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Abstract

A model of an economy with random matching and monetary exchanges is shown to
have two equilibrium regimes. In the first, agents find an opportunity for a sale in
each period and there is full-employment. In the second, agents attempt to increase
their balances because of a lack of opportunities for sales which is in turn induced
by the saving for higher money balances, and there is unemployment. In any period
of the high regime, self-fulfilling expectations can plunge the economy into the low
equilibrium but a recovery from the low to the high equilibrium may not be possible.
Keywords: Money, thrift, multiple equilibria.

*Very stimulating comments were provided by participants of the 2010 General Equi-
librium workshop at Yale University.



1 Introduction

In the current crisis, the demand for precautionary saving and the reduction of con-
sumption has played an important contributing role. Uncertainty about employment
and income raises the motive for saving and the lower demand for goods feeds into
the uncertainty. The mechanism, which has some relation with the paradox of thrift,
is analyzed here in a model of general equilibrium with money as the medium of
exchange.

In any contemporary economy, exchanges are between goods and money. Money is
liquid as it can be used to trade any good. Agents increase their money balances
through sales and use these balances to buy consumption goods. Both inflows and
outflows of money are subject to random micro-shocks but in a “standard” regime
of economic activity, these shocks can assumed to be relatively small and agents can
afford to keep a relatively low level of money inventories. Such a regime depends on
individual expectations. If agents expect that opportunities for sales are subject to
a larger uncertainty, they reduce their consumption to accumulate more money as a
precaution. But the reduction of consumption by some agents may increase the sale
uncertainty of others and raise the demand for money. The higher demand for money
(liquidity) may be self-fulfilling.

In this paper, the sudden increase of the demand for money shifts the economy from an
equilibrium with a regime of high consumption to another equilibrium with a regime
of low consumption where agents attempt to accumulate higher money balances and
there is insufficient aggregate demand and output.

Money is valuable because agents are spatially separated. The spatial separation
of agents has been the foundation of models of money since Samuelson (1958). A
important assumption in that model is that agents cannot enter in bilateral credit
agreements because they are temporally separated in different generations and meet
only once. That fundamental property has been embodied by Townsend (1980) in
a setting with infinitely lived agents who are paired along the two opposite lanes of
a “turnpike”, each selling and consuming with his vis à vis on alternate days and
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carrying money from a day of production to the next day for consumption. The
central property again is that any two agents are paired at most once. That property
is preserved here in an adaptation of the Townsend model in which agents are in a
continuum of mass one and matched pair wise in each period with two other agents,
one customer for the produced good and one supplier of the consumption good.

There is no search in the model, because search introduces separate issues of efficiency
and is not the essential property for the existence of money1. The search process is
implicit in Green and Zhou (2002)2 because agents may not find a good to their taste
of consumption in their current match and thus may find a randomly long time gap
between opportunities for sales and consumption.

The focus on the essential property of money as in the turnpike model of Townsend
will enable us to use the model as a simple analytic representation of a liquidity crisis
as one of two possible equilibria.

In the full-employment equilibrium, there is not more than one period between a sale
and a consumption. Money is necessary for consumption but because a stable and
high inflow of cash is expected, a relatively low level of money balance is sufficient to
maintain a high level of consumption. No agent is cash constrained for consumption
and producers can always sell.

In an equilibrium with unemployment, a producing agent cannot sell when he is
matched with an agent who has no money. Because of the probability of no sale,
agents attempt to accumulate money. But the higher balances for some agents must
result in smaller or no balances for others because the endogenous money price of
goods is the same in the two equilibria and the total quantity of money is not affected
by the regime of activity.

In the model presented here, when the economy is in a full-employment stationary
equilibrium, a negative shock of expectations is sufficient to push the economy to an
equilibrium with unemployment: the fear of smaller opportunities for sale induces
agent to keep money: if they do not have an urgent need to consume they choose
to save, but this act of saving reduces the opportunity of another agent to sell his
production. The two equilibria with and without full employment are not symmetric:

1The role of money or credit with search has been analyzed by Diamond and Yellin (1990), Diamond
(1990), Shi (1995), Trejos and Wright (1995), among others.

2See also Green and Zhou (1998), Zhou (1999a).
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in the stationary equilibrium with unemployment a jump of optimism may not be
sufficient to nudge the economy into a recovery: in full employment all agents who
don’t have a high need for consumption can shift to saving. In the economy with
unemployment, agents who are liquidity constrained cannot jump to consumption
even if they become optimistic about the future.

The model is presented in Section 2. In order to simplify the analysis, agents are
constrained in the maximum of cash they can hold, by assumption. Since the higher
demand for cash is what generates an inefficient equilibrium, the restriction should
not limit the validity of the properties. The assumption is relaxed later in the paper.

The stationary equilibrium with full employment and low demand for money is pre-
sented in Section 3. In general, the optimal consumption rule depends on the dynamics
of the economy. The dynamics of the two regimes of high and low consumption are
first analyzed in Section 4. In the following section, these two regimes are shown to
be equilibria under suitable parameter conditions. Section 6 shows that the steady
state of the low regime with unemployment may be a trap out of which no optimism
about the future can lift the economy. Section 7 discusses some technical properties
and some remarks on policy are presented in the concluding section.

2 The model

There is continuum of infinitely lived agents, indexed by i ∈ [0, 1). The utility of agent
i in period t is u(xit, θit), where θit ∈ {0, 1} are i.i.d. random variables that represent
shocks to the utility of consumption. P (θit = 1) = α which is exogenous and known
to all agents. When θit = 1, agent i has a higher need to consume in period t than
when θit = 0. If θit = 0, the agent is in period t of the low type, and if θit = 1, the
agent is in period t of the high type.

To simplify the exposition, we assume that the utility function in period t is given by

u(xt, θ) =


1 , if xt ≥ 1,

−cθt, if xt < 1.
(1)

An illustration for the high type is that the agent has to make some repair (material
or bodily) to avoid a penalty c. It will be shown later that the properties of the model
do not depend on the indivisibility properties of the utility function.

The welfare of agent i from any period, say period 0, is the discounted expected sum
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of the utilities of consumption in the future periods:

Ui = E
[∑

t≥0

βtu(xit, θit)
]
, with β =

1
1 + ρ

< 1, (2)

Agents produce goods which they sell, and consume goods produced by others. In each
period, an agent meets two other agents, one to sell to, one to buy from, according to
a process of random matching: agent i produces a good in period t and is matched
with the consumer j = φt(i) such that

φt(i) =


i+ ξt, if i+ ξt < 1,

i+ ξt − 1, if i+ ξt ≥ 1.
, (3)

where ξt ∈ (0, 1) are i.i.d. random variables3. The process implies that agent i can
consume the good produced by agent φ−1

t (i). The matching of agents does not depend
on their money holding or on the value of θit.

The matching process embodies the absence of a double coincidence of wants and
implies that a agent has zero probability of find the same match in a future period. This
process is a variation of Townsend’s turnpike that fits a circle of infinite diameter with
random pairing of atomistic agents between the two lanes . Agents cannot establish
credit with each other. There is fiat money: agents sell a real produced good for
money and buy real goods with money.

In order to simplify the demand for money, it is assumed that each agent is like a
two-headed household: at the beginning of period t, say a day, one head of household
i goes out to the market with some cash (if there is any in the household) to buy a
consumption good from a randomly matched supplier φ−1

t (i). The second head stays
at home to get the customer φt(i), and if that customer buys, he produces and sells
one unit of the good at no cost. The two heads meet at the end of the day to consume
if a purchase has been made and to take stock of the money balance. Goods are not
storable. The case where of a single person who buys and sells with a random order
during the day may be analyzed in later work.

To summarize, in each period t we have the following sequence of events:

1. Each agent i first learns his type, i.e. the value of θi,t. The probability of the
high type (θi,t = 1) is equal to α ∈ (0, 1).

3One could use other matching functions φt provided that they satisfy the property that for any

subset H of [0, 1), µ(H) = µ

„
φt(H)

«
, where µ is the Lebesgue-measure on [0, 1). The property is

required for a uniform random matching of all agents.
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2. For each agent (the two-headed household), the buyer brings a quantity of money
m to the market. He does not have to bring the entire money that is held at
the beginning of the period. In order to have strictly optimal strategies, it is
assumed that carrying money to the market conveys a vanishingly small cost.
The decision about m has to take place at the beginning of the day, before the
eventual production and sale during the day.

3. For each agent, the seller produces either 0 or 1 (since agents demand 0 or 1 in
the utility function). The production is cost-free4. The seller posts a price p and
there is no bargaining. One can assume that the seller produces instantly, only
after he knows whether he has a buyer.

3 Steady state equilibrium with full-employment

Assume that each agent has a quantity of money m at the beginning of the period.
Any price p < m defines an equilibrium with full employment. In that equilibrium
each agent brings a quantity p to the market in each period. Given the posted prices
p, and the very small cost of carrying money, an amount of money m̃ > p is strictly
less preferred. Any amount m̃ < p leads to no purchase/consumption and is strictly
inferior to the amount p if the agent has a sufficient money balance at the beginning
of the period. If the agent’s money balance is strictly smaller than p at the beginning
of the day, knowing that the posted prices are p and that he cannot buy, he will not
carry any money to the market.

Sellers know that in equilibrium the buyers carry the amount m̃ = p to the market.
No seller finds it optimal to post a price strictly smaller than p and posting a price
higher than p would result in no sale since no buyer brings more than p to the market.

Lemma 1 Assume that the quantity of money of agents is bounded below by m̄. Then
any price p ≤ m̄ determines a steady state with full employment.

There is a continuum of equilibrium price levels. That property is the same as in
Green-Zhou (1998, 2002) because of the similar price determination. The property of
a continuum of price equilibria is of no special interest here. The main property is
that for all these prices there is full employment. All the equilibria with different p
have the same real allocation of resources which is the socially optimal allocation.

4One could assume that the agent could produce x ∈ [0, 1], costlessly, with the maximum capacity
of 1, in order remove the indivisibility of the utility function.
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In a full employment equilibrium, money is needed for transaction, but there is no
precautionary motive since agents are sure that they will be able to sell and replenish
their cash at the end of the period.

Suppose now that the economy is in an equilibrium that may have unemployment (an
equilibrium that still needs to be defined). Assume that all producers post the price
p that is constant and independent of time. If a agent decides to consume in a given
period, by the same argument as for the previous Lemma, he brings to the market a
quantity m̃ = p. The value m̃ is the same for all agents and constant over time. In
a rational expectations equilibrium, producers know the value of m̃ and the optimal
price to post is p = m̃. A producer gets no additional sale from deviating and posting
a price below m̃ because any customer knows that he would meet that producer with
probability 0. We will therefore consider equilibria with a price that is constant over
time and is normalized to 1.

All money holdings in interval Ik = [k, k+1) generate the same opportunities for trade.
m ∈ Ik defines the state k of an agent. In state 0, an agent is liquidity constrained
and cannot consume. We first make the technical assumption that money holdings
are bounded: there is N arbitrary subject to m < N . This assumption restricts
the hoarding capability of agents. It is not harmful in a model that generates an
equilibrium with excess hoarding, and it will be removed in Section 7. Let Γ(t) be the
vector of the distribution of agents at the beginning of period t across states

Γ(t) = (γ0(t), γ1(t), . . . , γN (t))′.

Any distribution of money must satisfy the two constraints:

N∑
0

γk(t) = 1,
N∑

k=1

kγk(t) = M. (4)

In a steady state with full employment, there is no need for precautionary saving
toward consumption in future period because each agent knows that at the end of
the day, a sale is made for sure and the cash balance that has been reduced in the
morning by the expenditure for consumption is replenished at the end of the day for
the next one. In general, the demand for money will depend on the type of the agent
(high or low) and the opportunities of future sales as determined by the path of the
probabilities of making a sale in period t. That path depends on the consumption
function of agents in the future. We consider two consumption functions that define
each a regime, high or low. We will show later that under some conditions, each of
the two regimes is an equilibrium.
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4 Dynamics in two regimes

In the high regime, by definition, all the agents who are not liquidity constrained (i.e.,
in state 0) consume. This regime defines the highest possible consumption level. In
the low regime, if an agent is not in a high state (with a higher need for consumption),
and is not in state 0 (with a liquidity constraint) or state N (the maximum level of
money holding), that agent saves. The purpose of saving is to self-insure for a later
day with a higher consumption need against a lack of sale opportunities. It makes
little sense a priori to save when there is a current higher consumption need, because
of the discounting of the future. Hence the definition of the consumption in a low
regime. The optimality of the two consumption functions will depend on the utility of
money balances that depends in turn on the future dynamics of the economy. It will
be analyzed in the next section.

4.1 The high regime

At the beginning of the first period, period 0, the distribution of money, Γ(0), is given.
Since all agents except those in state 0 consume, and the matching is independent of
the money balance, each agent faces the same probability π(t) of not making a sale
in period t, and being unemployed. The probability π(t) is equal to the fraction of
agents in state 0, γ0(t). The evolution of the distribution of money is given by

Γ(t+ 1) = H(πt).Γ(t), with πt = γ0(t). (5)

with the transition matrix

H(π) =



π π 0 0 0 . . .

1− π 1− π π 0 0 . . .

0 0 1− π π 0 . . .

...
. . . . . . . . . . . .

...

. . . . . . 0 0 1− π π

0 . . . 0 0 0 1− π


. (6)

For example, in the first line, the agents who are in state 0 at the end of period t are in
that state either (i) because they met another agent in state 0, with probability π, and
that determines H11, or (ii) because they were in state 1 at the beginning of period t,
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consumed but met with a buyer with no cash and therefore they get no inflow of cash
which determines A12 = π. Likewise for the other elements of the matrix H.

From Lemma 1, given the price p = 1, there is a steady state full-employment equilib-
rium if and only if the aggregate quantity of money, M , is at least equal to one. The
next result (proven in the Appendix) shows that in this case, the high regime where
all non liquidity-agents consume converges to full employment.

Proposition 1

Let M be the aggregate quantity of money.

• If M ≥ 1 and all agents who are not liquidity-constrained consume, for any
initial distribution of the money M , the rate of unemployment converges to zero.
At the limit no agent is liquidity-constrained.

• If M < 1, and all agents who are not liquidity-constrained consume, the distri-
bution of money converges to (γ∗0 , γ

∗
1 , . . . , γ

∗
N ), with γ∗0 = π∗, γ∗1 = 1 − γ∗0 and

γ∗k = 0 for k > 1. At the limit, the rate of unemployment is π∗ = 1−M .

The limit distribution of money balances depends on the initial distribution. As a
particular case, any distribution with full employment and γ0 = 0 is invariant through
time.

The case with three states

When there are three states, the quantity of money is bounded by 2. Using the
equations of the quantity of agents and of money,

∑
γk = 1 and

∑2
k=1 kγk = M , the

dynamics can be expressed in function of γ0(t):

γ0(t+ 1) = γ0(t)(γ0(t) + γ1(t)),

which is equivalent to

γ0(t+ 1) = γ0(t)(2−M − γ0(t)). (7)

The evolution of γ0(t) is represented in Figure 1 for the cases M ≥ 1 and M < 1.
When 1 ≤M < 2, at the limit, γ∗0 = π∗ = 0 and the distribution of money in states 1
and 2 is determined uniquely by the unit mass of agents and the quantity of money.
When M increases, γ∗2 increases and γ∗1 decreases.
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0

0 2-M

(M<1)

(M≥1)

γ(t+1)

0
γ(t)

0
γ*

When M < 1, the economy converges to a steady state with unemployment and

the fraction γ0 of liquidity constrained agents tends to a positive value.

When M > 1, the economy converges to full-employment with no liquidity

constrained agents in the limit.

Figure 1: Dynamics of the liquidity constrained agents in the regime of high consump-
tion (three states)

4.2 The low regime

In the low regime, consumption originates in the fraction α of the agents in states 1
to N − 1 and all agents in state N . As the fraction of agents who consume is 1− πt,

π(t) = 1− α
N−1∑
k=1

γk(t)− γN (t). (8)

which can be written as

π(t) = 1− α(1− γ0(t))− (1− α)γN (t). (9)

The value of π(t) is equal to zero if and only if γ0(t) = 0 and γN (t) = 1. That can
occur only in the initial period and if γN (0) = 1.

The quantity of money M is bounded by N . If M = N , all the agents are in the state
N and consume: there cannot be a low regime. Since N can be chosen arbitrarily, we
can always have M < N .

Proposition 2

In the low regime, (with M < N), there is unemployment in all periods: π(t) > 0 for
all t ≥ 1.

The evolution of the distribution of money is now given by

Γ(t+ 1) = L(πt).Γ(t), with πt = γ0(t), (10)
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where the transition matrix L(π) takes a form that depends on N .

For N = 2,

L(π) =


π πα 0

1− π (1− α)π + α(1− π) π

0 (1− π)(1− α) 1− π

 . (11)

For example in the first line, the mass of liquidity constrained agents γ0(t+ 1) comes
from the constrained agents who meet another constrained agent in period t and the

γ0(t+ 1) = (γ0(t) + αγ1(t))(1− c).

γ1(t+ 1) = cγ0(t) +
(

(1− α)(1− c) + αc
)
γ1(t) + (1− c)γ2(t).

γ2(t+ 1) = c((1− α)γ1(t) + γ2(t)).

For N ≥ 3,

L(π) =



π απ 0 0 . . . 0
1− π a απ 0 . . . 0

0 b a απ . . . 0
...

. . . . . . . . . . . .
...

0 . . . b a απ 0
0 . . . 0 b a π
0 0 0 . . . b 1− π


, (12)

with 
a = (1− α)π + α(1− π),

b = (1− π)(1− α),
and where the middle lines are omitted for N = 3.

The dynamics of the economy are completely specified by equation (10) where the
matrix L(π) is defined in (11) or (12) and πt is given in (8).

The stationary economy

Let e be the row-vector with N+1 components equal to 1. One verifies that e.L(π) = e

for any π. Fix a value of π. The matrix L(π) has an eigenvalue equal to 1 and that
eigenvalue is of order 1. There is a unique vector Γ∗ such that B(π).Γ∗ = Γ∗ and
e.Γ∗ = 1. The vector Γ∗ defines a stationary distribution of money holdings that
depends on the probability π. The total amount of money is equal to

M =
N∑

k=1

kγ∗k .
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Figure 2: Money and unemployment in the stationary economy under the low regime
(N = 10)

We thus have a function from π to the total amount of money in the economy. The
next result which is proven in the Appendix is intuitive: there is a positive relation
between money and employment.

Proposition 3

When the distribution of money is stationary in the low regime with M < N , the rate
of unemployment is a strictly decreasing function of the quantity of money.

The proposition is illustrated in Figure 2 for three values of α. When the quantity
of money tends to N , which is the maximum value of individual money holding in
the example, the rate of unemployment tends to zero. Asymptotically, all agents have
money holding in the state 10. As in the previous section, we analyze in more details
the case of three states with N = 2.

The case with three states

The distribution of agents across the states of money balances has to satisfy the two
conditions of the mass of agents equal to one and the total quantity of money equal
to M , which must be smaller than 2 for the existence of a low regime. With three
states, there is only one degree of freedom and the economy can be represented by the
evolution of one variable, chosen here to be γ0(t).
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Let S = 2−M . From the constraints on the distribution of money (γ0(0), γ1(0), γ2(0)),
we have −2γ0(t) +S = γ1(t) ≥ 0. Hence, any initial value for the fraction of agents in
state 0, γ0(0), must satisfy the condition

γ0(0) ≤ S/2. (13)

The analysis which are presented in the Appendix, shows that for t ≥ 0,

γ0(t+ 1) = P (γ0(t)), with

P (x) = −(1− 2α)2x2 + (1− 2α)2Sx+ α(1− α)S2.
(14)

The polynomial P (x) reaches its maximum for x = S/2. One verifies5 that P (S/2) <
S/2. Since P (x) is increasing on the interval [0, S/2], there is for x > 0 a unique
value x∗ such that P (x∗) = x∗ and x∗ < S/2. For any admissible value of x0 which
must be in the interval [0, S/2] by (13), the sequence xt+1 = P (xt) converges to x∗

monotonically. The evolution of xt is represented in Figure 3.

x
t

xt+1

0 x* S/2x
0

γ0(t) = xt, S = 2−M .

Figure 3: Dynamics of the fraction of liquidity-constrained agents in the low regime

5 P (S/2) =

„
(1− 2α)2

4
+ α(1− α)

«
S2. Since S < 1, this expression is strictly smaller than S/2.
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During the transition, the value of γ0(t) varies monotonically towards its steady state.
The unemployment rate, π(t), is a linear function of γ0(t)

π(t) = −(1− 2α)γ0(t) + (1− α)S, (15)

and it converges to the limit π∗ that is determined by the equation

M = ψ(π∗) = 2−
π∗
(

1− π∗(1− 2α)
)

1− α− π∗(1− 2α)
. (16)

The function ψ(π) has a negative derivative and is strictly decreasing, as shown already
in Proposition 3. Let φ be its inverse function with π = φ(M). One verifies that

φ(0) = 1, φ(2) = 0, φ(1.5− α) = 0.5. (17)

We have the following result.

Proposition 4

In a low regime, with N = 2 and M < 2, the distribution of money converges to
a stationary distribution and the unemployment rate converge to a limit that is a
decreasing function φ(M) such that φ(0) = 1, φ(1) = π∗1 > 0, and φ(2) = 0.

(i) On the dynamic path, γ0(t) is a monotone function of time and the unemployment
rate, π(t), is a decreasing (increasing) function of γ0(t) when α < 1/2 , (α > 1/2).

(ii) In the special case where α = 1/2, the distribution of money and the unemployment
rate are constant for all periods with γ0 = (S/2)2.

The previous analyses covers all plausible cases of the consumption function when
N = 2. Agents in state 0 cannot consume and if they make a sale, they save; agents
in state 2 consume since they cannot accumulate more money, by assumption. The
consumption functions are differentiated by the behavior of agents in state 1. Since it
is absurd to think that the high type would save and the low type consume, we have
covered all cases. In the next two sections, it is assumed that there are three states
for individual money balances and N = 2. That restriction is lifted in Section 7.

5 Optimal consumption functions

So far, we have considered how the distribution of money and the unemployment rate
varies under the different consumption functions. We now analyze which consumption
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is optimal. Let Uk(t) be the utility of an agent in state k who consumes, with k = 1, 2.
That utility is the same for the high and the low types. Let U0 the utility of an agent
in state 0 at the beginning of the period before he learns his type. (Recall that such
an agent cannot consume).

We assume that if an agent is in state 1, he consumes with probability ζ and saves with
probability 1 − ζ. (Recall that the behavior of agents in state 0 or 2 is determined).
In the high regime, ζ = 1 and in the low regime, ζ = α. We now analyze the evolution
of the utility levels Uk(t) in the low regime.

5.1 Equilibrium in the low regime

Consider an agent in state 2, with the highest balance, m ∈ I2. He consumes, gets a
utility of 1 from that consumption to which he adds the discounted value of the utility
in the next period. By standard backward induction, his utility in period t is

U2(t) = 1 + β
(

(1− π)U2(t+ 1) + π((1− α)W1(0, t+ 1) + αW1(1, t+ 1))
)
, (18)

where W1(θ, t + 1) is the utility of an agent at the beginning of period t + 1 of type
θ with m ∈ I1. (The time index is omitted for π in the next three equations). For
example, the agent makes in the current period no sale with probability π in which
case he has m ∈ I1 in the next period and with probability α he is of the type θ − 1
in which case his utility is W1(1, t+ 1).

In the low regime, a low type in state 1 does not consume and has the same distribution
of money at the end of the period as an agent in state 2 and consumes: W1(0, t+ 1) =
U2(t+1)−1. An agent with a high type in state 1 consumes and has a utility U1(t+1).
Substituting in the previous equation,

U2(t) = 1 + β
(

(1− π)U2(t+ 1) + π((1− α)(U2(t+ 1)− 1) + αU1(t+ 1)
)
. (19)

Likewise, for a consumer in state 1,

U1(t) = 1 + β
(

(1− π)
(

(1− α)(U2(t+ 1)− 1) + αU1(t+ 1)
)

+ πU0(t+ 1)
)
, (20)

where U0(t+ 1) is utility in period t+ 1, before knowing the type in that period, of a
liquidity-constrained agent (in state 0) who cannot consume. He pays in the present
period a penalty c for not consuming if he is of the high type, which occurs with
probability α. Such an agent gets out of his state and save to get in state 1 only if he
meets a buyer. By backward induction,

U0(t) = −αc+ β
(

(1− π)((1− α)(U2(t+ 1)− 1) + αU1(t+ 1)) + πU0(t+ 1)
)
. (21)
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Equations (19), (20) and (21) determine (U0(t), U1(t), U2(t)) as a recursive function of
(U0(t+ 1), U1(t+ 1), U2(t+ 1)). Let U be the vector of utilities U = (U0, U1, U2)′. The
three recursive equations form a system

U(t) = βA(π(t))U(t+ 1) +B(π(t)), (22)

where A(π) is a 3× 3 matrix and B(π) is a 3× 1 vector:

A(π) =


π (1− π)α (1− π)(1− α)

π (1− π)α (1− π)(1− α)

0 πα 1− πα

 , B(π) =


−αc− β(1− π)(1− α)

1− β(1− π)(1− α)

1− βπ(1− α)


(23)

The value of π(t) is a function of the distribution of money in period t, and is deter-
mined by (8).

The consumption function of the low regime is optimal under the following conditions:

(i) the utility of a low type agent who saves, U2 − 1, is greater than that of con-
sumption, U1: U2(t)− U1(t) ≥ 1;

(ii) the utility of a high type agent who consumes, U1, is greater than the payoff of
saving, U2 − 1− c. Hence, U2(t)− U1(t) ≤ 1 + c.

Combining the two conditions, the necessary and sufficient condition is

1 ≤ U2(t)− U1(t) ≤ 1 + c. (24)

With probability one, the inequalities are strict. We want therefore to focus on the
differences 

Zt = (Xt, Yt)′, with

Xt = U2(t)− U1(t),

Yt = U2(t)− U0(t).

We can write 
Xt = g.U(t), with g = ( 0 −1 1 ) ,

Yt = h.U(t), with h = (−1 0 1 ) .
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Using (22), 
Xt = g.U(t) = βg.A(πt)U(t+ 1) + g.B(π(t)),

Yt = h.U(t) = βh.A(πt)U(t+ 1) + h.B(π(t)).

Xt

Yt

 = β

α(1− 2πt) πt

α(1− 2πt) πt

 .

Xt+1

Yt+1

+

 β(1− α)(1− 2πt)

1 + αc+ β(1− α)(1− 2πt)

 .

Hence, Xt = βα(1− 2πt)Xt+1 + πtβYt+1 + β(1− α)(1− 2πt),

Yt = Xt + 1 + αc.

Substituting for Yt+1 in the first equation,

Xt = β
(
α(1− 2πt) + πt

)
Xt+1 + βπt(1 + αc) + β(1− α)(1− 2πt), (25)

with the the stationary solution

X∗ = β
π∗(1 + αc) + (1− α)(1− 2π∗)

1− β(α(1− 2π∗) + π∗)
. (26)

The condition X∗ > 1 is equivalent to

π∗αc

ρ
> 1. (27)

The inequality has a simple interpretation: the discounted expected value of the cost
of unemployment measured as the product of the probability of the high type and the
penalty for not consuming in the high type must be greater than one. We assume that
this condition is satisfied.

One can verify that the value of X∗ in (26) is smaller than 1+c for any parameters and
value of π∗. The inequality X∗ < 1 + c has also a simple interpretation: it were not
satisfied, a high type would prefer to save in order to reduce his cost of no consumption
while a high type in the future over the cost of no consumption in the present. Because
of the discounting, this cannot be true.
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Dynamics

We assume that (27) is satisfied. Hence X∗ > 1 and on the transition path, Xt ≥ 1
for t sufficiently large.

Suppose that Xt+1 > 1. Then by (25), a sufficient condition for Xt > 1 is

πtαc > ρ. (28)

From Proposition 4, πt varies monotonically on the transition path. It decreases with
time if α < 1/2 and γ0(0) < γ∗0 , or α > 1/2 and γ0(0) > γ∗0 . If πt is decreasing, then
Xt > 1 for all t.

In the other parametric cases, πt is increasing and π0αc > ρ, then (28) is satisfied for
all t and since for some T , Xt > 1 for t > T , by backward induction, Xt > 1 for all
t. The condition π0αc > ρ with π0 = γ0(0) + (1− α)(γ1(0) + γ2(0)). In this case, the
steady state condition (27) holds. Using

∑
γk = 1, the previous expression can be

replaced by π0 = 1− α+ αγ0(0).

If α = 1/2, the economy is stationary for all periods and the necessary and sufficient
condition for the optimality of consumption is (27).

Proposition 5

The low regime consumption is optimal under the following condition:π∗αc > ρ, if α ≤ 1
2 and γ0(0) < γ∗0 , or α > 1/2 and γ0(0) > γ∗0 ,

π0αc > ρ, with π0 = −(1− 2α)γ0(0) + (1− α)(2−M), in the other cases.
(29)

When the economy is initially at full employment, γ0(0) = 0, and the previous condi-
tions are simpler 

π∗αc > ρ, if α ≤ 1
2 ,

π0αc > ρ, with π0 = (1− α)(2−M), if α > 1
2 .

(30)

5.2 Equilibrium in the high regime

The consumption function of the high regime is optimal in period t if an agent in state
1 and of the low type prefers to consume over saving, that is if Xt = U2(t)−U1(t) ≤ 1.
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The analysis of the low regime can be used here if we replace α by 1 in the previous
equations. Equation (25) takes now the form

Xt = β(1− πt)Xt+1 + βπt(1 + c). (31)

The stationary solution is X̃∗ = βπ∗(1 + c)/(1−β(1−π∗)). Since π∗ = 0 (Proposition
1), X̃∗ = 0. The consumption function is trivially optimal near the steady state. Using
(31), if Xt+1 < 1, a sufficient condition for Xt < 1 is that c < ρ.

Proposition 6

If c < ρ, the consumption in the high regime is optimal in any period for any distri-
bution of money.

One should remark that the condition c < ρ in the proposition is strong as the result
applies for any distribution of money, and it could be weakened for particular distri-
butions of money. For example, if M ≥ 1 with a uniform distribution, a stationary
equilibrium with full employment is sustainable, for any value of c (Proposition 1). By
continuity, if the initial money distribution is not too different from a full-employment
distribution, the high regime can be a equilibrium that converges to full employment.

6 Dynamics and Liquidity Trap

Suppose first that the economy is a stationary equilibrium with full employment.
(There can be more than one distribution of money for such an equilibrium). From
Proposition 5, there exists a value c̄1 such that if c > c̄1, an exogenous shift of (perfect
foresight) expectations towards pessimism can push the economy into the low regime
equilibrium with an employment rate that converges to a positive value. The shift to
the low regime is self-fulfilling.

Suppose now that the economy is in the stationary equilibrium of the low regime with
π∗αc > ρ (Proposition 5). Can an exogenous change of animal spirits lift the economy
out of that state and set the economy on a path back to full employment?

Let period 0 be the first period in which the consumption is higher than in the low
regime. In that period, we must have X0 ≤ 1. From (25) with α replaced by 1 (in the
high regime) and using X1 ≥ 0, (more money is better),

X0 ≥ βπ(0)(1 + c),
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where π(0) is the unemployment rate in period 0 on the transition path of the high
regime. In that regime, the only agents who do not consume are liquidity-constrained
in state 0. Hence π(0) = γ∗0 , where γ∗0 is determined by γ∗0 = P (γ∗0) in (14).

X0 cannot be smaller than 1 if βγ∗0(1 + c) > 1, which is equivalent to

γ∗0(1 + c) > 1 + ρ, (32)

with γ∗0 depending only on M (Proposition 4). If c is sufficiently large (to satisfy
π∗αc > ρ and (32)), then X1 > 1 and there is no first period in which agents in state
1 with a low type shift to consumption instead of saving. The stationary equilibrium
in the low regime is the only equilibrium. The previous discussion is summarized by
the next result.

Proposition 7

There exists a value c̄ such that if c > c̄,

(i) if the economy is at or near the full-employment stationary equilibrium, a shift
of expectations can push the economy to a low regime path with an unemployment
rate that converges to a strictly positive value;

(ii) if the economy is at the stationary equilibrium of the low regime with positive
unemployment, that is the unique equilibrium.

The previous result shows the existence of a liquidity trap equilibrium. In that equi-
librium, agents attempt to accumulate money balances because of the uncertainty of
future exchanges. There is an asymmetry between the high regime with full employ-
ment and the low regime that leads to a liquidity trap. In any period, a switch from
the high to the low regime can occur, but if the economy has been sufficiently long in
a low regime, the economy may not switch back to a path toward full employment and
the low regime may be the only equilibrium with a permanent positive unemployment
rate.

7 Extensions

Unbounded money holdings

We now show that the assumption of an arbitrary upper-bound on money holding can
be removed. If the total quantity of money M is greater than 1, there can be a full-
employment equilibrium. In that equilibrium, the distribution of money is stationary
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but somewhat irrelevant. The interesting case is an equilibrium with unemployment.
The next result, which is proven in the Appendix, shows that the upper-bound on
money holdings that was assumed in the previous section is not a serious restriction.

Proposition 8

In an equilibrium with unemployment and a stationary distribution of money, the
distribution of individual money balances has a bounded support.

To prove the result, note first that if there is K such that all agents in a state k > K,
(of a low and a high type) consume, then the distribution is obviously bounded by
K. Assume therefore that there is an infinite and increasing sequence kj such that
the low type agents in state kj prefer to save. Let f(n) be the number of elements of
sequence {kj} with kj < n. We therefore assume that f(n) tends to infinity if n tends
to infinity.

Choose a value N , arbitrarily large. Generalizing equations (22) and (23),

(I − βA)U = B, (33)

where I is the N -identity matrix and

A(π) =



π (1− π)α b 0 . . . 0
π (1− π)α b 0 . . . 0
0 π (1− π)α b . . . 0
...

...
. . . . . . . . .

...
0 . . . 0 π (1− π)α b
0 0 0 . . . πα 1− πα


, B(π) =


−αc− βb

1− βb
...

1− βb
1− βπ(1− α)


(34)

Define the vector ∆ = (U0, U1 − U0, U2 − U1, . . . , UN − UN−1)′. By definition of kn,
and ∆kn ≥ 1.

∆ = J.U, with J =


1 0 0 . . .
−1 1 0 . . .
0 −1 1 0
...

...
. . . . . .

0 . . . −1 1


Using (33),

B = (I − βA).J−1.∆, (35)
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with

J−1 =


1 0 0 . . .
1 1 0 . . .
1 1 1 . . .
...

...
. . . . . .

1 . . . 1 1


Let v = J−1.∆. From the definitions of v and f(k),

vk ≥ n(k) + U0.

Since U0 ≥ −αc/(1− β) (the level of utility if an agent never consumes),

vk ≥ f(k)− αc

1− β
.

From (35) and the definition of the matrix A,

BN = παvN−1 + (1− πα)vN ≥ παf(N − 1) + (1− πα)f(N)− αc

1− β
.

But BN < 1. Since f(N) tends to infinity with N , we have a contradiction. The
support of the distribution cannot be unbounded.

Algorithm for the stationary equilibrium in the low regime

From Proposition 8, one can suggest the following algorithm to determine the station-
ary equilibrium in the low regime. Let the quantity of money M be given. If N = M ,
there is no unemployment.

1. Set first N = M + 2 to look for an equilibrium where the maximum money
holding is M + 1. Compute the stationary distribution of money balances that
is the eigenvector to the eigenvalue 1 of the matrix L(π) that satisfies (4), with
π given in (8).

2. Determine the vector ∆ given by

∆ = J.(I − βA)−1B.

3. If ∆k ≥ 1 for 1 ≤ k ≤M+1 and ∆M+2 ≤ 1, then we have found the equilibrium
and the maximum money holding is M + 1. If ∆M+2 > 1, then the maximum of
money holding cannot be bounded by M + 1 when there is no exogenous bound
at M + 1. Go to step 1 where N is increased by one unit and repeat the steps
until ∆N ≤ 1.
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8 Conclusion

When the economy is in a liquidity trap, a uniform lump-sum distribution of money
can make the switch to a high regime possible. However, if expectations remain of
a low regime, that regime may still be an equilibrium. The policy has some effect
however because we have seen that in the stationary equilibrium of the low regime,
the rate of unemployment is inversely related to the money supply. There is probably
a sufficient quantity of money expansion that can eliminate the unemployment6.

The reduction of the price level by policy to a new value that is still an equilibrium
value has the same effect as an expansion of money in this model. That equivalence
may not hold if agents are able to borrow from financial institutions, an issue that will
examined later.

6If individual money balances are bounded by some number N , we have seen that if M ≥ N , there
is full-employment. Without upper-bound, the property presumably holds also.
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APPENDIX: Proofs

Proposition 1

Assume that M > 1. The sum of the masses of agents in all states is equal to 1 and
the vector Γ(t) with

∑N
k=0 γk(t) = 1 belongs to the simplex of dimension N that is

compact. Suppose that has an accumulation point Γ∗ with γ∗0 > 0, then π(t) > ε for
some finite ε > 0 and for an infinite number of values of t. Inspection of the matrix
A(π) shows that in this case, γ∗N = 0 which implies that γ∗N−1 = 0 and so on: γ∗k = 0
for k ≥ 2. Because M = γ∗1 ≤ 1, we have a contradiction. The sequence π(t) = γ0(t)
converges to 0.

Let Γ̃(t) the vector such that γ̃k(t) = 0 for k = 0, 1 and γ̃k(t) = γk(t) for 2 ≤ k ≤ N .
Define the norm |Γ̃| =

∑N
k=2 |γ̃k|. One verifies that

|Γ̃(t+ 1)| = |A(πt)̃.Γ(t)| ≤ |Γ̃(t)|,

with strict inequality if π(t) > 0. The application defined by A(πt) is contracting and
there cannot be two distincts accumulation points of a sequence Γ̃(t) which therefore
converges to a limit. Since γk(t) = γ̃k(t) for 2 ≤ k ≤ N , γ1(t) = 1 −

∑N
k=2 γk(t) and

Limγ0(t) = 0, we have proven that Γ(t) has a limit.

Assume that M < 1. Since M =
∑
kγk(t), π(t) = γ0(t) ≥ 1 −M . For k ≥ 2, γk(t)

tends to 0 and π(t) converges to π∗ = 1 − M . The distribution Γ(t) converges to
(1−M,M)′.

�

To establish Proposition 3, we need the following Lemmata.

Lemma 2

For any distribution of money Γ, let Γ̃(π) = L(π)Γ, where L(π) is the transition matrix
given in (12). If π′ ≥ π, then the distribution Γ̃(π′) dominates the distribution Γ̃(π)
in the sense of first-order stochastic dominance: for any K < N ,

k=K∑
k=0

γ̃k(π′) >
k=K∑
k=0

γ̃k(π). (37)

We assume N ≥ 3 since the case N = 2 is treated separately in ***. For K = 1, the
inequality is verified because γ0 > 0. For K = 2,

γ̃0(π) + γ̃1(π) = γ0 +
(
π(1− α) + α

)
γ1 + απγ2,
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which is non-decreasing in π.

Likewise, for K ≤ N − 1,

K∑
k=0

γ̃0(π) =
K−1∑
k=0

γ0(π)γ0 +
(
π(1− α) + α

)
γK + ζKπγK+1, (38)

where ζK = α if K ≤ N − 2, and ζK = 1 if K = N − 1.

The right-hand side in (38) is non-decreasing in π.

�

Lemma 3

If Γ2 � Γ1, then for any π, L(π)Γ2 � L(π)Γ1.

Lemma 4

If Γ2 � Γ1, then the quantity of money generated by Γ2 is smaller than that generated
by Γ1.

Proposition 3

Let Γ∗(π) the steady state distribution associated to π and take π̂ > π. Define the
sequence Γ̂t = L(π′)tΓ∗ with Γ̂0 = Γ∗. From the previous Lemma, and the definition
of Γ∗,

Γ1 = T (Γ∗; π̂) � T (Γ∗;π) = Γ∗ = Γ̂0.

Assume that Γ̂t � Γt−1. From Lemma 3, Γ̂t+1 � Γ̂t. By the increasing stochastic
dominance, the sequence γ0(t) is increasing and converges. The sequence γ0(t) + γ1(t)
is increasing and converges. Since γ0(t) converges, γ1(t) converges. By induction γk

converges for any k = 0, . . . , N . The vector Γ̂t converges. It must converge to an
eigenvector associated to π̂. The proof is concluded by using Lemma 4.

�

The dynamics of the low regime with three states

Let I be the identity matrix of dimension 3. The matrix I − L is of rank 2 and the
value of γ is the unique eigenvector of L associated to the eigenvalue 1 such that
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γ0 + γ1 + γ2 = 1. It is a function of π (through the matrix L), and is determined by

γ0(π) =
απ2

1− π − α(1− 2π)
, γ1(π) =

π(1− π)
1− π − α(1− 2π)

, (39)

The agents who do not consume are in state 0 or in state 1 with the low type (with
probability 1 − α). The mass of such agent is also the probability π that any seller
faces no buyer:

π = γ0(π) + (1− α)γ1(π). (40)

The values of the γ0(π) and γ1(π) in (39) satisfy this equation which is therefore
redundant. The value of π will depend on the quantity of money as it is shown now.

The transition matrix L in the case N = 2 is given in (12). For any t, the quantity of
money is M = 2(1− γ0(t)− γ1(t)) + γ1,

γ1(t) = −2γ0(t) + S, with S = 2−M, (41)

and the rate of unemployment, π(t), is equal to γ0(t) + (1− α)γ1(t). Hence,

π(t) = −(1− 2α)γ0(t) + (1− α)S, (42)

and
γ0(t+ 1) = π(t)

(
γ0(t) + α(−2γ0(t) + S

)
,

=
(

(2α− 1)γ0(t) + (1− α)S
)(

(1− 2α)γ0(t) + αS
)
,

or
γ0(t+ 1) = −(1− 2α)2γ0(t)2 + (1− 2α)2Sγ0(t) + α(1− α)S2. (43)

The value of γ0 characterizes the distribution of money because γ1 and γ2 can be
derived from γ0 using the mass one of agents and the quantity M of money.
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