewer history, we define several reviewer attributes at the time of a

particular review. One is the number of reviews that reviewer i has submitted for Seattle

restaurants before writing a new review for restaurant r at time t. This reflects reviewer expe-

rience with Seattle restaurants. We denote it as NumRevit. The second is review frequency

of i at t, defined as the number of reviews i has submitted up to t divided by the number of

calendar days from her first review to t. Review frequency allows us to capture the possibility

that a reviewer who has submitted two reviews 10 months apart is fundamentally di�erent

from a reviewer who has submitted two reviews within two days, even though both reviewers

have the same number of reviews on Yelp. We denote review frequency of i at t as FreqRevit.

The third and fourth reviewer attributes attempt to capture reviewer-restaurant match.

In reality, reviewers may have their own preference for cuisine type and sort themselves into

di�erent restaurants at di�erent times. Although we do not have enough information to

model the sorting explicitly, we can describe reviewer-restaurant match by characteristics of

the restaurants a reviewer has written reviews for in the past. In particular, we collect 15

cuisine type indicators describing whether a restaurant is traditional American, new American,

European, Mediterranean, Latin American, Asian, Japanese, seafood, fast food, lounge, bar,

bakery/co�ee, vegetarian, or others. These categories are defined by Yelp and not mutually

exclusive. We also use Yelp’s definition of price categories (1,2,3,4) and code a missing price

category as category 0. With these restaurant characteristics in hand, we use factor analysis to

decompose them into eight orthogonal factors Fr = [fr,1, ..., fr,8]. By construction, the sample

mean of each factor is normalized to 0 and sample variance normalized to 1. We then collapse

a reviewer history into two metrics: the first metric, Cit, measures the average restaurant that

this reviewer has written reviews for before she writes her mth review at time t, the second

metric, TasteV arit, measures the variety of restaurants that she has written reviews for before

her mth review at time t. In particular, they are defined as:

Cit =
1

m� 1

m�1X

l=1

Fil,

TasteV arit =

vuut
8X

q=1

1

m� 2

m�1X

l=1

(fil,q � f il,q)2

where m�1 is the number of Seattle restaurants reviewer i has written reviews for before t, Fil

denotes the vector of factors of the lth restaurant that i visited, and f il,q =
1

m�1

Pm�1
l=1 fil,q is

the mean in factor q among the m�1 restaurants that i visited. If reviewer i has not reviewed
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any restaurant yet, we set her taste equal to the mean characteristics of restaurants (Cit = 0).

When reviewer i writes a review for restaurant r, we have a pair of {Cit, Fr} to describe the

reviewer taste and restaurant characteristics. Assuming that reviewer i reviews restaurant r

at time t, we define the reviewer-restaurant matching distance MatchDrit as

MatchDrit = (Cit � Fr)
⇤(Cit � Fr).

The smaller the matching distance (MatchDrit) , the better the match is between the restau-

rant and the reviewer’s review history.

To summarize, we have five reviewer attributes: elite status (Elitei), number of reviews

(NumRevit), frequency of reviews (FreqRevit), matching distance between reviewer and

restaurant (MatchDrit), and taste for variety (TasteV arit). By construction, all but Elitei

vary within a reviewer over time, and only MatchDrit depends on the restaurant that the

reviewer is about to review at time t.

Readers should take MatchDrit and TasteV arit as controls for observable sorting be-

tween restaurants and reviewers. In reality, who reviews which restaurant at what time can

be driven by past reviews of every restaurant and thus endogenous. Some unobservable tastes

of reviewers will lead to specific values of MatchDrit and TasteV arit; hence controlling for

MatchDrit and TasteV arit indirectly controls for these unobservable tastes. Other unobserv-

able attributes of reviewers may not have any influence on MatchDrit and TasteV arit, but

they a�ect how reviewers read past reviews and then visit the restaurant and write their own

reviews. This will generate correlations along the order of reviews, and such correlations are

captured in popularity weight ⌦i.

2.4 Time Trend

In addition to all the above, we also record the number of calendar days since restaurant r

received its first review on Yelp until a reviewer is about to enter the review for r at time t.

This variable, denoted as Agert, attempts to capture any linear trend in consumer reviews that

is missed by the above-mentioned reviewer or restaurant variables. By definition, this trend –

which turns out to be negative over time – is subject to multiple interpretations. It is possible

that true restaurant quality declines over time for every restaurant. Note that this decline is

in addition to the martingale evolution of restaurant quality because the martingale deviation

is assumed to have mean zero. It is also possible that later reviewers are always harsher than

early reviewers. Either interpretation can be a result of a “chilling” e�ect as described in Li and

Hitt (2008), who also lay out these competing hypotheses. We are unable to distinguish these

underlying stories, although the interpretation does a�ect how we calculate optimal estimate

of true quality. We will come back to this point when we present the optimal average ratings

in Section 5.

To summarize, we assume:

8



⌦i = Elitei · ⌦e + (1� Elitei) · ⌦ne
↵2
i = Elitei · ↵2

e + (1� Elitei) · ↵2
ne

⌥ri = Agert · �age +NumRevit · �numrev + FreqRevit · �freqrev

+MatchDrit · �matchd + TasteV arit · �tastevar

+ Elitei · [⌥(e�ne)0 +Agert · ⇥day +NumRevit · ⇥numrev + FreqRevit · ⇥freqrev
+MatchDrit · ⇥matchd + TasteV arit · ⇥tastevar]

where {⌦e, ⌦ne} capture the popularity concern of elite and non-elite reviewers, {↵2
e ,↵

2
ne} cap-

ture the signal precision of elite and non-elite reviewers, {�age} captures the catch-all trend in

quality or stringency change, {�freqrev,�matchd,�tastevar} capture how restaurant and reviewer

attributes change the stringency of non-elite reviewers, and {⌥(e�ne)0,⇥day,⇥numrev,⇥freqrev,

⇥matchd,⇥tastevar}capture how restaurant and reviewer attribute change the stringency dif-

ference between elite and non-elite reviewers. We have tried to allow ⌦i and ↵2
i to vary by

restaurant and reviewer attributes other than elite status, but none of them turns out to be

significant from zero, so we ignore them here for the simplicity of illustration.

2.5 Data Generation Process

The above model includes random change in restaurant quality, random noise in reviewer

signal, reviewer heterogeneity in stringency, popularity concern, and signal precision, and a

linear time trend, as well as the quality of the match between the reviewer and the restaurant.

Overall, one can consider the data generation process as the following three steps:

1. Restaurant r starts with an initial quality µr0 when it is first reviewed on Yelp. Denote

this time as time 0. Since time 0, restaurant quality µr evolves in a martingale process

by calendar time, where an i.i.d. quality noise �t ⌃ N(0,↵2
⇥ ) is added on to restaurant

quality at t so that µrt = µr(t�1) + �t.

2. A reviewer arrives at restaurant r at time tn as r’s nth reviewer. She observes the

attributes and ratings of all the previous n � 1 reviewers of r. She also obtains a

signal srtn = µrtn + ⌅rn of the concurrent restaurant quality where the signal noise

⌅rn ⌃ N(0,↵2
� ) .

3. The reviewer chooses an optimal review that minimizes her loss of deviating from her

own experience and her best estimate of concurrent restaurant quality. The optimal

review takes the form

xrtn = ⌥rn + ⌦nE(µrtn |xrt1 , xrt2 , .., xrt2 , ..., srtn) + (1� ⌦n)srtn
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where E(µrtn |xrt1 , xrt2 , .., xrt2 , ..., srtn) is the best guess of the restaurant quality at tn

by Bayesian updating.

4. The reviewer is assumed to know the attributes of all past reviewers so that she can de-

bias the stringency of past reviewers. The reviewer also knows that there is a linear trend

in reviewer stringency which changes ⌥ by d⌥ per unit of calender time. If there is a linear

trend in restaurant quality, it is just a linear term added to E(µrtn |xrt1 , .., xrtn , srtn) and

not distinguishable from the linear trend in ⌥ in the above expression for xrtn .

In the Bayesian estimate of E(µrtn |xrt1 , xrt2 , .., xrt2 , ..., srtn), we assume the nth reviewer of r

is fully rational and has perfect information about the other reviewers’ observable attributes,

which according to our model determines the other reviewers’ stringency (⌥), popularity pref-

erence (⌦), and signal noise (↵�). With this knowledge, the nth reviewer of r can back out each

reviewer’s signal before her thus the Bayesian estimate of E(µrtn |xrt1 , xrt2 , .., xrt2 , ..., srtn) can

be rewritten as E(µrtn |srt1 , ...srtn). Typical Bayesian inference implies that reviewer’s pos-

terior about restaurant quality is a weighted average of previous signals and her own signal,

while weight increases with signal precision. What is complicated is that restaurant quality

evolves by martingale and therefore current restaurant quality is better reflected in recent

reviews. Accordingly, the Bayesian estimate of E(µrtn |srt1 , ...srtn) should give more weight to

more recent reviews even if all reviewers have the same stringency, popularity preference and

signal precision. The analytical derivation of E(µrtn |srt1 , ...srtn) is presented in Appendix A.

2.6 Maximum Likelihood Estimation

According to the derivation of E(µrtn |srt1 , ...srtn) in Appendix A, we can write out the proba-

bility distribution of all the Nr reviews of restaurant r, namely L(xrt1 , xrt2 , ..xrtNr
), and then

estimate parameters by maximizing the combined log likelihood of all reviews of all R restau-

rants logL =
PR

r=1 logL(xrt1 , xrt2 , ..xrtNr
). The parameters to be estimated are restaurant

quality at time 0 ({µr0}Rr=1), the standard deviation of the martingale noise of restaurant qual-

ity change (↵⇥), the standard deviation of reviewer signal noise (↵e,↵ne), reviewer popularity

concerns (⌦e, ⌦ne), parameters a�ecting reviewer stringency (�numrev,�freqrev,�matchd,�tastevar

, ⌥(e�ne)0 , ⇥day,⇥numrev,⇥freqrev,⇥matchd,⇥tastevar), and the parameter for the catch-all time

trend (�age).

Note that consistent estimation of all other parameters depends on the consistency of

{µr0}Rr=1 , which requires the number of reviews of each restaurant goes to infinity. But in

our data, the number of reviews per restaurant has a mean of 33 and a median of 14. When

we use simulated data to test the MLE estimation of observed reviews, we find that poor

convergence of {µr0}Rr=1 a�ects the estimation of other key parameters of interest.

To circumvent the problem, we estimate the joint likelihood of {xr2�xr1, xr3�xr2, ..., xrNr�
xrNr�1}Rr=1 instead. In this way we subtract the initial restaurant qualities {µr0}Rr=1 and only

need to estimate the other parameters. Because the covariance structure of {xrt2 �xrt1 , xrt3 �
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xrt2 , ..., xrtNr
�xrtNr�1} is complicated, we use the change of variable technique to express the

likelihood f(xrt2 � xrt1 , ..., xrtNr
� xrtNr�1) by f(srt2 � srt1 , ..., srtNr

� srtNr�1),

f(xrt2 � xrt1 , ..., xrtNr
� xrtNr�1) = |J�s⇥�x|�1f(srt2 � srt1 , ..., srtNr

� srtNr�1).

More specifically, f(xrt2 � xrt1 , ..., xrtNr
� xrtNr�1) is calculated in three steps:

• Step 1: To derive f(srt2 � srt1 , ..., srtNr
� srtNr�1), we note that srtn = µrtn + ⌅n and

thus, for any m > n, n ⇧ 2, the variance and covariance structure can be written as:

Cov(srtn � srtn�1 , srtm � srtm�1)

=Cov(⌅rn � ⌅rn�1 + �tn�1+1 + ...+ �tn , ⌅rm � ⌅rm�1 + �tm�1+1 + ...+ �tm)

=

8
<

:
�↵2

rn if m = n+ 1

0 if m > n+ 1

V ar(srtn � srtn�1)

=↵2
rn + ↵2

rn�1 + (tn � tn�1)↵
2
⇥ .

Denoting the total number of reviewers on restaurant r as Nr , the vector of the first

di�erences of signals as �sr = {srtn � srtn�1}Nr
n=2, and its covariance variance structure

as ⇥�sr , we have

f(�sr) = (2 )�
Nr�1

2 |⇥�sr |�(Nr�1)/2exp(�1

2
�s⇤r⇥

�1
�sr

�sr).

• Step 2: We derive the value of {srt, ...srtNr
}Rr=1 from observed ratings {xrt1 , ...xrtNr

}Rr=1

. Given

xrtn = ⌥rn + ⌦nE(µrtn |srt1 , ...srtn) + (1� ⌦n)srtn

and E(µrtn |srt, ...srtn) as a function of {srt1 , ...srtn} (formula in Appendix A), we can

solve {srt1 , ...srtn} from {xrt1 , ...xrtn} according to the recursive formula in Appendix

B.

• Step 3: We derive |J�s⇥�x|�1 or |J�x⇥�s|, where J�x⇥�s is such that

2

64
srt2 � srt1

...

srtn � srtn�1

3

75 = J�x⇥�s

2

64
xrt2 � xrt1

...

xrtn � xrtn�1

3

75

the analytical form of J�x⇥�s is available given the recursive expression for xrtn and

srtn .
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2.7 Identification

Since our model includes restaurant fixed e�ects (denoted as time-0 quality µr0), all our

parameters are identified from within-restaurant variations.

In particular, reviewer popularity weight ⌦ and signal variance ↵2 are identified by the

variance-covariance structure of reviews within a restaurant. To see this point, consider a

simple case where restaurant quality is stable (i.e. ↵2
⇥ = 0). If every one has the same signal

variance ↵2
� , for the nth review, we have

V ar(xrn) = ⌦n(2� ⌦n)
↵2
�

n
+ (1� ⌦n)

2↵2
� .

As we expect, it degenerates to ↵2
� if the nth reviewer puts zero weight on popularity (⌦n = 0).

When ⌦n > 0, V ar(xrn) declines with n. If the nthreviewer cares about popularity only

(⌦n = 1), we have the familiar form of V ar(xrn) = ⇤2
�
n . In other words, ⌦ determines the

degree to which the variance of reviews shrinks over time, while ↵2
� determines the variance

of the first review.

There are overidentifications for ⌦ and ↵2
� , because they a�ect not only the variance of

reviews but also the covariance between reviews. In the above simple case, the covariance of

xrm and xrn for m < n is:

Cov(xrm, xrn) =
⌦nPn
j=1 vj

which declines with n, increases with ⌦n, and does not depend on the distance between m and

n. This is because the covariance of reviews is generated from reviewer n’s belief of restaurant

quality, and reviewer n values the information content of each review equally according to the

Bayesian principle.

Nevertheless, popularity concern is not the only force that generates correlation between

reviews within a restaurant. The other force is restaurant quality evolution. How do we

separate the two? The above description has considered the case with popularity concern but

no restaurant quality change (↵2
⇥ = 0 and ⌦ > 0). Now let us consider a model with ↵2

⇥ > 0

and ⌦ = 0, which implies that restaurant quality evolves over time but reviewers do not

incorporate information from previous reviews. In this case, the correlation between the nth

and the (n� k)th reviews only depends on the common quality evolution before the (n� k)th

reviewer, not the order distance (k) or time distance (tn � tn�k) between the two reviews.

In the third case of ↵2
⇥ > 0 and ⌦ > 0, the nth reviewer is aware of quality evolution and

therefore put more weight on recent reviews and less weight on distant reviews. In particular,

one can show that the correlation between the nth and the (n� k)th reviews depends on not

only the order of review but also the time distance between the two reviews. In short, the

separate identification of the noise in quality evolution (↵2
⇥ ) from reviewer popularity concern

and signal precision{⌦,↵2
� } comes from the calendar time distance between reviews.
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As stated before, we allow both ⌦ and ↵2
� to di�er between elite and non-elite reviewers.

Because we observe who is elite and who is not, {⌦e,↵2
e , ⌦ne,↵

2
ne} are identified by the variance-

covariance structure of reviews as well as the arrival order of elite and non-elite reviewers.

The constant bias di�erence between elite and non-elite reviewers ( ⌥(e�ne)0) is identified

by the mean di�erence of elite and non-elite reviews on the same restaurant. The other

parameters that a�ect reviewer stringency, namely {�age,�numrev,�freqrev,�matchd,�tastevar},

{⇥day,⇥numrev,⇥freqrev,⇥matchd,⇥tastevar}, are identified by how the observed reviews vary by

restaurant age, reviewer attributes at time t, reviewer-restaurant match, and their interaction

with elite status.

2.8 Optimal Estimate of Restaurant Quality

Following the above model, if we interpret the linear trend of ratings (Agert · �age in ⌥rn)

as reviewer bias (relative to the first reviewer), the optimal estimate of restaurant quality at

time tn is defined as E(µrtn |xrt1 , xrt2 , .., xrtn), which is equivalent to E(µrtn |srt1 , srt2 , .., srtn)
and we know how to calculate it according to Appendix A. If we interpret the linear trend of

ratings (Agert · �age in ⌥rn) as changes in true quality, the optimal estimate of quality at tn

is E(µrtn |xrt1 , xrt2 , .., xrtn) +Agertn · �age. We will report both in Section 6.

3 Data and Reduced Form Results

Our empirical setting is the consumer review website Yelp.com. Yelp began in 2004, and

contains reviews for a variety of services ranging from restaurants to barbers to dentists,

among many others, although most Yelp reviews are for restaurants. For a more complete

description of Yelp, see Luca (2011). In this paper, we use the complete set of restaurant

reviews that Yelp displayed for Seattle, WA at our data download time in February 2010.

In total, we observe 134,730 reviews for 4,101 Seattle restaurants in a 64-month period from

October 15, 2004 to February 7, 20106. These reviews come from 18,778 unique reviewers, of

which 1,788 are elite reviewers and 16,990 are non-elite as of the end of our data period. Elite

reviewers are determined via a nomination process, where a reviewer can self-nominate or be

nominated by someone else. We do not observe the nomination process, and instead only

observed whether someone ultimately becomes elite. For our purposes, we take elite status as

fixed. Since Yelp reviewers can leave reviews for restaurants throughout the US but our data

cover Seattle only, we do not have the complete Yelp history of each reviewer. Another data

limitation is that our data contain star ratings given in each review (one to five), but do not

include the text. Each reviewer is only allowed to display one review per restaurant, but Yelp

allows reviewers to update their existing reviews. If a review has been updated, the review

6Yelp identifies reviews that either violate terms of service or seem to be fake, as determined by an algorithm,
and removes these reviews from the main Yelp webpage and ratings. We do not observe these reviews, and do
not consider them in our analysis.
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date records the time of update and there is no information indicating the date or content

of the replaced review. Due to this data limit, we treat updated reviews the same as other

reviews. In our data set, 64.53% of reviewers have written at least two reviews and 23.7%

have written at least five reviews. which provide us with within-reviewer variation.

Table 1 summarizes the main variables in our analysis. In the first panel of restaurant

characteristics, we note that on average each restaurant receives 33 reviews but the distribution

is highly skewed to the right, ranging from 1 to 698 with a standard deviation of 50 and median

of 14. At the end of our data, an average restaurant receives 0.156 reviews per day. This masks

enormous heterogeneity of review frequency; if we calculate review frequency per restaurant

at any time of a new review, it varies from 0.001 to as large as 28 reviews per day. The arrival

of reviews also varies over the lifetime of a restaurant: on average, the second review of a

restaurant comes 155 days later than the first review, while the average lag is 34 days between

the 11st and 12nd reviews and 21 days between the 21st and 22nd reviews. This is partly

driven by the fact that most restaurants receive only a handful number of reviews far apart,

while a small fraction of restaurants receive more reviews that arrive much more frequently.

The second panel of Table 1 summarizes the data by reviewers. Although less than 10%

of reviewers are elite, an average elite reviewer writes five times more reviews than a non-elite

reviewer (24 versus 5). As a result, elite reviewers account for 32.5% of all reviews. Comparing

elite and non-elite reviewers, they are similar in average rating per review (both around 3.7

stars), but elite reviewers have a higher review frequency, a closer match with the restaurants

they review, and slightly higher variety of taste. The latter two are partly driven by elite

reviewers writing more reviews in our data.

3.1 What Explains the Variation in Yelp ratings?

Although the goal of Yelp is to provide information about a restaurant’s quality, there are

many other factors that determine a restaurant’s Yelp rating, for all of the reasons discussed

throughout this paper. To get a feel for how significant these other factors are, Table 2 presents

the variance explained by di�erent factors.

A linear regression using reviewer fixed e�ects shows that reviewer fixed e�ects alone

accounting for 23.3% of the total variation in Yelp ratings. This suggests that individual

stringency can have a large e�ect on the final rating. One way to think about restaurant

quality is to use restaurant fixed e�ects, and its variation alone explains 20.86% of total

variation in Yelp ratings.

Incorporating both reviewer and restaurant fixed e�ects, we can explain almost 36% of total

variations. This is less than adding the variations accountable by reviewer or restaurant fixed

e�ects separately, suggesting that there is systematic match between reviewers and restaurants.

In fact, we are able to control for some of this matching through our proxies for match quality,

which further explains the variation in Yelp ratings.
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3.2 Elite Reviewers

The data shows quite clearly that di�erent reviewers behave di�erently. It is possible to

segment these individuals into groups of reviewers. In particular, crowdsourced settings such

as Yelp, TripAdvisor, and Wikipedia identify reviewers they expect to be especially influential

and give them a special certification. On Yelp, this is the “elite” system. In this section, we

investigate the ways in which elite reviewers di�er from other reviewers. We are interested in

this for two reasons. First, this is an increasingly common way to structure review websites,

and therefore is of direct interest. Second, by segmenting reviewers, we can allow the weights

assigned to a given review to endogenously adjust for di�erent groups of reviewers.

Table 3 shows that elite and non-elite reviews are, in fact, systematically di�erent. The

significantly negative coe⇥cient of the elite dummy suggests that elite reviews deviate less

from the long-run average rating of the restaurant, suggesting that elite reviewers have more

precise signals (↵2
e < ↵2

ne) or care more about their popularity on Yelp (⌦e > ⌦ne).

The elite versus non-elite di�erence of rating is also presented in Figure 1. The left (right)

graph of Figure 1 shows the kernel density of a rating minus the restaurant’s average rating

beforehand (afterward), for elite and non-elite reviewers separately. An elite reviewer tends to

give a rating closer to the restaurant’s average ratings before or after her, one phenomenon to

be expected if elite reviewers have either more precise signal or greater popularity concerns.

3.3 Dynamics of the Review Process

This makes five empirical observations related to the dynamics of the reviews, which we use

to inform our model. In this section, we describe these e�ects, and highlight the relationship

between the reduced form and structural results.

3.3.1 Ratings are less variable over time

As detailed in Section 2, identification of our model relies on the extent to which the variance

of reviews shrinks over time within a restaurant. If reviewers tend to incorporate a restaurant’s

previous reviews (⌦ > 0), we should observe reviews to vary less and less over time around the

restaurant’s fixed e�ect. To check this intuition, we first obtain residual [⌅ri,yr after regressing

observed rating on reviewer, restaurant and year fixed e�ects (i.e. xri = µr+�i+⇤year+⌅ri,yr),

and then associate residual square ([⌅ri,yr2) with the order of a review (Nri) and whether the

review is written by an elite reviewer (i.e. [⌅ri,yr2 = ⇥0+⇥1Dri,elite+⇥2Nri+⇥3Nri⇥Dri,elite+

⇧ri). Table 3 shows the results of the latter regression. The significantly negative coe⇥cient

on the order of review in suggests that reviews deviate less and less over time from the average

rating of the restaurant. Such variance reduction is consistent with reviewers incorporating

previous reviews in their own review (⌦ > 0).
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3.3.2 Ratings trend downward over time

Our data shows that ratings within a restaurant tend to decline over time. Figure 2 plots [⌅ri,yr
by the order of reviews within a restaurant, in the fitted fractional polynomial smooth and

the corresponding 95% confidence interval. This is consistent with Li and Hitt (2008), who

document a downward trend in a product’s Amazon reviews over time. There are multiple

factors that could contribute to this downward trend.

First, it could be a selection e�ect, where a restaurant with a good rating tends to attract

new customers who do not like the restaurant as much as the old clientele. This is the

mechanism outlined by Li and Hitt (2008). If this were the primary driver of the result in

our setting, then we would expect later reviewers to be a worse fit for the restaurant. We do

find this, as discussed in section 3.3.4. However, this only explains a small component of the

downward trend. Because any estimated matching index clearly does not capture all aspects

of the match between a customer and a restaurant, we believe that there are contributing

factors as well.

An alternative possibility is that restaurants decline in quality over time.

3.3.3 Ratings are serially correlated

Positive popularity concerns also imply positive serial correlation of ratings within a restau-

rant. In other words, we should see a stronger correlation between the 3rd and 4th review than

between the 2nd and 4th. To check this, we regress the above-obtained rating residual [⌅ri,yr on

its lags within the same restaurant. As shown in Table 4, the residuals show strong, positive

correlation over time, while the correlation dampens gradually by the order distance between

reviews. This is clear evidence that reviews cannot be treated i.i.d. as the simple-average

aggregation assumes.

3.3.4 Restaurants find reviewers with less diverse taste over time

Table 5 presents reduced-form analysis regarding variations of reviewer-restaurant matching

distance (MatchDrit) and reviewer’s taste for variety (TasteV arrit). The first two columns of

Table 5 show that, within a restaurant, later reviewers tend to have less of a diverse taste. This

is consistent with the positive sorting hypothesis. And we did not find significant evidence

for “chilling” e�ect where the matching between between restaurant and reviewers gets worse

over time.

3.3.5 Reviewers find better matches over time

The last two columns of Table 5 examine variations within a reviewer, which turn out to be

quite di�erent from what we have seen within a restaurant. Within a reviewer, the later visited

(and reviewed) restaurants are better matched with the reviewer’s taste and the reviewer has

more taste for variety when she visits and reviews the later restaurants. This suggests that an
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average reviewer finds better matches over time, but is also more willing to seek variety. In

other words, MatchDrit and TasteV arrit capture at least part of the dynamic sorting between

restaurants and reviewers, although we do not model the sorting explicitly.

4 Results from Structural Estimation

The goal of our model is to estimate parameters that can then be used for optimal information

aggregation. As described in the model section, the parameters of interest pertain to (1) a

reviewer’s stringency and accuracy, (2) the extent to which a reviewer takes into account prior

reviews, (3) the likelihood that a restaurant has changed quality, and (4) the quality of the

match between the reviewer and the restaurant. We allow these parameters to vary between

groups of reviewers. As an example of how this would work, we compare the parameters for

elite and non-elite reviewers. We choose these subsets of reviewers because elite reviewers are

such a central part of the review system, as documented in section 3.

Table 6 presents structural estimation results in four columns. In Column (1), we estimate

the model under the assumptions that restaurant quality is fixed and reviewers have the

same signal precision, popularity weight, and stringency.The estimated signal precision and

popularity weight will ultimately be used to optimally aggregate reviews. Note that popularity

weight is statistically di�erent from zero, suggesting that reviewers are taking into account

the content of previous reviews. As we will see in the simulation section, this will cause later

reviews to receive more weight than early reviews.

In the rest of this section, we relax the assumptions to allow for elite reviewers to have

di�erent reviewing behavior, and to allow restaurants to change quality over time.

4.1 Elite Reviewers

In Column (2), we allow signal precision, popularity weight, and stringency to di�er by re-

viewer type. Specifically, we allow for elite reviewers to behave di�erently than other reviewers.

The estimates, as well as a likelihood ratio test between Columns (1) and (2), clearly suggests

that elite and non-elite reviewers di�er in both signal precision and popularity weight. Elite

reviewers put higher weight on past reviews and have better signal precision. That being said,

all reviewers put more than 75% weight on their own signals, and the noise in their signal is

quite large considering the fact that the standard deviation of ratings in the whole sample is

of similar magnitude as the estimated ↵eand ↵ne. In terms of stringency, Column (2) suggests

insignificant di�erence between elite and non-elite reviewers.

4.2 Restaurants with Changing Quality

Column (3) allows restaurant quality to change in a martingale process every quarter. As

we expect, adding quality change absorbs part of the correlation across reviews, and has

significantly reduced the estimate of ⌦, but the magnitude of ⌦e � ⌦ne is stable at roughly
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11-12%. With quality change, ⌦ne is estimated to be significantly negative, suggesting that a

non-elite reviewer tends to deviate from the mean perspective of the crowd before him, after

we allow positive autocorrelation across reviews due to restaurant quality change. Compared

to non-elite, elite reviewers are more positively influenced by the past crowd because their

popularity/reputation concerns motivate them to be closer to the other reviewers. Although

the quarterly noise in restaurant quality (↵⇥ = 0.1452) is estimated much smaller than the

noise in reviewer signal (↵e = 0.9293 and ↵ne = 0.9850), this amounts to substantial noise

over the whole data period because a random draw of � adds up to restaurant quality every

quarter. A likelihood ratio test between Column 3 and Column 2 favors the inclusion of

restaurant quality change.

In addition to restaurant quality change, Column (4) allows reviewer stringency to vary

by:

• the restaurant’s tenure (on Yelp) Agert, the quality of the match between the reviewer

and the restaurant MatchDrit ,

• the reviewer’s taste for variety TasteV arri,

• the number of reviews a reviewer has written NumRevit,

• the frequency with which a reviewer writes reviews RevFreqit, and

• the reviewer’s elite status.

The set of coe⇥cients that starts with µ+ ⌥ne describes the stringency of non-elite reviewers

(which are not identifiable from the time-0 restaurant quality), while the set of coe⇥cients that

starts with ⌥e � ⌥ne describes the stringency di�erence between elite and non-elite reviewers.

According to these coe⇥cients, reviewers are more stringent over time, indicating that there

is a “chilling e�ect.” This “chilling” e�ect is less for elite reviewers. Moreover, reviewers that

have written more reviews on Yelp match better with a restaurant, and have more diverse

tastes tend to be more stringent. In comparison, an elite reviewer behaves similar in terms

of matching distance and taste for variety, but her stringency does not vary significantly by

the number of reviews on Yelp. Again, likelihood ratio tests favor the full model of Column

4 over Columns 1-3, suggesting that it is important to incorporate restaurant quality change,

reviewer heterogeneity, and signal noise all at once.

A remaining question is, at what frequency does restaurant quality evolve? Given the lack

of hard evidence on this, Table 7 shows the full model estimation results with restaurant quality

evolving by month, quarter, and half-year. The main changes occur in the estimates for noise

of reviewer signal (↵e,↵ne), noise of quality evolution (↵⇥), and reviewers’ popularity weight

(⌦e, ⌦ne). This is not surprising because they are all identified by the variance-covariance

structure of reviews within a restaurant. Nevertheless, we are able to identify quality evolution

from reviewer signal and popularity preference because there are enormous variations in how
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close sequential reviews arrive. Clearly, the more frequent we allow restaurant quality to vary,

the smaller ↵⇥ is (because it captures quality change in a smaller calendar window), the lower

the popularity weight, and and the lower the reviewers’ signal noise (because more frequent

quality change absorbs more autocorrelations of nearby reviews). However, the di�erence

between elite and non-elite reviewers remains similar across the three columns of Table 7.

The likelihood reported at the end of Table 7 suggests that the raw data are better explained

by more frequent changes of restaurant quality.

4.3 Comparing to a Model of Limited Attention

One assumption underlying our structural model is reviewer rationality. One may argue that

the assumption of full rationality is unrealistic, given consumer preference for simple and easy-

to-understand metrics. Anecdotally, we know reviewers tend to pay more attention to detailed

information than those who only read reviews. To address the concern more rigorously, we

estimate an alternative model in which we assume that reviewers are naive and use the simple

average of a restaurant’s past rating as the best guess of quality. Recall in the full model that

the nthreviewer’s optimal review should be

xrtn = (1� ⌦n)(⌃rn + srtn) + ⌦nE(µrtn |xrt1 , xrt2 , ..xrtn�1 , srtn)

where E(µrtn |xrt1 , xrt2 , ...xrtn�1 , srtn) is the Bayesian posterior belief of true quality µrtn . If

the reviewer is naive, the optimal review will change to:

xrtn = (1� ⌦n)⇥ (⌃rn + srtn) + ⌦n ⇥ (
1

n� 1

n�1X

i=1

xrti)

where a simple average of past reviews 1
n�1

Pn�1
i=1 xrti replaces the Bayesian posterior

estimate of quality E(µrtn |xrt1 , xrt2 , ..xrt{n�1} , srtn).

In an unreported table, we compare the MLE result and log the likelihood of the Bayesian

and naive models, while allowing restaurant quality to update by quarter or half year.7 Ac-

cording to the Akaike information criterion (Akaike 1974), if we assume quality updates by

half year, the Bayesian model is 49,020.8 times as probable as the naive model to minimize the

information loss.8 Similarly, if we assume quality updates by quarter, we find the Bayesian

model is 2.41 ⇥ 108 times as probable as the naive model. This suggests that the Bayesian

model is more suitable for our data.
7In all specifications, we assume that the reviewer stringency term (⇥rt) only depends on MatchDrit,

TasteV arit, and Agert. Later on, we will redo this by adding NumRev and FreqRev in ⇥rt but they are
unlikely to change the results.

8Specifically, we have exp(AICBayesian �AICNaive) = exp(logLBayesian � logLNaive) = 49, 020.8.
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5 Counterfactual Simulations

This section presents three sets of counterfactual simulations. The first set highlights the role

of each modeling element in the optimal aggregation of simulated ratings. The second set

compares optimally aggregated ratings - as determined from our algorithm - to the arithmetic

average ratings currently presented on Yelp (and many other websites). The third set shows

the impact of shocks on a restaurant’s simple and optimal average ratings over time.

5.1 Counterfactuals Across Model Variations Based on Simulated Ratings

The structural results presented in Section 4 stress the importance of incorporating many

modeling elements in one single model. But how important is each element in its contribution

to an optimal aggregation of ratings? When optimally aggregating, we are making adjustments

to remove biases and choosing weights to maximize e⇥ciency. Essentially, we are trying to

find weights that will lead to information that is unbiased and as precise as possible. We

analyze this question through a series of counterfactual simulations.

The condition in which the simple average is an unbiased and e⇥cient summary of restau-

rant quality is the following: reviewer signals are i.i.d., restaurant quality is stable, and there

is no reviewer popularity weight or bias. To start, we take this condition as the benchmark. In

order to highlight how much optimal average is superior than the simple average in each model

variation, we add each variation separately to the benchmark and compare by simulation.

For figures 3 and 4, we consider a hypothetical restaurant with a fixed true quality/rating.

We then simulate the 95% confidence interval of average ratings that would occur under

di�erent aggregation procedures. For figure 5, we consider a hypothetical restaurant with

quality change following a martingale process. Because the quality is random variable in this

model, we compare the mean absolute error and the mean squared error of the two aggregation

procedures in estimating the true restaurant quality when each review is written.

The first model variation we consider allows reviewers to put positive weight on popularity.

When popularity concern is the only deviation from the assumption that reviews are i.i.d.,

then the arithmetic average is unbiased but ine⇥cient. Because later reviews have already

incorporated past reviews, an arithmetic average across all reviews assigns too much weight

to early reviews. As a result, the optimal average of ratings should give more weight to later

reviews. Figure 3 presents two cases, one with ⌦ = 1 and the other with ⌦ = 0.6, while

restaurant quality is fixed at 3 and reviewer’s signal noise is fixed at ↵� = 1. We create these

figures by simulating a large number of ratings according to the underlying model, and then

computing optimal versus simple average of ratings at each time of review. As shown in Figure

3, optimal average is more e⇥cient than simple average, and the e⇥ciency improvement is

greater if reviewers are more concerned about their Yelp popularity. However, the right graph

suggests that e⇥ciency gain over simple average is small even if the popularity weight is as

large as ⌦ = 0.6. Recall that our structural estimation of ⌦ never exceeds 0.25 , which suggests
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that the e⇥ciency gain from accounting for ⌦ in the optimal average is likely small in the real

data.

The second model variation is to allow elite reviewers to have signals that are of di�erent

precision than non-elite reviewers. Again, since we are not allowing for reviewers to di�er in

stringency or for restaurants to change quality, an arithmetic average is going to be unbiased

but ine⇥cient. Optimal aggregation endogenously assigns more weight to elite reviews, since

elite reviewers have reviews that are more precise. As shown in Figure 4, the more precise

the elite reviewers’ signals are relative to other reviewers, the larger the e⇥ciency gain is for

optimal average versus simple average.

The third model variation adds restaurant quality evolution to the benchmark. Unlike the

first two deviations from an i.i.d. distribution of reviews, failing to account for quality change

does lead to bias in the arithmetic average ratings. We present three graphs in Figure 5: the

first two allow the variance to change every quarterly restaurant quality change with di�erent

standard deviation in the noise of quality update, while the third one allows restaurant quality

to update monthly with the same ↵⇥ as in the second graph. Review frequency is simulated

using its empirical distribution as in the raw data. Comparison across the three graphs

suggests that the optimal average rating, which accounts for restaurant quality evolution,

leads to significant reduction in mean square errors especially when quality update is noisy or

frequent.

All three graphs of Figure 5 show the advantage of optimal average over simple average as

an estimator of the true restaurant quality when quality follows the assumed random process

with initial quality 3. To illustrate the magnitude of bias of optimal and simple average in

one realized path of quality, Figure 6 focuses on a hypothetical change of quality from 3 at

the beginning, to 2.5 at the 20th review, and to 3.25 at the 40th review. Reviewers believe

that true quality is updated by quarter. To focus on the e�ect of restaurant quality evolution,

Figure 6 fixes review frequency at 4.5 days per review. As shown in Figure 6, optimal average

tracks the actual quality change better than simple average.

Figure 7 highlights the importance of reviewer stringency (and its heterogeneity). Com-

pared to the benchmark situation, we allow reviewer stringency (⌥) to vary by restaurant

and reviewer characteristics (including the time trend by restaurant age) according to the

coe⇥cients presented in the last column of Table 6. Reviewer and restaurant characteristics

are simulated using their empirical distribution as observed in the raw data. The first graph

of Figure 7 assumes that the reviewer bias changes with restaurant age, but the restaurant

quality does not. And the second graph of Figure 7 assumes that the reviewer bias does not

change with restaurant age, and only the restaurant quality does. Both graphs show that

optimal average has corrected the bias in reviewer stringency and therefore reflects the true

quality, but simple average is biased due to the failure to correct reviewer bias. Figure 8

allows everything else (popularity weight, reviewer signal noise, and restaurant quality change

by quarter) and reruns the simulation. Again, because the restaurant quality is random, we
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use the mean absolute and squared errors to compare the optimal and simple average. The

graphs shows that the optimal rating represents the restaurant quality better and the gain is

larger when a restaurant receives larger number of reviews.9

5.2 Optimal Versus Simple Average for Real Yelp Data

We now compare optimal and simple average based on real Yelp ratings as observed in our

data. According to our structural estimates in Table 7, the noise of quality update (↵⇥ ) has

a standard deviation of 0.081 per month, which amounts to an average deviation of 0.28 stars

per year. This is a substantial variation over time as compared to the standard deviation of

1.14 stars in the whole data set over six years. Noise in reviewer signal is even larger, with a

standard deviation estimated to be between 0.9 and 1.

These two types of noise have di�erent implications for the relative advantage of optimal

average ratings: quality update implies that optimal average needs to give more weight to

recent reviews, which is not taken into account by simple average rating. In comparison,

simple average reduces the amount of signal noise by law of large number and will do so

e⇥ciently unless di�erent reviewers di�er in signal precision. Our estimates show a relatively

small di�erence between ↵e and ↵ne (⌅0.05), implying that optimal weighting due to reviewer

heterogeneity in signal noise is unlikely to lead to large e⇥ciency improvement. Another

di�erence between elite and non-elite reviewers is their weight on popularity, but the absolute

magnitudes of ⌦e and ⌦ne never exceed 0.2, suggesting that the e⇥ciency gain of optimal

average due to popularity concern is likely to be small as well. Reviewer’s stringency bias is

important in magnitude. We know from Table 1 that on average the second review is 155

days apart from the first review; according to the coe⇥cients on Agert, the second reviewer

(if non-elite) will give a rating 0.05 stars lower. Over the six year period in our data, the

stringency di�erence could be as substantial as 0.66 stars.

Including all these elements, we compute simple and optimal average ratings at the time

of every observed rating. This calculation is done for monthly, quarterly, and half-year quality

update separately, according to the structural estimates in Table 7. We then calculate the

di�erence between simple and optimal average, µsimple
rn � µoptimal

rn , for every observation, and

plot the mean and confidence interval of this di�erence by the order of review.

As shown in the first row of Figure 9 (assuming quality updates by quarter), simple

average rating is on average close to optimal average, but the confidence interval of their

di�erence ranges from -0.1 to 0.2 stars in early reviews and enlarges gradually as more reviews

accumulate. Within each restaurant, we calculate the percent of observations in which simple

average rating is more than 0.15 stars away from the optimal average rating. The bar chart

on the right hand side plots the histogram of restaurants by this percent. For example, the

9In the simulation with full model specifications, the assumption for restaurant age a�ecting restaurant
quality or reviewer bias is nonessential for comparing the mean absolute and squared errors of the two aggre-
gating methods. Optimal rating always corrects any bias in reviewer bias, and simple rating always reflects
the sum of the changes in quality and reviewer bias.
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second bar shows that roughly 124 restaurants (out of the total 4,101) have 5-10% of times

with simple average ratings more than 0.15 stars away from the optimal. Overall, 1,630

restaurants have at least 30% of times with simple average ratings more than 0.15 stars away

from the optimal. This suggests that optimal average rating is likely to generate substantial

improvement over simple average. The middle and bottom row-blocks of Figure 9 lead to

similar conclusion when we model quality update as monthly or half-year instead of quarterly.

Table 8 attempts to decompose the forces driving the di�erence between optimal and

simple average ratings. The above discussion treats time trend (Agert · �age) as reviewer

stringency (relative to the first reviewer). By this setting, the optimal average, calculated by

E(µrtn |xrt1 , xrt2 , .., xrtn), corrects for this trend while the simple average does not. The first

panel of Table 8 shows that, by this calculation, 53-55% of restaurants have simple average

ratings more than 0.15 stars away from the optimal by the end of the sample, and 26-29% of

restaurants have simple average more than 0.25 stars away from the optimal. If instead we

interpret the time trend (Agert · �age) as changes in restaurant quality, the optimal average

should be E(µrtn |xrt1 , xrt2 , .., xrtn) + Agert · �age. The second panel of Table 8 shows that,

after counting the linear trend as quality change (which means it does not contribute to the

di�erence between optimal and simple average), the absolute di�erence between simple and

optimal average rating is still more than 0.15 stars for 25-27% of restaurants, and more than

0.25 stars for 8-10% of restaurants by the end of the data sample.

Overall, in the Yelp setting, the di�erence between optimal and simple average is mostly

driven by restaurant quality updates (↵⇥) and the time trend (Agert · �age), and less by

popularity concerns (⌦), reviewer’s signal noise (↵�), or other terms in reviewer stringency

(⌥rt).

5.3 Impact of Shocks on Simple and Optimal Averages

Our last set of counterfactual simulations highlight the impact of shocks on rating summary.

Following the previous example where a restaurant’s true quality starts at 3 stars, jumps down

to 2.5 at the time of the 20th review, and jumps back to 3.25 at the 40th review, we consider

two types of shocks: one is a shock on true restaurant quality, and the other is a shock in the

form of an outlier rating from a particular reviewer.

For the former, Figure 10 presents three cases where the true quality shock (at 1.5 stars)

occurs exactly once at either the first, third, or fifth review. For each case, we simulate a large

number of reviewer ratings and compute the mean of simple average and optimal average at

each review time. The left graph of Figure 10 shows that, when the true quality shock occurs

at the time of the first review, both simple average and optimal average captures this shock

immediately. But over time when the shock is gone, optimal average recovers faster than

simple average and better tracks the concurrent restaurant quality. This is because, in an

environment of quarterly quality update, optimal average is designed to give more weight to
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recent reviews. The other two graphs of Figure 10 confirm this understanding: when the true

quality shock happens in the middle of the review history, optimal average is not only closer

to the true quality right after the shock, but also catches up faster with the recovered quality

later on.

What if the shock occurs in a submitted review instead of true restaurant quality? We

simulate this situation in Figure 11. In particular, the three graphs of Figure 11 assume an

outlier review of 1.5 stars was submitted as the first, third, or fifth review separately, while

the true restaurant quality remains at 3 stars until the time of the 20th review. All the other

reviews are simulated in a large number according to the underlying model. We then plot

true quality, simple average, and optimal average by order of review. The left graph of Figure

11 shows that, if the outlier review is the first review, over time optimal average has a better

ability to shed the influence of this outlier review, because it gives more weight to recent

reviews. The right and bottom graphs of Figure 11 suggest that optimal average is not always

the best; because it gives more weight to recent reviews, it gives more weight to the outlier

review right after it has been submitted, which makes optimal average ratings further away

from the actual quality in the short window after the outlier review. However, for the same

reason, optimal average also forgets about the outlier review faster than simple average, and

better reflects true quality afterward.

6 Conclusion

As consumer reviews are beginning to o�er unprecedented amounts of information, this paper

argues that the way in which information is aggregated becomes a central design question.

To address this question, we o�er a method to aggregate consumer ratings into an adjusted

weighted average for a given product, where the weights and adjustments are based on the

informational content of each review. The informational content, in turn, is empirically de-

termined based on variation in the reviewer characteristics (and review histories), as well as

the inferred likelihood that product quality has changed, with parameters set by a model of

reviewer behavior. Using the model, it is clear that optimally aggregated information deviates

significantly from arithmetic averages. Our method is applicable in a variety of settings. While

we have focused on consumer reviews, we could also use this to aggregate expert opinion. In

this section, we discuss limits of our model and directions for future research.

6.1 Selection of Reviewers

One limitation of our paper is that we do not observe the selection of consumers who decide to

leave a review. In practice, reviewers have selected to purchase a product and also selected to

leave a review. In principle, selection into a product would tend to skew ratings upward (you

are more likely to eat at a restaurant that you think is a good match). The decision to review

has an ambiguous e�ect, depending on whether people are more likely to review something
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after a good or bad experience. One could structurally measure this selection function by

imposing further assumptions on restaurant preferences. In fact, the information systems

literature has documented bimodal distributions of reviews in Amazon (Hu et al 2009), and

attributed this to tendency to review when opinions are extreme. While we do not model this

selection, we estimate the quality of a reviewer’s match to a restaurant using the history of

reviews (e.g. some reviewers tend to leave more favorable reviews for Thai food, while others

leave better reviews for pizza). Moreover, Yelp reviews do not have the bimodal distribution

found by Hu et al as evidence of significant selection problems. This may in part be due to

Yelp’s focus on encouraging social image and community interaction. We also account for

time trend and serial correlation of Yelp reviews within a restaurant, both of which could be

generated by reviewer selection.

Two concurrent papers are currently investigating the selection process. Chan et al. (2010)

uses a Bayesian learning model on data from a Chinese restaurant review website similar to

Yelp.com in order to estimate the way consumers use reviews. They focus on studying how

reviewer sorting is a�ected by social network connection and review content, so they do not

consider reviewers’ strategic reporting behavior as well as quality change. Our objective is

to uncover the optimal representation of restaurant quality, which is quite di�erent from

theirs. Wang et al. (2012) also study restaurant reviews, and examine how reviews can

influence reviewer behavior in exploring new restaurant choices. Although consumers’ variety

seeking behavior is not the main theme of our study, we treat it as a heterogeneous reviewer

characteristic that may influence reviewer rating. We find that reviewers with a wider variety

of reviewing experience are relatively more stringent in ratings.

6.2 Incentives to Write Reviews

Our paper has focused on taking an existing set of reviews and optimally aggregating them

to best reflect the quality of a product. An alternative mechanism to achieve this goal is

to use incentives to encourage people to leave more representative reviews. These incentives

often seem to rely on social image. There is a large theoretical literature studying social

image (Akerlof 1980, Bénabou and Tirole 2006). Theoretically modelling a crowdsourced

setting, Miller, Resnick and Zeckhauser (2005) present a model arguing that an e�ective way

to encourage high-quality review is rewarding reviewers if their ratings predict peer ratings.

Consistent with this theory, Yelp allows members to evaluate each other’s reviews, chat online,

follow particular reviewers, and meet at o⇤ine social events. It also awards elite status to

some qualified reviewers who have written a large number of reviews on Yelp. As shown in

our estimation, elite reviewers are indeed more consistent with peer ratings, have more precise

signals, and place more weight on past reviews of the same restaurant. Wang (2010) compares

Yelp reviewers with reviewers on completely anonymous websites such as CitySearch and

Yahoo Local. He finds that Yelp reviewers are more likely to write more reviews, productive

reviewers are less likely to give extreme ratings, and the same restaurants are less likely to
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receive extreme ratings on Yelp. Wang (2010) also finds that more prolific Yelp reviewers

have more friends on Yelp, receive more anonymous review votes per review, and display

more compliment letters per review. These findings motivate us to explicitly model reviewers’

reputational concern on Yelp and allow elite and non-elite reviewers to place di�erent value

on Yelp popularity.10

6.3 Transparency and Aggregation Decisions

Part of the motivation for this paper is that in almost every consumer review website, reviews

are aggregated, prompting questions about how one should aggregate reviews. In practice,

the most common way to aggregate reviews is using an arithmetic average, which is done

by Amazon, Yelp, TripAdvisor, and many others. As we have highlighted in this paper,

arithmetic average does not account for reviewer biases, reviewer heterogeneity, or changing

quality.

Another important caveat of our method is that there are reasons outside of our model that

may prompt a review website to use an arithmetic average. For example, arithmetic averages

are transparent and uncontroversial. If, for example, Yelp were to use optimal information

aggregation, they may be accused of trying to help certain restaurants due to a conflict

of interest (since Yelp also sells advertisements to restaurants). Hence, a consumer review

website’s strategy might balance the informational benefits of optimal information aggregation

against other incentives that may move them away from this standard, such as conflict of

interest (or even the desire to avoid perceived conflict of interest).

6.4 Customized Recommendations

Our paper has attempted to aggregate information into a single comparable signal of quality.

Once this is done, it could be extended to then customize recommendations based on the

readers horizontal prefences. For example, Netflix tailors recommendations based on other

reviewers with similar tastes. This type of recommendation relies both on an understanding

of underlying quality (as in this paper), as well as a sense of horizontal preferences of readers.

6.5 Text Analysis

In this paper, we have focused on using only numerical data. However, a productive literature

has begun to use text analysis to extract informational content from reviews. For examples,

see Ghose and Ipeirotis (2011), Archak, Ghose and Ipeirotis (2011) and Ghose, Ipeirotis, and

Li (2012). Ghose, Ipeirotis, and Li (2012) estimate the consumer demand model and argues

that the ranking systems should be designed to reflect consumer demand besides price and

star ratings. Ghose and Ipeirotis (2011) and Archak, Ghose, and Ipeirotis (2011) examine the

10There is a large literature on social image and social influence, with most evidence demonstrated in lab
or field experiments. For example, Ariely et al. (2009) show that social image is important for charity giving
and private monetary incentives partially crowd out the image motivation.
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impact of di�erent product attributes and reviewer opinions on product sales, and propose

a model to identify segments of text review that describe products’ multifaceted attributes.

Although this is beyond the scope of the current paper, one could incorporate text analysis

methods into optimal information aggregation.

6.6 Generalizing Our Approach

In principle, the method o�ered in our paper could be applied to a variety of review systems.

Implementing this could also be done in conjunction with the other considerations discussed

above. Moreover, when generalizing our method, the relative importance of various factors

in our model could vary by context. For example, quality change is not an issue for a fixed

product such as book, movie, etc, reviewer heterogeneity could be much more important

when expert and non-expert reviews are common but treated di�erently by the market (say

for books and movies). The flexibility of our model allows it to be robust to this type of

variation, while also allowing for new insights by applying the model to di�erent settings.
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Appendix A: Derive E(µrt|srt1 , ...srtn)

For restaurant r, denote the prior belief of µrtn right before the realization of the nth signal

as

 n|n�1(µrtn) = f(µrtn |srt1 , ...srtn�1)

and we assume that the first reviewer uses an uninformative prior

µ1|0 = 0,↵2
1|0 = W, W arbitrarily large

Denote the posterior belief of µrtn after observing srtn as

hn|n(µrtn) = f(µrtn |srt1 , ...srtn)

Hence

hn|n(µrtn) = f(µrtn |srt1 , ...srtn) =
f(µrtn , srt1 , ...srtn)

f(srt1 , ...srtn)

⌥f(µrtn , srt1 , ...srtn)

=f(srtn |µrtn , srt1 , ...srtn�1)f(µrtn , srt1 , ...srtn�1)

=f(srtn |µrtn , srt1 , ...srtn�1)f(µrtn |srt1 , ...srtn�1)f(srt1 , ...srtn�1)

⌥f(srtn |µrtn)f(µrtn |srt1 , ...srtn�1)

=f(srtn |µrtn) n|n�1(µrtn)

where f(srtn |µrtn , srt1 , ...srtn�1) = f(srtn |µrtn) comes from the assumption that srtn is inde-

pendent of past signals conditional on µrtn .

In the above formula, the prior belief of µrtn given the realization of {srt1 , ..., srtn�1}, or
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 n|n�1(µrtn), depends on the posterior belief of µrtn�1 , hn�1|n�1(µrtn�1) and the evolution

process from µrtn�1 to µrtn , denoted as g(µn|µn�1). Hence,

 n|n�1(µrtn) = g(µn|µn�1)f(µrtn�1 |srt1 , ...srtn�1) = g(µn|µn�1)hn�1|n�1(µrtn�1)

Given the normality of  n|n�1, f(srtn |µrtn) and g(µn|µn�1), hn|n(µrtn) is distributed nor-

mal. In addition, denote µn|n and ↵2
n|n as the mean and variance for random variable with

normal probability density function pn|n�1(µrtn), µn|n�1 and ↵2
n|n�1 are the mean and variance

of random variable with normal pdf hn|n(µrtn). After combining terms in the derivation of

pn|n�1(µrtn) and hn|n(µrtn), the mean and variance evolves according to the following rule:

µn|n = µn|n�1 +
↵2
n|n�1

↵2
n|n�1 + ↵2

n
(sn � µn|n�1)

=
↵2
n|n�1

↵2
n|n�1 + ↵2

n
sn +

↵2
n

↵2
n|n�1 + ↵2

n
µn|n�1

↵2
n|n =

↵2
n↵

2
n|n�1

↵2
n|n�1 + ↵2

n

µn+1|n = µn|n

↵2
n+1|n = ↵2

n|n + (tn+1 � tn)↵
2
⇥

Hence, we can deduct the beliefs from the initial prior,

µ1|0 = 0

↵2
1|0 = W > 0 and arbitrarily large

µ1|1 = s1

↵2
1|1 = ↵2

1

µ2|1 = s1

↵2
2|1 = ↵2

1 + (t2 � t1)↵
2
⇥

µ2|2 =
↵2
1 + (t2 � t1)↵2

⇥

↵2
1 + ↵2

2 + (t2 � t1)↵2
⇥

s2 +
↵2
2

↵2
1 + ↵2

2 + (t2 � t1)↵2
⇥

s1

↵2
2|2 =

↵2
2(↵

2
1 + (t2 � t1)↵2

⇥ )

↵2
1 + ↵2

2 + (t2 � t1)↵2
⇥

µ3|2 = µ2|2

↵2
3|2 =

↵2
2(↵

2
1 + (t2 � t1)↵2

⇥ )

↵2
1 + ↵2

2 + (t2 � t1)↵2
⇥

+ (t3 � t2)↵
2
⇥

...

E(µrtn |srt1 , ...srtn) = µn|n is derived recursively following the above formulation.
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Appendix B: Solve {srt1 , ...srtn} from {xrt1 , ...xrtn} according to the following recursive

formula:

x1 = s1 + ⌥1

s1 = x1 � ⌥1

x2 = ⌦2
↵2
2

↵2
2|1 + ↵2

2

µ2|1 + ⌦2
↵2
2|1

↵2
2|1 + ↵2

2

s2 + (1� ⌦2)s2 + ⌥2

= ⌦2
↵2
2

↵2
2|1 + ↵2

2

µ2|1 + [1� (1�
↵2
2|1

↵2
2|1 + ↵2

2

)⌦2]s2 + ⌥2

s2 =
1

[1� (1�
⇤2
2|1

⇤2
2|1+⇤2

2
)⌦2]

[x2 � ⌥2 � ⌦2
↵2
2

↵2
2|1 + ↵2

2

µ2|1]

...

sn =
1

[1� (1�
⇤2
n|n�1

⇤2
n|n�1+⇤2

n
)⌦n]

[xn � ⌥n � ⌦n
↵2
n

↵2
n|n�1 + ↵2

n
µn|n�1].
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Table 1: Summary Statistics
Variable Mean Med. Min. Max. Std. Dev. N.a
Restaurant Characteristics
Reviews per Restaurant 32.85 14.00 1.00 698.00 50.20 4,101
Reviews per Day 0.16 0.03 0.00 5.00 0.33 4,101
Days between 1st and 2nd Review 154.75 79.00 0.00 1,544.00 199.95 3,651
Days between 11st and 12nd Review 33.96 20.00 0.00 519.00 41.71 2,199
Days between 21st and 22nd Review 20.63 13.00 0.00 234.00 25.27 1,649

Reviewer Characteristics
Rating 3.74 4.00 1.00 5.00 1.14 134,730

by Elite 3.72 4.00 1.00 5.00 1.10 43,781
by Non-elite 3.75 4.00 1.00 5.00 1.18 90,949

Reviews per reviewer 7.18 2.00 1.00 453.00 17.25 18,778
by Elite 24.49 6.00 1.00 350.00 39.23 1,788
by Non-elite 5.35 2.00 1.00 453.00 11.49 16,990

Reviews per Day 0.12 0.17 0.00 1.52 0.07 18,778
by Elite 0.15 0.22 0.00 1.30 0.10 1,788
by Non-elite 0.12 0.16 0.00 1.52 0.07 16,990

Reviewer-Restaurant Matching Distanceb 12.18 8.51 0.00 108.00 11.45 134,730
by Elite 11.26 7.47 0.00 108.00 10.77 43,781
by Non-elite 12.62 9.00 0.00 103.73 11.74 90,949

Reviewer Taste for Varietyc 1.10 1.11 0.00 2.60 0.24 103,835
by Elite 1.11 1.12 0.00 2.60 0.17 40,521
by Non-elite 1.09 1.10 0.00 2.52 0.27 63,314

a There are 4,101 restaurants with a total of 134,730 reviews written by 18,778 reviewers in our sample.
b Reviewer-restaurant matching distance quantifies the quality of the match between a reviewer and a restaurant,
calculated using information on restaurants the reviewer has previously rated. See page 7 for the formula and more
thorough discussion.
c Reviewer taste for variety quantifies the reviewer’s preference for variety in restaurants, calculated using information
on restaurants the reviewer has previously rated. See page 7 for the formula and more thorough discussion.

Table 2: What Explains the Variance of Yelp Ratings?
Model Variance

Explained (R2)
Reviewer FE 0.2329
Restaurant FE 0.2086
Reviewer FE & Restaurant FE 0.3595
Reviewer FE & Restaurant FE & Year FE 0.3595
Reviewer FE & Restaurant FE & Year FE
& Matching & Variety

0.3749

Notes: 1 This table presents the R2 from linear regressions of Yelp ratings on
the fixed e�ects and variables indicated in each row.
2 There are only a few observations in 2004 and 2010. Whenever the year fixed
e�ect is added, 2005 year fixed e�ect was applied to the 2004 observations and
2009 year fixed e�ect was applied for the 2010 observations.
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Table 3: Does the Variability of Ratings Decline over Time?
Model:a [⇥ri,yr

2
= �0 + �1Dri,elite + �2Nri + �3Nri �Dri,elite + ⇤ri,yr

Delite
ri

b -12.000⇤⇤⇤ (0.940)
Nri

c(100s) -0.021⇤⇤ (0.007)
Delite

ri �Nri(100s) -0.009 (0.012)
constant 88.000⇤⇤⇤ (0.581)
N 134,730
a [⇤ri,yr is the residual from regression Ratingri,year = µr + �i + ⇥year + ⇤ri,year
b Delite

ri is the dummy variable for elite reviewer.
c Nri indicates that reviewer i writes the N th review on restaurant r.
Standard errors in parentheses. ⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Table 4: Restaurant Ratings are Serially Correlated

Model:a [⇥ri,yr =
Pk

s=1 �s \⇥r,i�s,yr + ⌅ri,yr
(1) (2) (3) (4)

\⇥r,i�1,yr 0.0428⇤⇤⇤ 0.0433⇤⇤⇤ 0.0429⇤⇤⇤ 0.0423⇤⇤⇤
(0.0029) (0.0030) (0.0030) (0.0030)

\⇥r,i�2,yr 0.0299⇤⇤⇤ 0.0300⇤⇤⇤ 0.0299⇤⇤⇤ 0.0311⇤⇤⇤
(0.0029) (0.0030) (0.0030) (0.0030)

\⇥r,i�3,yr 0.0213⇤⇤⇤ 0.0208⇤⇤⇤ 0.0209⇤⇤⇤ 0.0213⇤⇤⇤
(0.0029) (0.0030) (0.0030) (0.0030)

\⇥r,i�4,yr 0.0151⇤⇤⇤ 0.0146⇤⇤⇤ 0.0145⇤⇤⇤ 0.0148⇤⇤⇤
(0.0029) (0.0030) (0.0030) (0.0030)

\⇥r,i�5yr 0.0126⇤⇤⇤ 0.0117⇤⇤⇤ 0.0111⇤⇤⇤ 0.0110⇤⇤⇤
(0.0029) (0.0030) (0.0030) (0.0030)

\⇥r,i�5,yr 0.0087⇤⇤ 0.0081⇤⇤ 0.0084⇤⇤
(0.0030) (0.0030) (0.0030)

\⇥r,i�6,yr 0.00991⇤⇤⇤ 0.00996⇤⇤
(0.00300) (0.00303)

\⇥r,i�7,yr 0.00312
(0.00303)

Constant -0.00629⇤ -0.00782⇤⇤ -0.00856⇤⇤ -0.00971⇤⇤⇤
(0.00266) (0.00269) (0.00272) (0.00275)

Observations 117,536 114,742 112,067 109,505
Notes: This table estimates the degree of serial correlation of ratings within a restaurant.
a [⇤ri,yr is the residual from regressing Ratingri,year = µr + �i + ⇥year + ⇤ri,year. To obtain
sequential correlation of the residuals, we regress the residuals on their lags \⇤ri�s,yr, where
s is the number of lag.
⇤⇤⇤ Standard errors in parentheses. ⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001.
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Table 5: Does Matching Improve Over Time?
For Restaurants For Reviewers

(1) (2) (3) (4)
Matching
Distancea

Taste for
Varietyb

Matching
Distancea

Taste for
Varietyb

Restaurant’s nth Review 0.00170 -0.00025���

(0.00117) (0.00006)
(Restaurant’s nth Review)2 -0.00002 1.17e-6���

(0.00001) (3.25e-7)
(Restaurant’s nth Review)3 1.06e-08 -1.54e-09���

(8.00e-09) (4.01e-10)
Reviewer’s nth Review -0.06700��� 0.00169���

(0.00140) (0.00006)
(Reviewer’s nth Review)2 0.00045��� -0.00001���

(0.00001) (4.46e-7)
(Reviewer’s nth Review)3 7.57e-7��� 1.95e-08���

(2.14e-08) (8.35e-10)
Constant 12.13��� 1.104��� 12.57��� 1.066���

(0.03590) (0.00157) (0.02330) (0.00103)
Observations 134,730 103,835 103,835 103,835
Notes: The sample sizes of regressions specified in column (2), (3) and (4) are smaller since we dropped
the first reviews written by a reviewer. Because reviewer does not have any review history when she
reviews for the first time, we set the two measures at their overall sample mean.
a Reviewer-restaurant matching distance quantifies the quality of the match between a reviewer and a
restaurant, calculated using information on restaurants the reviewer has previously rated. See page 7 for
the formula and more thorough discussion.
b Reviewer taste for variety quantifies the reviewer’s preference for variety in restaurants, calculated
using information on restaurants the reviewer has previously rated. See page 7 for the formula and more
thorough discussion.
Standard errors in parentheses. � p < 0.05, �� p < 0.01, ��� p < 0.001
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Table 6: MLE Estimates: Signal Precision and Popularity Concerns
(1) (2) (3) (4)

Same
⇤, ⇥

Di�erent
⇤, ⇥

Quarterly
Quality Change

Full Model
(Quarterly

Quality Change)
⇤e 1.2218⇤⇤⇤

(0.0210)
1.1753⇤⇤⇤

(0.0210)
0.9293⇤⇤⇤

(0.0199)
0.9101⇤⇤⇤

(0.0196)
⇤ne 1.2350⇤⇤⇤

0.0147
0.9850⇤⇤⇤

(0.0156)
0.9546⇤⇤⇤

(0.0151)
⇤� 0.1452⇤⇤⇤

(0.0038)
0.1345⇤⇤⇤

(0.0039)
⇥e 0.1718⇤⇤⇤

(0.0007)
0.2430⇤⇤⇤

(0.0141)
0.0454⇤⇤⇤

(0.0215)
0.0230⇤⇤⇤

(0.0220)
⇥ne 0.1362⇤⇤⇤

(0.0110)
�0.0821⇤⇤⇤

(0.0181)
�0.1182⇤⇤⇤

(0.0187)
(�e � �ne)0 �0.0100

(0.0059)
-0.0061
(0.0059)

0.0007
(0.0223)

(�e � �ne)Age 3.8⇥ 10�5⇤⇤⇤

(1.3⇥ 10�5)
(�e � �ne)MatchD �0.0002

(0.0005)
(�e � �ne)TasteV ar -0.0025

(0.0064)
(�e � �ne)FreqRev 0.0647⇤⇤

(0.0319)
(�e � �ne)NumRev 0.0006⇤⇤⇤

(0.00015)
(µ+ �ne)Age �0.0002⇤⇤⇤

(1.3⇥ 10�5)
(µ+ �ne)MatchD 0.0042⇤⇤⇤

(0.0005)
(µ+ �ne)TasteV ar �0.0224⇤⇤⇤

(0.0029)
(µ+ �ne)FreqRev �0.0348

(0.0218)
(µ+ �ne)NumRev �0.0007⇤⇤⇤

(0.0001)
Log Likelihood -193,339 -192,538 -192,085 -191,829

N 122,473 122,473 122,473 122,473
Notes: 1. “e” and “ne” in the subscript indicate elite and non-elite status respectively.
2. Parameters in row (7) to (16) represent the e�ects of review-restaurant matching and reviewer attributes
on sum of restaurant quality and non-elite stringency (�ne + µ) and stringency di�erence between elite and
non-elite reviewers. The subscripts that represent review-restaurant matching and reviewer attributes are
reviewer-restaurant matching distance (MatchD), reviewer taste for variety (TasteV ar), number of reviews
written by the reviewer per day (FreqRev), and total number of reviews written by the reviewer (NumRev).
Standard errors in parentheses. � p < 0.05, �� p < 0.01, ��� p < 0.001.
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Table 7: MLE Estimates with Changing Restaurant Quality
(1) (2) (3)

Full Model
(Quarterly

Quality Change)

Full Model
(Half-yearly

Quality Change)

Full Model
(Monthly

Quality Change)
⇤e 0.9101⇤⇤⇤

(0.0196)
0.9365⇤⇤⇤

(0.0196)
0.8983⇤⇤⇤

(0.0196)
⇤ne 0.9546⇤⇤⇤

(0.0151)
0.9778⇤⇤⇤

(0.0150)
0.9440⇤⇤⇤

(0.0153)
⇤� 0.1345⇤⇤⇤

(0.0039)
0.1736⇤⇤⇤

(0.0051)
0.0810⇤⇤⇤

(0.0023)
⇥e 0.0230⇤⇤⇤

(0.0220)
0.0499⇤⇤⇤

(0.0209)
0.0103⇤⇤⇤

(0.0227)
⇥ne �0.1182⇤⇤⇤

(0.0187)
�0.0922⇤⇤⇤

(0.0176)
�0.1307⇤⇤⇤

(0.0193)
(�e � �ne)0 0.0007

(0.0223)
-0..00057
(0.0223)

0.0007
(0.0223)

(�e � �ne)Age 3.8⇥ 10�5⇤⇤⇤

(1.3⇥ 10�5)
3.9⇥ 10�5⇤⇤⇤

(1.3⇥ 10�5)
3.8⇥ 10�5⇤⇤⇤

(1.3⇥ 10�5)
(�e � �ne)MatchD �0.0002

(0.0005)
�0.0001

(0.0005)
�0.0002

(0.0005)
(�e � �ne)TasteV ar -0.0025

(0.0064)
-0.0025
(0.0064)

-0.0024
(0.0064)

(�e � �ne)FreqRev 0.0647⇤⇤

(0.0319)
0.0657⇤⇤

(0.0319)
0.0640⇤⇤

(0.032)
(�e � �ne)NumRev 0.0006⇤⇤⇤

(0.00015)
0.0006

(0.00055)
0.0006⇤⇤⇤

(0.00015)
(µ+ �ne)Age �0.0002⇤⇤⇤

(1.3⇥ 10�5)
�0.0002⇤⇤⇤

(1.3⇥ 10�5)
-0.0003⇤⇤⇤

(1.4⇥ 10�5)
(µ+ �ne)MatchD 0.0042⇤⇤⇤

(0.0005)
0.0040⇤⇤⇤

(0.0005)
0.0040⇤⇤⇤

(0.0005)
(µ+ �ne)TasteV ar �0.0224⇤⇤⇤

(0.0029)
�0.0233⇤⇤⇤

(0.0029)
�0.0233⇤⇤⇤

(0.0029)
(µ+ �ne)FreqRev �0.0348

(0.0218)
�0.0347

(0.0218)
�0.0353

(0.0218)
(µ+ �ne)NumRev �0.0007⇤⇤⇤

(0.0001)
�0.0007

(-0.0007)
�0.0007⇤⇤⇤

(-0.0001)
Log Likelihood -191,829 -191,870 -191,814

N 122,473 122,473 122,473
Notes: 1. Full model specification allows random walk of restaurant quality in di�erent frequency, and both
restaurant quality and reviewer stringency to vary flexibly with reviewer-restaurant matching matrices and
reviewer attributes.
2. “e” and “ne” in the subscript indicate elite and non-elite status respectively.
3. Parameters in row (7) to (16) represent the e�ects of review-restaurant matching and reviewer attributes
on sum of restaurant quality and non-elite stringency (�ne + µ) and stringency di�erence between elite and
non-elite reviewers. The subscripts that represent review-restaurant matching and reviewer attributes are
reviewer-restaurant matching distance (MatchD), reviewer taste for variety (TasteV ar), number of reviews
written by the reviewer per day (FreqRev), and total number of reviews written by the reviewer (NumRev).
��� Standard errors in parentheses. � p < 0.05, �� p < 0.01, ��� p < 0.001.

36



Table 8: Optimal and Simple Average Algorithm Applied on the Real Data
µ Update
Frequency

%
�µ < �0.15

%
�µ < �0.25

%
�µ < �0.35

%
�µ > 0.15

%
�µ > 0.25

%
�µ > 0.35

(i) Restaurant quality una�ected by restaurant age
Quarterly 54.08% 28.40% 13.42% 0.33% 0.06% 0.03%
Half-yearly 53.48% 26.43% 11.09% 0.18% 0.06% 0%
Monthly 54.17% 29.21% 13.69% 0.39% 0.09% 0.03%

(ii) Restaurant quality a�ected only by restaurant age
Quarterly 2.57% 0.54% 0.09% 24.39% 9.00% 2.87%
Half-yearly 1.82% 0.39% 0% 23.02% 7.62% 2.30%
Monthly 2.99% 0.63% 0.15% 24.57% 9.72% 3.32%

Notes: 1. �µ ⇥ µsimple � µoptimal calculates the di�erence between simple average µsimple and optimal
average µoptimal when a restaurant receives its last rating as of the end of our sample. %(�µ > x)
calculates the percentage of restaurants having optimal and simple average di�erence greater than x.
2. Given that in ⇥(µrn + �ne

rn)/⇥n, we cannot separately identify the impact of restaurant age n on restaurant
quality µrn and reviewer bias �ne

rn, we calculate µsimple � µoptimal in the model assuming that restaurant
age only a�ects �ne

rn (in panel (i)), and assuming that restaurant age only a�ects µrn (in panel (ii))
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Figure 1: The Distribution of Ratings by Elite Status
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Notes. 1. The figure on the left plots Ratingrn � Rating
BF
rn , where Ratingrn is the nth rating on restaurant r, and

Rating
BF
rn is the arithmetic mean of all past n � 1 ratings on restaurant r before n. Similarly, figure on the right plots

Ratingrn � Rating
AF
rn , where Ratingrn is the nth rating on restaurant r, and Rating

AF
rn is the arithmetic mean of all

future ratings on restaurant r until the end of the sample. 2. This figure shows the distribution of ratings relative to the
restaurant mean. Ratings by elite reviewers tend to be closer to a restaurant’s average rating, and have shorter tails.

Figure 2: Restaurants Experience a “Chilling E�ect”
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Notes. This figure shows the trend of ratings within a restaurant over time. Restaurants begin with more favorable
reviews, which deteriorate over time. It plots the fractional polynomial of the restaurant residual on the sequence of
reviews. Residuals are obtained from regression Ratingrn,year = µr + �year + ⇥rn,year.
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Figure 3: Comparing Optimal and Simple Averages: Reviewers with Popularity Concern
Parameters � ⇥ Restaurant Quality

(Left) �e = �ne = 1 ⇥e = ⇥ne = 1 Quality fixed at µ = 3
(Right) �e = �ne = 0.6 ⇥e = ⇥ne = 1 Quality fixed at µ = 3
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Notes: The above figures plot the simulated 95% confidence interval for the average ratings that would occur for a
restaurant at a given quality level. When reviewers have popularity concern, arithmetic and optimal averages are
unbiased estimates for true quality. But relative to arithmetic average, optimal aggregation allows ratings to converge to
the true quality more quickly. And the di�erence in converging speeds increases with elite reviewers’ popularity concern
relative to that of non-elite reviewers.

Figure 4: Comparing Optimal and Simple Averages: Reviewers with Di�erent Precisions
Parameter � ⇥ Restaurant Quality

(Left) �e = �ne = 0 ⇥e = 0.6,⇥ne = 1 Quality fixed at µ = 3
(Right) �e = �ne = 0 ⇥e = 0.3,⇥ne = 1 Quality fixed at µ = 3

0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

4.5

5

nth rating on restaurant

R
a
tin

g

Simple Average Vs. Optimal Average, σ
ne

 = 1,σ
e
=0.3

 

 
95% C.I. of Optimal Average
95% C.I. of Simple Average

0 10 20 30 40 50 60
1.5

2

2.5

3

3.5

4

4.5

nth rating on restaurant

R
a
tin

g

Simple Average Vs. Optimal Average, σ
ne

 = 1,σ
e
=0.6

 

 
95% C.I. of Optimal Average
95% C.I. of Simple Average

Notes: The above figures plot the simulated 95% confidence interval for the average ratings that would occur for a
restaurant at a given quality level. When reviewers di�er in precision, both arithmetic and optimal averages are unbiased
estimates for true quality. But relative to arithmetic average, optimal aggregation allows ratings to converge to the
true quality more quickly. The di�erence in converging speed increases with elite reviewers’ precision relative to that of
non-elite reviewers.
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Figure 5: Comparing Optimal and Simple Averages: Martingale Quality Change

� ⇥ Quality Update
Frequency

Variance of
�Quality

(Top Left) �e = �ne = 0 ⇥e = ⇥ne = 0.6 Quarterly ⇥� = 0.5
(Top Right) �e = �ne = 0 ⇥e = ⇥ne = 0.6 Quarterly ⇥� = 0.2
(Bottom) �e = �ne = 0 ⇥e = ⇥ne = 0.6 Monthly ⇥� = 0.2
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Notes: The above figures plot the mean absolute error and the mean squared error of optimal and simple average on
restaurants with quality updates following a martingale process. The error on each simulated path is calculated as the
di�erence between the averages and the true quality of the restaurant when the nth review is written. The figures show
that relative to arithmetic average, errors of optimal aggregation shrink faster. And the di�erence in this speed increases
when qualities of restaurants change more often, and when the variance of incremental quality change is larger.
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Figure 6: How Quickly Do Ratings Adjust to Changes in Restaurant Quality?
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Notes: The above figures plot the simulated mean and 95% confidence interval for the average ratings that would occur
for a single restaurant with its quality realized from the quarterly quality change martingale model. This quality path
features restaurant’s quality dropping before it receives its 20th rating, and jumping before it receives its 40th rating.
Relative to arithmetic average, the optimal aggregation adapts to the change in restaurant’s true quality more quickly.
Since the optimal aggregation algorithm only gives weights to recent ratings, when fixing the review frequency, its
standard error shrinks slower than arithmetic average that gives equal weights to all historical ratings.
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Figure 7: Simulated Ratings when Reviewers are Biased

Parameters Value Parameters Value Parameters Value
�e, �ne 0 ⇥(µ+�e)

⇥Restaurat Age -0.0002 ⇥(µ+�e)
⇥Reviewer Review # -0.0007

⇥e, ⇥ne 1 ⇥(µ+�e)
⇥Match Distance 0.0042 ⇥(�e��ne)

⇥Restaurat Age 0.00004
Quality0 3 ⇥(µ+�e)

⇥Reviewer Taste To V ariety-0.0224
⇥(�e��ne)

⇥Reiviewer Frequency 0.0647
⇥(µ+�e)

⇥Reviewer Frequency -0.0348 ⇥(�e��ne)
⇥Reviewer Review # 0.0006
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Notes: The above figures plot the simulated mean and 95% confidence interval for the average ratings that would occur
for restaurants with biased reviewers. The figure on the left assumes that restaurants have fixed quality at 3, and
reviewers’ bias is trending downwards with restaurant age. The figure on the right assumes that the restaurants have
quality trending downwards with restaurant age, and the reviewer bias is una�ected by restaurant age. In both cases,
we assume that reviewers perfectly acknowledge other reviewers’ biases and the common restaurant quality trend. So in
both cases, optimal aggregation is an unbiased estimate for true quality while the arithmetic average is biased without
correcting the review bias.
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Figure 8: Comparing Optimal and Simple Averages: Full Model Specification
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Notes: The above figure plots the mean absolute error and the mean squared error of optimal and simple average on
restaurants with ratings generated from the full model with estimated parameters shown in Table 7. The error on each
simulated path is calculated as the di�erence between the averages and the true quality of the restaurant when the nth

review is written. The figure shows that relative to arithmetic average, errors of optimal aggregation shrink faster. And
this di�erence is the same if we assume the downward rating trend is due to reducing quality or biased consumers.
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Figure 9: Optimal and Simple Average Algorithm Applied on the Real Data
(Top) (Middle) (Bottom)
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Notes: 1. Figures on the left column plot the trend of mean and 95% confidence interval for µsimple
rn �µoptimal

rn . Figures on
the right column plot the frequency of restaurants that have proportions of ratings satisfying |µoptimal

rn �µsimple
rn | > 0.15.

2. The model we present here assumes that there exists a reviewer “chilling” e�ect instead of downward trend of restaurant
quality.
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Figure 10: Comparing Optimal and Simple Averages: Temporary Shocks to the Quality

Quality
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(Left) µ1 = 1.5 �e = �ne = 0 ⇥e = ⇥ne = 0.6 Quarterly ⇥� = 0.5
(Right) µ3 = 1.5 �e = �ne = 0 ⇥e = ⇥ne = 0.6 Quarterly ⇥� = 0.5

(Bottom) µ5 = 1.5 �e = �ne = 0 ⇥e = ⇥ne = 0.6 Quarterly ⇥� = 0.5
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Notes: The above figures plot the simulated mean of the average ratings for a single restaurant that follows the martingale
model of quarterly quality change, but experiences a temporary quality shock. Focusing on the temporary quality shock,
the optimal aggregation is more responsive to temporary quality shock and converges back to the true quality in a faster
rate. This is due to the fact that optimal aggregation gives higher weight to more recent reviews. In comparison, simple
average smooths the shock by giving equal weight to all historical ratings.
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Figure 11: Comparing Optimal and Simple Averages: Temporary Shocks to the Signals
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(Left) µ1 = 1.5 �e = �ne = 0 ⇥e = ⇥ne = 0.6 Quarterly ⇥� = 0.5
(Right) µ3 = 1.5 �e = �ne = 0 ⇥e = ⇥ne = 0.6 Quarterly ⇥� = 0.5

(Bottom) µ5 = 1.5 �e = �ne = 0 ⇥e = ⇥ne = 0.6 Quarterly ⇥� = 0.5
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Notes: The above figures plot the simulated mean of the average ratings for a single restaurant that follows the martingale
model of quarterly quality change, but there is a temporary shock to the signal (We can think of this happening in the
situation when a reviewer misreports her signal). Both aggregating algorithms weight past ratings, and are a�ected by
the rating based on the shoecked signal. But compared with arithmetic mean, optimal aggregation “forgets” about earlier
ratings and converges back to the true quality in a faster rate.
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