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Abstract

This paper studies a model where multiple principals repeatedly o�er short-term con-
tracts to three or more agents, each privately informed about her type. Agents observe
contracts and actions, but principals observe agents’ private messages only. We propose
a simple class of mechanisms that is su�cient to sustain all equilibrium allocations in the
repeated game when discounting is low. An equivalence theorem shows how only direct
mechansims may be used to compute a principal’s minmax value relative to arbitrarily
general mechanisms. Endogenous monitoring by agents allows weaker notions of incentive
compatibility than one-shot contracting, lowering players’ mimnax values and supporting
more equilibrium payo�s.
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1 Introduction

Many economic problems observed in practice have both repeated contracting, followed by
trading governed by the prevailing contract. Often, contracting is decentralized— several prin-
cipals o�er competing contracts rather than one grand contract that governs all the terms of
trades in the market. Contracting is often non-exclusive. For example, buyers nonexclusively
purchases goods from multiple sellers, either for final consumption or as an intermediate good.
Sellers seldom, if ever, contract with buyers on terms of trades for the entire future, either
because full committment is not possible or future contingencies are too complicated to spec-
ify exhaustively. Instead, sellers (principals) repeatedly o�er trading mechanisms to buyers
(agents) to negotiate the terms of trade for short periods of time.

The relational contracts literature discussed later shows how repeated interaction, usually
in conjunction with short-term contracts, replaces long-term contracts that specify terms of
trade for the entire future. However, this literature limits itself to models with only one
principal. Many applications are more naturally modelled as several principals interacting
repeatedly with several agents, the latter with private information that is payo�-relevant for
the agents themselves and possibly even for the principals. At each interaction, all principals
o�er decentralized contracts that govern actions for the current period. Agents observe their
type, the mechanisms o�ered, and send private messages to the principals who then take
actions1 according to their mechanisms and received messages. The latter observe nothing
other than private messages from agents. This paper provides a tractable framework for such
problems, without recourse to ad hoc restrictions on permissible mechanisms.

Before we study the dynamic model proposed above, let us see why competition among
principals leads to complexity even in the static version. Why can sellers not ask buyers to
report just their types, as in direct mechanisms ubiquitous in models with a single principal?
Since buyers have information on not only their types but also all sellers’ mechanisms, a seller
can usually improve his payo� by asking buyers to also report the mechanisms o�ered by the
other sellers, so that he may best respond to them. This logic repeats ad infinitum, with
each seller asking buyers to disclose how the other sellers will react to information about his
mechanism, and so on; this leads to what is sometimes called the “infinite regress problem”.
Indeed, Epstein and Peters (1999) shows that the resulting class of universal mechanisms
resembles the set of hierarchies of beliefs; we refer to these as “complex mechanisms”.

We prove that any strictly individually rational payo� profile (i.e. each player gets above
his/her minmax) derived from incentive compatible one-shot mechanisms may be supported

1In our example with multiple sellers and buyers, the action can be interpreted as a profile of quantity and
payment pairs, one for each buyer. Generally, an action is any decision that a principal and agents can contract
on; it includes the signing of employment contracts with a subset of applicants, specifying compensation based
on the profits of the employer and other performance evaluation measures; an action can also specify a task or
an e�ort for agents, together with an incentive scheme to induce it.

1



in a perfect Bayesian equilibrium (henceforth PBE) of the repeated contracting game. By
itself this is not particularly useful for applications: in the static setting, one cannot compute
minmax values because these are defined by taking minimum and maximum over complex
mechanisms, for which there is no parsimonious expression; in addition, equilibrium short-
term mechanisms o�ered in the literature are much more involved than direct mechanisms
(DMs) because a deviation by a principal must be detected and punished immediately.

Our results lend themselves to applications for two reasons. First, our equivalence theorem
provides a simple algorithm to calculate minmax values with respect to the set of all complex
mechanisms; it shows that the complex minmax of any principal in the repeated game can
be expressed as his maxmin value when he can o�er only actions, and the other principals
are restricted to DMs. Since actions and DMs are both much simpler objects than complex
mechanisms, the calculation of the complex minmax reduces to a programming problem. No
algorithm exists for calculating the corresponding minmax value in static games, even in finite
ones.

Second, our su�cient mechanisms are also simple. While punishments must be included
in the contract in the static game, it can be put into continuation payo�s in the dynamic game
when players are patient. We show that on the equilibrium path, principals only need to o�er
deviator-reporting direct mechanisms (DDMs) at each time. DDMs are only slightly more
complicated than DMs in that agents report their types, as well as the player (if any) who
must be punished from the next period. DDMs assign current actions contingent on agents’s
type reports only; reports on who deviated influence the continuation play only. Therefore,
DDMs can be viewed as DMs augmented by agents’ cheap talk messages about the identity of
the deviating player, if any. O� the path following a deviation by principal j, our equivalence
results show that punishments can be meted out with extended direct mechanisms (EDMs)
— in addition to the information requested by a DDM, principals k ”= j ask agents to report
which action principal j would play if all agents were to follow the prescribed strategies.2

Our results are particularly simple in the special case of private values, where each agent’s
type influences only her own utility. We show that DDMs are enough both on and o� the
path, obviating the need for EDMs. Furthermore, various definitions of minmax value are
equivalent. Numerical examples illustrate the computational ease of our equivalence theorems.

It is interesting to see how endogenous monitoring by agents in the dynamic setting ex-
pands the set of equilibrium payo�s. First, endogenous monitoring allows players to com-
pletely neutralize a deviating principal’s ability to make his action choice contingent on agents’
types o� the path following his deviation. In other words, if principal j is being punished,
agents induce the same action from the the principal’s mechanism regardless of their types.
Consequently, j cannot benefit by o�ering a complex mechanism. If agents observe some

2While EDMs are required o� the path, the principal’s minmax value relative to complex mechanisms is
expressed in terms of direct mechanisms.
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other action realized from the principal’s mechanism, they can infer that some agent deviated
from the messages she was supposed to send. Because agents can report such a deviation to
principals in order to punish the deviating agent in the following periods, such a deviation
can be deterred. This is why a principal’s minmax can be calculated as if he can only o�er
actions instead of complex mechanisms.

Secondly, endogenous monitoring weakens the notion of incentive compatibility (IC). As
we will show later in details, some false type reports result in unexpected actions with positve
probability, and will be subsequently reported by agents. In the dynamic setting, contem-
poraneous incentive compatibility is not required to deter such false reports. Deferring the
punishment to the continuation game permits more mechanisms on the equilibrium path and,
at the same time, allows more stringent punishments, forcing minmax values in the dynamic
setting below those in the static setting.

We review the related literature in the next subsection. Section 2 provides an example that
illustrates the key idea behind our results. Section 3 formally sets up the model for dynamic
competing mechanisms. Section 4 presents the results for the general case of interdependent
values. Section 5 shows how results simplify under private values. Section 6 concludes the
paper by discussing contributions and possible generalisations.

1.1 Relation to Literature

An extensive lierature on relational contracts (see among others Pearce and Stachetti (1999),
Fong and Li (2010), and Levin (2003)) shows how repeated interaction provides incentives for
short-term contracts instead of contracts that specifies terms of trade for the entire future;
however this literature restricts us to a single principal, whereas most real world problems
involve multiple principals o�ering competing mechanisms. In addition the main concern of
this literature is show that repeated contracting provides a way to provide incentives even
when some key variables are non-contractible. Our results is most relevant when everything is
contractible, and the model is liable to be intractably complex; fortunately our results salvage
the situation by identifying a simple and su�cient class of mechanisms.

McAfee (1993) and Peck (1995) pointed out that the standard revelation principle defined
over agents’ payo� types fails when multiple principals (e.g., sellers) compete in designing
trading mechanisms. Menu theorems by Peters (2001) and Martimort and Stole (2002) show
that when there is only one agent in the model, an equilibrium in complex mechanisms may
be replaced by each principal o�ering a menu of contracts.3 In the static model wtih three or
more agents, Yamashita (2010) shows that each principal can o�er mechanisms where each
agent reports not only her type but also recommends the DMs that principals should o�er,

3Han (2006) showed that menu theorems extend to multiple agency problems if contracting is bilateral, i.e
principals negotiate separate contracts with each agent. Prat and Rustichini (2003) is an example of bilateral
contracting.
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covering all possible o�-equilibrium situations there is no unanimous recommendation. In all
of the above, minmax values are couched in terms of the complex mechanisms; since there
is no closed-form expression for the latter, it is not easy to identify which payo�s can be
supported in equilibrium. This and other connections are further explored after the model is
introduced.

The incentive-compatible extended DMs in Pavan and Calzolari (2009) generate only a
subset of the equilibrium allocations possible under complex mechanisms. Attar, Mariotti
and Salanié (2011) studies a market with adverse selection as a non-exclusive common agency
problem.4 Our work is closer to Bergemann and Välimäki (2003), which characterises truthful
Markov perfect equilibrium payo�s of a dynamic common agency with symmetric informa-
tion. They restrict principals are restricted to o�ering nonlinear reward schedules to the
agent, e�ectively ruling out richer mechanisms a priori: We derive the optimality of simple
mechanisms.

The folk theorem in Peters and Trancoso Valverde (2013) characterizes equilibrium allo-
cations in a one-shot setting without distinguishing between principals and agents, because
everyone can o�er mechanisms and send messages (over two rounds). Our setting is standard:
agents and principals are distinct, and agents send a single round of messages to principals;
this is important as direct communication among principals is often forbidden as collusion.
Our algorithm derives minmax values even under incomplete information, whereas individiual
rationality in the above paper translates into minmax values under complete information but
not under incomplete information.

In the literature on contract theory, it is of important to design a contract that ensures
proper monitoring among agents (e.g., Ma (1989), Obara and Rahman (2010), Chandrasekher
(2012)). Our paper shows that monitoring is particularly simple in the dynamic setting
because agents simply report the indentity of a deviating player; such a report is cheap talk
as far as the current period is concerned because it does not a�ect the current action choice:
Monitoring leads to evolution of the continuation equilibrium.

One of our contributions is to draw attention to the complexity of contracts. The lit-
erature on incomplete contracting takes it as given that contracts cannot always specify all
contingencies, and examines its implications. Segal (1999) shows that when the environment
becomes arbitrarily complicated, the optimal mechanism is a very simple one. Our results
suggest that a contracting environment with multiple principals, while potentially very com-
plex, could very well involve simple equilibrium mechanisms. Evans (2008) investigates a
general model of hold-up with renegotiation and finds simple e�cient contracts.

4They demonstrate how to extend their results in the common agency framework to the biltareal contracting
framework.

4



2 An Application

We present here an applicaton to illustrate our result in a simple setting, and postpone until
the end a discussion of how various restrictive assumptions used in this example may be
relaxed.

2.1 Imperfect Substitutes and Bertrand Competition

There are two manufacturers, 1 and 2, each producing at constant marginal cost c. Products
are close but imperfect substitutes. Manufacturers repeatedly sell their products through I

retailers with I Ø 3. Each manufacturer j sets the price of its product and also faces a binary
choice of marketing e�ort e

j

œ {0, 1} such as advertisement, either directly, or through local
retailers, with the manufacturer absorbing the marketing cost r. Retailers are assumed to
compete to sell each firm’s product, leaving them with zero (supernormal) profits.

Retail markets operate a la Bertrand, but with di�erentiated products.5 Specifically, if
manufacturer i’s price is p

i

and manufacturer j’s price is p
j

, then i sells Qs

iÁ

= A
i

s
i

≠2p
i

+p
j

+Á

units. The last term Á is the underlying uncertainty in the market and it follows a distribution
H with mean zero. Neither manufacturers nor retailers observe the realization of Á. We let
Qs

i

:= E
Á

(Qs

iÁ

) = A
i

s
i

≠2p
i

+ p
j

, where E
Á

(·) is the expectation operator over ‘.

Each parameter s
i

œ [s, s] follows a distribution F independently and A
i

depends on two
factors — 1) market conditions, as respresented by a state in {G, B}, and 2) the marketing
e�ort profile e = (e1, e2) of the two manufacturers. The element of the state-space � =
[s, s]2 ◊ {G, B} is common knowledge among retailers but not known to manufacturers.

In state (s, G) the market is good enough that an advertisement by either manufacturer
results in the demand for both products going up; in state (s, B) an advertisement by i

destroys some of the demand of j, possibly securing some of it for product j. In the interest
of simplicity, we make the extreme assumption that, in state B, i can destroy j’s maket
completely, but gains none of the lost customers; hence

A
i

=

Y
]

[
1 + max{e1, e2} ; ◊ = G

1 ≠ e
j

; ◊ = B
.

Both G and B are equally likely. If manufacturer i chooses e
i

= 1, he pays a cost r that is
so large that it reduces net profits. This ensures that it is never profitable to advertise to
increase demand. Assume that manufacturers and retailers have reservation profits equal to
zero. Both assumptions simplify calculations and are not critical to the results.

In each period, a manufacture can write one-period contracts with its retailers, and commit
to take certain actions as a function of messages from the retailers. In principle, there are

5Alternatively, we can consider retail markets that operate a la Cournot.
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no restrictions on the complexity of the message space and what information it can contain.
The manufacturer does not observe the competing manufacturer’s mechanism, her terms of
trade with retailers, let alone the state in the retail market; indeed he observes only the sales
of his product and does not directly observe the price set by the other manufacturer. Due
to underlying uncertainty on the demand shock in the market and a lack of “deep pockets”,
retailers may not commit to pay a fixed amount of payment to the manufacturer. Therefore,
the outcome of a manufacturer’s contract for a retailer is a pair comprising the price of the
product that the manufacturer charges to the retailer and the retailer’s payment, which is the
manufacturer’s price multiplied by the quantity that the retailer actually sells in the retail
market. Assume that sales of each product are distributed equally over all retailers who
charge the lowest price. If retailers purchase the product from the manufacturer at the same
price, competition among retailers restricts them to zero profits6; manufacturers maximise
the discounted sum of profits using a common discount factor ”.

We first find the joint-profit maximising solution. In state s œ {s1, s2}, let (p̂s

1, p̂s

2, ês

1, ês

2) ©
(p̂s; ês) denote the joint-optimal price and marketing levels:

(p̂s

1, p̂s

2, ês

1, ês

2) œ arg max
(ps;es)

ÿ

i=1,2
{Qs

i

(ps

i

≠ c
i

) ≠ res

i

} .

Since r is large, the optimal marketing e�ort level is zero in every state: ês

1 = ês

2 = 0. The
first-order conditions are: p̂s solves

ˆQ

s
1

ˆp

s
1

(ps

1 ≠ c1) + Qs

1 + ˆQ

s
2

ˆp

s
1

(ps

2 ≠ c1) = 0
ˆQ

s
2

ˆp

s
2

(ps

2 ≠ c2) + Qs

2 + ˆQ

s
1

ˆp

s
2

(ps

1 ≠ c2) = 0.

This reduces to
4ps

1 ≠ 2ps

2 = s1 + c1; ≠2ps

1 + 4ps

2 = s2 + c2.

Henceforth assume s1 = s2 = s, and c1 = c2 = c. Then we have

p̂s

1 = p̂s

2 = (s + c)/2.

Second order conditions for a maximum hold. Therefore, the maximum expected joint profit
is fî = .5E

s

(s ≠ c)2 > 0, where E
s

(·) is the expectation operator over s.

6This is common, for example when there is an MRP, a maximum retail price. We see this as a simplifying
assumption. We can accomodate more complicated models where the retailer makers a fixed industry-standard
mark-up, or even engages in Nash bargaining with the manufacturer. This is not central to our story and hence
kept as uncomplicated as possible.
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Direct Mechanisms and the One-shot Game

Can manufacturers sustain production levels and marketing e�ort levels that maximize the
joint surplus without complex contracting in this repeated trading and contracting environ-
ment? The answer is in the a�rmative. Each manufacturer j then o�ers a direct mechanism
(DM) fid

j

in which each retailer i is asked to report the true state. If more than half of retailers
report the same state s, then the contract (i.e., quantity supplied and payment) assigns to
each retailer i a price-payment pair

1
p̂s

j

, qs

ij

p̂s

j

2
for all s œ {s1, s2},

where p̂s

j

is the joint profit-maximizing price and it is the price that manfacturer j charges to
each retailer and qs

ij

is the quantity that retailer i buys from manufacturer j, which eventually
the quantity that the retailers will sell in the retail market. If manufacturers maintain their
DMs, they share the joint surplus generated in the retail market as above depending on the
value of s; before learning the value of s the expected profit of each manufacturer is fî/2.

However we now show that if the game has only one period, the joint-optimal quantities
cannot be sustained with the DMs (fid

1 , fid

2) above, even when these are augmented by cheap
talk on the identity of a deviator. Note that cheap talk plays no role in a one-shot setting.
The best response function pú

i

of manufacturer i is:

pú
i

(p
j

) = (s + p
j

)/4 + c/2,

and therefore (s + c)/2 is not a best response to (s + c)/2; since

ˆfi
i

ˆp
i

----
pi=pj=(s+c)/2; ei=ej=0

< 0,

each manufacturer wants to lower prices. The intution is clear — lowering p
i

raises i’s demand
but lowers the demand for j, but only the first e�ect is considered in calculating the best
response whereas both e�ects interact in determining the joint optimum. Manufacturer 2
would rather price his product lower; manufacturer 1 can respond to this by o�ering a contract
where he asks each reatiler if manufacturer 2 deviated and choosing a di�erent price-payment
pair if relaiers report a deviation. We refer to this as manufacturer 1’s first order contract,
to distinguish it from a DM, which is a zero-order contract because it is based only on the
market information. Manufacturer 2 could then ask retailers if 1 o�ered a retaliatory contract
and in turn can best respond to this, giving us a second order contract. This sequence of best
responses leads to the infinte regress problem of Epstein and Peters (1999) that was discussed
earlier: the su�cient class of contracts becomes an intractable object and there is no way to
compute the minmax payo�s of the principals.
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Sustaining Collusion in the Repeated Contracting Game

In the repeated game, we can however sustain the above DMs with cheap talk. To do so
manufacturer j augments the direct mechanism fid

j

by also asking retailers to report any
player who unilaterally deviated: This report has no e�ect on the current allocation and
hence is purely cheap talk for the current period; however it influences future play. A DM
augmented by such a report is called a DDM, for deviator-reporting direct mechanism. The
DDM bases future play on the report that is delivered by a majority of agents. As long
as each manufacturer j o�ers the direct mechanism fid

j

, every retailer reports the true state
because I Ø 3 ensures that a unilateral false report does not a�ect the majority report; on the
equilibrium path she reports 0 as the deviator, to mean that there are no unilateral deviations.
We simplifed the model in such a way that agents cannot gain by reporting falsely. We need
to check that principals do not have profitable deviations from the above DDMs. If j deviated
from the DDM fid

j

augmented by the cheap talk, he is reported to the other manufacturer
by all retailers and subsequently minmaxed for a certain number of periods.7 Proposition
3 will show that the above DDMs can be sustained in equilibrium if we can show that the
equilibrium payo� fî/2 of each principal exceeds his minmax value, provided the principals
are su�ciently patient. The lower the minmax value the lower the threshold discount factor
for which co-operation can be sustained.

We leave a detailed examination of the dynamic incentives for later, and calculate minmax
values of a principal, say 2; since our example is symmetric both principals have the same
value. First consider the case where 1 tries to punish 2 without using any information from
the agents (the retailers); we refer to this as punishing with simple actions. Irrespective of s,
the worst punishment 1 can inflict on 2 is by choosing p1 = 0 = e1 so that Q2 = s2≠2p2 is
lowest, whatever p2 is. Given this, firm 2’s best response is to o�er a direct mechanism that
asks agents to report the value of s and chooses

ps

2 œ arg max
p

s
2

(s≠2ps

2)(ps

2 ≠ c),

which gives a price of ps

2 = (s + 2c)/4 and a profit of

fi =
⁄

[max
p

s
2

(s≠2ps

2)(ps

2 ≠ c)]dF (s) = 1
8Es

(s2 ≠ 4c2), (1)

assumed to be strictly positive. Therefore, the minmax value without using any information
from the agents is fi.

7If manufaturer j deviates from the DDM fid
j , the price of its product would change. This in turn would

change the retailers’ choices of quantities from the non-deviating manufacturer. However, manufacturer k
cannot infer whether manufacturer j deviated or not just by observing the quantities demanded by retailers.
This is because market demand for k’s product also depends on the underlying uncertainty Á in the market,
which is not observable by anyone. This is why retailers need to report deviations.
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However manufacturer 1 can mete out a harsher punishment by committing to a direct
mechanism in which he asks all retailers to report the state and chooses eB

1 = 1 if the majority
of retailers report (s, B) and pG

1 = 0 = eG

1 if the majority reports (s, G). Manufacturer 2 is
instructed to o�er a DDM, where he asks retailers to report the state and if manufacturer 1
deviated. This leads to a profit of fi/2, which is the minmax value based on information from
the agents.

Hence asking the agents to report information on the best way of punishing the deviating
principal makes it easier to punish and hence to sustain collusion.

2.2 Comments on the Example

We note the main messages of the example, and discuss the special features that simplified
the analysis.

1. The first observation is that simple actions are not enough to mete out severe punish-
ments. In this example the most severe punishment requires using a DDMs, i.e. direct
mechanisms augmented by a report on the identity of unilateral deviators.

2. This raises a moot question, Is this true in general that DDMs are enough? Our theorems
show that DDMs are enough on the equilibrium path. In this example they su�ce
even o� the path beacuse incentive problems are absent when it comes to extracting
information for purposes of devising punishemnts for a deviating principal. To relax this,
we must provide incentives to agents to reveal the truth, which in turn requires agents
to be patient. In our example that all information is common knowledge among agents;
this means that the above-mentioned incentive problem is avoided and the logic works
even if the agents are myopic; as a result DDM su�cient even o� the path. Reservation
payo�s are zero; this too can be realxed and agents can be given the option to opt out
of one or more mechanisms.

3. The above observations leads us to ask if there are simple mechanims that are su�cient
o� the path. A positive answer is provided by our Proposition 3, which shows that a
slightly richer class of mechanisms that DDM will su�ce even o� the path. In additon
to reporting the information in a DDM, these su�cient mechanisms report what action
the principal being punished is expected to take.

It is well known that repeated games with private monitoring do not admit of parsimonious
strategies, even without contracts entering the picture. A priori there is no reason to believe
that contracts would simplify matters; indeed, in the one-shot model the possibility of writ-
ing complicated contracts is responsible for the complexity. However, combining contracts
with the dynamic setting pares down the complexity although each model is individually
complicated.
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Another key di�erence between the theory of repeated games and our work involves finding
minmax values. Computing the minmax in a repeated game is a routine linear programming
problem. However in our model the minimum and the maximum must be taken with respect
to not principals’ actions but contracts mapping into the principals’ actions. This class of
contracts is intractable. Our equivalence theorems show that the complex minmax of any
principal can be computed as his maxmin value when he can o�er only actions, and the other
principals are restricted to DMs. so that we can express both the minmax and the equilibrium
payo� set in terms of primitives.

3 Setting and Preliminaries

3.1 A Model of Nonexclusive Contracts

The model presented here is an abstraction for repeated many-to-many contracting and trad-
ing problems. Theorems are illustrated with numerical examples, with most proofs moved to
the appendix.

We first describe the one-shot game that will be repeated over time. The sets of principals
and agents8 are, respectively, J := {1, · · · , J} and I := {J + 1, · · · , J + I}; let N = J fi I.
Assume that I Ø 3. Each agent i has private information about her (payo�) type ◊

i

drawn
from a finite set �

i

according to the known distribution µ
i

. Let ◊ = (◊
J+1, . . . , ◊

J+I

) denote
a type profile in � := ◊

iœI�
i

. Agents’ types are independent,9 i.e. the joint distribution
µ œ —� is the product of the marginals µ

i

œ —�
i

.10 Each principal j makes a decision a
j

(henceforth referred to as an action) from a finite11 set A
j

. Let a = (a1, ...a
J

) œ A := ◊
jœJ A

j

.
A mixed action of principal j is –

j

œ A
j

:= —A
j

. Let A := ◊
jœJ A

j

, and A≠j

:= ◊
k ”=j

A
k

.
For all n œ N , let u

n

: A ◊ � æ R be the vNM (von Neumann Morgenstern) expected payo�
function for player n, uniformly bounded by M < Œ.

The nature and scope of principal j’s action a
j

are quite general in that it is an allocational
decision that principal j and agents can agree on. The interpretation of action and type
depends on the application under consideration, as we explain below

• Multi-unit Trading: Consider an auction environment where in each period each seller
j is endowed with Q units of the good. A buyer can buy mutliple units from multiple
sellers. Then, seller j’s action at

j

= {(pt

ij

, qt

ij

)}
iœI in period t is interpreted as an array

of payment and quantity pairs in period t, where qt

ij

is the quantity of the good buyer i

8We use feminine pronouns for the agent and masculine pronouns for principals.
9If types are correlated it makes it easier to extract information about one agent’s type from the others as

in Crémer and Mclean (1988); see Tripathi (2008) for an application of this idea to dynamic mechanism design
with a single principal.

10For any set S, the set of probability distributions on S is denoted by �S.
11Finiteness of the type and action spaces is not critical for our results, but are usually made in the literature.

With a modicum of technicalities we can deal with a compact set of actions and a countable type-space.
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buys from seller j and pt

ij

is buyer i’s payment to seller j. Buyer i’s type ◊t

i

is an array
of marginal utilities over successive consumption.

• Insurance: Consider risk transfer markets (e.g. credit default swap) where buyers face
underlying asset risks over time but their preferences may di�er over the desire to shed
that risk. For example, buyer i holds an asset that can take one of the two-state
contingent values over time: In period t, it returns r > 0 with probability _◊t

i

(good
state) but nothing with probability 1 ≠ ◊t

i

(bad state). The quality of the underlying
asset in period t is characterized by ◊t

i

and it is buyer i’s private information. Buyer i

can purchase contingent claims that pay in the bad state from multiple sellers. Then
each seller j’s action at

j

= {(pt

ij

, qt

ij

)}
iœI is an array of price and contingent claim pairs

in period t, where qt

ij

is the amount of contingent claim that buyer i buys from seller j

and pt

ij

is the price that buyer i pays to seller j for contingent claim qt

ij

.

• Loan Contracting: Entrepreneur i has a risky investment project that generats profits
over time. Let f(qt

i

) be the profit in period t when the amount of money invested in
the project is qt

i

and the project turns out to be successful. Let ◊t

i

be the probability of
success and it is entrepreneus’ private information. Entrepreneur i can borrow money
from multiple lenders to finance its project. In this case, each lender’s action at

j

=
{(pt

ij

, qt

ij

)}
iœI is an array of pairs of repayment and amount of money borrowed in

period t, where pt

ij

is the amount of repayment that entrepreneur i makes conditional
on the success of her project and qt

ij

is the amount of money that entrepreneur i borrows
from lender

• Lobbying: Several di�erent lobby group act as principals. For example, anti-gun lobby
groups and pro-gun lobby groups repeatedly lobby multiple policy makers (e.g., govern-
ment, Congress, and etc.) for/against gun-control policies over time as issues come
along. In this case, each lobby group j’s action in period t is denoted by at

j

=
{(pt

ij

, qt

i

)}
iœI , where pt

ij

is lobby group j’s political support level for policy maker i and
qt

i

is the policy decision that policy maker i makes in period t. In this case, qt

i

can
be viewed as agent i’s contractable task or e�ort and pt

ij

is principal j’s reward for it.
Policy maker i’s ideal policy point in period t can be characterized by ◊t

i

and it is her
private information.

• Employment: An investment advisor often works for multiple investors and an investor
may also hire multiple advisors. Employment contracts in period t specifies reward and
task for advisors. Investor j’s action in period t is denoted by at

j

= {(pt

ij

, qt

ij

)}
iœI , where

qt

ij

is advisor i’s contractable task that is specific for investor j and pt

ij

is investor j’s
reward for advisor i. A reward can take various form. It could be a function of realized
return from investment made by according to the advisor’s recommendation or it could

11



be a function of relative ranking of the realized return. Advisor i’s expertise or ability
in period t can be characterized by her type ◊t

i

.

• Vertical Contracting: The application in the previous section in fact belongs to vertical
contracting where upstream firms (e.g., input producer) contract with downstream firms
(e.g., final good producer) Each news agency supplies news reports to multiple news or-
ganizations such as newspapers, magazines, and radio and television broadcasters; At
the same time, each news organization buys news from multiple new agencies as well.
Each cable TV provider contract with multiple TV channels and each TV channel also
contract with multiple cable TV providers at the same time. Supply chains in man-
agement can be viewed as examples of vertical contracting. Our model can incorporate
other examples if they can be modeled as repeated many-to-many trading problems with
contracts between multiple principals and multiple agents.

In examples described above, it is seldom observed that a principal (e.g, seller in multi-unit
trading problems, seller in insurance problems, lender in loan contracting, lobby group in
lobbying, etc.) o�ers one grand trading mechanism for terms of trade for the entire future,
because either principals lack full commitment or all possible future contingencies are too
complex to be specified in one grand mechanism. More importantly, when a principal interact
with agents repeatedly, it provides him and agents with incentives to repeatedly contract
through short-term trading mechanisms for terms of trade over a shorter period of time.Let us
formally describe an arbitrary complex mechanism that each principal o�ers for a contractual
decision that applies for a certain period of time. Following Epstein and Peters (1999), a
complex mechanism o�ered by principal j comprises compact message spaces M

ij

for each
i œ I, from which agent i chooses a message for principal j;12 and a continuous mapping
“

j

: M
j

æ A
j

, where M
j

:= ◊
iœIM

ij

is the set of all message profiles that might be received
by principal j. Each principal’s mechanism depends on a potentially very complicated message
space, but cannot be directly contingent on the mechanisms of the other principals. The set
of all feasible complex mechanisms available to principal j in the stage game is the set of all
continuous mappings �

j

:= {“
j

| M
j

æ A
j

}. Let � := ◊
jœJ �

j

. Let M := ◊
jœJ M

j

denote
the set of all profiles of messages that might be received by principals collectively.

The timing of the stage game is as follows.

1. The agents observe their respective types ◊
i

œ �
i

.

2. Without observing the agents’ types, principals simultaneously o�er mechanisms “
j

from
their respective �

j

.13

12The construction of Mij and its compactness are both established in Epstein and Peters (1999).
13A principal with full commitment power can o�er an infinite-horizon mechanism at the beginning—e.g.,

Lee and Sabourian (2011); Pavan, Segal and Toikka (2011). We follow Bergemann and Välimäki (2010):
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3. After observing the profile of mechanisms o�ered by principals, each agent sends a
private message m

ij

œ M
ij

to each principal j. Note that when m
j

œ M
j

is the profile
of messages received by principal j, he chooses the mixed action “

j

(m
j

) œ A
j

, which is
observed by agents but not by the other principals.

4. Payo�s are finally earned according to the payo� functions u
n

.

We now describe the repeated game GŒ (”). We adopt the following notational convention:
If { is a variable in the stage game, we denote its period t value by {t, with the understanding
that t is a superscript and not an exponent. The stage-game is repeated at each time t Ø 1.
For now we assume that agents’ types are independent across periods according to the full
support distribution µ œ —�. We significantly relax this assumption later, allowing each
agent’s type to evolve according to a Markov process.

In keeping with standard mechanism design framework, agents observe the sequence of
principals’ mechanisms and actions {“s, –s}

sÆt

at the end of period t. To make enforcement
harder in our dynamic game, we assume that principals cannot observe mechanisms o�ered
or actions taken by the other principals. However we are able to obtain strong results even
in this permissive setting, one weaker than the assumption of perfect monitoring routinely
used in repeated games. The discount factor is ” œ (0, 1), i.e. for any n œ N the (average)
discounted payo� of player n from period · onwards is (1 ≠ ”)

q
tØ·

”t≠· u
n

!
–t, ◊t

"
. As usual

we assume the existence of a public correlation device (PCD).

3.2 One-shot Mechanisms and Incentive Compatibility

An allocation can be captured by a stage social choice function (stage-SCF), which is a
mapping f : � æ —A specifying a probability distribution over action profiles as a function
of the type profile of agents. Let F be the set of all possible stage-SCFs. Given the presence
of private information for the agents, it is clear that constant mechanisms, which do not ask
for any information from the agents, may not be enough to support f unless f is a constant
allocation. The simplest mechanism that elicits the type information is a direct mechanism.
We also allow an agent to refuse participation in a mechanism by sending a null message ÿ to
the principal concerned. For each i œ I, let �̃

i

:= �
i

fi {ÿ} and �̃ := ◊
i

�̃
i

.

Definition 1 A direct mechanism (DM) o�ered by principal j is a mapping fi
j

: �̃ æ A
j

.

We provide a few examples where DMs are basic building blocks in commonly observed
contracting situations. For example, auctions decide allocations across bidders contingent on
bids submitted. Because bids are directly tied to bidders’ own willingness to pay, auctions

mechanisms are o�ered period by period. Since these papers involve a single principal or social planner
o�ering mechanisms, complications introduced by competition among principals does not arise; our work must
grapple with this to obtain simple mechanisms.
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are essentially DMs. Many incentive contracts can be also characterised by DMs. Let y
ij

(·)
denote principal j’s incentive contract that specifies his choice p

ij

as a function of contractable
part of agent i’s e�ort or task q

i

. Part of each agent i’s e�ort or task that can be contractable
between the agent and each principal j depends on the nature of the agent’s e�ort or task and
the scope of contracting in the application. In most seller-buyer problems, q

i

is decomposed
to (q

i1, . . . , q
iJ

), where q
ij

is the quantity that buyer i buys from seller j. In this case, an
incentive contract y

ij

(·) is interpreted as a nonlinear price and it often specifies buyer i’s
payment as only a function of only the quantity that she buys from seller j. In the example of
lobbying, lobby group j may want to o�er a political contribution scheme y

ij

(·) to policy maker
i to incentivise her policy decision q

i

. In this case, a polic decision may not be decomposable
so that a political contribution scheme y

ij

(·) specifies lobby group j political level p
ij

for
policy maker i as a function of policy maker’s whole decision q

i

. Incentive contracts are also
basic contracting buiding blocks in many other economic problems such as loan contracting,
insurance, and etc. For any array of incentive contracts {y

ij

(·)}
iœI that principal j o�ers, one

for each agent, we can find out the equivalent DM fi
j

= {fip

ij

(·), fiq

ij

(·)}
iœI , where (fip

ij

(·), fiq

ij

(·))
determines agent i’s payment and quantity as a function of her type report only and, for all
◊̃

ij

œ �̃
i

, fip

ij

(◊̃
ij

) = y
ij

(fiq

ij

(◊̃
ij

)).
Let �

j

be the set of all DMs available for principal j in an application under consideration
and � := ◊

jœJ �
j

. For example, �
j

includes various formats of auctions for seller j in multi-
unit trading problems. In lobbying problems, it includes various political contribution schemes
that are legally available for lobby group j. Agent i sends a type report ◊̃

ij

to principal j; her
profile of type reports is therefore a vector of the form (◊̃

i1, . . . , ◊̃
iJ

) œ (�̃
i

)J , since there are
J principals. Given a profile of DMs fi := (fi1, . . . , fi

J

), the expected payo� of agent ◊
i

, when
the other agents truthfully report their types, is

E
µ≠i

Ë
u

i

(fi1(◊̃
i1, ◊≠i

), · · · , fi
J

(◊̃
iJ

, ◊≠i

), ◊
i

, ◊≠i

)
È

,

where E
µ≠i [·] is the expectation operator given the probability distribution µ≠i

over �≠i

.
For any profile of DMs fi, the set of all actions profiles induced by truthful type reports

is given by Â(fi) := {[fi1(◊), . . . , fi
J

(◊)] | ◊ œ �}. For any given fi we define B
i

(fi) µ (�̃
i

)J

for each i as the set of all arrays of type reports of agent i, one report to each principal, that
lead to an action profile in Â(fi) irrespective of the types of the other agents as long as they
report truthfully:

B
i

(fi) :=
Ó

(◊̃
i1, . . . ◊̃

iJ

) œ (�̃
i

)J

---
1
fi1(◊̃

i1, ◊≠i

), . . . , fi
J

(◊̃
iJ

, ◊≠i

)
2

œ Â(fi) ’◊≠i

œ �≠i

Ô
.

We propose three di�erent definitions of incentive compatibility (IC) below, depending on
what kind of misreports are being deterred; this is followed by a comparison of the three
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notions.

Definition 2 A profile of DMs fi = (fi1, . . . , fi
J

) satisfies IC over D
i

µ (�̃
i

)J

w.r.t. µ if for

all i œ I and all ◊ = (◊
i

, ◊≠i

) œ � we have

E
µ≠i [u

i

(fi(◊), ◊)] Ø E
µ≠i

Ë
u

i

(fi1(◊̃
i1, ◊≠i

), . . . , fi
J

(◊̃
iJ

, ◊≠i

), ◊)
È

’ (◊̃
i1, . . . , ◊̃

iJ

) œ D
i

, (2)

where fi(◊) = [fi1(◊
i

, ◊≠i

), . . . , fi
J

(◊
i

, ◊≠i

)].
If fi satisfies (2) over D

i

= (�̃
i

)J

we write fi œ �U

and say that fi is unrestrictedly
incentive compatible (UIC).

If fi satisfies (2) over D
i

= B
i

(fi), we write fi œ �C

and say that fi is constrained incentive
compatible (CIC). Clearly (◊

i

, . . . , ◊
i

) œ B
i

(fi) for any ◊
i

œ �
i

.

If fi satisfies (2) over D
i

:= {(◊̃
i1, . . . ◊̃

iJ

) œ (�̃
i

)J | ◊̃
i1 = · · · = ◊̃

iJ

œ �
i

}, we write

fi œ �W

and say that fi is weak constrained incentive compatible (WIC).

For any K œ {U, C, W}, let �K

j

be the projection of �K onto principal j’s space of DMs.
For all fi

j

œ �K

j

, let �K

≠j

(fi
j

) := {fi≠j

œ �≠j

| (fi
j

, fi≠j

) œ �K}, i.e. �K

≠j

(fi
j

) is the set of all
fi≠j

œ �≠j

makes (fi
j

, fi≠j

) KIC given fi
j

œ �K

j

. Throughout, IC is defined on the agent’s
stage-game payo�. Given the notion of IC captured in K œ {U, C, W}, a stage-SCF f is said
to be induced by fi œ �K if f(◊) = fi(◊) for all ◊ œ �.14

Let us clarify the various notions of IC in terms of the DMs that belong to each class,
and the misreports that each notion deters through the use of contemporaneous incentives.
Clearly we have �U µ �C µ �W , because a weaker notion of IC in the above chain needs to
deter fewer deviations:

(�̃
i

)J ∏ B
i

(fi) ∏ {(◊
i

, . . . , ◊
i

) œ (�̃
i

)J | ◊
i

œ �
i

} for any fi œ �.

Consider an agent i contemplating a unilateral deviation from truthtelling. We say that i

reports consistently if she reports the same type to all principals (◊̃
i1 = · · · = ◊̃

iJ

), and
inconsistently if {◊̃

i1, . . . , ◊̃
iJ

} contains at least two distinct elements, i.e. she sends di�erent
messages to at least two principals.

UIC imposes IC for all messages. It is clear that all three notions need IC for all consistent
misreports because such lies induce action profiles in Â(fi) and cannot be detected. We have
three types of inconsistent reports as follows.

1. Inconsistent messages (◊̃
i1, . . . , ◊̃

iJ

) such that (fi1(◊̃
i1, ◊≠i

), . . . , fi
J

(◊̃
iJ

, ◊≠i

)) /œ Â(fi) for
some ◊≠i

are detected with positive probability. Only UIC imposes IC w.r.t. these.
14Note that f is defined on ◊i�i whereas fi is defined on ◊i�̃i: the latter specifies principals’ actions even

when some agents do not report their types.
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2. Some inconsistent messages (◊̃
i1, . . . , ◊̃

iJ

) by i are outcome-equivalent to a consistent lie,
i.e. for some ◊̂

i

œ �
i

we have

(fi1(◊̃
i1, ◊≠i

), . . . , fi
J

(◊̃
iJ

, ◊≠i

)) = fi(◊̂
i

, ◊≠i

) œ Â(fi) ’ ◊≠i

œ �≠i

;

these create no problems because they are taken care of when we deter consistent lies.

3. The remaining class of messages are the inconsistent reports in B
i

(fi) that lead to an
action in Â(fi) but are not equivalent to a single consistent lie. Both UIC and CIC
imposes incentive compatibility with respect to these, whereas WIC does not.

Let us explain the di�erent notions of IC with an example below.

Example 1. There are two principals and three agents15 — �1 = {◊1, ◊
Õ
1}, �2 = {◊2, ◊

Õ
2},

�3 = {◊3}. For simplicity, we assume that agents must participate. Consider a profile of DMs
fi = (fi1, fi2) that maps type reports to actions as given by the table below. Agent 3’s type
report is fixed at ◊3; rows correspond to message profiles (one message to each principal) of
agent 1, while columns correspond to agent 2’s message profiles.

◊2, ◊2 ◊2, ◊
Õ
2 ◊

Õ
2, ◊2 ◊

Õ
2, ◊

Õ
2

◊1, ◊1 –1, –
Õ
2 –1, –2 –1, –

Õ
2 –1, –2

◊1, ◊
Õ
1 –1, –

Õ
2 –1, –

Õ
2 –1, –

Õ
2 –1, –

Õ
2

◊
Õ
1, ◊1 –

Õ
1, –

Õ
2 –

Õ
1, –2 –

ÕÕ
1 , –

Õ
2 –

ÕÕ
1 , –2

◊
Õ
1, ◊

Õ
1 –

Õ
1, –

Õ
2 –

Õ
1, –

Õ
2 –

ÕÕ
1 , –

Õ
2 –

ÕÕ
1 , –

Õ
2

Truthful reports induce actions profiles in Â(fi) = {(–1, –
Õ
2), (–Õ

1, –
Õ
2), (–1, –2), (–ÕÕ

1 , –
Õ
2)}.

WIC requires that the truthful type report is at least as good as any other consistent type
report given the other agents’ truthful report. Assume agent 2 reports the truth. If agent 1
reports ◊1 to every principal, she induces (–1, –

Õ
2) and (–1, –2) when the other agents’ types are

(◊2, ◊3) and (◊Õ
2, ◊3) respectively. However, if agent 1 reports ◊

Õ
1 to every principal, it induces

(–Õ
1, –

Õ
2) and (–ÕÕ

1 , –
Õ
2) when the other agents’ types are (◊2, ◊3) and (◊Õ

2, ◊3) respectively. Under
WIC, agent 1’s choice is whether to choose (–1, –

Õ
2) and (–1, –2), or (–Õ

1, –
Õ
2) and (–ÕÕ

1 , –
Õ
2).

Now consider CIC. Given the other agents’ truthful type reports, agent 1’s inconsistent
type report (◊1, ◊

Õ
1) induces (–1, –

Õ
2) for both possible profiles of the other agents’ types.

Because (–1, –
Õ
2) œ Â(fi), the other agents cannot detect agent 1’s inconsistent type report

(◊1, ◊
Õ
1) by observing the action profile (–1, –

Õ
2) at the end of the period and hence (◊1, ◊

Õ
1) œ

B1(fi). On the other hand, agent 1’s inconsistent type report (◊Õ
1, ◊1) induces (–Õ

1, –
Õ
2) and

(–ÕÕ
1 , –2) when the other agents’ types are (◊2, ◊3) and (◊Õ

2, ◊3) respectively. Because (–ÕÕ
1 , –2) /œ

15In this example we refers to agents with 1, 2, 3 while principals are 1, 2. The overlap in numbering principals
and agents is not problematic in this simple example.
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Â(fi), the other agents can detect agent 1’s inconsistent type report (◊Õ
1, ◊1) when their type

profile is (◊Õ
2, ◊3), i.e., the other agents can detect agent 1’s inconsistent type report (◊Õ

1, ◊1) with
positive probability. Hence, (◊Õ

1, ◊1) /œ B1(fi). In summary, B1(fi) = {(◊1, ◊1), (◊Õ
1, ◊1), (◊Õ

1, ◊
Õ
1)}.

Given the other agent’s truthful type reports, agent 2’s inconsistent type report (◊2, ◊
Õ
2)

induces (–1, –2) and (–Õ
1, –

Õ
2) when the other agents’ types are (◊1, ◊3) and (◊Õ

1, ◊3) respectively.
Because both (–1, –2) and (–Õ

1, –
Õ
2) are in Â(fi), agent 2’s inconsistent type report (◊2, ◊

Õ
2)

cannot be detected only by observing the action profiles. It means that (◊2, ◊
Õ
2) œ B2(fi).

Similarly, (◊Õ
2, ◊2) œ B2(fi) so that B2(fi) includes all possible type reports for agent 2: B2(fi) =

{(◊2, ◊2), (◊Õ
2, ◊2), (◊2, ◊

Õ
2), (◊Õ

2, ◊
Õ
2)}. CIC is imposed over only the type reports in B1(fi) for agent

1 and the type reports in B2(fi) for agent 2. While B2(fi) includes all possible type reports,
B1(fi) does not include (◊Õ

1, ◊1) because it can be detected with positive probability. Therefore
UIC and CIC are the same for player 2 but not for player 1. ⌅

In a one-shot model, UIC is the appropriate notion of IC because agents cannot be pun-
ished even if a false type report is detected at the end of the game. We will show that in
our dynamic setting, IC refers to the weaker notions of CIC and WIC; the legitimacy of
these notions rests on our ability to use the continuation game of the repeated game to deter
inconsistent messaging. Consider CIC: If agent i’s messages does not lie in B

i

(fi), it leads to
an action profile outside of Â(fi) with positive probability, given that others report truthfully.
Such an action profile informs all agents that at least one of them sent false type reports
(although they may not know the identity of this agent). In the dynamic game these lies
may be easily deterred because they can be punished with positive probability. On the other
hand, it would seem that WIC is too weak because inconsistent messages in B

i

(fi) cannot be
identified; we shall return to this towards the end of Section 3.

The next example derives the set �K of all profiles of DMs satisfying KIC, depending on
the notion of IC captured in K œ {U, C, W}. This example plays a key role as all further
examples build o� it.

Example 2. There are two principals and three agents —A1 = {–1, –
Õ
1}, A2 = {–2, –

Õ
2},

�1 = {◊1, ◊
Õ
1}, �2 = {◊2}, �3 = {◊3}. Agent 1’s type is either ◊1 or ◊Õ

1 with equal probability.
Agents 2 and 3 have no private information about their types because �2 and �3 are single-
tons. As in Example 1, assume that agents must participate. Players’ payo�s are given by
the following tables, one for each possible type of agent 1. The numbers in each cell represent
players’ payo�s in the following order — principal 1, principal 2, agent 1, agent 2, agent 3.

◊ = (◊1, ◊2, ◊3) ◊
Õ = (◊Õ

1, ◊2, ◊3)
–2 –

Õ
2

–1 4,2,2,1,1 3,5,3,1,1,
–

Õ
1 6,8,4,1,1 9,9,2,1,1

–2 –
Õ
2

–1 8,6,4,1,1 7,9,2,1,1
–

Õ
1 2,3,1,1,1 5,4,3,1,1
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For ease of exposition, all examples consider only pure actions and DMs in �
j

map to
A

j

rather than A
j

. For each principal j, there are four possible DMs: �
j

= {fī
j

, fī
Õ
j

, fi
j

, fi
Õ
j

},

where the four DMs are defined as follows.

fī
j

(◊1, ◊2, ◊3) = –
j

, fī
j

(◊Õ
1, ◊2, ◊3) = –

j

fī
Õ
j

(◊1, ◊2, ◊3) = –
Õ
j

, fī
Õ
j

(◊Õ
1, ◊2, ◊3) = –

Õ
j

fi
j

(◊1, ◊2, ◊3) = –
j

, fi
j

(◊Õ
1, ◊2, ◊3) = –

Õ
j

fi
Õ
j

(◊1, ◊2, ◊3) = –
Õ
j

, fi
Õ
j

(◊Õ
1, ◊2, ◊3) = –

j

Because agents 2 and 3 have no private information, each mechanism makes the principal’s
action contingent on agent 1’s type report only. Note that fī

j

and fī
Õ
j

are constant DMs that
always assign –

j

and –Õ
j

respectively while fi
j

and fiÕ
j

change actions conditional on agent 1’s
type report. Because each principal has four DMs, there are sixteen profiles of DMs that
principals can o�er.

Given any profile of mechanisms, agent 1 can report one of four di�erent type profiles in
�1 ◊ �1 = {(◊1, ◊1), (◊1, ◊

Õ
1), (◊Õ

1, ◊1), (◊Õ
1, ◊

Õ
1)}. The notion of UIC imposes incentive compati-

bility over all possible type reports in �1 ◊ �1; it is easy to show that

�U = {(fī1, fī2), (fī1, fī
Õ
2), (fī1, fi

Õ
2), (fīÕ

1, fī2), (fīÕ
1, fī

Õ
2), (fīÕ

1, fi2), (fi1, fī
Õ
2), (fiÕ

1, fī2)}.

Now consider profiles of CIC DMs. Incentive compatibility is not needed for a type report
that has a positive probability of inducing an action profile that would never happen if all
agents were to report truthfully. The table below shows the action profiles induced by agent
1’s reports, where rows and columns correspond to the message sent to principals 1 and 2
respectively.

◊1 ◊
Õ
1

◊1 –
Õ
1, –2 –

Õ
1, –

Õ
2

◊
Õ
1 –1, –2 –1, –

Õ
2

Consistent type reports (◊1, ◊1) and (◊Õ
1, ◊

Õ
1) induce actions profiles (–Õ

1, –2) and (–1, –
Õ
2)

respectively and hence Â(fiÕ
1, fi2) = {(–Õ

1, –2), (–1, –
Õ
2)}. The profile of DMs (fiÕ

1, fi2) is not
UIC: If agent 1 of type ◊

Õ
1 report ◊

Õ
1 to principal 1 but ◊1 to principal 2 so that (–1, –2) is

induced, then her payo� is 4 while she receives the payo� of 2 from (–1, –
Õ
2) that is assigned

by truthful type reports to both principal. However, if we adopt the notion of CIC, we do not
need to worry about such an inconsistent type report because (–1, –2) is not in Â(fiÕ

1, fi2). In
fact, any inconsistent type report results in an action outside Â(fiÕ

1, fi2) with probability one.
Hence IC is imposed only over B1(fiÕ

1, fi2) = {(◊1, ◊1), (◊Õ
1, ◊

Õ
1)}. It is easy to check that (fiÕ

1, fi2)
is CIC; it is also WIC because B1(fiÕ

1, fi2) includes only consistent type reports. Similarly, we
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can show that (fiÕ
1, fi

Õ
2) is both CIC and WIC although it is not UIC. Therefore, we have

�C = �W = {(fiÕ
1, fi2), (fiÕ

1, fi
Õ
2)} fi �U .

Weakening the notion of IC from UIC to CIC or WIC strictly expands the set of profiles of
DMs satisfying incentive compatibility. ⌅

Given a profile of complex mechanisms, each messaging protocol induces a profile of DMs;
the next definition formalises this.

Definition 3 Given any “ = (“
j

, “≠j

) œ �, equilibrium or otherwise, a continuation messag-

ing profile m = (m1, . . . , m
J

), where m
ij

: � æ M
ij

and m
j

= (m
ij

)
iœI , is said to induce a

profile of DMs fi = (fi1, . . . , fi
J

) if, for all k œ J ,

fi
k

(◊) := “
k

(m
k

(◊)) ’◊ œ �, (3)

fi
k

(ÿ, ◊≠i

) := “
k

(ÿ, m≠ik

(◊≠i

)) ’◊≠i

œ �≠i

, ’i œ I. (4)

The set of all such DMs is �(“), and A (“) is the set of all action profiles that may be
induced by “. Let �K(“) := �(“) fl �K for any K œ {U, C, W}, where the superscript K

denotes the notion of IC adopted. Finally for any “
j

œ �
j

and any K œ {U, C, W}, define

�K

j

(“
j

) :=
€

“≠jœ�≠j

�K(“
j

, “≠j

).

Equation (3) says that the action taken under fi
k

for truthful reports is the one taken
under “

k

if all agents send messages according to m
k

; equation (4) says that if agent i refuses
participation while the other agents’ report valid types, the action taken by fi

k

is the one
taken under “

k

when the agent does not participate in “
k

and the others report according to
m

k

. The notation above will be useful in defining various minmax values. Note that �K

≠j

(fi
j

)
is a subset of �≠j

whereas �K

j

(“
j

) is a subset of �
j

.
The dynamic setting involves simpler mechanisms than the static one precisely because

mechanisms need not deter contemporaneous deviations. As long as potential deviators can
be identified, punishment can be deferred. This motivates the following construction.

Definition 4 A Deviator-reporting DM (DDM) o�ered by principal j is a mapping fia

j

:
◊

iœI [�̃
i

◊ {0, 1 . . . , J, J + 1, . . . , J + I}] æ A
j

.

For each j, fia

j

(◊̃, d
j

) denotes the action of principal j when the profile of type reports is ◊̃,

and the profile of reports on the identity of the deviating player is d
j

= (d
J+1,j

, . . . , d
J+I,j

).
At any time t each agent i reports her type ◊̃t

ij

œ �̃
i

, and the identity dt

ij

œ {0, 1 . . . , J + 1}
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of the most recent deviator; dt

ij

= 0 is a report from agent i to principal j that no agent had
deviated in the last period t ≠ 1 and no principals have deviated in the current period t; the
report dt

ij

Ø J + 1 amounts to reporting that agent dt

ij

had deviated at t ≠ 1; 0 < dt

ij

Æ J

means that agent i reports that principal dt

ij

deviated at t. Note that when agent i sends
reports at time t, she is not aware if any agents will deviate in period t; she only knows about
principals deviations until t and agents’ deviations until t ≠ 1.

In Yamashita’s recommendation mechanisms, each agent’s message space is the Cartesian
product of all agents’ type spaces, which gets exponentially complicated as the number of
agents and the cardinality of the type spaces increase. DDMs are much simpler — each agent
needs to report only her type and a number between 0 and J . Furthermore Yamashita imposes
more demanding incentive compatibility requirements, as we explain later.

The incentive compatibility of DDMs is potentially complex because agents report not
only their types but also the deviating player, if any. However, we shall see that incentive
compatibility over agents’ type reports su�ces. However in our equilibrium players reports
on types will influence principals’ current actions while deviator reports will influence future
play; i.e. fia

j

(◊̃, d
j

) = fia

j

(◊̃, d
Õ
j

) =: fi
j

(◊̃) for all j œ J , ◊̃ œ �̃, d
j

, d
Õ
j

œ {0, 1, . . . , J + I}I . Thus
reporting one’s type is KIC under the DDMs fia = (fia

1 , . . . , fia

J

) if fi satisfies IC. In that sense,
agents’ reports on the deviator’s identity are similar to cheap talk as far as the current period
is concerned because the principal’s action does not depend on agents’ reports on the identity
of a deviating player; however, it changes the continuation play.

For example, a DDM characterizes a situation where seller j simply asks bidders if someone
deviated in the current period as he o�ers a multi-unit auction in multi-unit trading problems;
Only bids that bidder send will decide seller j’s allocation regardless of bidders’ reports on
who, if any, the deviator is. Also, a DDM characterises a situation where principal j simply
asks agents on who, if any, the deviator is as he o�ers incentive contracts to agents in problems
where an incentive contract is a basic contracting building block. In this case, principal j’s
choices only depend on agents’ e�ort or task but not agents’ reports on the identity of the
deviator. Because principalj’s allocation decision in a DDM depends only on agents’ type
reports but not on their reports on the identity of the deviator, a DDM is even simpler than
price matching practices in which a seller actually has to lower its current price contingent on
buyers’ reports on lower prices o�ered by a competing seller.

3.3 Minmax Values

The set of payo�s that can be sustained in equilibrium depends on the minmax values of the
players, which in turn depends on the set of mechanisms � that principals can o�er and the
appropriate notion of incentive compatibility. In the general case of interdependent values
player i œ I fi J gets utility u

i

(–, ◊) when the action profile is – and the type profile is
◊. A special case is that of private values, where no agent’s type a�ects any other player’s
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payo�: u
j

(–, ◊) = u
j

(–, ◊Õ) ’– œ A, ’◊, ◊Õ œ �, ’j œ J and u
i

(–, ◊
i

, ◊≠i

) = u
i

(–, ◊
i

, ◊Õ
≠i

)
’– œ A, ’◊

i

œ �
i

, ’◊≠i

, ◊Õ
≠i

œ �≠i

, ’i œ I. With slight abuse of notation, we use u
j

(–) and
u

i

(–, ◊
i

) for principal j’s payo� function and agent i’s payo� function in the private value
case. The mechanisms required to attain the complex minmax values, and hence to replicate
the complex mechanism allocations, are simpler under private values.

In the benchmark one-shot game principal j’s minmax w1
j

(relative to �) is

w1
j

:= min
“≠jœ�≠j

max
“jœ�j

u1
j

(“≠j

, “
j

) , where u1
j

(“) := min
fiœ�1(“)

E
µ

[u
j

(fi (◊) , ◊)]

and �1(“) is the set of all profiles of UIC DMs that can be induced by all continuation
equilibria at “ œ � in the one-shot game. The superscript 1 refers the “one-shot” game. To
formulate the set of SCFs that are supported by equilibria of the one-shot game, we let a SCF
f be strictly individually rational (SIR) for principals with respect to (w.r.t.) µ œ —� if

E
µ

[u
j

(f(◊), ◊)] > w1
j

’j œ J

The set of SCFs supported in equilibria of the one-shot game is given by

F1(µ) := {f œ F : f is SIR for principals w.r.t. µ and induced by fi œ �U }. (5)

The one-shot game does not explicitly mention an agent’s minmax value w1
i

because agents
simply play continuation equilibria of the one-shot game and do not need to be punished;
however, the one-shot minmax is implicitly defined as

w1
i

:= inf
fi œF1(µ)

E
µ

[u
i

(fi, ◊)] ’i œ I. (6)

Now we formulate players’ minmax values in the dynamic game. While CIC and WIC are
the right notions of IC in the dynamic game, we formulate minmax values under all notions
of IC (UIC, CIC, and WIC) to facilitate comparison with the static minmax value.

Principals’ Minmax Values

In order to characterise the set of all feasible equilibrium SFCs relative to any complex �,
it is important to derive principal j’s minmax value wK

j

relative to complex mechanisms
�, for any given notion of IC captured by the superscript K œ {U, C, W}. O� the path
following principal j’s deviation, let “ = (“≠j

, “
j

) be a profile of complex mechanisms o�ered
by principals. In a continuation equilibrium of “, agents induce a profile of DMs satisfying
KIC. Principal j’s minmax is the lowest payo� he receives from among all such DMs: For any
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K œ {U, C, W}, principal j’s minmax wK

j

(relative to �) is

wK

j

:= min
“≠jœ�≠j

max
“jœ�j

uK

j

(“≠j

, “
j

) , where uK

j

(“) := min
fiœ�K(“)

E
µ

[u
j

(fi (◊) , ◊)] . (7)

The three possible definitions of minmax thus di�er in how stringent a notion of IC is imposed
on DMs; this relates to which deviations by the agents can be detected and which ones must
be contemporaneously deterred through the use of incentives. Equation (7) also clarifies that
principal j’s minmax depends in general on the set of permissible mechanisms �.

The key di�erence between the static and dynamic settings is that in the latter non-
deviating principals use the threat of future punishment to force agents to follow communi-
cation protocols violating UIC (but satisfy CIC or WIC); as we will show later, it not only
enlarges the set of feasible SCFs but also lowers the minmax values, e�ectively increasing the
severity of punishments for a deviating principal. Since the static game must deter all misre-
ports, it satisfies UIC; it therefore follows that w1

i

Ø wU

i

for all players i œ I fi J . Proposition
1 compares the various minmax values and the payo� sets they can support in equilibrium.

Agents’ Minmax Values

What if an agent deviates? In this case, she will be punished by the other players subsequently.
In this light, it is important to find the minmax value wK

i

for agent i, given the notion of
IC identified in the superscript K œ {U, C, W}, when principals can o�er arbitrary complex
mechanisms from �; wK

i

(◊
i

) is the minmax when the type of agent i is ◊
i

. We consider three
cases.

Case 1: Reservation Utilities. First, consider the case where agents have reservation
payo�s — if agent i does not participate in any mechanism, she earns her reservation payo�
u

i

(◊) for any ◊ œ �, independently of principals’ actions. We assert that for any K œ
{U, C, W}, wK

i

(◊) must be equal to u
i

(◊). It cannot exceed u
i

(◊) as all principals can refuse to
have a contractual relationship with the agent, leaving her with u

i

(◊); it cannot be lower than
u

i

(◊) because the agent can refuse participation in all mechanisms. For w1
i

in the one-shot
setting, no agent falls below her reservation payo� under any SCF in F1(µ). Therefore, agent
i’s complex minmax equals the expected (averaged over all types) reservation payo� for agent
i: For any K œ {U, C, W},

w1
i

Ø wK

i

= u
i

:= E
µ

[u
i

(◊)] ’i œ I. (8)

Since we allow an agent to send the message ÿ to each principal and get her reservation payo�,
our definition of IC also incorporates a participation constraint.16

16In the mechanism design literature this is also called individual rationality; we prefer “participation con-
straint” to distinguish it from “individual rationality” in the sense of repeated games.
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Case 2: Interdependent Values without a Reservation Utility. In order to punish agent
i we must take into account the types of all agents other than i. For any K œ {U, C, W},

agent i’s minmax value relative to complex mechanisms is agent iÕs payo� when all principals
o�er the worst mechanisms and agents other than i coordinate on the worst continuation
equilibrium subject to it being incentive compatible (KIC):

wK

i

:= min
“œ�

inf
fiœ�K(“)

E
µ

[u
i

(fi, ◊)] ’i œ I. (9)

Note that agent i is indeed best responding in the above definition; the “max” is already
incorporated because i’s message is a best response to the messages of the others for each DM
satisfying KIC.

Case 3: Private Values. For any K œ {U, C, W}, agent i’s minmax value relative to
complex mechanisms is given by (9) with ◊ replaced by ◊

i

.
When principals minmax agent i with simple actions, she obtains her simple minmax

w
i

:= E
µi [ui

(–i, ◊
i

)], ’i œ I, where –i œ arg min
–œA

E
µi [u

i

(–, ◊
i

)] . (10)

Lemma 1 (Agents’ Minmax) Without reservation payo�s, the minmax values for each

agent i satisfy the following:

(1) Under interdependent values, for any K œ {U, C, W}, wK

i

= inf
fi œ �K

E
µ

[u
i

(fi, ◊)]. Fur-

thermore, wW

i

Æ wC

i

Æ wU

i

Æ w1
i

for all i œ I.

(2) Under private values, w
i

= wW

i

= wC

i

= wU

i

Æ w1
i

.

With reservations payo�s, u
i

= wW

i

= wC

i

= wU

i

Æ w1
i

.

Proof DMs can be constructed below from a profile of complex mechanisms. Let the profile
of complex mechanisms “i œ � and the messaging strategies (one for each agent h) mi

h

: �
h

æ
◊

j

M
hj

induce wK

i

in (9). Thus, following “i, agents induce actions “i

j

(mi

j

(◊)) by j œ J when
the type profile is ◊. Replace the profile “i with a profile fii :=

!
fii

1, ..., fii

J

"
of DMs satisfying

fii

j

(◊) := “i

j

1
mi

j

(◊)
2

’◊ œ �;

fii

j

(ÿ, ◊≠h

) := “i

j

1
ÿ, mi

≠hj

(◊≠h

)
2

’◊≠h

œ �≠h

, ’h œ I.

No agent h œ I has a profitable deviation under fii as there was none under “i.
Consider each agent’s minmax value without reservation payo�s. The following notions

of IC are progressively weaker — UIC, CIC and WIC —, and �U ∏ F1(µ), implying that
�W ∏ �C ∏ �U ∏ F1(µ). Agent i’s minmax values wK

i

and w1
i

are derived by minimizing
her expected payo� over �K and F1(µ) respectively; therefore, wW

i

Æ wC

i

Æ wU

i

Æ w1
i

.
When there are reservation payo�s, we noted earlier that u

i

= wW

i

= wC

i

= wU

i

. Agent
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i’s minmax value w1
i

in the one-shot game cannot be lower than the reservation payo� u
i

;
therefore, u

i

= wW

i

= wC

i

= wU

i

Æ w1
i

.

Finding simple representations for principals’ minmax values is more complicated as they
can choose from a rich class of mechanisms. The next two sections study this for interdepen-
dent and private values respectively.

4 The General Case: Interdependent Values

We examine the principal’s minmax wK

j

defined by (7) given K œ {U, C, W}. The key question
is how to represent this in terms of simple mechanisms. Under interdependent values, the
other principals may want agents to reveal their types to them in order to punish principal
j more severely. Other principals cannot achieve this by o�ering DMs instead of complex
mechanisms, because the incentive compatibility of the other principals’ DMs depends on
principal j’s mechanism. Principal j, who also wants agents to reveal their types to him when
he responds to the other principals, is not a priori restricted to simple mechanisms. This
could necessitate the use of complex mechanisms by the other principals as well, defeating
our goal of simplicity. Fortunately, we shall see that a slight expansion of DMs is enough to
replicate each principal’s complex minmax value; the principal being punished cannot deviate
to a complex mechanism and do strictly better. The various minmax values, will satisfy the
ordering wW

j

Æ wC

j

Æ wU

j

Æ w1
j

— as in the case of agents.

Principal’s Minmax

The goal of this subsection is to express the principals’ minmax values in terms of simpler
sets of mechanisms. We begin with the definition of an action-DM maxmin for each principal
j, which is his maxmin value when he is restricted to mixed actions and all other principals
are restricted to DMs that are KIC given the action of j, for Kœ {U, C, W}. The value
of introducing this new concept derives from Proposition 1, which shows that principal j’s
complex minmax wK

j

equals the maxmin value wKú
j

for any Kœ {U, C, W}.

Definition 5 (Action-DM Maxmin) Fix (G, �, µ). For any Kœ {U, C, W}, the action-
DM maxmin value of j is

wKú
j

:= max
–jœAj

min
fi≠jœ�K

≠j(–j)
E

µ

[u
j

(fi≠j

(◊), –
j

, ◊)] . (11)

For any j œ J , let –Kj

j

be the action and ÂKj

≠j

(–
j

) be the corresponding profiles of DMs of
the other principals that attains the maxmin value in (11), i.e.

ÂKj

≠j

(–
j

) := {ÂKj

k

(–
j

)}
k ”=j

œ arg min
fi≠jœ�K

≠j(–j)
E

µ

[u
j

(fi≠j

(◊), –
j

, ◊)] ,
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where the superscript denotes the player whose maxmin we are considering.

Example 3 (Continuation of Example 2). Our goal is to compute principal 1’s
pure minmax value with respect to complex mechanisms, via his action-DM pure maxmin
value. When principal 1 deviates, the only non-deviating principal is 2; therefore, the DMs
of principal 2 that are KIC conditional on principal 1’s action do not vary with K. Fixing
principal 1’s action at –1, the set of DMs of principal 2 that are KIC conditional on –1 is
�K

≠1(–1) = {fī2, fī
Õ
2, fi

Õ
2} for all K œ {U, C, W}. Note that fi2 is not IC given –1: If principals

o�er (–1, fi2) and agents 2 and 3 report truthfully, agent 1 of type ◊1 can receive the payo�
3 by reporting ◊

Õ
1 to principal 2, which is strictly greater than the payo� of 2 from reporting

her type truthfully. Given –1, DMs in �K

≠1(–1) generate expected payo�s for principal 1 as
follows:

E
µ

[u1(fī2(◊), –1, ◊)] = 1
2 ◊ 4 + 1

2 ◊ 8 = 6,

E
µ

Ë
u1(fīÕ

2(◊), –1, ◊)
È

= 1
2 ◊ 3 + 1

2 ◊ 7 = 5,

E
µ

Ë
u1(fiÕ

2(◊), –1, ◊)
È

= 1
2 ◊ 3 + 1

2 ◊ 8 = 5.5.

Therefore, if principal 1 plays –1, the DM fī
Õ
2 minimises principal 1’s expected payo� from

among all DMs in �K

≠1(–1):

ÂK1
2 (–1) = fī

Õ
2, and u1(–1, fī

Õ
2) = 5.

Similarly, �K

≠1(–Õ
1) = {fī2, fī

Õ
2, fi2}. Since fī2 minimises principal 1’s expected payo� among all

DMs in �K

≠1(–Õ
1), we have

ÂK1
2 (–Õ

1) = fī2, and u1(–Õ
1, fī2) = 1

2 ◊ 6 + 1
2 ◊ 2 = 4.

Since u1(–Õ
1, fī2) = 4 < u1(–1, fī

Õ
2) = 5, it follows that

–K1
1 = –1, and wKú

1 = 5 for all K œ {U, C, W}.

The main implication of Proposition 1 is that agent 1’s pure minmax value with respect to
complex mechanisms is the same as his pure action-DM maxmin action wK

1 = wKú
1 = 5. No

such algorithm exists in the one-shot model.
Similarly, for principal 2: –K2

2 = –
Õ
2, and wKú

2 = 4.5 for all K œ {U, C, W}. ⌅

Lemma 2 shows that for any profile “≠j

o�ered by principals other than j in any equi-
librium where agents pick the worst KIC continuation for j, one of the best responses of
principal j is a constant mechanism. Note that this is true only if agents pick the worst
current continuation equilibrium; if agents were to best-respond in the static game, principal
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j could improve his payo� by o�ering a more complicated contract. Agents incentives to play
in this manner (rather than play a myopic best-response) derives incentives in the dynamic
game and are addressed in the folk theorems.

Lemma 2 For any K œ {U, C, W} and “≠j

œ �≠j

,

max
“jœ�j

uK

j

(“≠j

, “
j

) = max
–jœAj

uK

j

(“≠j

, –
j

) .

Proof See the appendix.

In the above construction agents induce the action

gj(“
j

) := arg min
–jœAj(“j)

I

min
fi≠jœ�K

≠j(“≠j ,–j)
E

µ

[u
j

(fi≠j

(◊), –
j

, ◊)]
J

(12)

from any “
j

that j might o�er. Agents incentives to do so will be derived in the folk theorems.
O� the path, an agent’s incentive to report her true type depends on principal j’s action; it

is therefore not enough for the other principals to o�er DMs instead of complex mechanisms.
O� the path following principal j’s deviation, each principal k ”= j must ask an agent to
report three units of information — (i) her type; (ii) the action that principal j will play
in the current period if all agents were to follow a prescribed messaging strategy; (iii) the
identity of the most recent deviator. Intuitively, our construction provides a way for the other
principals to neutralise principal j’s ability to condition his action on agents’ messages; this is
done by forcing agents to induce an action from j independently of their types, but depending
on the mechanism principal j o�ers. This makes one of principal j’s best responses an element
of A

j

.

Definition 6 An extended direct mechanism (EDM) o�ered by k when j is being punished is

denoted by

⁄j

k

: E
kj

æ A
k

with E
ikj

= A
j

◊ {0, 1, . . . J + I} ◊ �̃
i

and E
kj

= ◊
i

E
ikj

.

The typical element of E
ikj

is et

ikj

= (pt

ikj

, dt

ik

, ◊̃t

ik

), where pt

ikj

œ A
j

, dt

ik

œ {0, 1, . . . , I + J},
◊̃t

ik

œ �̃
i

. EDMs, which are used only if a principal deviates, include punishments. In contrast,
DDMs are o�ered on the path; these do not include punishments but ask agents to report the
identity of the deviating player.

For notational consistency, a caret is used here to denote the majority value of a variable;
thus, for example, p̂t

kj

is the majority value from pt

kj

= (pt

ikj

: i œ I), and so on. Let
◊̃

k

= (◊̃
J+1,k

, . . . , ◊̃
J+I,k

) and dt

k

= (dt

J+1,k

, . . . , dt

J+I,k

). For any K œ {U, C, W}, we define

⁄Kj

k

(pt

kj

, dt

k

, ◊̃
k

) := ÂKj

k

(p̂t

k

)(◊̃
k

) ’ (pt

kj

, dt

k

, ◊̃
k

) œ E
kj

. (13)
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Example 4 (Continuation of Examples 2 and 3). We construct principal 1’s EDM ⁄K2
1

following principal 2’s deviation. Each agent reports principal 2’s action, the identity of the
most recent deviator, and her type. If two or more agents report –2, then principal 1’s EDM
determines his action conditional on agents’ type reports according to the DM ÂK2

1 (–2) = fī1.
If two or more agents report –

Õ
2, then principal 1’s EDM determines his action conditional on

agents’ type reports according to the DM ÂK2
1 (–Õ

2) = fi1. Note that agents’ reports on the
identity of the most recent deviator do not a�ect principal 1’s action decision in his EDM.
We can similarly construct principal 2’s EDM o� the path following principal 1’s deviation.⌅

Given EDMs with any K œ {U, C, W}, Proposition 1 provides a simple algorithm to
calculate the minmax value with respect to the Epstein-Peters mechanisms �, without having
to compute the message spaces M or the mappings in �.

Proposition 1 (Minmax Equivalence) For any K œ {U, C, W} and any principal j, wK

j

=
wKú

j

, as specified in (11). It is attained in the truth-telling continuation equilibrium where the

other principals o�er EDMs ⁄Kj

≠j

and principal j o�ers the constant mechanism playing –Kj

j

.

Proof See the appendix.

Since applications sometimes restrict attention to the analytically simpler case with all
mechanisms (a degenerate case of which is a constant action) mapping from messages to pure
actions, we provide a pure-action counterpart of the earlier result. The proof of Proposition
1 applies unmodified save for mixed actions being replaced by pure actions.

Corollary 1 (Pure Action Minmax Equivalence) If equation (11) is redefined so that

the max and the min are taken over, respectively, pure actions and mappings from messages

to pure actions, the equivalence result continues to apply: wú
j

= wKú
j

.

Finally, we compare the principal’s minmax values across di�erent notions of IC.

Proposition 2 For any principal j, wW

j

Æ wC

j

Æ wU

j

Æ w1
j

.

Proof See the appendix.

Note that principal j’s action in a continuation equilibrium o� the path is characterised
by a DM fi

j

œ �K

j

that embodies a particular notion of IC. In the dynamic game, principal
j cannot make his action contingent on agents’ types in the worst continuation equilibrium
in which agents punish principal j most severely. Hence, only the fixed actions or constant
DMs are feasible for principal j from �K

j

for all K œ {U, C, W}. In the one-shot game, agents
still play the worst continuation equilibrium, and hence some UIC DMs in �U

j

may never be
played. However, we do not know a priori which ones are excluded, and therefore the value
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of the minmax w1
j

in the one-shot game of Yamashita (2010) is not expressible in a simpler
form of DMs.

However, we were still able to show that w1
j

is higher than wK

j

for all K œ {U, C, W}.
Intuitively, there are two reasons. First, any continuation equilibrium o� the path in Ya-
mashita’s one-shot game requires UIC for all principals including the deviating principal and
hence non-deviating principals cannot force agents to induce the same action from the devi-
ating principal’s mechanism regardless of their types: Since this is possible in our dynamic
model, the principal being punished cannot do any better by o�ering a complex mechanism
instead of a simple action. Therefore, even with the same notion of UIC, we have wU

j

Æ w1
j

.

Second, KIC for all K œ {U, C, W} is required for non-deviating principals only given the
deviating principals’ action in our dynamic model rather than for all principals. In a model
with two principals, only one non-deviating principal o�ers a mechanism to agents in order to
punish a deviating principal. As we showed in Example 3, when there are only two principals
all notions of IC are identical for the non-deviating principal’s DM, i.e., �W

≠j

(–
j

) = �C

≠j

(–
j

) =
�U

≠j

(–
j

) for all –
j

; therefore, wW

j

= wC

j

= wU

j

in models with two principals.17 However, with
three or more principals the various notions of IC are generally distinct present for a profile of
DMs for multiple non-deviating principals. Because the notion of IC is progressively weaker
in the order of UIC, CIC and WIC, we can generally establish wW

j

Æ wC

j

Æ wU

j

.

4.1 Folk Theorems for the General Case

4.1.1 I.I.D. Types

Now we are ready to establish the folk theorem for the case of interdependent values. What
stage-SCFs and payo� profiles can we support in a perfect Bayesian equilibrium (PBE) of
GŒ (”) relative to �? Consider i.i.d. types, where µ œ —� is the product of independent
distributions. For each K œ {U, C, W}, the stage-SCF f is SIR w.r.t. µ if each player gets an
expected payo� above his/her minmax:

E
µ

[u
n

(f(◊), ◊)] > wK

n

for all n œ I fi J . (14)

For n œ J and K œ {U, C, W}, the minmax value wK

n

equals wKú
n

; for n œ I, it is equal to
(8) or (9), depending on the situation. The SCF f is weakly individually rational (WIR) for
i with respect to (w.r.t.) µ œ —� if E

µ

[u
i

(f(◊), ◊)] Ø wU

i

. Define

FK(µ) := {f œ F | f is SIR w.r.t. µ and induced by fi œ �K}.

The example below shows how to compute FK(µ).
17Even with two principals, the inequality wU

j Æ w1
j cannot in general be written as an equality for reasons

described in the previous paragraph.
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Example 5 (Continuation of Example 2). Because agents must participate in all
mechanisms, a profile of DMs is also an SCF. Eight profiles of DMs satisfy UIC and therefore
lie in �U ; CIC and WIC admit two additional profiles of DMs. The table below shows expected
payo�s for principals 1 and 2 at each profile in �C = �W when agents report truthfully; the
first eight profiles of DMs are UIC (and therefore CIC and WIC) but the last two profiles are
CIC (and WIC) but not UIC.

fī1, fī2 fī1, fī
Õ
2 fī1, fi

Õ
2 fī

Õ
1, fī2 fī

Õ
1, fī

Õ
2 fī

Õ
1, fi2 fi1, fī

Õ
2 fi

Õ
1, fī2 fi

Õ
1, fi2 fi

Õ
1, fi

Õ
2

P1 6 5 5.5 4 7 7.5 6 7 6.5 8.5
P2 3 7 5.5 5.5 6.5 6 4.5 7 8.5 7.5

Principals’ minmax values are wK

1 = wKú
1 = 5 and wK

2 = wKú
2 = 4.5 for all K œ {U, C, W}.

Because agent must participate, we need to consider strict individual rationality for principals
only; therefore,

FU (µ) = {(fī1, fi
Õ
2), (fīÕ

1, fī
Õ
2), (fīÕ

1, fi2), (fiÕ
1, fī2)},

FC(µ) = FW (µ) = {(fī1, fi
Õ
2), (fīÕ

1, fī
Õ
2), (fīÕ

1, fi2), (fiÕ
1, fī2), (fiÕ

1, fi2), (fiÕ
1, fi

Õ
2)}.

Clearly, FC(µ) and FW (µ) include two SFCs, (fiÕ
1, fi2) and (fiÕ

1, fi
Õ
2) not included in FU (µ). In

particular, both principals strictly prefers (fiÕ
1, fi

Õ
2) to any other SCFs in FU (µ). ⌅

We first present the folk theorem using CIC, and use it to derive an approximate folk
theorem for WIC. The theorem below shows that any SCF f œ FC(µ) is supportable in a
PBE of GŒ (”) relative to �, provided players are su�ciently patient. Principals o�er a profile
of DDMs fia = (fia

1 , . . . , fia

J

) such that

fia

k

(◊, d
k

) := f
k

(◊) ’ d
k

œ {0, 1, . . . , J + I}J , ’ ◊ œ �.

If principals continue o�ering fia, play a truthful continuation equilibrium in which agents
report their true types and 0 as the identity of the deviator. If principal j unilaterally
deviates from the agreement at time t, agents report j and play a (previously agreed on but
otherwise arbitrary) continuation equilibrium of (“

j

, fia

≠j

) in the current period; at t + 1 the
other principals o�ers the EDMs defined in (13) to minmax j. O� the path following principal
j’s deviation, Proposition 1 shows that principal j can best respond with an action if agents
follow the above protocol.

We make the standard full dimensionality assumption (FD) that set of expected payo�s
is full dimensional, i.e. dim[u(FC(µ))] = J + I. Caveat: In discussions related to folk
theorems, generic players are denoted by i and j unless explicitly noted otherwise.

Definition 7 Fix f œ FC(µ). A family of vectors {—1, . . . , —J+I} µ SC

is said to be a
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PSP (Player-Specific Punishment) for the target payo� v = u(f) if it satisfies the following

properties ’i, j œ I fi J :

1. strict individual rationality (SIR): —i

j

> w
j

;

2. target payo� domination: —i

j

< v
j

;

3. payo� asymmetry (PA): —i

i

< —j

i

if i ”= j.

Lemma 3 Fix f œ FC(µ). There exists a family of I + J profiles of mechanisms {fiai : �̃ æ
A | i œ N } such that each fiai

k

is one-to-one and the family {—i := E
µ

u
!
fiai(◊)

"
| i œ N } is a

PSP for v = u(f).

Proof See the appendix.

Proposition 3 (Exact Folk Theorem for i.i.d. Types) Consider i.i.d. types with dis-

tribution µ œ —�. Under FD in a model with interdependent values, any SCF f œ FC(µ) is

the outcome of a PBE of GŒ (”) relative to any � for high ”. DDMs su�ce on path, while o�

the path following a deviation by principal j, all other principals employ EDMs while j o�ers

a constant mechanism.

Proof See the appendix.

Corollary 2 If f œ FW (µ) is induced by an invertible profile fi œ �, the above result applies

since all inconsistent reports are detected with certainty.

The next proposition weakens the notion of IC from CIC to WIC.18 In this case we are
able to virtually support a social choice function in the following sense.19 Let us write down
any given SCF f as f = (f1, . . . , f

J

), where f
j

is a mapping from � to A
j

. Consider two
SCFs f and f̂ . Fix a type profile to ◊. Given two distributions f

j

(◊) and f̂
j

(◊) on A
j

, define
the distance between the two as

Î f
j

(◊) ≠ f̂
j

(◊) Î:=
ÿ

ajœAj

| f
j

(◊)(a
j

) ≠ f̂
j

(◊)(a
j

) |;

Then, the norm of f and f̂ is defined as Î f ≠ f̂ Î:=
q

◊œ�
q

jœJ | f
j

(◊) ≠ f̂
j

(◊) |.

Definition 8 An SCF f is said to be virtually supported if for any Á > 0 we can find an SCF

fÁ

that can be supported in a PBE of GŒ(”) and satisfies Î fÁ ≠ f Î< Á.

18While both CIC and WIC are identical in Example 2, in general there will be SCFs that are WIC but not
CIC.

19Our reasons for virtually, rather than exactly, supporting f are very di�erent from those for virtual imple-
mentation in Matsushima (1988) and Abreu and Matsushima (1992).
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Proposition 4 (Approximate Folk Theorem for i.i.d. Types) Let types be i.i.d. µ œ
—�. Let FD hold for u(FW (µ)). Under interdependent values, for any f satisfying WIC

there exists ” œ (0, 1) such that, for any ” Ø ”, f can be virtually supported in a PBE of

GŒ (”) relative to any � using only DDMs on the path and EDMs o� the path.

Proof See the appendix.

Let us provide some intuition for the proof. Suppose we take an SCF f satisfying all the
constraints for WIC with strict inequality. Then we can perturb each f

j

in such a way that
the IC conditions are not altered but the perturbed version is invertible and hence satisfies
CIC. Then we can apply the previous result. However this procedure fails whenever some of
the IC conditions are satisfied with equality, because the perturbation might go the wrong
way and violate an IC condition. To get around this we adopt a two-step procedure. The
first step makes use of an observation from Abreu and Matsushima — we can find lotteries
over actions in A, one lottery for each type of each agent i, in such a way that if each any
player i is told that if she reports her type as ◊

i

then the lottery chosen will be the one that
is optimal for i from among all the lotteries on o�er. Now modify f with a small probability
that these lotteries would be played. This is a perturbation which makes all IC constraints
hold with strict inequality. The second step is to perturb this SCF so as to make it invertible
without reversing any of the IC inequalities.

4.1.2 Comparison with Other Competing Mechanism Games

In the one-shot setting in Yamashita (2010), the minmax of principal j is given by w1
j

under
the notion of UIC, the most stringent notion of IC, because each profile of DMs arises from
a continuation equilibrium m

k

= (m1k

, . . . , m
Ik

) of the one-shot game and must thus lie in
�1(“). A simple characterisation of w1

j

, and therefore of F1(µ), is not available. Clearly,
F1(µ) = F1

+(µ) fi F1
=(µ), where at least one agent gets her minmax value in FU

= (µ), while
everyone gets strictly above his/her minmax value in the other set.

Proposition 5 F1
+(µ) µ FU (µ) µ FC(µ) µ FW (µ).

Proof Agent i’s minmax values satisfy wW

i

Æ wC

i

Æ wU

i

with/without reservation payo�s
(Lemma 1) and principal j’s minmax values satisfy wW

j

Æ wC

j

Æ wU

j

according to Proposition
2. Secondly, �W ∏ �C ∏ �U because WIC is weaker than CIC, which is weaker than UIC.
This leads to FU (µ) µ FC(µ) µ FW (µ). Similarly, F1

+(µ) µ FU (µ) follows from wU

j

Æ w1
j

.

Any SCF in FC(µ) is supportable in equilibria of the dynamic game with su�ciently
patient players. The static game can support any f œ F1(µ). To show that any f that is
supported in the static game is also supported in the dynamic game we need to show that
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any f œ F1
=(µ) can be supported in the dynamic game with su�ciently patient players. The

PSP constructed in Lemma 3 do not work in this setting because if an agent is already at her
minmax value wW

i

we cannot lower it further.

Proposition 6 (Static versus Dynamic Game) If f œ F1(µ) then f can be supported in

a PBE of the repeated game with low discounting using only DDMs on path and EDMs o�

path.

Proof If f œ F1
+(µ) the result follows immediately from Propositions 3 and 5. If f œ F1

=(µ),
let v = u(f), and define I= := {i œ I | v

i

= w1
i

} as the set of all agents who earn exactly
their minmax values. Find a feasible point vú such that vú

j

< v
j

for all j œ J , vú
i

= v
i

for all
i œ I \ I=, and vú

i

> v
i

for all i œ I=. Since vú is SIR, use Proposition 3 to find ”min such
that if ” Ø ”min there is an equilibrium of GŒ(”) with payo� vú. Ignore any deviations by
agents if no principals have deviated before. If any principal deviates, then play the strategies
that give payo� vú. In other words we move to a SIR continuation payo� point that punishes
all principals, while rewarding those agents who were previously held at their minmax levels.
Clearly, no principal has an incentive to deviate from the strategies that give a payo� of v if
(1 ≠ ”)M̄ + ”vú

j

Æ v
j

. The proposition is valid for ” Ø max{”min, (M̄ ≠ v
j

)/(M̄ ≠ vú
j

)}.

The dynamic setting is able to support more social choice functions for two reasons. First,
a weaker notion of IC admits additional profiles of DMs. Second, relaxing the notion of IC
lowers players’ minmax values.

Finally, there exists an equivalence between two models — one where principals simul-
taneously o�ers DMs fi = (fi1, . . . , fi

J

) satisfying WIC and the other where a single grand
mechanism fiG : �̃ æ A is o�ered — in terms of the set of social choice functions that can
be supported. Instead of each principal j o�ering his own DM fi

j

: �̃ æ A
j

, suppose that a
third party o�ers only one grand DM fiG : �̃ æ A and each agent sends a single type report
to the third party only. It is clear that an equilibrium profile of DMs fi must at least be
WIC. By extracting all consistent type reports from fi, we can construct the corresponding
single grand mechanism fiG where truthful type reports support the same SCF as in fi under
truthful reports.

4.1.3 Markov Types

Propositions 3 and 4 hold when types are i.i.d. draws from the measure space (�, 2�, µ). A
more general assumption would be that the types form a Markov chain with the transition
matrix P and an initial distribution µ0 œ —�, where

P = [p
rs

]
r,sœ� , with

ÿ

s

p
rs

= 1 ’r, p
rs

Ø 0.

32



The key step in extending our results to this setting involves specifying the payo� of an agent
along any path, either the original equilibrium path or a punishment path. We start with
the following theorems, well known from the literature on stochastic processes (see Breiman
(1991) for definitions and proofs.)

Theorem 1 A finite-state Markov chain (X)
tØ0 with a transition matrix P = [p

rs

]
r,sœ� is

irreducible i� it has a unique stationary distribution

20 µú
such that µúP = µú.

A su�cient condition for this is a full-support assumption often employed in game theoretic
models: p

rs

> 0 ’r, s, i.e. all entries of the transition matrix are strictly positive.

Theorem 2 If a Markov chain (X)
tØ1 with a transition matrix P taking values in the finite

state space (�, 2�) possesses a unique stationary distribution µú
then

P(Xt = ◊) æ µú(◊) as t æ Œ ; ◊ œ �

i� the Markov chain is aperiodic.

First of all, let us state what IC means in this setting. When types follow a Markov
process and the period-t type profile for agents except for i is ◊≠i

, the distribution over the
type profiles in �≠i

at time t + 1 is given by µ≠i

(◊́≠i

| ◊≠i

) := p
◊≠i◊́≠i

. We use the matrix
P≠i

to represent the transition matrix for players other than i; in other words, each row is
a probability distributions over the next period’s types conditional on a current type profile
in �≠i

. Let R(P≠i

) denote the row space of this matrix. Given any beliefs i has about the
current types of other agents, his belief over the next period’s type vector for the others lies in
R(P≠i

). Let the notion of IC be captured by the superscript K œ {MU, MC, MW}, denoting
Markov UIC, Markov CIC and Markov WIC respectively.

Since the distribution over types is changing over time, we are naturally led to ask: With
respect to which distribution should we take expectations in (14)? It turns out that the
right distribution is the steady-state distribution µú from Theorem 1. If types follow inde-
pendent Markov chains with the steady state distribution µú we have to define the minmax
values accordingly. For principal j, we define wK

j

for each j œ J by first deriving a min-
max value wK

j

(pl) for each row pl of the transition matrix for l œ {1, . . . , L}. Now we define
wK

j

:=
q

µú
l

wK

j

(pl). For agent i, we can define wK

i

similar to wK

j

without reservation payo�s.
When there are reservation payo�s, wK

i

is based on equation (8) with the steady-steady state
distribution µú. Now let the stage-SCF f be SIR w.r.t µú with the proper minmax values
given a notion of IC.

20For a Markov chain with a countable state-space, we also need positive recurrence to guarantee the existence
of a stationary distribution. If the set of types is finite, as in most applied work, irreducibility implies positive
recurrence.
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Definition 9 Let K œ {MU, MC, MW} be the notion of IC adopted in the Markov type case.

A profile of DMs fi is said to satisfy Markov KIC if the respective notion of IC holds for each

i and each conditional distribution µ≠i

(· | ◊≠i

) œ P≠i

. Let �MK

be the set of all profiles of

Markov incentive compatible (KIC) DMs. Define

FMK(µú) : = {f œ F | f is SIR w.r.t. µú
and induced by fi œ �MK}.

Before we explain why our definition of Markov CIC (and Markov WIC) su�ces, we state
the main theorem of this subsection with the notion of Markov CIC.

Proposition 7 (Folk Theorem with Markov Types) Let types evolve according to in-

dependent irreducible Markov chains in a model of interdependent values where u(FMC(µú))
satisfies FD. Any SCF f œ FMC(µú) is the outcome of a PBE of GŒ (”) relative to any � for

high ”; in these PBE, it su�ces to use DDMs on path, while o� the path following a deviation

by principal j, all other principals can use EDMs while j o�ers a constant mechanism.

Proof See the appendix.

Remark Similar to Proposition 4, we can weaken CIC to virtually support an SCF that
satisfies Markov WIC but not Markov CIC.

In the Markov case, agent i’s IC should be based on her probabilistic belief about the
current types of other agents. If ◊t≠1

≠i

were known, i would use the distribution µ≠i

(· | ◊t≠1
≠i

) œ
—�≠i

to take expectations. But agent i may not know ◊t≠1
≠i

and assigns a probability to each
row of the transition matrix P≠i

. Her belief over types in �≠i

is thus a convex combination
of rows of P≠i

, i.e. an element of R(P≠i

). It is easy to check that the set of probability
distributions over which IC hold is a convex set. Thus our definition of Markov KIC, for all
K œ {U, C, W}, implies that KIC holds w.r.t. each probability distribution in R(P≠i

).21 Our
definition is easy to check.

As for i.i.d. types, we compare the set of social choice functions supportable under various
notions of IC, when types evolve according to Markov processes.

Proposition 8 FMU (µú) µ FMC(µú) µ FMW (µú).

Since the one-shot game does not have a Markov counterpart, we cannot directly compare
the sets of SCFs sustainable under dynamic and one-shot games.

21P≠i includes fewer probability distributions than —�≠i. Markov IC is thus weaker than incentive com-
patibility conditions for all possible probability distributions such as ex-post IC or Bayesian IC for all possible
probability distributions (See Bergemann and Morris (2005) for details).
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5 Private Values

We now consider the case of private values, where agent i’s type a�ects only the function u
i

;
with slight abuse of notation, the action profile – gives payo�s u

i

(–, ◊
i

) and u
j

(–) respec-
tively to agent i of type ◊

i

and principal j. While private values constitute a special case of
interdependent values, we discuss it separately because it permits two simplifications. First,
principal j’ minmax values relative to complex mechanisms is the same for all notions of IC.
Second, EDMs are not needed even o� the equilibrium path; in fact constant mechanisms, i.e.
actions, are enough to minmax any principal j. The simple minmax of principal j is

w
j

:= u
j

(–j

≠j

, –j

j

) = max
–j

u
j

(–j

≠j

, –
j

), where –j

≠j

œ arg min
–≠jœA≠j

max
–jœAj

u
j

(–≠j

, –
j

). (15)

Proposition 9 shows that the principal’s minmax value wK

j

is the same as the simple
minmax w

j

for any K œ {U, C, W}. Its proof will make use of the following.

Theorem 3 (Sion’s Minmax Theorem) Let X be a compact convex subset of a linear

topological space and Y a convex subset of a linear topological space. If g is a real-valued

function on X ◊ Y with g(x, ·) is upper semicontinuous and quasi-concave on Y for any

x œ X, and g(·, y) is lower semicontinuous and quasi-convex on X for any y œ Y , then g has

a saddle point (–, —) œ X ◊ Y where

max
xœX

min
yœY

g(x, y) = min
yœY

max
xœX

g(x, y).

When principal j is being minmaxed, he is playing a best response but –j

≠j

might not be
the other principals’ best responses, and it is necessary to ensure that they do not deviate.
Since no principal directly observes mechanisms or actions chosen by other principals, he must
rely on agents’ reports. When j is being punished, principal k ”= j o�ers a constant DDM ’j

k

defined by

’j

k

(◊, d
k

) = –j

k

, ’◊, d
k

= (d
J+1,k

. . . , d
J+I,k

) œ {0, 1 . . . , J + I}I . (16)

Proposition 9 All minmax values are equal: wL

j

= w
j

’L œ {1, U, C, W}.

Proof The antecedents of Sion’s Minmax Theorem 3 are satisfied with X = A
j

, Y = A≠j

,
and g = u

j

; therefore we have the saddle point –j = (–j

≠j

, –j

j

) œ A where the maxmin and
minmax are attained:

min
–≠jœA≠j

max
–jœAj

u
j

(–≠j

, –
j

) = max
–jœAj

min
–≠jœA≠j

u
j

(–≠j

, –
j

). (17)
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Step 1. We have wL

j

Æ w
j

because each principal k ”= j can o�er the constant DDM
mechanism ’j

k

that maps to only –j

k

, the mixed action profile that minmaxes j; given this, j

can do no better than o�er the constant DDM ’j

j

mapping to –j

j

. Using the definition of uL

j

in (7),

wL

j

:= min
“≠jœ�≠j

max
“jœ�j

uL

j

(“≠j

, “
j

) Æ max
“jœ�j

uL

j

1
–j

≠j

, “
j

2

= max
�j

min
fiœ�L(–j

≠j ,“j)
E

µ

[u
j

(fi (◊))]

= max
�j

min
–jœAj(“j)

u
j

1
–j

≠j

, –
j

2
, since u

j

is indep. of ◊

Æ max
�j

max
–jœAj

u
j

1
–j

≠j

, –
j

2

= max
–jœAj

u
j

1
–j

≠j

, –
j

2
= u

j

(–j) = w
j

.

Step 2. Now we show that wL

j

Ø w
j

. Suppose j o�ers the constant DDM mapping to –j

j

.
Given this, Sion’s minmax theorem implies that the worst that principals other than j can
choose for j is ’j

≠j

, or equivalently –j

≠j

, even if principals other than j are able to use complex
mechanisms to punish j:

wL

j

:= min
“≠jœ�≠j

max
“jœ�j

uL

j

(“≠j

, “
j

) Ø min
“≠jœ�≠j

uL

j

1
“≠j

, –j

j

2

= min
–≠jœA≠j

u
j

1
–≠j

, –j

j

2
= max

–jœAj

min
–≠jœA≠j

u
j

(–≠j

, –
j

) = w
j

,

where the last equality is simply (17).
Steps 1 and 2 together imply wL

j

= w
j

. Thus, principals o�er (–j

j

, ’j

≠j

) and the action
profile played is –j = (–j

≠j

, –j

j

).

Two remarks are in order.

Remark Von Neumann’s minmax theorem states that if X and Y are finite dimensional
simplices and g is a bilinear function on X ◊ Y , then g has a saddle point (–, —):

max
x

min
y

g(x, y) = min
y

max
x

g(x, y) = g(–, —).

If we were to apply this theorem then Y would be the set of all mixed strategies on A≠j

,
which is larger than A≠j

since the former allows correlated punishments and the latter allows
only independent mixing. Since repeated games usually restrict attention to independent, not
just correlated, punishments we must use Sion’s version rather than von Neumann’s.22

22In the case of interdependent values, we cannot apply Sion’s minmax theorem for wKú
j defined in (11)

36



Remark The principal’s minmax value w1
j

in Yamashita’s one-shot setting was not iden-
tified in terms of primitives in the case of interdependent values. Proposition 9 takes care of
this. Under private values, principals’ payo�s are independent of agents’ types; this makes IC
irrelevant when principal j is punished in both the one-shot game and the dynamic game and
hence the principal’s minmax value relative to complex mechanisms always equals the simple
minmax w

j

defined in (15) in both games: wU

j

= wC

j

= wW

j

= w1
j

= w
j

.

5.1 Folk Theorem under Private Values

5.1.1 I.I.D. Types and Private Values

Now we are ready to establish the folk theorem for the case of private values. What stage-
SCFs can we support in PBE of GŒ (”) relative to �? We first consider the i.i.d. types with
the product of independent distributions µ œ —�. First we establish i.i.d folk theorems using
CIC. As in the interdependent value case, the first folk theorem shows that any SCF in FC(µ)
is supportable in a perfect Bayesian equilibrium of GŒ (”) relative to �, provided players are
su�ciently patient. Similar to the case of interdependent values, principals can support any
f œ FC(µ) by o�ering a profile of DDMs fia = (fia

1 , . . . , fia

J

) such that

fia

k

(◊, d
k

) := f
k

(◊) ’ d
k

œ {0, 1, . . . , J + I}J , ◊ œ �. (18)

Agents then play a truthful continuation equilibrium in which agents report their true types
and the identity of the deviating player (of course, 0 if no one deviates). A principal always
believes that a majority of agents has reported truthfully. Note that a single agent’s report
does not impact the decision in a truthtelling equilibrium. In contrast to the case of
interdependent values, the mechanisms o�ered by the non-deviating principals o� the path
following principal j’s deviation are much simpler than EDMs due to Proposition 9. It shows
that there is no loss of generality in assuming that all principals o�er the profile of constant
DDMs, ’j = (’j

1 , . . . , ’j

J

), where each ’j

k

is specified by (16).

Proposition 10 Under FD and private values, for any f œ FC

there exists ” œ (0, 1) such

that, for any ” Ø ”, f is supportable as the equilibrium allocation of a perfect Bayesian

equilibrium (PBE) of GŒ (”) relative to any complex � using only DDMs.

Proof See the appendix.

Remark Similar to Proposition 4, we can weaken CIC - we can virtually support an SCF
that satisfies WIC but not CIC.

We can establish the following propositions, similar to Propositions 5 and 6:

because the agent’s incentive to report her type to the non-deviating principals depends on principal j’s
action.
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Proposition 11 F1
+(µ) µ FU (µ) µ FC(µ) µ FW (µ).

Proposition 12 If f œ F1(µ) then f can be supported in a PBE of the repeated game with

low discounting using only DDMs.

Unlike in the case of interdependent values, the principal’s minmax values are the same
across di�erent notions of IC in the case of private values. The dynamic game supports more
social choice functions in equilibrium solely because it weakens the notion of IC.

5.1.2 Markov Types and Private Values

If types follow independent Markov chains with the steady state distribution µú, we need to
define the minmax values accordingly. As in the case of interdependent values, let MU, MC,
MW denote Markov UIC, Markov CIC and WIC respectively. For each K œ {MU, MC, MW},

principal j’s minmax value wK

j

is still equal to w
j

according to Proposition 9. Consider agent
i’s minmax values without reservation payo�s. For K œ {MU, MC, MW}, wK

i

is equal to
w

i

specified in (10). With reservation payo�s, wK

i

is the same as agent i’s reservation payo�
specified in (8) with the expectation taken with the steady-state distribution µú.

Finally, let the stage-SCF f be SIR w.r.t µú with the proper minmax values given a notion
of IC. For each K œ {MU, MC, MW} define

FMK(µú) : = {f œ F | f is SIR w.r.t. µú and induced by fi œ �MK}.

Proposition 13 Let types follow an irreducible and aperiodic Markov chain in a model of

private values where u(FMC(µú)) satisfies FD. Any SCF f œ FMC(µú) is supported in a PBE

of GŒ (”) for high ” relative to �, using only DDMs.

Proof The proof follows from the Proposition 7 for interdependent values.

Remark Similar to Proposition 5.1.1, we can weaken CIC to virtually support an SCF
that satisfies Markov WIC but not Markov CIC.

We now compare the set of social choice functions supportable under various notions of
IC, when types evolve according to Markov processes. This proof is analogous to earlier
propositions and hence omitted.

Proposition 14 FMU (µú) µ FMC(µú) µ FMW (µú).

Similar to Markov types for interdependent values, there is no corresponding one-shot
game. However, Proposition 14 shows that the set of SCFs supported by equilibria in the
dynamic setting expands as we adopt a weaker notions of Markov IC in the order of MU, MC,
and MW.
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6 Discussion and Conclusion

Our work on repeated decentralized contracting lies at the intersection of the literature on re-
lational contracts, where continuation payo�s may be used to provide incentives for repeated
short-term contracting, and the literature on competing mechanisms, where principals com-
pete in the space of all contracts. The former literature provides simple mechanisms, but
relies on there being only one principal. The latter literature incorporates competition among
principals, but in a single-period setting; equilibrium payo�s are identified with reference to
complex mechanisms.

Even static games with multiple principals o�ering competing mechanisms are beset with
analytical di�culties. For intuition, consider a situation where multiple sellers compete in
designing trading mechanisms. A seller cannot observe what trading mechanisms other sellers
o�er; or, even if he does, he cannot make his trading mechanism directly contingent on the
others’ mechanisms due to either lack of commitment power or institutional restrictions. Each
buyer knows the market information, i.e. sellers’ terms of trade (or trading mechanisms). If
a seller can ask buyers to report both their types and their market information, he can
make his terms of trade responsive to deviations by the competing sellers. This sustains
equilibrium allocations that are unattainable with conventional direct mechanisms. However,
it is a formidable task to design tractable mechanisms that are both useful for applications
and can also support all possible equilibrium payo�s that one could with arbitrarily complex
mechanisms.

Our main contribution is to o�er an analysis of repeating contracting by multiple prin-
cipals, opening the door to potential applications ranging from providing public goods to
selling private goods, and from lobbying to financial contracting. When players are patient,
we propose su�cient simple mechanisms. Principals o�er DDMs (deviator-reporting direct
mechanims) on the equilibrium path, and slight extention — EDMs — o� path. These are
much simpler than existing mechanisms, and fairly close to the DMs that are familiar from
single-principal worlds. Our equivalence theorem shows that it is even simpler to characterize
both the minmax and the equilibrium payo� set because the complex minmax of any principal
in the repeated game can be expressed as his maxmin value when he can o�er only actions,
and the other principals are restricted to DMs.

Finally the dynamic setting supports more equilibrium payo�s than the one-shot setting
does for two reasons. First of all, agents’ endogenous monitoring completely neutralizes a
deviating principal’s ability to make his action choice contingent on agents’ types o� the path
following his deviation. This is why a principal’s minmax can be calculated as if he can only
o�er actions instead of complex mechanisms. Secondly, the dynamic setting allows weaker
notions of IC. To show this, we establish various notions of IC — UIC, CIC, and WIC, from
the strongest to the weakest. UIC deters all possible false messages, and is the right notion
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for the static setting. The other two notions check incentive compatibility against a smaller
class of feasible deviations. We propose a notion of consistency of deviations that is useful in
separating deviations that must be deterred with contemporaneous incentives, and those that
can be punished in the continuation game. This allows us to use CIC or WIC in the dynamic
setting instead of UIC.

Some assumptions of our model merit discussion. First, we use the fact that there are three
agents to check reports, so that unilateral deviations from truthful reporting on the identity of
a deviating player are always detected. However note that our observability assumption is very
weak, in that principals have no information except that from agents. If we allow principals
to observe (with a time lag) the mechanisms o�ered by the other principals and the actions
taken by them, our results immediately extend to any number of agents. We conjecture that
it is possible to extend our results to two agents even if principals have imperfect statistical
information.

Principals need not ask agents to report the identity of a deviator every period. When
players are su�ciently patient, principals only need to ask, for example, every ten periods or
every twenty periods who the last agent to deviate was. What is the minimum number of
principals that need to know the deviation to punish it? This depends on the environment.
If principals are sellers and agents are buyers, it may be possible that only one principal need
to know the deviation especially if it is an agent’s deviation.

A Appendix

Proof of Lemma 2 Fix “≠j

œ �≠j

. For any given –
j

, let �K

≠j

(“≠j

, –
j

) := �K

≠j

(–
j

) fl
�≠j

(“≠j

, –
j

). Using the definition of uK

j

from (7), for any “
j

œ �
j

we have

max
–jœAj

uK

j

(“≠j

, –
j

) = max
–jœAj

min
fi≠jœ�K

≠j(“≠j ,–j)
E

µ

[u
j

(fi≠j

(◊), –
j

, ◊)]

Ø min
–jœAj(“j)

min
fi≠jœ�K

≠j(“≠j ,–j)
E

µ

[u
j

(fi≠j

(◊), –
j

, ◊)]

Ø min
fiœ�K(“)

E
µ

[u
j

(fi(◊), ◊)]

=: uK

j

(“≠j

, “
j

) .

Taking max over all �
j

, we have

max
–jœAj

uK

j

(“≠j

, –
j

) Ø max
“jœ�j

uK

j

(“≠j

, “
j

) .

The reverse inequality follows immediately since �
j

includes the set of all constant mecha-
nisms. This proves the lemma.
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Proof Proposition 1 Step 1. We have wK

j

Æ wKú
j

because principals k ”= j can o�er
⁄Kj

k

; given this, Lemma 2 implies that principal j can do no better than play the constant
mechanism that always assigns –Kj

j

, even if principal j is able to use complex mechanisms.

wK

j

= min
“≠jœ�≠j

max
“jœ�j

uK

j

(“≠j

, “
j

) = min
“≠jœ�≠j

max
–jœAj

uK

j

(“≠j

, –
j

) Æ max
–jœAj

u
j

(⁄Kj

≠j

, –
j

) = wKú
j

,

where u
j

(⁄Kj

≠j

, –
j

) is principal j’s expected payo� based on the truthful continuation equilib-
rium.23 The second equality follows from Lemma 2. The inequality holds because ⁄Kj

≠j

is one
profile of mechanisms available for principals except for j.

Step 2. Now we show that wK

j

Ø wKú
j

. The first inequality below holds because the
constant mechanism that always assigns –Kj

j

is one of mechanisms available for principal j.
The second equality holds because any continuation equilibrium at (“≠j

, –Kj

j

) generates DMs
fi≠j

for principals except for j that satisfy KIC conditional on –Kj

j

.

wK

j

:= min
“≠jœ�≠j

max
“jœ�j

uK

j

(“≠j

, “
j

) Ø min
“≠jœ�≠j
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Ë
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È
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–jœAj

u
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(⁄Kj
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, –
j

) = wú
j

.

Steps 1 and 2 together imply wú
j

= wKú
j

.

Proof Proposition 2 Step 1: We show that wU

j

Æ w1
j

. The first equality below holds by
Lemma 2. The second equality follows from the definition of uU

j

(“≠j

, –
j

). The first inequality
holds because �U

≠j

(“≠j

, –
j

) ∏ �1
≠j

(“≠j

, –
j

), where �1
≠j

(“≠j

, –
j

) is the set of all profiles of the
other principals’ UIC DMs that are induced by all continuation equilibria at (“≠j

, –
j

) in the
static game. The third equality follows from the definition of u1

j

(“≠j

, –
j

). The last inequality
holds because A

j

is equivalent to the set of all constant mechanisms in �
j

and is a subset of
�

j

.
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) =: w1
i

Step 2. Because wK

j

= wKú
j

for all K œ {U, C, W} by Proposition 1, the first inequality above
23Proposition 3 shows how truthful reporting is enforced in the repeated game.
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follows if we can show that wW ú
j

Æ wCú
j

and wCú
j

Æ wUú
j

. Inequalities (19) and (20) hold
because �W

≠j

(–
j

) ∏ �C

≠j

(–
j

) and �C
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(–
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j
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From steps 1 and 2, we have wW

j

Æ wC

j

Æ wU

j

Æ w1
j

.

Proof of Lemma 3 Given full-dimensionality we can construct24 a PSP {—
i | i œ N }.

Since —
i œ u(FC(µ)), by construction there exists a family of DDMs {fii | i œ N } such that

—
i := E

µ

u
!
fii(◊)

"
. Since properties 1,2 and 3 above rely on strict inequalities it is easy to see

that there is an r > 0 such that any family {yi | yi œ B(—i

, r)} is also a PSP. If any such fii

k

,
for i œ N and k œ J , is not one-to-one, replace it with a new DDM fiai

k

as follows. (If any fii

k

is one-to-one, set fiai

k

(◊) = fii

k

(◊).) Fix any enumeration of the type-space � = {◊1, . . . ◊L}.
Let

fiai

k

(◊1) := fii

k

(◊1),

and for l Ø 1 pick an arbitrary element

fiai

k

(◊l+1) œ B
1
fii

k

(◊l), r
2

\
Ó

fiai

k

(◊1), . . . , fiai

k

(◊l)
Ô

.

Now define —i := E
µ

[u
!
fiai(◊)

"
] for all i œ N .

Proof of Proposition 3 Fix any f œ FC(µ) and let v := u(f) denote the target payo�.
Strategies are defined by the following rules.

1. Each principal k starts o� the game in Phase I, when he o�ers the DDM fia

k

comprising
(i) a message space E

ik

:= {0, 1 . . . , J, J + 1, . . . , J + I} ◊ �̃
i

for each agent i, and (ii) a
mapping

fia

k

: E
k

æ A
k

, where E
k

= ◊
iœIEik

.

Each fia

k

induces the corresponding f
k

if agents report truthfully:

fia

k

(◊, (d
ik

)
i

) = f
k

(◊) for all d
ik

œ {0, 1 . . . , J, J + 1, . . . , J + I}I .

2. Agents start in phase I, reporting (◊t

i

, 0) to all principals at time t. If principal j deviates
unilaterally (o�ers a contract other than fia

j

), agents play myopic best responses in the
current period and send messages e

ik

= (m
ik

(◊t

i

), j); here m
ik

(◊
i

) is the message sent
24See Abreu, Dutta and Smith (1991).
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from i to k in any equilibrium of the static game. Similarly, if agent i deviates. If it
is clear that an agent deviated at time t but the identity of the deviating agent is not
clear, report dt+1

ik

= J + 1. If a majority of agents reports j then switch to Phase IIj ;
if the majority report in each period of Phase IIj is dt

ik

= 0, then switch to Phase IIIj

with probability q.

3. When principal k ”= j receives the report dt

ik

= j œ J from a majority of agents, he o�ers
the EDM defined by equation (13) in phase IIj ; however, principal j can potentially
deviate to a complex mechanism; we specify a mapping gj : �

j

æ A
j

defined by
(12) that describes the action of j agents will induce from each “

j

regardless of their
types. Suppose that principal j o�ers a complex mechanism “s

j

in period s during her
punishment phase. Then, agents are asked to induce the action gj(“s

j

) regardless of their
types. If the profile of messages mú

j

= (mú
ij

)
iœI induces gj(“s

j

), that is, “
j

(mú
j

) = gj(“s

j

),
then each agent i sends mú

ij

to principal j regardless of her type. At the time of reporting
to principal k, agents do not observe principal j’s action but each agent i is asked to
report pt

ikj

= gj(“t

j

) to each principal k (k ”= j) expecting that gj(“t

j

) will be induced.
If principal jÕ deviates from a punishment phase at t, each agent i reports dt

ik

= jÕ.

4. When principal k receives the report dt

ik

= i œ I from a majority of agents, he moves
to phase IIi, where he o�ers the DMs fii that attain the minmax value wK

i

defined in
equation (9); Lemma 1 ensures that the minmax can be reached with a profile of DMs.

5. In Phase IIIj play fiai œ �, giving the payo� vector —j .

6. One of the key di�erences between this and the usual repeated games proofs is that we
need to consider histories where a principal j who has actually not deviated has been
reported as the deviator by a majority of agents to the other principals, or a deviating
principal has not been reported to j by a majority. At such histories j unexpectedly finds
himself being minmaxed or not minmaxing a player who had deviated in the previous
period. In such a case j proceeds as if he had indeed deviated in the current period;
agents, including those who misreported earlier, behave as if j had indeed deviated and
subsequently report him as the deviator. Such histories do not happen as a result of
unilateral deviations or on the equilibrium path.

Choice of Parameter: The only parameter in the above strategy is the probability q. Let
maxI,A,� |u

i

(a, ◊)| < M̄ < Œ. Pick any q œ (0, 1) such that

M̄(1 ≠ q) < —i

i

(2 ≠ q) ≠ wC

i

’i œ I fi J . (21)

Note that at q = 1 this inequality becomes 0 < —i

i

≠ wC

i

.
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Verification of Equilibrium: We show that the proposed strategy is unimprovable,
i.e. no one-shot deviation by any player from any phase is profitable. Since f satisfies CIC,
all profitable deviations from it are observable with positive probability; let

pmin := min
(◊̃ij)jœ(�̃)J

µ
Ó

◊≠i

œ �≠i

| (fi1(◊̃
i1, ◊≠i

), . . . , fi
J

(◊̃
iJ

, ◊≠i

)) /œ Â(fi)
Ô

be the minimum probability of detection after a (strictly) profitable deviation. All deviations
of consequence in phases II and III may be detected w.p. 1. The quantity pmin plays a role
only in Phase I.

1. Phase IIi: Player i’s “lifetime” (discounted average) payo� in phase IIi, denoted Li

i

,
satisfies Li

i

= (1 ≠ ”)wC

i

+ ”
!
qLi

i

+ (1 ≠ q)—i

i

"
so that

Li

i

= (1 ≠ ”)wC

i

+ ”(1 ≠ q)—i

i

1 ≠ ”q
. (22)

Note that Li

i

æ —i

i

as ” æ 1. Player i will not deviate since the maximal payo� to a
one-shot deviation is below (1 ≠ ”)wC

i

+ ”Li

i

, which is lower than Li

i

. Player j ”= i will
not deviate for high ”, since his maximal payo�s are bounded above by (1 ≠ ”)M̄ + ”Lj

j

,
which tends towards —j

j

, while his payo� Li

j

from conformity tends to —i

j

> —j

j

(payo�
asymmetry).

2. Phase IIIi: Note that the mechanisms used in this phase are all one-to-one by construc-
tion; this means that any deviator, not just principals, is common knowledge among
agents, and the quantity pmin plays no role. From the definitions it is clear that the
di�erence in the lifetime payo�s to one-shot deviation and conformity is bounded above
by

(1 ≠ ”)M̄ + ”Li

i

≠ —i

i

= (1 ≠ ”)
C

M̄ ≠ (1 + ” ≠ ”q) —i

i

≠ ”wC

i

1 ≠ ”q

D

(23)

using (22). An immediate implication of inequality (21) defining q is that (23) is strictly
negative for all ” close to 1. Since —i

j

> —j

j

’j ”= i, it is immediate that players j ”= i do
not have a profitable one-shot deviation either.

3. Phase I: If player i deviates from Phase I, he/she earns a continuation payo� of Li

i

in the repeated game with probability at least pmin. Note that unlike a usual repeated
game this probability may be strictly lower than 1 in case an agent sends an inconsis-
tent message outside her B

i

. (Recall that inconsistent messages within B
i

cannot be
detected.) Since v

i

> —i

i

(target payo� domination) the arguments above also imply
that (1 ≠ ”)M̄ + ”{pminLi

i

+ (1 ≠ pmin)v
i

} < v
i

, for high ”; the strategies in phase I are
therefore unimprovable.
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4. Agent i œ I reports (pt

ikj

, dt

ik

) truthfully: since I Ø 3 and only the majority’s report
matters, no agent can change the continuation game, either the current action of a
principal or the phase transition, by unilaterally changing one or both of the first two
components of his report. His type report can influence each principal’s current action,
but since ÂKj

k

(–s

j

) is CIC over agents’ types, it implies that ⁄Kj

k

induces agents to report
truthfully within the set B

i

; a report outside B
i

leads to an unexpected action and is
therefore deterred in the steps above.

In sum, for high ”, the posited strategy is unimprovable after all histories, and hence is an
equilibrium.

Proof Proposition 4 Take fi œ F1(µ). Fix Á > 0. In addition to being WIC, this satisfies
SIR for all principals and WIR for all agents. From Abreu and Matsushima we know that for
each i œ I there is a mapping hi : �

i

æ —A such that

u
i

(hi(◊
i

), ◊
i

) > u
i

(hi(◊Õ
i

), ◊
i

) ’◊Õ
i

”= ◊
i

.

In other words, these lotteries on A give a strict incentive to report truthfully. Define a new
DM that satisfies strict IC over all consistent messages:

fi+(◊) := (1 ≠ �)fi(◊) + �
I

ÿ

iœI
hi(◊

i

).

Pick � > 0 small enough that Î fi ≠ fi+ Î< Á/2. Now we perturb fi+ to an invertible DM fiú

such that Î fi+ ≠ fiú Î< Á/2. First, fix an enumeration of the type-space � = {◊1, . . . , ◊L}.
By definition there is r œ (0, Á/2JL) such that B(fi+

j

(◊l), r) fl FW (µ) ”= ÿ for any j œ J . Let
fiú

j

(◊1) := fi+
j

(◊1); and pick an arbitrary element

fiú
j

(◊l+1) œ B
1
fi+

j

(◊l), r
2

\
Ó

fiú
j

(◊1), . . . , fiú
j

(◊l)
Ô

for l Ø 1.

By construction we therefore have Î fiú ≠ fi Î< Á. Since each fiú
j

is invertible, B
i

(fiú) =
{(◊

i

, . . . , ◊
i

) œ (�
i

)J | ◊
i

œ �
i

} for any agent i; consequently, an inconsistent report by agent
i is immediately detected and leads to her being punished. By Proposition 3 it follows that
there is a ” œ (0, 1) such that fiú can be supported in a PBE of the repeated game.

Proof of Proposition 7 Let the payo� vector from the SCF f be v = (v1, · · · , v
I+J

). Using
Lemma 3 construct the PSP for v. In what follows i and j are generic players unless otherwise
identified.

Equilibrium Strategies:
Phase I is the same as before: Each principal o�ers a DDM, and throughout believes

whatever the majority of agents report as the identity of the deviating principal. Phase IIj
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is the same except that in the latter phase we minmax with probability 1 for n + m periods
(the equilibrium value of m and n will be chosen subsequently) rather than a single period,
and then decide to continue minmaxing for the next block of m + n period with probability
q œ (0, 1). This minmaxing is done by playing the profile of EDMs ⁄Kj

≠j

. If i unilaterally
deviates, agents report it to the other principals. Subsequently, the game moves to phase
IIi. Else, with probability q stay in phase IIj , while with probability (1 ≠ q) proceed to
phase IIIj . When in phase IIIj play the action profile that gives the payo� vector —j in the
stationary distribution. Stay here unless i deviates unilaterally and takes the game to phase
IIi.

Suppose all principals play player i’s minmax profile for n + m periods. During the first
n periods the probability distribution over the agent’s types could be very di�erent from µú

i

and the agent’s expected payo� could be as high as M̄ . Let L = #�. Using Theorem 2, pick
n is large enough that for all i œ I fi J , ◊

i

œ �
i

,
---P(Xt

i

= ◊) ≠ µú
i

(◊
i

)
--- < ‘/3LM̄ ’t Ø n.

This means that in each of the next m periods his expected mean (undiscounted) payo� is
within ‘/3 of uú

i

. Now pick m large enough that
-----
nM̄ + m(wK

i

+ ‘/3)
n + m

≠ wK

i

----- <
2‘

3

There exists a discount factor ”†(n, m) œ (0, 1) such that M̄(1 ≠ ”)
q

n+m≠1
t=0 ”t < ‘/3 for

all ” Ø ”†(n, m). Player i’s ”-discounted payo� over n + m periods is within ‘/3 of the
undiscounted payo�. Let ū

i

denote the average ”-discounted payo� over the n + m periods in
phase IIj . Our choice of n, m, ”†(n, m) ensures that ū

i

is within ‘ of wC

i

if ” Ø ”†(n, m).
Verification of equilibrium: This is similar to the earlier proposition and hence

omitted.

Proof of Proposition 10 The target (expected) payo� vector is v © (v1, . . . , v
J+I

) :=
E

µ

u(f). Take —is and fiais as in Lemma 3 for each i œ I fi J .
Equilibrium Strategies. The strategy vector that generates the target payo� v as an

equilibrium payo� (for suitably chosen parameters) is defined in Markov strategy terminology
as follows.

1. Start in phase I, where principals o�er the deviator-reporting DMs fia = (fia

1 , . . . , fia

J

)
satisfying (18).

As long as no principal deviated in the current play of phase I and no agent deviated
in the last period, each agent i œ I reports (◊t

i

, 0) to each principal at t, where ◊t

i

is
her true type; this induces the vector of actions f(◊) as a function of the agents’ types.
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Otherwise the reports are (◊t

i

, dt

ik

) with dt

ik

”= 0. If fit is the mechanism o�ered at time
t, the action profile –t /œ Â(fiat) only if (at least one) an agent had deviated. If it is
clear that agent i œ I deviated at t ≠ 1, set all dt

ik

= i. If the identity of the deviating
agent is not clear, dt

ik

= J + 1. If dt

ik

= i go to Phase IIi.
If j œ J deviates unilaterally (o�ers a contract other than fia

j

), agents play any equilib-
rium of the one-shot game induced by the given mechanisms and report (◊t

i

, j) to all the
other principals. Each principal who o�ers a DDM believes that if more than half the
agents agree that j is the deviating principal, he is indeed guilty; principal k then moves
to phase IIj , and stays in phase I otherwise. For any profile of reports d

k

received by
principal k, let d̂

k

denote the majority report 25 from {d
ik

: i œ I}. In particular, if
one or more agents deviate, a principal who o�ers the right mechanism in Phase I may
nevertheless play an unexpected action; in such a situation the pricipal is not considered
as a deviator and agents are punished as described above.

2. When in phase IIj for some j œ J , each k œ J o�ers the constant deviator-reporting
DDM ’j

k

. If any i unilaterally deviates, agents report it. Subsequently, the game moves
to phase IIi. Else, with probability q stay in phase IIj , while with probability (1 ≠ q)
proceed to phase IIIj .26 In phase IIi for some i œ I, principal k plays the action –i

k

that attain the minmax value wK

i

= w
i

as in equation (10).

3. When in phase IIIj the action profile that gives the payo� vector —j is played. Stay
here unless i œ I fi J deviates unilaterally and takes the game to phase IIi.

4. One of the key di�erences between this and the usual repeated games proofs is that
we need to consider histories where a principal j who has actually not deviated has
been reported as the deviator by a majority of agents, or a deviating principal has
not been reported. At such histories j unexpectedly finds himself being minmaxed or
not minmaxing a player who had deviated in the previous period. In such a case j

proceeds as if he had indeed deviated in the current period; agents, including those who
misreported earlier, behave as if j had indeed deviated and report him again as the
deviator. Such histories do not happen as a result of unilateral deviations or on the
equilibrium path.

In words, the strategy says: Start and continue with the deviator-reporting DMs given by f

until the first unilateral deviation by a principal (say by i). Then, minimax i for one period
(with probability one) and (in the event of no observed deviation) continue the minimaxing
with probability q. With the remaining probability, terminate the minimaxing and play IIIi

until further deviations. Treat players symmetrically and subject every unilateral deviation
25If the majority is not unique pick the smallest integer among all the candidates.
26This coordination is done through the use of a PCD as usual; so there is no possibility of miscoordination.
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to this (stochastic) punishment schedule. Multilateral deviations are ignored, as in any Nash
equilibrium. Along the lines of earlier proofs it may be checked that this is su�cient to deter
deviations when players are patient.
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