Boston University

Comprehensive Examination for M.A.E.P. and M.A. in Economics

May 18, 2006

PART I: MICROECONOMICS (2 QUESTIONS)

I.1 [50 points] Rani's utility function is $U = X Y^2$,

where X and Y represent the quantities of the only two goods that Rani consumes. The prices of the two goods are $p_x = 2 and $p_y = 4 . Rani's income is \$300 per month.

- (a) Find the quantities of X and Y Rani would consume in order to maximize her utility.
- (b) Suppose p_y goes up to \$5. What will now be the utility maximizing quantities of consumption?
- (c) Find the Compensating Variation of this price change.
- (d) Find the Equivalent Variation of this price change.
- I.2 [50 points] Widget Corp. is the only producer of widgets in Smalliland. Its cost function for the production of widgets is $C(Q) = Q^2/6$, where Q is the total number of widgets produced.

Widget Corp. can sell widgets domestically (where it is the only seller) or internationally (where it is a perfect competitor). Trade restrictions prevent the import of widgets and the export of widgets by anyone other than Widget Corp. The domestic demand curve for widgets is

 $q_h = 50 - p_h$

where q_h is the number of widgets transacted in the home market and p_h is the price at home. The price at which Widget Corp can export widgets is \$10.

- (a) Find how many widgets Widget Corp. would produce, how many it would sell at home and how many abroad, and at what prices, in order to maximize profits.
- (b) Suppose the Government of Smalliland imposed an excise tax of \$5 per widget produced (whether to be sold at home or abroad). Answer the questions of part (a) under this scenario.
- (c) Draw a single graph illustrating your solutions to (a) and (b).

Boston University

Comprehensive Examination for M.A.E.P. and M.A. in Economics

May 18, 2006

PART II: MACROECONOMICS (2 QUESTIONS)

II.1 [50points] Continuous time Solow model: Let A(t), L(t), K(t), Y(t) denote the level of technology, labor, capital and output produced at time t.

Assume that technology and labor evolve according to:

dA/dt = gA(t)dL/dt = nL(t),

where g, n are the exponential rates of growth. Assume the production function is Cobb-Douglas:

 $Y(t)=K(t)^{\alpha} (A(t)L(t))^{1-\alpha},$

and capital accumulation satisfies

$$dK/dt = sY(t) - \delta K(t),$$

where δ denotes the instantaneous rate of depreciation and s denotes the savings rate.

(a) Derive the equation that describes the evolution of capital per effective unit of labor k(t) = K(t)/(A(t)L(t))

(b) Solve for the steady levels of k(t) and output per effective unit of labor y(t)=Y(t)/(A(t)L(t)).

(c) Plot savings versus break-even investment as a function of k(t). Show the effect of a decrease in the savings rate on k(t), the steady-state level of capital per effective unit of labor.

(d) Plot the time paths of k(t) and output per worker (Y(t)/L(t)) in response to a decrease in the savings rate, starting from the original steady-state balanced growth path.

(e) What effect does a reduction in the savings rate have on consumption per capita in the short-run and long-run. Does consumption per capita rise or fall? Explain.

II.2 [50points] Suppose that the economy is described by the following three equations:

• AS curve:

 $\pi_t = \kappa x_t + \beta E_t \pi_{t+1} + u_t$, where x_t is the output gap,

 $u_t = \rho u_{t-1} + \varepsilon_t$ is an AR(1) cost-push shock to inflation with $0 < \rho < 1$.

• IS curve:

 $x_t = -\phi(i_t - E_t \pi_{t+1}) + E_t x_{t+1} + g_t$

where $g_t = \rho_g g_{t-1} + v_t$ is an AR(1) shock to the IS curve with $0 < \rho_g < 1$.

• Monetary Policy: Assume that the monetary authority sets the nominal interest rate path it to minimize the following loss function

$$(1/2)E_t \left[\sum_{0 \le s \le \infty} \beta^s (\alpha x_{t+s}^2 + \pi_{t+s}^2)\right]$$

subject to the IS and AS curves given above.

(a) Show that in a model without commitment, optimal monetary policy implies that inflation and the output gap satisfy the following optimality condition:

$$x_t = -(\kappa/\alpha)\pi_t$$

Interpret this condition.

(b) Using this optimality condition combined with the AS and IS curves, derive expressions for inflation and the output gap as functions of the underlying shocks to u_t and g_t .

(c) Provide algebraic expressions for the standard deviation of output and inflation as a function of the standard deviations of the underlying shocks $\sigma_u = \sqrt{(var(u_t))}$ and $\sigma_g = \sqrt{(var(g_t))}$.

(d) In what sense does this model imply a tradeoff between inflation and output variability? Would there still be such a tradeoff if $\sigma_u=0$? Explain.

Boston University

Comprehensive Examination for M.A.E.P. and M.A. in Economics

May 18, 2006

PART III: STATISTICS AND ECONOMETRICS (2 QUESTIONS)

III.1 [50 points] Let $X_{1}, ..., X_{10}$ be a random sample of size n=10 from a normal random variable X. The

sample mean and second moment are $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i = 0.56$ and $\overline{X^2} = n^{-1} \sum_{i=1}^{n} X_i^2 = 1.13$.

- a) Assume that Var(X)=1. Construct a 95% confidence interval for the mean of X. Carefully explain your answer.
- b) Now assume that Var(X) is unknown. Construct a 95% confidence interval for the mean of X. Carefully explain the differences in your answer to parts a) and b). (Hint for a) and b): use the attached statistical tables.)

III.2 [50 points]

- (a) Explain what the Chow test does. Provide the formula for the test statistic, its distribution and explain the theory behind it.
- (b) Suppose I am interested in analyzing the relationship between two variables y and x. The null hypothesis is y is linearly related to x. The alternate hypothesis is that the relationship is piecewise linear with a kink at x₀ (see attached diagram). How will I go about testing the null against the alternative using a test of structural change framework? In answering this, please provide the unrestricted and restricted (linear) models, the test statistic, how you will compute it and finally the distribution of the test statistic. (Hint: Consider the variable x x₀ as a regressor).

$\int \frac{du}{dt} = \int \frac{du}{dt} = $										
x	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
. 1	.5398	.5438	.5478	.5517	-5557	-5596	.5636	.5675	.5714	-5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
-4	.6554	.6591	.6628	.6664	-6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
-7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	-8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	-8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	-890 7	.8925	.8944	.8962	.8980	-8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	-9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	-9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	-9997	.9997	.9998

.

TABLE AI Standard Normal Distribution Function: $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy$

٠

.

Appendix of Tables

٠

.

TABLE A? Values of $x_{\alpha,n}^2$

n	$\alpha = .995$	$\alpha = .99$	α = .975	α = .95	α = .05	$\alpha = .025$	$\alpha = .01$	$\alpha = .005$
1	.0000393	.000157	.000982	.00393	3.841	5.024	6.635	7.879
2	.0100	.0201	.0506	.103	5.991	7.378	9.210	10.597
3	.0717	.115	.216	.352	7.815	9.348	11.345	12.838
4	.207	.297	.484	.711	9.488	11.143	13.277	14.860
5	.412	.554	.831	1.145	11.070	12.832	13.086	16.750
6	.676	.872	1.237	1.635	12.592	14.449	16.812	18.548
7	.989	1.239	1.690	2.167	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	21.026	23.337	26.217	28.300
13	3.565	4-107	5.009	5.892	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.484	36.415	39.364	42.980	45.558
25	10.520	11.524	13.120	14.611	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	40.113	43.194	46.963	49.645
28	12.461	13.565	15.308	16.928	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	42.557	45.772	49.588	52.336
30	13.787	14.953	16.791	18.493	43.773	46.979	50.892	53.672

Other Chi-Square Probabilities: $x_{3,9}^2 = 4.2 - P\{x_{10}^2 < 1.4.3\} = .425 - P\{x_{11}^2 < 1^2.18^25\} = .8976$

,

-

TABLE A3 Values of $t_{\alpha,n}$

n	$\alpha = .10$	$\alpha = .05$	$\alpha = .025$	$\alpha = .01$	$\alpha = .005$
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.1-32	2.776	3.474	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.20	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1_330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
∞	1.282	1.645	1.960	2.326	2.576

Other t Probabilities:

 $P\{T_8 < 2.541\} = .9825 \quad P\{T_8 < 2.7\} = .9864 \quad P\{T_{11} < .7635\} = .77 \quad P\{T_{11} < .934\} = .81 \quad P\{T_{11} < .166\} = .94 \quad P\{T_{12} < 2.8\} = .984.$

٠

.

$$P1$$

$$\frac{PA}{P} \quad (map, Ping, 2006, Ping, Solution, Ping, Solution, Ping, Solution, Ping, Solution, Ping, Ping, Solution, Solution, Ping, Ping, Solution, Solution, Ping, Ping, Ping,$$

-

PI

2. (a) Let gx represent the quantity of widgets exported. Then widget Corp's propits would be $\Pi = g_{h}(50 - g_{h}) + 10 g_{\chi} - \frac{1}{6} (g_{h} + g_{\chi})^{2}$ To max : $\frac{\partial \Pi}{\partial q_1} = 50 - 2q_1 - \frac{1}{3} \left(l_1 + l_X \right) = 0$ (1) $\frac{\partial T}{\partial q_{y}} = 10 - \frac{1}{3}(g_{y} + g_{x}) = 0$ (۲) Substituting (2) in (1) : 50 - 29 - 10 = 0 29 = 40 $\frac{q_{L}=20}{P_{L}=30}$ Then $P_{L}=30$ \overline{rrom} (2): $\frac{1}{3}(2_{h}+g_{\chi})=10$ $2_{\rm X} = 10$. of course $P_X = 10$ To tal production will be $g_{\chi} + g_{\chi} = 10 + 20 = \frac{30}{20}$ (b) This pushes the costs up by 5Q. $\Pi = g_{L} (50 - g_{L}) + log_{x} - \frac{L}{b} (g_{L} + g_{x})^{2} - 5 (g_{L} + g_{x})$ $\frac{2\pi}{2q_1} = 50 - 2q_1 - \frac{1}{3}(q_1 + q_2) - 5 = 0 \quad (3)$ $\frac{\partial T}{\partial q_{y}} = 10 - \frac{1}{3}(q_{y} + q_{x}) - 5 = 0 \quad (4)$ Sutshihuting (4) in (3): 50 - 29 - 10 = 0 - P 9 = 20 Then substituting in (4) : $5 - \frac{1}{3}(20 + g_{\chi}) = 0 \longrightarrow g_{\chi} = -5$ Obviously 8x cannot be negative. Therefore this solution must involve zero exports and we can simply colve by setting 9h = Q:

ļļ

.

3 م

1) a) R(+) = K(+)/(A(+) L(+)) Macro Comp Answers. MAY2006 $y(t) = Y(t)/(At) L(t)) = k(t)^{2}$ $\frac{d k(t)}{dt} = \frac{1}{A(t) L(t)} \frac{d k(t)}{dt} - \left(\frac{k(t)}{A(t) L(t)}\right) \frac{d A(t)}{A(t)}$ $- \frac{K(t)}{A(t)L(t)} \frac{dL(t)}{L(t)}$ = sy(t) - sk(t) - gk(t) - nk(t) $\Rightarrow \left(\frac{dk(t)}{dt} = 5k(t)^{2} - (g+n+s)k(t)\right)$ b) In steady-state dk(+) = 0 $c k(t)^{\alpha} = (g + n + s) k(t)$ $\implies \left| k(t) = \left(\frac{5}{5+n+s} \right)^{\frac{1}{1-\alpha}} \right|$

1

(C)

line Sk^{d} shifts down. The steady-steke Value of k occurs at the intersection of the break even line (g+n+s)k(t) and the savings line $Sk(t)^{d}$. With a lower savings rate, the economy can no longer maintain the savings required to keep $k = k_0$. As a result, savings is less than bareak-even invotment at $k > k_0$. The capital stock falls until savings now equals break even invotment again. This occurs at $k = k_1$.

At time to the economy is in its original steady-state with k(+)=ko.

fall in k(t). At the lower savings rate the economy no longer accomulates enough capital to maintain the capital stock at $R = R_0$. The reduction in the capital stock is gradual with k(t) eventuallyconverging to the new Steady State R. Along the path, the initial reduction is rapid (k falls more in percent terms the farther away it is from the new steady-state). Eventuallythe growth rate of k(t) returns total.

initiatly. Uniper par copies at the constant rate g. At time to the savings rate falls. This implies a reduction in steady-state R&) and therefore G(t). The new long run path is the dashed line which also grous at rate g but is shifted down by the amount (R, - R,)A(t).

- In the shortrun the reduction in Savings will lead to less capital accumulation and therefore a lower growth rate of output. Over time, the economy approaches the new balanced growth path and output per capita again grows at rate g.

C) Consumption:
$$C(t) = (1-s)Y(t)$$

In effective units of labor:
 $C(t) = \frac{C(t)}{Atylet} = (1-s)Y(t)$
At the steady-state $Y(t) = \left(\frac{s}{(s+n+s)}\right)^{\frac{1}{1-s}}$
So
 $C(t)^{ss} = (1-s)\left(\frac{s}{(s+n+s)}\right)^{\frac{1}{1-s}}$
 $\frac{d(t)^{ss}}{ds} = -Y(t) + (1-s)\frac{dy(t)}{ds}$
 $= \left[-1 + \frac{1-s}{s}\frac{d}{1-s}\right]Y(t)$
If $d = s$, savings rate is at the
golden rule and $\frac{d(t)}{ds} = 0$.
If $d = S d \frac{d(t)}{ds} > 0$, a reduction
in the savings rate will cause pen
Capita consumption to fall. I.e. if
Savings rate is above golden rule rate,
then reductions in Savings rate cause
Consumption to fall whereas, if $s > d$,
Savings rate is above golden rule rate
Consumption will rise as savings rate
falls.

.2) a) Without commitment, monetary authority Sulves

$$\begin{array}{rcl} \text{Moins} & \frac{1}{2} \left(\mathscr{A} X_{t}^{2} + \Pi_{t}^{2} \right) + F_{t} \\ \Pi_{t}, X_{t} & 2 \end{array}$$

$$\begin{array}{rcl} \text{Tt}_{z} & X_{t} + \Pi_{t} \\ \text{Subject to} & \Pi_{t=z} & K_{t} + f_{t} \\ \text{taking} & F_{t=z} & \frac{1}{2} \sum_{s=1}^{\infty} E_{r} & B^{s} (\mathscr{A} X_{t+s}^{2} + \Pi_{t+s}^{2}) \\ f_{t=z} & B E_{r} & \Pi_{t} + U_{t} \end{array}$$

as given.

F.O.C. :

$$dX_{t} + TT_{t} \cdot \frac{\partial TT_{t}}{\partial X_{t}} = 0$$

$$dX_{t} + \Pi_{t}(+X) = 0$$

$$X_{t} = - \frac{X}{2} \pi_{t}$$

This is a lean against the wind Policy. When inflation is above target, the monetary authority raises the nominal interest rate by a sufficient amount to cause a reduction in the output gap.

2 61 $TT_t = K(-K)TT_t + BE_TT_{t+1} + U_t$ $(1+\frac{k^2}{2})TT_{t} = BE_{t}TT_{tn} + U_{t}$ $TT_{t} = \left(\frac{d}{d+K^{2}}\right) \left(U_{t} + BE_{r}TT_{t}\right)$ $= \left(\frac{d}{d+X^{2}}\right) \stackrel{a}{\sum} B^{S} \left(\frac{d}{d+K^{2}}\right)^{S} E_{+} \left(U_{t+s}\right)$ $TT_{+} = \left(\frac{\alpha}{\alpha + \kappa^{2}}\right) \left[\sum_{s=0}^{\alpha} \left(\frac{\beta \ell \alpha}{\alpha + \kappa^{2}}\right)^{s} \right] U_{+}$ $= \left(\frac{d}{d+K^2}\right) \frac{1}{1-\frac{\beta ed}{1-\frac{\beta ed}{1$ $TT_{+} = \lambda Q U_{+}$ $Q = \frac{1}{X^{2} + \alpha (U - Be)}$ $X_{+} = -X Q U_{+}$

7

This model implies a tradeoff between output and inflation variability in response to cost push shocks Jo. If the momentary authinity puts zero weight on output (d=0), it can achieve zero variability in inflation Jo = 0. For positive d, the more weight the momenty authority pub on the output gep, (hisherd) the lower will be output veriability (Jx) but this comes at the cost of hisher Variability in inflation (JTT).

EC507 Question MA Comprehensive Exam May 2006

- 1. Let $X_1, ..., X_{10}$ be a random sample of size n==10 from a normal random variable X. The sample mean and second moment are $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i = 0.56$ and $\overline{X^2} = n^{-1} \sum_{i=1}^{n} X_i^2 = 1.13$.
 - a) Assume that Var[X] = 1. Construct a 95% confidence interval for the mean of X. Carefully explain your answer.
 - <u>Answer</u>: Let μ denote the mean of X. First note that $E[\overline{X}] = \mu$ and $Var[\overline{X}] = Var[X]/n$ by the properties of \overline{X} in random samples. Moreover, since the underlying population is normal, $\overline{X} \sim N(\mu, Var[\overline{X}])$. Finally, since $Var[\overline{X}]$ is known, we can construct a 95% confidence interval for μ as $\overline{X} \pm z_{0.975}\sqrt{Var[\overline{X}]}$, where $z_{0.975} = 1.96$ is the 97.5% (100 – 5/2) quantile of the standard normal distribution (obtained from Table Va). Using the information provided in the problem

$$\overline{X} \pm z_{0.975} \sqrt{Var[\overline{X}]} = 0.56 \pm 1.96 \sqrt{1/10} = [-0.06, 1.18]$$

- b) Now assume that Var(X) is unknown. Construct a 95% confidence interval for the mean of X. Carefully explain the differences in your answer to parts a) and b). (Hint for a) and b): use the attached statistical tables).
- <u>Answer</u>: Here note that the previous method is no longer operational because $Var[\overline{X}] = Var[X]/n$ is now an unknown constant. An unbiased estimator of Var[X] can be constructed from

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2 \right) = \frac{10}{9} \left(1.13 - .056^2 \right) = 0.91$$

Moreover, we showed in class that if X is normal

$$\frac{X - \mu}{\sqrt{s_n^2 / n}} \sim t_{(n-1)}$$

We can therefore construct a 95% confidence interval for μ as

 $\overline{X} \pm t_{0.975,(9)} \sqrt{s_n^2 / n}$, where $t_{0.975,(9)} = 2.262$ is the 97.5% (100 – 5/2) quantile of the *t*-distribution with 9 degrees of freedom (obtained from Table VI). In this case $\overline{X} \pm t_{0.975,(9)} \sqrt{s_n^2 / n} = 0.56 \pm 2.262 \sqrt{.91/10} = [-0.12,1.24]$

Answer to Econometrics question May 2006 Comp Boston University

First part:

The Chow test is a test of structural stability applied to the special case when the data series for one of the regimes is rather short compared to the number of parameters the stability of which we are testing.

Suppose we have two regimes; the first one contains n_1 data points and the second n_2 data points. Suppose that there are also k explanatory variables. We assume $n_1 > k > n_2$. Then the Chow statistic is

 $\frac{RSS_{w} - RSS_{1}/n_{2}}{RSS_{1}/(n_{1} - k)}$ which under the null hypothesis of identical coefficients across the two

regimes is distributed as an F statistic with n_2 and $(n_1 - k)$ degrees of freedom.

Here

 RSS_w is the RSS for the whole regression. RSS₁ is the RSS for the regression with the longer dataset.

To demonstrate the validity of the distributional claim on the test statistic, let us write the equations for the two regimes:

$$Y_1 = X_1 \, \beta_1 + u_1 \qquad (1) \\ Y_2 = X_2 \, \beta_2 + u_2 \qquad (2)$$

where Y_1 , Y_2 are the left hand side variable vectors (of size n_1 and n_2 respectively), X_1 , X_2 are the matrices of explanatory variables, β_1 , β_2 are the coefficient vectors while u_1 , u_2 are the disturbance vectors.

The null H_0 is $\beta_1 = \beta_2$. Now let us rewrite the second equation slightly differently:

 $Y_2 = X_2 (\beta_2 - \beta_1) + X_2 \beta_1 + u_2$ (3)

Letting $X_2 (\beta_2 - \beta_1) = \gamma$, we have the following unrestricted model:

$$Y_1 = X_1 \beta_1 + u_1$$
(4)

$$Y_2 = \gamma + X_2 \beta_1 + u_2$$
(5)

And we are testing the null $\gamma = 0$.

Clearly RSS_{restricted} is obtained by running the full regression (RSS_w) and RSS_{unrestricted} is RSS₁ since estimated γ coefficients can always be so chosen so as to make the error terms

on the last n_2 equations disappear. Now notice that the number of restriction is the size of γ which happens to be n_2 , and the total number of data points in the model minus the total number of variables is $(n_1 + n_2 - (k + n_2))$ which simplifies to $n_1 - k$. This then justifies the Chow procedure.

Second Part:

Divide the dataset into two subsets: those whose x values are less than x_0 and those whose x values are greater than x_0 (if there are points the x value of which happen to be exactly x_0 assign them to either group). Now for each point create the variable $z = x - x_0$. We can now write the model as follows:

and what we are testing is H_0 : $\beta_1 = \beta_2$.

This can be done in the standard way following these steps:

- 1. Run a linear regression for the full sample (with two explanatory variables: a constant and z) and collect the RSS. This is RSS_{restricted}.
- 2. Now run a regression of y on a constant, D^*z and $(1-D)^*z$ where D is a dummy variable taking the value 1 if z < 0 and 0 otherwise. The RSS from this procedure will give us RSS_{unrestricted}.
- 3. Now $(RSS_{restricted} RSS_{unrestricted}) / (RSS_{unrestricted} / (n-3))$ is F distributed with degrees of freedom 1 and n 3 (where n is the full sample size). This is because the number of parameters in the full model is 3 and the number of restrictions is 1. Checking the sample test statistic against an F table (or using STATA) we can then decide whether the hypothesis is rejected or not at some prespecified significance level.