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Abstract

This paper considers finite horizon alternating move two player bar-
gaining with a continuum of agreements. Two models are studied. The
first is a variant of the Rubinstein model in which an agreement, once
reached, is never broken. The second model is new to the literature and
allows for repeated bargains. In this model, an agreement can last for a
few periods, be followed by periods of disagreement and then, potentially,
a new and different agreement can emerge. It is shown that, if the Pareto
frontier is concave, then in both models the unique limiting equilbrium is
the Nash Solution, the agreement that maximizes the product of player
payoffs.

1 Introduction

This paper considers finite horizon two player bargaining, an environment in
which the players are trying to arrive at a split of the pie, with share α going to
player 1 and 1− α going to player 2. It examines the case where the potential
agreements form a continuum, i.e., α ∈ [0, 1] and every one of those agreements
is a Nash equilibrium for single-stage bargaining.
This multiplicity - that “any agreement is possible”- gives rise to the cele-

brated bilateral monopoly or bargaining problem, a problem that the pre-game
theory generation of economists (including Edgeworth and Hicks) considered
essentially indeterminate. The game-theoretic bargaining question then is:
are there bargaining protocols, modeled as non-cooperative games, that yield a
unique equilibrium, a single agreement?
To be sure, the first such proposal that yielded a unique prediction was set

not in a non-cooperative framework but rather in a cooperative game; by Nash
(1950) in his axiomatic derivation of the well-known "Nash Solution." to the bar-
gaining problem1 The best known non-cooperative answer is Rubinstein (1982)
who showed that if players take turns bargaining (with the player at time t either
accepting the offer on the table or proposing an alternative share), then there is
a unique subgame perfect equilibrium to the bargaining game. Moreover, when

1The Nash Solution picks that share α for which the product of the two players’payoffs is
maximized.
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the players’discount factor approaches 1, then the unique equilibrium converges
to the “Nash Solution”.
There is by now a large literature studying variations of the Rubinstein

game. In this paper, we study two models and the first one, which we call the
Irreversible Agreements model, is a variation on Rubinstein. That model has
the same alternating move structure, that a player at time t either accepts the
existing offer or counter-proposes. It also presumes that once an agreement is
reached, it cannot be undone and a flow of payoffs corresponding to the agree-
ment is received every period till the end of the game.2 The one difference
between our Irreversible Agreements model and Rubinstein’s is that our agree-
ment remains in force for the remaining periods of a finite horizon whereas, in
Rubinstein’s case, it remains in force for the infinite future. Another difference
is that we allow very general payoffs.
The real departure from the literature though is our second model, one of

Reversible Agreements. This is a model of repeated bargaining, in much the
same sense in which we have models of repeated oligopoly or repeated trade
agreements. It captures the idea that when two negotiators sit down to nego-
tiate an agreement they do not always expect it to be the last such negotiation.
They believe that the agreement they are about to hammer out will last a cer-
tain number of periods, say ζ, and they also know that yet another agreement
will need to be negotiated thereafter (and, of course, that one might end up
being identical to the current agreement). This feature of repeated bargaining
is, we believe, pervasive. When the auto companies negotiate with unions they
are aware that the agreements are short-term and a precursor to subsequent
negotiations. When two countries negotiate a bilateral trade or defense or
industrial treaty, again those are typically short-term treaties.
Pervasive as repeated bargaining is, best that we can tell, it has been ignored

by the literature. This paper is a first step towards an analysis.
As a first step, there are two modeling choices that we make. First, we

take the length of the current agreement ζ to be one, i.e., each agreement, once
reached, lasts one period. This is easily generalized.
Second, the current agreement becomes - by assumption - the status quo

option for the subsequent negotiation. Suppose that an agreement has been
reached at time t; player 1 responded to the offer on the table, 1− α̂ for player
2, by agreeing to take share α̂. In the next period t+ 1, this "move" of player
1, the share α̂ then becomes the status quo proposal to which player 2 has to
respond. If he agrees to take 1 − α̂, the agreement continues for one more
period - with associated positive payoffs. Alternatively, if he responds with 1−
α̃ there is no longer an agreement in period t + 1 (and either way, the period
t+ 1 agreement proposal 1− α̂ or the disagreement proposal, 1− α̃, is the offer
on the table at period t+ 2). And so on.
That the agreement in period t forms the status quo for period t+ 1 is one

2The standard interpretation of the Rubinstein infinite horizon model is that play ends
once agreement is reached with a terminal payoff corresponding to the agreement. That, of
course, is equivalent to saying that flow payoffs continue to be accumulated every one of the
remaining periods at a rate that adds up to the terminal payoff.
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way for the different periods or bargains to be linked through time. If t + 1
was a "fresh start" then, of course, the Irreversible Agreements model would be
simply a sequence of Reversible Agreements models and the results of the latter
would apply to the former. There are certainly other modeling assumptions
that could link periods.
Now to the results. In what follows let T stand for the game horizon. It

should be clear that uniqueness results will only hold for T large. When T is
small, we are likely to get multiplicity since we know, for example, that when
T is one, we have an infinity of possible equilibria. Indeed, given that the
agreements form a continuum, it should not surprise the reader that we will
uniquely choose from the continuum only when T −→ ∞. In what follows, an
"equilibrium when T −→∞" should be understood to be the limit of equilibria
for finite T . Furthermore, the continuum of agreements in the stage game will
be assumed to define a Pareto frontier f that is downward sloping (since a large
share for player 1 is, by definition, a smaller share for player 2).
In the Irreversible Agreements - or single bargain - model we prove three

results, in each case when T −→ ∞. First, we show that as long as f is
continous, there is a unique selection, i.e., although there may be multiple shares
that are equilibrium shares when T is finite, there is only one α∗ that is the
limiting share (of player 1). An example then shows that it is possible that this
limit depends on which player is the last to move.3 Second, if f is continuously
differentiable, it must be the case that each of these two possible limits is a local
maximum for the product of payoffs function, i.e., we must always get a local
Nash Solution. Third, if f is additionally, concave, then there is a unique limit
and it corresponds to the global Nash Solution.
We then turn to the Reversible Agreements - or multiple bargains - model.

We first present two examples - first when the Pareto frontier is linear and
second when the Pareto frontier is circular. We show that when there are, say,
τ periods left, the mover in that period will only accept agreements that give her
intermediate payoffs, i.e., she will block payoffs that are two low for her and will
also block payoffs that are too high for her. The first - blocking bad agreements
- is also a feature of the Irreversible Agreements model. The interesting new
feature with repeated bargaining is the second - blocking agreements that are
too good!
In particular, there are shares α1(τ) < α2(τ) - which we compute - such

that only agreements that lie in [α1(τ), α2(τ)] are accepted when there are τ
periods left. Moreover, the acceptance region shrinks with the horizon length
because α1(τ + 1) > α1(τ) and α2(τ + 1) 6 α2(τ). In other words, the longer
is the game horizon the less willing is a player to accept a deal. The reason
why advantageous agreements are rejected is that a player understands that the
very good agreement might be short-lived. For instance, if player 1 accepts
α̃ > α2(τ +1), she fears that the short-term high payoff would then be followed
by a break-down in the agreement next period. Player 2, rather than take a

3The player that is last to move accepts any share - when she finds herself in the last
period. That, consequently, puts her at a dis-advantage from a bargaining point of view.
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continuance of low payoffs associated with the share 1− α̃ would take a short-
term loss of payoffs - due to a disagreement - and instead look for the higher
share implied by 1− α1(τ − 1). So, ongoing intermediate payoffs are better
than the "stop-start" of a high initial payoff followed by a long stretch of low
payoffs.
The main theorem of the paper - and the general result of the second model -

then shows that what is shown by computation in the examples is more broadly
true. Provided f is continuously differentiable and concave, only intermediate
agreements are equilibria. Furthermore, as T −→ ∞, the unique limit of the
intermediate acceptance region is a singleton - and that singleton is again the
Nash Solution. In other words, when T is large but finite, there could possibly
be multiple equilibrium agreements but they all have to be (arbitrarily) close to
the Nash Solution, fitting in ever more tightly around that solution as we take
longer horizons.
In Summary, alternating offer bargaining produces the Nash Solution as the

unique outcome and does so not only when there is a single bargain but even
when there are multiple bargains.
The astute reader will wonder why we have analyzed a finite horizon problem

rather than an infinite horizon problem. The reason is that the infinite horizon
would have a folk theorem and certainly there would be no chance of a unique
equilibrium selection; indeed, the bargaining multiplicity would dimensionally
increase since not only would every agreement emerge as an equilibrium but
so would dis-agreement outcomes that are individually rational. That there
is a folk theorem follows from the fact that any alternating move game is a
stochastic game where the state variable at any time is the fixed action of the
non-mover. By the result of Dutta (1986) such a stochastic game would have
a folk theorem.4

The other modeling detail is that, in this paper, we are considering a con-
tinuum of agreements. In a companion paper - Dutta and Takahashi (2012) -
we have analyzed the case where there are only a finite number of agreements.
The advantage of the finite case is that it is a little easier to understand in
that setting why the Nash solution emerges in equilibrium. We explain that
reasoning now. Consider the following stage game:

1\2 1− α1 1− α2
α1 h1, l2 0, 0
α2 0, 0 l1, h2

with hi > li > 0 for i = 1, 2.
We proceed by backward induction. In the last period, it is a best response

to accept whatever share is offered. Similarly, as long as there are only a few
remaining periods. Things are different when the number of remaining periods

4Strictly speaking, the Dutta (1986) result only applies when the state space is finite
whereas the state space - the set of possible shares - in this setting is a continuum. However,
at the risk of considerably heightened technical analysis, the Dutta result can be extended to
this setting.
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becomes larger than Ti, where Ti is defined as

(Ti − 1)hi = Tili

or Ti = hi/(hi − li). Now, by blocking a bad agreement, and counter-
proposing the better one, a player receives a payoff of 0 in the current period
but continues with payoffs of hi in the future, whereas by accepting a bad
agreement, he receives a payoff of li in each of the remaining periods.
Suppose for example that T1 > T2. Then when the horizon increases past

T2 player 2 rejects α1. This leads to the equilibrium outcome α2, 1− α2 which
favors player 2. Conversely, if T1 < T2.
What determines T1 ≷ T2? Simple algebra shows that T1 > T2 if and only

if l1h2 > h1l2, i.e., comparison between two Nash products.5

The Model is presented in Section 2. In Section 3 we present two examples
to illustrate possible equilibria in the Irreversible Agreements model while in
Section 4 we present the three main results within that model. Sections 5
and 6 parallels that in the Reversible Agreements case; Section 5 presents two
examples while Section 6 presents the main theorem. Generalizations and
extensions are collected in Section 7.

2 Model

In this section, we present two finite horizon bargaining models - one with
irreversible agreements and the second with reversible agreements. But first we
discuss in some detail the bargaining stage game that we will focus on and the
timing structure within which we study that game.

2.1 Bargaining Stage Game

Consider a two player bargaining environment in which the players are trying
to arrive at a split of the pie, with share α going to player 1 and 1 − α going
to player 2. Suppose that the potential agreements α form a continuum, i.e.,
α ∈ [0, 1]. Suppose further that x(α) represents the agreement payoff of player
1 whilst y(α) = f(x(α)) is the agreement payoff of player 2. (Frequently, we
will suppress the argument α and simply write agreement payoffs as (x, f(x))).
Players’actions are "proposals" on shares. The following assumptions are made
about this bargaining stage game:
Definition The stage game is defined by strategy sets: player 1 can ask for

a share α̂ ∈ [0, 1] and player 2 can ask for a share 1 − α̃ ∈ [0, 1]. The asks
are compatible if α̂ = α̃ and we say then that there is an agreement. The asks
are incompatible if α̂ 6= α̃ and then we say that we have a disagreement. The
following assumptions are made on the associated payoffs:

5There are a number of knotty "integar problems" however that bedevil the finite agree-
ments case. For further details, see Dutta and Takahashi (2012).
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1. disagreement strategy tuples have a constant payoff (normalized to 0), i.e,
the payoff to α̂, 1− α̃, where α̂ 6= α̃ is (0,0);

2. each agreement strategy tuple is a strict Nash equilibrium, i.e., whenever
α̂ = α̃, x(α̂) > 0 and f(x(α̂)) > 0;

3. the Pareto frontier is downward sloping, i.e., x(.) is strictly increasing in
α while f is strictly decreasing.

An example will help clarify the definition.

Example 1 With x ∈ [0, 1] suppose that f(x) = 1− x.

This is the linear bargaining problem that has been studied in many papers
including (.) Here, α = x and so we can equivalently think of the choice as
being either x or α. In fact, given the monotonicity assumptions in 3. above, in
general we can equivalently think of the choice as being either of those variables.
Within this model section we will continue to talk of the choice as being the
share α. In the next sections, when we get to the analysis, we will often talk
about the (direct) choice of payoff x (by player 1 and y = f(x) by player 2).

Obviously this bargaining problem - sometimes also referred to as the bi-
lateral monopoly problem - has a continuum of equilibrium outcomes when the
stage game is played simultaneously by the two players; each of the strategy
tuples (α̂, 1− α̂) is a Nash equilibrium with associated payoffs (x(α̂), f(x(α̂))).
Hence, the (Nash) bargaining problem that arises is: which of the agreements
will emerge from strategic rational play?
John Nash first proposed, in an axiomatic derivation, the following (Nash

bargaining) solution:6

Definition The Nash bargaining solution in a bargaining stage game is the
agreement xm, f(xm) that maximizes the product of the players’payoffs, i.e.,7

xmf(xm) = max
x

x.f(x)

2.2 Alternating Offers and Finite Horizon

The multiplicity of bargaining equilibria worsens if bargaining takes place over
many periods. If the same stage game is played simultaneously and repeat-
edly, i.e., an agreement is sought afresh every period, then the well-known folk
theorems apply in both the infinite as well as the finite horizon versions. (Fu-
denberg and Maskin (1986) and Benoit and Krishna (1985).) Not only can
agreements emerge then as equilibria but also periods of disagreements (since
every individually rational payoff can emerge as subgame perfect equilibrium
payoff).

6And subsequently as a limit solution to a class of non-cooperative one period simultaneous
bargaining games. See Nash (1950, 1953).

7Note that in Nash’s formulation what is maximized is the product of net payoffs, where
each player’s net payoff is the gross payoff less a status quo payoff. Here the status quo, or
disagreement, payoff is zero.
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Rubinstein (1982) was the first paper to cut through this indeterminacy. He
restricted attention to a single bargain, i.e., an attempt to find one agreement
but did so in a model of alternating offers. He considered a model in which
in every period only one of the two players moves. She does so by responding
to an offer that has been made in the previous period, an offer that specifies a
share for the proposer. A response is a counter-proposal that might or might
not lead to an agreement. If the proposal is, say, α̂, the responder could then
say "yes" with a counter-proposal of 1− α̂ i.e., agree. On the other hand, the
mover could say "no" via a counter-proposal of 1 − α̃ where α̃ 6= α̂, i.e., dis-
agree, and that proposal would then become the tabled offer for the subsequent
period.
In Rubinstein’s model, whenever an agreement is reached, the game ends

with each player receiving the agreement payoffs.
The above will be exactly the first of two models that we will study. We

will call that the Irreversible Agreements model because - once an agreement
is reached - it cannot be undone. The one difference between our Irreversible
Agreements model and Rubinstein’s will be that our agreement will remain in
force for the remaining periods of a finite horizon whereas, in Rubinstein’s case,
it remains in force for the infinite future.8

The second model will be one in which an agreement is in force for the period
in which it is reached but need not be in force in subsequent period(s). In that
model, if the counter-proposal is 1− α̂ then both players get agreement payoffs
in that period. Next period, the mover responds to the existing (non-mover’s)
previous offer - 1− α̂. If she responds with α̂ then the agreement continues for
one more period - with associated positive payoffs. Alternatively, she is free to
respond with α̃ thereby collecting one period of zero disagreement payoffs but
possibly moving play to a better - for her - agreement in the future.
Since we study finite horizon games that end after period T (< ∞) we will

need, to begin with, a move convention about who moves in the last period. One
possibility is that it is player 1 who moves last and hence in the penultimate
period it is player 2 who moves etc. In other words, player 1 is the mover when
there are an odd number of periods left whilst player 2 is the mover when there
are an even number of periods left. An alternative convention is to consider
the opposite possibility with player 2 being the mover when there is only one
period left to go.
It will be seen, that when there are very few periods of bargaining left, the

chosen convention will give asymmetric bargaining power to the player who does
not move last. By looking at long enough bargaining periods, however, we will
search for equilibria where this convention plays no role. If it does we will call
such an equilibria local and if it does not we will call it global. (More below.)
Lifetime payoffs will be evaluated according to the (undiscounted) average

payoff; player i′s evaluation of the payoff stream πi(at, bt), t = 1, 2, ... T will

8The standard interpretation of the Rubinstein infinite horizon model is that play ends
with payoffs (x(α̂), f(x(α̂))). That, of course, is equivalent to saying that flow payoffs (1 −
δ)(x(α̂), f(x(α̂))) continue to be accumulated every one of the remaining infinite periods. (δ
is the discount factor in the above.)
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be given by9

1

T

T∑
t=1

πi(at, bt) (1)

One further specification that is required is how the game starts, i.e., what
is the "initial state" of the game, the offer that is already on the table at the
beginning of period 1. There are two standard ways to do this: one is to be
agnostic and allow all possible initial states. A second is to consider a period
0 and allow the "mover" in that period to choose the initial state (for period
1). Our results do not depend on which of these specifications is chosen. For
concreteness, we will allow any possible initial state and will look for equilibris
that are independent of the initial state.

2.3 Model 1 - Irreversible Agreements

Definition: A bargaining game (with horizon T and stage game G) is said
to have irreversible agreements if, starting with an offer α̂ (respectively,
1− α̂), provided the counter-offer is 1− α̂ (respectively, α̂), i.e., if an agreement
is reached in period t, it then remains in force for the remaining T − t periods,
i.e., the strategy tuple played in periods t, t+ 1, ...T is also given by (α̂, 1− α̂)
with associated payoffs x(α̂), f(x(α̂)) every period.
Put differently, if an agreement is reached, there is no further opportunity to

make offers (and counter-offers). In the sense that there is only one agreement,
this model is essentially the finite horizon Rubinstein model.

2.4 Model 2 - Reversible Agreements

The more dynamic model is one of reversible agreements.
Definition: A bargaining game (with horizon T and stage game G) is said

to have reversible agreements if, when an offer α̂ (respectively, 1 − α̂) is made
and followed by the agreement counter-offer 1− α̂ (respectively, α̂) in period t,
it remains in force for only that one period. In period t + 1, the acceptance
offer of the other player, 1− α̂ (respectively, α̂), becomes the offer to which the
responder in that subsequent period responds. Similarly, if the offer was not
accepted in period t, then the counter-offer constitutes the offer to which the
responder in period t+ 1 responds.
Let us consider some examples:
Example 1 Agreement - Initially and Forever: Supose the initial state is α̂.

Player 2, the mover in period 1 say, responds by playing 1− α̂. This constitutes
an agreement with associated positive payoffs in period 1. In period 2, the
responding player, now player 1, picks α̂ in response to the current offer of 1− α̂
and the players earn the same payoff in period 2 as well. And this continues

9Here at = α̂ for player 1 and bt = 1 − α̃ for player 2. Furthermore, πi(at, bt) = x(α̂)
or f(x(α̂)) respectively, if there is an agreement and equals 0 otherwise. Our analysis also
applies to the case of discounting, for any discount factor δ < 1. In that case the appropriate
evaluation of lifetime payoffs is 1−δ

1−δT
∑T
t=1 δ

t−1πi(at).
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till the end of the game garnering them total payoffs of T [x(α̂), f(x(α̂))] or
per-period average payoffs of x(α̂), f(x(α̂)).

Example 2 Disagreement Transiting to An Agreement: Again, supose the
initial state is α̂. Player 2 responds by playing 1− α̃, α̂ 6= α̃. This constitutes
a disagreement with associated zero payoffs in period 1. However, player 2
might thereby have put on the table an offer whose agreement, if reached, is far
more favorable for her. There might follow a set of offers and counter-offers
none of them constituting an agreement and so stage payoffs might remain
zero. However, the series of rejections might then narrow the set of potential
agreements to something that is a better "compromise" for both parties, say α′.
Under the twin pressures of finally getting an offer that is more reasonable for
the responder - and that the end of the game is nearing - the two players might
then reach the agreement α′, 1− α′ for, say, the last T − ζ periods.

Note that both models are examples of dynamic or stochastic games with
the payoff-relevant state at time t being the fixed action in that period (to which
the responder responds) and the number of remaining periods in the game.

2.5 Equilibrium - Global and Local Convergence

All actions are observable. Strategies, in both models, are hence defined in
the usual way as history-dependent action choices. A t − th period strategy
for a mover in that period is a history-dependent (mixed) action choice and
a complete strategy is a specification for every move period (and after every
history). A strategy vector - one strategy for every player - defines in the usual
way a (possibly probabilistic) action choice and hence an expected payoff for
the t− th period for each player.
Since the game has a finite horizon and since this is a game of perfect in-

formation, Subgame Perfect Equilibrium (SPE) is determined via backward in-
duction in both models. When there is a single period left, the mover in that
period, player 1 say, plays her best reponse; call that α∗(β, 1) where - hence-
forth - β = 1 − α is the previous period proposal of player 2. Evidently, the
two variables - the offer on the table β and the remaining number of periods,
1, is all that is payoff-relevant in selecting a best response. Similarly, at the
penultimate period, the mover - player 2 - has a best response β∗(α, 2) based on
the proposal on the table, α, the number of remaining periods, 2, and the best
response function α∗(β, 1) that will govern the subsequent period’s action. In
this fashion, we derive best response functions for player 1, α∗(β, τ), whenever
there are an odd number of periods τ remaining and best response functions
β∗(α, τ) for player 2 when τ is even. Note that in this perfect information set-
ting optimal choices are, typically, Markovian and unique. The only way that
a mixed strategy SPE - or a history-dependent SPE - can arise is from ties in
the mover’s payoffs.10

10Note that in both models, the set of SPE payoffs is always history− independent; the set
of payoff vectors that can arise as a SPE in the subgame that starts at date t and a particular
history only depends on the current state, i.e., the offer on the table (and the number of
remaining periods τ).
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This paper will investigate properties the equilibrium choice and value sets
must satisfy, when τ is ”large”. Towards that end, let us define the equilibrium
agreements

A∗(τ) = {α : β∗(α, τ) = 1− α}, τ even
A∗(τ) = {α∗(β, τ) : ∃β s.t. α∗(β, τ) = 1− β}, τ odd

As should be clear from the definitions, A∗ is the set of agreements that can
arise from equilibrium play, either because player 1 will agree to take that share
- when τ is odd or because that is a share that player 2 would be willing to give
player 1 - when τ is even. Finally, define the limit

A∗ = ∩τA∗(τ)

whenever it exists. In particular, if the limit exists and is, furthermore, a
singleton, then we shall say that the bargaining game has a unique equilibrium
agreement for "long" horizons:

Definition 2 The alternating move, finite horizon Irreversible Agreement game
- respectively, Rreversible Agreement game - has a unique equilibrium if A∗ is a
singleton.

Let A∗ have a singleton and suppose it is α∗. It should be clear in the
Irreversible Agreement game that, if the horizon is long enough, then the only
initial proposals, that will get accepted (immediately and thereafter stay in place
by definition) are proposals in the neighborhood of α∗. The longer the horizon
the smaller is that acceptance neighborhood.
It should also be clear that even in the Reversible Agreement game that, if

the horizon is long enough, then the only initial proposals, that will get accepted
(immediately and thereafter stay in place through equilibrium behavior) are pro-
posals in the neighborhood of α∗. Again, the longer the horizon the smaller
is that acceptance neighborhood. In this instance, these equilibria with agree-
ments that are never broken, are, in principal, a subset of more complicated
equilibrium behavior that might involve, for instance, agreement-disgreement
cycles. We will comment on that in Section 5.
When we first defined the finite horizon game, we had two parameters -

initial state and horizon length - and one convention to specify - the last mover.
In the definitions and arguments immediately above, we have found concepts
where the two parameters cease to be relevant - since the limit acceptance set is
independent of them. However, we still have the convention that the last mover
be player 1. Clearly, an alternative convention would be that the last mover is
player 2. Everything that we have done so far can be re-cast in this parallel
world: with one period to go, player 2 has a best response function β

′
(α, 1)

and based on that player 1 has a best response function with two periods to go
α
′
(β, 2). In this fashion, we derive best response functions for player 1, α

′
(β, τ),

whenever there are an even number of periods τ remaining and best response
functions β

′
(α, τ) for player 2 when τ is odd.
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Finally, let us define the equilibrium agreements

A
′
(τ) = {α : β

′
(α, τ) = 1− α}, τ odd

A
′
(τ) = {α

′
(β, τ) : ∃β s.t. α

′
(β, τ) = 1− β}, τ even

and the associated limit
A
′
= ∩τA

′
(τ)

whenever it exists. In particular, if both limits exist and are, furthermore,
singletons equal to each other, then we shall say that the bargaining game has
a unique global equilibrium agreement:

Definition 3 The alternating move, finite horizon Irreversible Agreement game
- respectively, Rreversible Agreement game - has a unique global equilibrium if
A∗ and A′ are singletons and A∗ = A′.

3 Irreversible Agreements: Examples of Global
and Local Convergence

In this section we provide two examples within Model 1, the model where agree-
ment, once reached, is irreversible. The first is an example where the Pareto
frontier is linear and this example will exhibit global convergence; regardless of
whether it is player 1 or 2 who is the last mover, there is a unique agreement
in the limit. In fact, in this example, the agreement is reached within two
periods. Moreover, that unique agreement is nothing but the Nash bargaining
solution. The example will also illustrate an algorithm that will re-appear in a
more general result which is to be found in the next section, a result that will
apply to broader classes of Pareto frontiers - beyond the linear - that have the
property that the Nash product x.f(x) is single-peaked.
The second example will be one in which the Pareto frontier is piece-wise

linear and convex (i.e., kinked "inwards"). Consequently, the Nash product
will be multi-peaked. In this example, there will be local convergence but not
global convergence in that there will be two candidate limits, say α∗ and α′,
α∗ < α′ and which of them is reached will depend on which player is the last
mover. If player 1 is the last to move that puts her at a dis-advantage and
consequently the limit is α∗. On the other hand, if player 2 is the last to move
that places greater bargaining power in the hands of player 1 and leads to an
agreement α′ that is more advantageous for her. Furthermore, one of the two
limts will be seen to be the Nash bargaining solution and the other will be seen
to be a "local" Nash bargaining solution, i.e., a local maximizer of the Nash
product x.f(x). The example will also illustrate a more general result which is
to be found in the next section. The general result will show that bargaining
leads always to a local Nash bargaining solution.
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3.1 Linear Pareto Frontier

Suppose that
f(x) = −mx+ c, m > 0, c > 0

Note that argmaxx xf(x) = c
2m . We will use this example to investigate

global convergence. In terms of the analysis, it will turn out to be easier to
imagine that what each player chooses is a payoff - rather than a share of the
pie. For example, player 1 accepts all agreements that give her a certain set
of payoffs. Since the payoff function x(α) is monotonically increasing in the
share α, it clearly does not matter whether we have the player choosing x or α.
Similarly, for player 2 we will imagine that he chooses y = f(x) rather than the
share 1− α that yields that payoff.

Within this example, we will prove the following:

Proposition 4 If f is linear, then there is global convergence. Explicit com-
putation shows that the equilibrium strategies are of the form: there are payoffs
x(τ) and x(τ), x(τ) < x(τ), that form the boundary of the (payoff ) agreement
region. If it is player 1’s turn to move, with τ periods to go, she will only agree
provided the proposal on the table gives her at least x(τ) as payoff. Similarly,
if it is player 2’s turn to move, with τ periods to go, he will only agree pro-
vided the proposal on the table gives him at least f(x(τ)). Furthermore, x(τ)
< c

2m < x(τ). Also, x(τ + 2) > x(τ) for all τ odd. Similarly, x(τ + 2) 6 x(τ)
for all τ even. Finally, limt→∞ x(τ) = limt→∞ x(τ) = c

2m .

Recall that τ is the number of remaining periods and player 1 is the player
who moves in the last period.
As noted, x(τ) for τ = 1, 3, 5 ... denotes the (worst) agreement payoff that

player 1 is willing to accept at those periods (and let the associated payoff for
player 2 be denoted y(τ), i.e., y(τ) = f(x(τ))). Let y(τ) for τ = 2, 4, 6, ...
denote the worst agreement that player 2 will similarly accept when it is his

turn to move. Let x(τ) =
y(τ)−c
−m denote the associated payoff for player 1, i.e.,

that is the best agreement that player 2 will receive in even periods.
We will now compute x(τ) and x(τ) and show that

lim
τ→∞

x(τ) = lim
τ→∞

x(τ) =
c

2m

Hence, the state-independent SPE is the Nash solution.
Proof. We will compute the agreement regions. We start with

τ = 1 It is easy to see that player 1 will agree to any share when there is
a single period left because agreement gives her a non-negarive payoff (and, in
fact,a strictly positive payoff if the proposed share is positive). Hence, x(1) = 0
implying y(1) = c

τ = 2 With two periods to go, player 2 can guarantee himself y(1) = c by
turning down a proposal in this period and waiting for the next with a counter-
proposal that gives him everything. Hence, the worst payoff that he will accept

12



is given by the equality c = 2y(2) implying that y(2) = c
2 implying that x(2) =

c
2m

τ = 3 With three periods to go, player 1 can guarantee herself x(2) =
c
2m by turning down a proposal on the table and waiting for her best payoff
for two periods. Hence, the worst payoff that she will accept is given by the
equality c

m = 3x(3) implying that x(3) = 1
3
c
m i.e., that y(3) = 2

3c
τ = 4 Continuing in that fashion, y(4) can be derived from 2c = 4y(4)

implying that y(4) = c
2 implying that x(4) =

c
2m

τ = 5 Again, the worst payoff the mover, player 1, will take is given by
2c
m = 5x(5) implying x(5) = 2

5
c
m implying y(5) = 3

5c
τ = 6 3c = 6y(6) implying that y(6) = c

2 implying that x(6) =
c
2m

τ = 7 3c
m = 7x(7) implying x(7) = 3

7
c
m implying y(7) = 4

7c
τ = 8 4c = 8y(8) implying that y(8) = c

2 implying that x(8) =
c
2m

τ = 9 4c
m = 9x(9) implying x(9) = 4

9
c
m implying y(9) = 5

9c
τ = 10 5c = 10y(10) implying that y(10) = c

2 implying that x(10) =
c
2m

It is clear that the odd-period worst agreement payoffs of player 1, x(τ) -
after factoring out the c

m - are

0,
1

3
,
2

5
,
3

7
,
4

9
, ...

n− 1
2n+ 1

, ...

for n = 1, 2, .. Of course that sequence converges to 1
2 . It is also clear that

the best payoffs of player 1, x(τ) = c
2m for all even numbered τ . Hence, the

unique limit payoff for player 1 is c
2m , the Nash bargaining solution.

Something that the astute reader would have already noted - and that will
be useful in the sequel - is the following observation. In the odd periods, when
it is player 1’s turn to move the lowest payoff that she will accept is given by
the following equation

τx(τ) = (τ − 1)x(τ − 1)
and, similarly, in the even periods, the lowest payoff that player 2 would be

willing to take is given by

τf(x(τ)) = (τ − 1)f(x(τ − 1))

This equations will be extensively used in the general analysis that follows.
Let us now turn to global convergence - that the same limit would hold had

we considered the case in which player 2 is the last mover. Easy computation,
again using equations above, tell us that the odd period payoffs of player 1, now
x(τ), are - after factoring out c

m - given by

1,
2

3
,
3

5
,
4

7
,
5

9
, ...

n

2n− 1 , ...

for n = 1, 2, .. Of course that sequence converges to 1
2 . It is also clear that

the worst payoffs of player 1, x(τ) = c
2m for all even numbered τ . Hence,

again, the unique limit payoff for player 1 is c
2m , the Nash bargaining solution

and we have global convergence.�
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3.2 Convex Pareto Frontier

We turn now to a second example. In this case, the Pareto frontier will be piece-
wise linear and kinked "inwards" thereby creating a convex frontier. Suppose
that

f(x) = −2x+ 10, x 6 8
3

f(x) = −0.5x+ 6, x > 8
3

Note that the Nash product. xf(x), is double-peaked, achieveing a local
maximum in the left line-segment at 2.5 and another at 6 - which is where
it also achieves the global maximum, i.e., argmaxx xf(x) = 6. We will use
this example to show - a) there need not be global convergence, i.e., that the
agreement that is eventually reached might be different depending on whether
it is player 1 or 2 who moves last but that, b) it must be a local maximum of
the Nash product function.

Proposition 5 Consider the convex f example above. Explicit computation
shows that player 1’s equilibrium worst and best payoffs x(τ) and x(τ), x(τ) <
x(τ), have the following property: limt→∞ x(τ) = limt→∞ x(τ) = 2.5 if player 1
is the last mover but limt→∞ x(τ) = limt→∞ x(τ) = 6 if, instead, player 2 is the
last mover. So there is no global convergence but there is salience to the Nash
product function in that a) there is a limiting agreement and b) that limit has
to be at least a local maximum of the Nash product function.

Proof. As in the previous example, we will compute the agreement regions.
We start with

τ = 1 Clearly, x(1) = 0 implying y(1) = 10.
τ = 2 With two periods to go, since player 2 can guarantee himself

y(1) = 10 by turning down a proposal in this period, the worst payoff that he
will accept is given by the equality 10 = 2y(2) implying that y(2) = 5 implying
that x(2) = 2.5.

τ = 3 With three periods to go, since player 1 can guarantee herself
x(2) = 2.5 by turning down a proposal on the table, the worst payoff that she
will accept is given by the equality 5 = 3x(3) implying that x(3) = 5

3 i.e., that
y(3) = 20

3 .
τ = 4 Continuing in that fashion, y(4) can be derived from 20 = 4y(4)

implying that y(4) = 5 implying that x(4) = 2.5.
τ = 5 Again, the worst payoff the mover, player 1, will take is given by

10 = 5x(5) implying x(5) = 2 implying y(5) = 6.
τ = 6 30 = 6y(6) implying that y(6) = 5 implying that x(6) = 2.5.

τ = 7 15 = 7x(7) implying x(7) = 15
7 implying y(7) =

40
7 .

τ = 8 40 = 8y(8) implying that y(8) = 5 implying that x(8) = 2.5.

τ = 9 20 = 9x(9) implying x(9) = 20
9 implying y(9) =

50
9 .

τ = 10 50 = 10y(10) implying that y(10) = 5 implying that x(10) =
2.5.

14



τ = 11 25 = 11x(11) implying x(11) = 25
11

It is clear that the odd-period worst agreement payoffs of player 1 are

0,
5

3
,
10

5
,
15

7
,
20

9
,
25

11
...
5(n− 1)
2n− 1 , ...

for n = 1, 2, .. Of course that sequence converges to 2.5. It is also clear
that the best payoffs of player 1, x(τ) = 2.5 for all even numbered τ . Hence,
the unique limit payoff for player 1 is 2.5, which is a local maximum for the
Nash product function but not the Nash bargaining solution.
Let us now turn to the limit that would hold had we considered the case

in which player 2 is the last mover. Easy computation, again using equations
above, tell us that the odd period payoffs of player 1, now x(τ), are given by

12

1
,
24

3
,
36

5
,
48

7
, ...

12n

2n− 1 , ...

for n = 1, 2, .. Of course that sequence converges to 6. It is also eaasily
shown that the worst payoffs of player 1, x(τ) = 6 for all even numbered τ .
Hence, again, the unique limit payoff for player 1 is 6, and this is the Nash
bargaining solution.
To summarize, in this example, there are two local maxima of the Nash

product function. The one that is preferred by player 1 is approached if player
2 is the last to move - and vice-versa. However, those are the only possible
equilibrium agreements. �

4 Irreversible Agreements: Results on Global
and Local Convergence

In this section we provide results on convergence, i.e., unique selection of a
bargaining agreement. There are three results. The first says that as long as
f is continous, then the sequences of best and worst agreement, x(τ) and x(τ)
must converge regardless of whether player 1 or player 2 is the last to move.
Call the limit when player 1 is the last to move x∗ and that when player 2 is
the last to move x′. Note that in the two examples of the previous section we
were able to compute these limits directly. The first result of this section will
therefore establish that - even when they are not computable - they must exist.
The second result says that both x∗ and x′ have to be local maxima of the

Nash product function x.f(x) as long as f is known to be continously differ-
entiable. This was illustrated by the second example of the previous section.
An immediate corollary of that result is that when the Nash product is single-
peaked - for example if f is concave - then the two limits have to coincide and
be the Nash bargaining solution. This was illustrated by what we computed
when the Pareto frontier, f , is linear in the first example of the previous section.
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4.1 Convergence

Theorem 6 Suppose that f is continuous. Then, there is a limit to the best
and worst agreements of player 1, x(τ) and x(τ), and the two limits coincide.
This is true regardless of whether player 1 is the last to move or player 2.
Proof. As we have seen above, the two sequences are derived via the following
equations

x(τ + 1) =
τ

τ + 1
x(τ),

f(x(τ + 1)) =
τ

τ + 1
f(x(τ)).

From the first equation above it follows that

τ + 2

τ + 1
x(τ + 2) = f−1

(
τ

τ + 1
f(x(τ))

)

Recall that the sequence x(.) is defined with intervals of 2,; if player 1 is the
last to move then it is of the form x(1), x(3), ... x(τ), x(τ + 2)... for all odd τ
while it is of the form x(2), x(4), ...x(τ), x(τ + 2)... for all even τ when player
2 is the last to move. We will now show that in both cases this sequence is
convergent. It is clearly a sequence drawn from a compact set and hence has a
limit on a subsequence, say τn, and call the subsequential limit x∞. On that
subsequence, using the equation above, we must have

lim
tn−→∞

x(τn + 2) = x∞

given the continuity of f . Since for every convergent subsequent it follows
that the subsequence formed by the elements τn+2 converge to the same limit,
it must be the case that the original sequence itself converges to x∞. Evidently
this argument shows that there is a limit regardless of whether we take the odd
sequence or the even one, though the two limits need not be the same. Call
them, as above, x∗ and x′ respectively.
Note also that

f(x(τ + 1)) =
τ

τ + 1
f(x(τ))

and from that it follows that the sequence x(τ) must itself have a limit and
that limit must be the same as that for x(τ + 1). �

4.2 Local Convergence

Theorem 7 Suppose that f is continuously differentiable and furthermore that
−∞ < f ′ < 0. Then, the two limits x∗ and x′ must both be local maxima of
the Nash product function x.f(x).
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Proof. By eliminating x(·) in the equation above we have

f

(
τ + 2

τ + 1
x(τ + 2)

)
=

τ

τ + 1
f(x(τ)). (2)

Given the assumptions on f,11 and considering one of the limits, say x∗,
what we know is that in a small enough neighborhood of x∗, if x < x∗, then
xf ′(x) + f(x) > 0; if x > x∗, then xf ′(x) + f(x) < 0.
Notice that x(τ + 2)− x(τ) = O(1/τ). Thus, by linearizing (2), we have

f(x(τ))+(x(τ+2)−x(τ))f ′(x(τ))+x(τ + 2)f
′(x(τ))

τ
= f(x(τ))−f(x(τ))

τ
+O

(
1

τ2

)
,

i.e.,

x(τ + 2)− x(τ) = −x(τ)f
′(x(τ)) + f(x(τ))

τf ′(x(τ))
+O

(
1

τ2

)
. (3)

Fix any ε > 0. Then for suffi ciently large τ , |x(τ+2)−x(τ)| < ε. Given that
f ′ is continuously differentiable and bounded above it follows that x(τ)f ′(x(τ))+
f(x(τ)) is arbitrarily small. Running ε ↓ 0 we can conclude that x∗ must be
a local maximum of the Nash product function x.f(x)̇. Clearly this argument
holds for any limit point of x(τ) and, in particular, for x′.�

4.3 Global Convergence

Theorem 8 Suppose that f is continuously differentiable, that −∞ < f ′ < 0
and furthermore that x.f(x) is single-peaked. Then, the two limits x∗ and x′

coincide at the global maxima of the Nash product function x.f(x), i.e., equilib-
rium play uniquely selects the Nash bargaining solution.

Proof. The proof follows as an immediate corollary of the result in the pre-
vious sub-section. When f is single-peaked it has, by assumption, only one
(local/global) maxima. Hence, the two limits x∗ and x′ coincide at the global
maximum which is, again from the definition, the Nash bargaining solution.�

Remark 9 A suffi cient condition for single-peakedness of the Nash product
function is when f is concave. Hence, we have found the general result for
the linear Pareto frontier case whose equilibrium was computed in the previous
section.

11The following may not be the weakest possible assumptions. Say, continuous differentia-
bility might be relaxed to mere differentiability, etc.
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5 Reversible Agreements: Two Examples of Global
Convergence

In this section we switch to Model 2 - the Reversible Agreements model - in
which an agreement once reached is only good for that period. In the subsequent
period, the player who then has the mover can over-turn the agreement by
proposing a different split of the pie. He would, of course, suffer the short-term
payoff consequence of zero disagreement payoffs but might wish to trade that in
for a more attractive payoff in the future. On the face of it, it would appear that
equiibrium behavior could be ceaselessly complex. Agreements might appear,
last for a bit, and then be replaced by other agreements. Or there might be
long periods of time over which there is simply a tug and fro of bargains between
the two players with no agreements reached.
We start by providing two examples where the behavior is remarkably or-

dered. The first is a return to our initial example where the Pareto frontier
is linear. Within this example we will exhibit that yet again there is global
convergence; regardless of whether it is player 1 or 2 who is the last mover, there
is a unique agreement in the limit. In fact, in this example, the agreement sets
will turn out to be identical to those in the Irreversible case! Consider the case
where player 1 is the last to move. Recall that there are worst payoff agree-
ments for her, x(τ), for τ = 1, 3, 5...; with odd number of periods τ left, player
1 is willing to accept any agreement that gives her a payoff of at least x(τ).
Similarly there are best payoff agreements for player 1, x(τ), for τ = 2, 4, 6...;
with even number of periods τ left, player 2 is willing to accept any agreement
that gives him a payoff of at least f(x(τ)), or x(τ), for τ = 2, 4, 6... is the most
that player 1 can hope to achieve. It turns out in the examples that follow that
there is two-sided blocking - when there are an odd number of periods left to
play, player 1 will accept any agreement that gives her a payoff of at least x(τ)
but no more than x(τ − 1). The second part is the new phenomenon; even if
player 1 is confronted with a particularly attractive proposal - one that gives
her more than x(τ − 1) - she will say, no thank you! As will become clear, this
anticipatory block is instigated from knowing that such an agreement is very
short-term, will be over-turned next period, and when it is over-turned will be
replaced by a considerably worse agreement.
The second example will show that the above result is not an artfact of

risk-neutrality. In it we will consider a (quarter) circle - and hence concave -
Pareto frontier. In this example, there will again be global convergence; again,
a player will block not only agreements that are dis-advantageous for her but
also agreements that are too good.12

In both examples, the set of agreements will converge uniquely and globally

12 Indeed, this example, like the linear example, generates identical sequences x(τ) and x(τ)
in both the Irreversible and Reversible models. The only difference is that in the Irreversible
model, player 1 blocks anything below x(τ) while in the Reversible model she also blocks
anything above x(τ − 1). Similarly, player 2 only blocks anything below f(x(τ)) in the
Irreversible model but additionally blocks every agreement that gives him above f(x(τ − 1))
in the Reversible case.
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to the Nash bargaining solution, i.e., the unique maximizer of the Nash product
x.f(x). These example will also illustrate a more general result which is to be
found in the next section. The general result will show that Reversible Agree-
ment bargaining leads always to the Nash bargaining solution if f is concave.

5.1 Linear Pareto Frontier

Suppose that
f(x) = −mx+ c, m > 0, c > 0

Note again that argmaxx xf(x) = c
2m . Let us start with the case where

player 1 is the last to move.
As before, x(τ) for τ = 1, 3, 5 ... will denote the (worst) agreement payoff

that player 1 is willing to accept at those periods (and let the associated payoff
for player 2 be denoted y(τ), i.e., y(τ) = f(x(τ))). Let y(τ) for τ = 2, 4, 6,
... denote the worst agreement that player 2 will similarly accept when it is

his turn to move. Let x(τ) =
y(τ)−c
−m denote the associated payoff for player

1. These will be computed in exactly the same fashion as in the Irreversible
Agreement case and will have the exact same values. We will then show that
player 1 - when it is her turn to move - will accept any agreement between x(τ)
and x(τ −1) and we will, without loss write x(τ) = x(τ −1). We will also show
that player 2 - when it is his turn to move - will accept any agreement between
y(τ) and y(τ − 1) and we will, without loss write y(τ) = y(τ − 1). In other
words, when it is player 2’s move, player 1’s payoffs will again be nested within
x(τ) and x(τ).
We already know that

lim
τ→∞

x(τ) = lim
τ→∞

x(τ) =
c

2m

and hence, even in this case, the limiting SPE will turn out to be the Nash
bargaining solution.

τ = 1 With one period to go, player 1 will accept anything, i.e. the
lowest payoff she will take x(1) = 0. At the same time there is no payoff that
she will deem too good and refuse, i.e., x(1) = c

m . Hence, x(1) = 0, x(1) =
c
m

with associated payoffs of player 2 y(1) = c and y(1) = 0 respectively.
τ = 2 With two periods to go, player 2 can guarantee himself y(1) = c by

turning down a proposal in this period and waiting for the next with a counter-
proposal that gives him everything. Hence, the worst payoff that he will accept
is given by the equality c = 2y(2) implying that y(2) = c

2 implying that x(2) =
c
2m . Additionally, since player 1 does not block anything in the subsequent
period, he has no reason to block any agreements that give him too much, i.e.,
y(1) = c and hence x(1) = 0. Collecting all this we have, x(2) = 0, x(2) = c

2m .
τ = 3 With three periods to go, player 1 can guarantee herself x(2) = c

2m
by turning down a proposal on the table and waiting for her best payoff for two
periods. Hence, the worst payoff that she will accept is given by the equality
c
m = 3x(3) implying that x(3) = 1

3
c
m i.e., that y(3) = 2

3c. Additionally, if
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player 1 is offered any agreement in which her share is greater than 1
2
c
m then

she blocks it. This is because accepting such an agreement would lead to a block
by player 2 at τ = 2 thereby leading to a payoffonly in the current period. That
payoff is less than 2. c2m which she can ensure by counter-offering with c

2m which
will then get played for the last two periods. Hence, x(3) = 1

3
c
m , x(3) =

1
2
c
m .

τ = 4 Continuing in that fashion, y(4) can be derived from 2c = 4y(4)
implying that y(4) = c

2 implying that x(4) =
c
2m . Additionally, if player 2 is

offered any agreement y in which his share is greater than 2
3c (and player 1’s is

less than 1
3
c
m ) then he blocks it. This is because accepting such an agreement

would lead to a block by player 1 at τ = 3 thereby leading to a total payoff
of y + 2 c2 . That payoff is less than 3. 23c which he can ensure by counter-
offering with c

2m which will then get played for the last three periods. Hence,
x(4) = 1

3
c
m , x(4) =

1
2
c
m .

τ = 5 Again, the worst payoff the mover, player 1, will take is given by
2c
m = 5x(5) implying x(5) = 2

5
c
m implying y(5) = 3

5c. By similar logic as above,
x(5) = 1

2
c
m . Hence, x(5) =

2
5
c
m , x(5) =

1
2
c
m

τ = 6 3c = 6y(6) implying that y(6) = c
2 implying that x(6) =

c
2m .

Again there is no point for player 2 in accepting any agreement y in which he
gets more than 3

5c - and player 1 gets less than
2
5
c
m - in the current period.

Such an agreement would get blocked in the next period and the total payoff to
player 2 - y+4. 12c - would be less than if he blocked by counter-offering with

3
5c

which would be accepted next period and lead to a total payoff of 5. 35c. Hence,
x(6) = 2

5
c
m , x(6) =

c
2m .

τ = 7 3c
m = 7x(7) implying x(7) = 3

7
c
m implying y(7) = 4

7c. By similar
logic as above, x(7) = 1

2
c
m . Hence, x(7) =

3
7
c
m , x(7) =

1
2
c
m

τ = 8 4c = 8y(8) implying that y(8) = c
2 implying that x(8) =

c
2m . If

player 2 accepts any agreement in which player 1 currently gets less than 3
7
c
m

then she promptly blocks it in the next period and the total payoff for player
2 in that sequence of play is y + 6. c2 . Instead by pre-emptively blocking and
offering player 1 3

7
c
m player 2 can guarantee than he will have positive payoffs

from the next period onwards. The total payoff in that sequence is 7. 47c = 4c
which is greater. Hence, x(8) = 3

7
c
m , x(8) =

c
2m .

It is clear that the worst agreement shares of player 1 x(τ) - after factoring
out the c

m - are

0, 0,
1

3
,
1

3
,
2

5
,
2

5
,
3

7
,
3

7
,
4

9
,
4

9
...
n− 1
2n

,
n− 1
2n

, ..

for n = 1, 3, 5, .. Of course that sequence converges to 1
2 . It is also clear

that the best agreement payoffs x(τ) = c
2m for τ > 1.

Let us now turn to global convergence - that the same limit would hold had
we considered the case in which player 2 is the last mover. Easy computation,
again using equations above, tell us that the odd period payoffs of player 1, now
x(τ), are - after factoring out c

m - given by

1,
2

3
,
2

3
,
3

5
,
3

5
,
4

7
,
4

7
,
5

9
,
5

9
, ...

n+ 2

2(n+ 1)
,
n+ 2

2(n+ 1)
...
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for n = 2, 4, .. Of course that sequence converges to 1
2 . It is also clear that

the worst payoffs of player 1, x(τ) = c
2m for all even numbered τ . Hence,

again, the unique limit payoff for player 1 is c
2m , the Nash bargaining solution

and we have global convergence.�

5.2 Circular Pareto Frontier

Suppose instead that
mx2 + y2 = c, m > 0, c > 0

and hence that

y =
√
c−mx2, x =

√
1

m
(c− x2)

Note that argmaxx xf(x) = 1√
2
c
m .

Again we will start with the case where player 1 is the last to move. Com-
puting x(τ) for τ = 1, 3, 5 ... and x(τ) = for τ = 2, 4, 6 in exactly the same
fashion as above, we will show that player 1 - when it is her turn to move - will
accept any agreement between x(τ) and x(τ). Similarly, when it is player 2’s
move, player 1’s payoffs will again be nested within x(τ) and x(τ).
We will now compute x(τ) and x(τ) and show that

lim
τ→∞

x(τ) = lim
τ→∞

x(τ) =
1√
2

√
c

m

Hence, in this case as well, the state-independent SPE is the Nash solution.
τ = 1 x(1) = 0 implying y(1) =

√
c. Also, x(1) =

√
c
m . Hence,

x(1) = 0, x(1) =
√

c
m .

τ = 2 1
2

√
c = y(2) implying that x(2) =

√
3
4

√
c
m . Also, x(2) = 0.

Hence, x(2) = 0, x(2) =
√

3
4

√
c
m .

τ = 3 2
3

√
3
4

√
c
m = x(3) implying x(3) =

√
1
3

√
c
m implying y(3) =√

2
3

√
c. For any x > x(2), if player 1 accepts such an agreement, it will

be blocked by player 2 in the next period and hence the total payoff to player 1
from such an acceptance will be x. Blocking the agreement and proposing x(2)
will lead to a total payoff of 2.x(2) which is greater than x. Hence, x(3) = x(2).
There is clearly no point in blocking an agreement between x(2) and x(2) since
such agreements are not blocked in the future and - from the definition of x(2)
- the total over the remaining three periods is greater than the highest payoff

from blocking, i.e., 2x(2). Hence, x(3) =
√

1
3

√
c
m , x(3) = x(2) =

√
3
4

√
c
m .

τ = 4 3
4

√
2
3

√
c = y(4) implying that y(4) =

√
3
4

√
c implying that x(4) =√

5
8

√
c
m . For any good agreement for player 2, say y, in which 1’s payoff share

is less than x(3), by accepting it player 2 knows that it will be blocked in the
subsequent period (with a counter-offer of x(2)). Hence the total payoff to
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accepting that good agreement is y + 2. 12
√
c. In contrast, by blocking that

agreement with a counter-offer of x(3) - which will get accepted in the next

period - player 2 can guarantee 3.
√

2
3

√
c and that is clearly higher. There is

clearly no point in blocking an agreement between x(3) and x(4) since such
agreements are not blocked in the future and - from the definition of x(4) - the
total over the remaining four periods is greater than the highest payoff from

blocking. Hence, x(4) = x(3) =
√

1
3

√
c
m , x(4) =

√
5
8

√
c
m .

τ = 5 4
5

√
5
8

√
c
m = x(5) implying x(5) =

√
2
5

√
c
m and y(5) =

√
3
5

√
c.

For any x > x(4), if player 1 accepts such an agreement it will be blocked by
player 2 in the next period and hence the total payoff to player 1 from such

an acceptance will be x+ 3x(3) = x+ 3
√

1
3

√
c
m . Blocking the agreement and

proposing x(4) instead will lead to a total payoff of 4.x(4) = 4
√

5
8

√
c
m which

is greater. Hence, x(5) = x(4). There is clearly no point in blocking an
agreement between x(4) and x(4) since such agreements are not blocked in the
future and - from the definition of x(4) - the total over the remaining three
periods is greater than the highest payoff from blocking, i.e., 4x(4). Hence,

x(5) =
√

2
5

√
c
m , x(5) = x(4) =

√
5
8

√
c
m .

And so on. Below are the computations - pasted in from the irreversible case
- of the lower threshold in each period. The upper threshold can be computed
by continuing the arguments for t = 1, ...4.

τ = 6 5
6

√
3
5

√
c = y(6) implying that y(6) =

√
5
12

√
c implying that

x(6) =
√

7
12

√
c
m

τ = 7 6
7

√
7
12

√
c
m = x(7) implying x(7) =

√
3
7

√
c
m implying y(7) =√

4
7

√
c

τ = 8 7
8

√
4
7

√
c = y(8) implying that y(8) =

√
5
12

√
c implying that

x(8) =
√

9
16

√
c
m

τ = 9 8
9

√
9
16

√
c
m = x(9) implying x(9) =

√
4
9

√
c
m implying y(9) =√

5
9

√
c

τ = 10 9
10

√
5
9

√
c = y(10) implying that y(10) =

√
9
20

√
c implying that

x(10) =
√

11
20

√
c
m

It is clear that the worst agreement shares of player 1, x(τ) - after factoring
out

√
c
m - are

0, 0,

√
1

3
,

√
1

3

√
2

5
,

√
2

5

√
3

7
,

√
3

7

√
4

9
,

√
4

9
...

√
n− 1
2n

, .

√
n− 1
2n

..

for n = 1, 3, .. Of course that sequence converges to
√

1
2 . It is also clear
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that the best agreements x(τ), after again factoring out
√

c
m , are

1,

√
3

4
,

√
3

4

√
5

8
,

√
5

8
,

√
7

12
,

√
7

12
,

√
9

16
,

√
9

16
, ...

√
n+ 1

2n
,

√
n+ 1

2n
..

for n = 2, 4, .. Of course that sequence also converges to
√

1
2 .

We can then turn to the case in which player 2 is the last to move. It is
tedious but not diffi cult to show that there too the limit is the Nash bargaing
solution.�

6 Reversible Agreements: A General Result on
Global Convergence

In this section we prove a general result that shows why the examples in the
previous section worked. In particular, we show that whenever f is concave - in
addition to being C1 and downward sloping - then we have global convergence
even in the Reversible Agreements model:

Theorem 10 Suppose that f is continuously differentiable, that −∞ < f ′ < 0
and furthermore that it is concave with the boundary conditions, α = 0 =⇒
x = 0, f(0) > 0, α = 1 =⇒ x = x > 0, f(x) = 0. Then, best and worst
payoff sequences are monotonic - the best payoff x(τ) decreases in τ while the
worst payoff x(τ) increases. Furthermore, the two sequences converge to the
Nash bargaining solution as τ −→ ∞. These statements are true regardless of
whether player 1 or 2 is the last to move.

Proof. Start with the case where player 1 is the last to move. We will establish
that - as in the Examples in the previous section - for each τ , the mover will
only accept deals in the "middle", in which player 1’s payoffs are at least x(τ)
and no more than x(τ).

Consider τ = 1. Clearly, all agreements are accepted by this player and
hence, x(1) = 0, x(1) = x.

Consider instead τ = 2. Evidently, player 2 determines his lowest acceptable
payoff via

0 <
1

2
f(0) = f(x(2))

implying x(2) < x(1) = x. On the other hand, player 2 has no reason to
block any agreements where he receives a "high" payoff (because player 1 will
accept all agreements in the subsequent period). So, x(2) = 0.
To summarize, for the first two horizon lengths, we do have x(2) > x(1),

x(2) 6 x(1). Make the induction hypothesis that the inequalities hold for all
τ 6 τ̂ , i.e., x(τ) < x(τ) and for all τ 6 τ̂ − 1 x(τ +1) > x(τ), x(τ +1) 6 x(τ).
Now consider τ = τ̂ + 1. Suppose the mover in that period is player 2.
Case 1 - Consider any proposal in which player 1’s current payoff is x > x(τ̂)

- or f(x) < f(x(τ̂)). If player 2 accepts it, by definition of x(τ̂), it then gets
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blocked in the next period by player 1 with a counter-offer of x(τ̂ − 1) which
will, again by hypothesis, get accepted by player 2 two periods from now. The
life-time payoff to acceptance then is

f(x) + (τ̂ − 1).f(x(τ̂ − 1))

An alternative would be for player 2 to reject the agreement and instead
counter-offer with an agreement that would yield player 1 x(τ̂) and that would,
by hypothesis, be accepted in the next period. The life-time payoff to player 2
for this counter-proposal would be

τ̂ .f(x(τ̂))

Since x(τ̂ − 1) > x(τ̂ − 1) > x(τ̂), and hence, f(x(τ̂ − 1)) < f(x(τ̂ − 1) 6
f(x(τ̂)) it follows that

τ̂ .f(x(τ̂)) > f(x) + (τ̂ − 1).f(x(τ̂ − 1)).

Put differently, player 2 rejects all proposals in which x > x(τ̂) - or f(x) <
f(x(τ̂)).

Case 2 - Consider any proposal in which player 1’s current payoff is x < x(τ̂)
- or f(x) > f(x(τ̂)). By the same logic as above, it is clear that the lifetime
payoff to accepting the proposal today is

f(x) + (τ̂ − 1)f(x(τ̂ − 1))

while the lifetime payoff to counter-offering with a proposal that gives player
1 x(τ̂)) in the next period is

τ̂ .f(x(τ̂))

Note that by definition of x(τ̂)

τ̂ .x(τ̂) = (τ̂ − 1).x(τ̂ − 1)

which can equivalently be written as

x(τ̂) =
τ̂ − 1
τ̂

x(τ̂ − 1) + 1

τ̂
0

Since f is concave we know that

f(x(τ̂)) > τ̂ − 1
τ̂

f(x(τ̂ − 1)) + 1

τ̂
f(0)

>
τ̂ − 1
τ̂

f(x(τ̂ − 1)) + 1

τ̂
f(x)

(the inequality being strict as long as f(x) < f(0)). So in this Case too,
player 2 is better off from rejecting the proposal.
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Put differently, the two cases have shown that player 2 will block all proposals
in which player 1 gets x 6 x(τ̂) or x > x(τ̂).
Case 3 - Consider any proposal in which player 1’s current payoff is x ∈

[x(τ̂), x(τ̂)]. By hypothesis, any such agreement lasts till the end of the game
and hence yields life-time payoffs of (τ̂ + 1)f(x) to Player 2. The worst such
agreements, from Player 2’s perspective, are x = x(τ̂)− ε, for small ε. These
need to be compared against the life-time payoff to rejecting the proposal whose
best payoff - as seen above - is τ̂ .f(x(τ̂)). In the event that,

(τ̂ + 1)f(x(τ̂)) > τ̂ .f(x(τ̂))

accepting x ∈ [x(τ̂), x(τ̂)] is better than rejecting that agreement. Hence,
the optimal response is to accept in that region and reject everything outside
that region, i.e., x(τ̂ + 1) = x(τ̂) < x(τ̂) = x(τ̂ + 1) On the other hand, In the
event that,

(τ̂ + 1)f(x(τ̂)) < τ̂.f(x(τ̂))

define x(τ̂ + 1) by the equality

(τ̂ + 1)f(x(τ̂ + 1)) = τ̂ .f(x(τ̂))

It follows that x(τ̂ + 1) > x(τ̂) = x(τ̂ + 1). The theorem is proved.�

7 Some Extensions and Generalizations

7.1 Choosing When to Propose

7.2 Three Players

25


