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Abstract

This paper studies the design of health care networks. Information systems for consumers, payment
mechanisms for providers, and copayments for consumers are simultaneously considered. The optimal de-
sign aims to implement e¢ cient provider qualities and cost-reduction e¤orts, and e¢ cient allocation of
consumers across di¤erent providers. For information system, we consider Tiered and Valued-based health
care networks. In a Tiered Network, a provider is assigned a quality-cost designation, say, Excellent, if
its quality and cost e¤ort are above some thresholds; otherwise, it is assigned a Standard designation. In
a Valued-based Network, a quality-cost index is constructed for a provider. For payment mechanisms, we
consider cost reimbursement and prospective payments. Consumer copayments may be based on a provider�s
quality and cost. We show that the �rst best can be implemented in Tiered and Value-based Networks under
either cost reimbursement or prospective payment. We compare the implementation costs across di¤erent
designs.
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1 Introduction

Health care markets su¤er from a number of market failures. First, there is moral hazard on the demand

side. Due to health insurance, consumers pay subsidized prices, and tend to overvalue service bene�t and

undervalue cost e¢ ciency. Second, and arguably more serious, providers�service quality and cost e¢ ciency

are di¢ cult to contract upon, and may be unobserved by consumers. Information design in health care

networks is the latest innovation to address these market failures. In this paper we present a model of

information-based networks, and study how they can complement supply-side and demand-side �nancial

incentives to overcome market failures.

We consider two information systems. In a Tiered Network, a health plan uses providers�quality and cost

information to sort providers into di¤erent tiers, which serve as quality-cost indicators. For example, after a

provider�s quality and cost information has been assessed, it is designated as either Standard or Excellent. In

a Value-based Network, a health plan uses providers�quality and cost information to construct value indexes,

which inform consumers about qualities. For example, a provider�s value index of 80 may be the simple

average of its quality score of 90 and e¢ ciency score of 70. In both networks, a health plan can also use

quality and cost information to set consumer cost shares. These networks are now common.1 For example,

in 2011, Blue Cross Blue Shield of Massachusetts introduced Hospital Choice Cost Sharing networks and

Aetna began o¤ering Choose and Save networks in 23 states.2 In 2013, 23% of employers in the United

States included tiered networks in their health plans (Kaiser, 2013).

For a Tiered Network or a Valued-based Network, we study how the two most common payment mech-

anisms, cost reimbursement and prospective payment, can be used for the implementation of providers�

service quality and cost-reduction e¤orts. We also let the competing providers be heterogenous; some are

more technologically e¢ cient than others. This asymmetry is a necessary element in a model for studying

mechanisms that rank providers.

We derive some principles of good network design. First, tiers and value indexes are e¤ective for aligning

1See, for example, Robinson (2003).

2http://www.bluecrossma.com/plan-education/medical/hccs/.
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providers�quality and cost incentives, precisely because they bundle quality and cost information. Indeed,

we construct optimal tiers and value indexes. Second, consumers need not bear very high costs for optimal

service utilization. In fact, we derive the lowest cost shares for e¢ ciency, which generally depend on the

quality and cost di¤erences among providers. Finally, our results on network design change the conventional

wisdom about the di¤erence in incentive properties between cost reimbursement and prospective payment.

We actually show that either cost reimbursement or prospective payment can implement e¢ cient quality

and cost e¤orts in a network.

In our model, two providers produce horizontally and vertically di¤erentiated health services for con-

sumers covered by a health plan. A provider�s unit cost increases in service quality, but can be reduced by

an investment. Both quality and cost-reduction investments are costly, but providers di¤er in investment

e¢ ciency. One provider�s investment cost is a fraction of the other�s. Quality and cost-reduction e¤orts are

not contractible.

Each of a set of covered consumers picks one of the two providers for service. However, consumers cannot

directly observe providers�qualities (or costs). They have to obtain such information from the health plan.

We postulate that the health plan can obtain information about providers�qualities and cost e¤orts, and

that it chooses how to report the information to consumers. Although the health plan could have disclosed

all available information to consumers, we show that partial disclosure of quality and cost information can

motivate providers to invest in quality and cost e¤orts.3

We identify disclosure policy with network design. In a Tiered Network, the health plan assigns a provider

to a tier if its quality and cost e¤ort are above certain thresholds. The network therefore chooses thresholds

and discloses whether a provider�s quality and cost e¤ort are above those thresholds. The health plan also

sets consumers�copayment for using a provider according to that provider�s tier. In a Value-based Network,

the health plan constructs a weighted average of a provider�s quality and cost e¤ort, and reports that index

to consumers. The network therefore chooses weights on quality and cost and discloses summary statistics

of a provider�s services. The health plan can also set consumers�copayment for using a provider according

3The usual argument for partial disclosure is that limited expertise and cognitive capacities make full disclosure
impractical. Although we are sympathetic to this view, we have chosen to ignore �bounded rationality�in this paper.
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to how much the provider costs the plan.

In a Tiered Network, a strategic provider will attain any tier by choosing quality and cost e¤orts just sat-

isfying the thresholds. Changing the de�nition of a tier changes the provider�s quality and cost-e¤ort choices.

In a Value-based Network, a strategic provider will attain a certain level of the index to maximize pro�t,

taking into account consumers�inference about quality from the index. The health plan must anticipate this

provider reaction when constructing the index.

The health plan also sets copayments to induce e¢ cient service utilization. What matters is consumers�

incremental cost between providers. The e¢ cient consumer incremental cost should let them internalize

providers�cost di¤erence. In a Tiered Network, the health plan can set the Excellent-tier copayment to zero,

and the Standard-tier copayment to the unit-cost di¤erence between providers in the two tiers. The same

principle applies to a Value-based Network.

The health plan may use either cost reimbursement or perspective payment to implement quality and cost

targets in Tiered and Value-based Networks. This is because both tiers and indexes can create complemen-

tary incentives for quality and cost e¤orts. However, implementation requires the health plan to carefully

coordinate its provider payment and information systems. Moreover, because quality and cost incentives are

di¤erent under prospective and cost-reimbursement systems, the costs for implementing the same quality

and cost targets di¤er. We identify service cost structures which make one payment system less expensive

than the other.

Our network designs are information based. In 2010, about 44% of consumers have access to health-plan

sponsored hospital quality reports (Christianson et al., 2010). Dranove and Sfekas (2008) �nd that quality

reports do a¤ect consumer choices after consumer prior information is accounted for. Recently, Medicare

and other sponsors also disclose providers�cost-e¢ ciency information. However, researchers are skeptical

about its e¤ect on consumer choice (Mehrotra et al. 2012). Our model shows that demand response to cost

disclosure critically depends on how quality and cost information are conveyed.

We propose that quality and cost information be bundled into value measures. The Massachusetts Group

Insurance Commission is one of the �rst purchasers to adopt this approach. The Commission started o¤ering
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tiered networks to more than 267,000 state employees and retirees in 2004 (Alteras and Silow-Carroll, 2007).

In these tiered networks, health plans use quality and cost-e¢ ciency information to assign providers to one of

Tiers 1, 2, and 3. For example, a primary care physician is assigned to Tier 1 only if its quality score is above B

on a scale from A to C and its e¢ ciency score is above average.4 Consumers are informed about a provider�s

tier only but not the underlying quality or e¢ ciency score. This approach is consistent with our Tiered

Network. We also study value index as an alternative disclosure strategy. More important, we illustrate how

tier and index construction, consumer cost sharing, and provider payment should be coordinated. To the

best of our knowledge, this is the �rst attempt in the literature to do so.5

Innovations in consumer cost sharing are increasingly prominent. A number of recent papers study value-

based consumer cost sharing. Thomson et al. (2013) report that value-based cost sharing has been adopted

in the United States and more than 10 European countries. Pauly and Blavin (2008) study the price theory

of value-based cost sharing; their analysis is based on a price-taking service market where quality and cost

e¢ ciency are �xed. They show that when consumers are fully informed, optimal cost-based and value-based

copayments are identical. Valued-based copayment is lower only when consumers are imperfectly informed

and underestimate service bene�t. They argue that information disclosure and value-based cost sharing are

substitutes. By contrast, we study copayment policy in an oligopolistic service market where both quality

and cost are endogenous. In our Tiered and Value-based Networks, information disclosure and copayments

together guide consumers to make e¢ cient provider choices. We show that the optimal copayment for e¢ cient

utilization of high-value services can be as low as zero.

In our model consumers are rational. Baicker et al. (2012) study demand for health services when

consumers su¤er from various behavioral biases. They also �nd that the optimal copayment for high-value

services can be zero. Our results complement theirs. Moreover, we show that zero copayment is consistent

with production e¢ ciency.

The utilization and production e¢ ciency results distinguish our work from other papers that study

4http://www.unicarestateplan.com/pdf/CPIPhysicianBrochureFY13.pdf

5The three policy instruments have been studied extensively but separately. For recent surveys of the three strands
of literature, see Dranove and Jin (2010), Léger (2008), and McGuire (2011).
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oligopolistic provider competition. Beitia (2003) and Levaggi (2005) also consider a health plan contracting

with two providers that produce horizontally di¤erentiated services. In their papers quality and cost e¢ ciency

are not contractible either. However, they let consumers always observe quality and pay zero copayment. In

both papers, �rst-best utilization is unattainable because the health plan lacks the copayment instrument

to direct consumer choices. In their second-best solutions, qualities are distorted from the social optimal

to minimize consumption ine¢ ciency. By contrast, we obtain conditions for e¢ ciency; this illustrates that

information disclosure in network design, provider payment, and consumer copayment should be considered

simultaneously.6

The paper is organized as follows. Section 2 sets up the model of a health plan incentivizing providers to

service enrollees. We study Tiered and Valued-based Networks, respectively, in Sections 3 and 4. There, for

each information-based network, we show the implementation of �rst-best qualities and cost e¤orts under

cost reimbursement and prospective payment, and compare the health plan�s implementation costs under the

two payment systems. In Section 5, we then compare the implementation costs of Tiered and Value-based

Networks. Finally, Section 6 concludes. All proofs are in the Appendix.

2 The model

We now set up a model of health care networks. A group of consumers will receive health services from one

of two providers under a health plan. We discuss, in turn, these providers, the consumers, and the health

plan structure.

2.1 Providers

Two providers, A and B, supply health services to consumers in a health plan. Each provider chooses a

service quality and a cost-reduction e¤ort. Let (qi; ei) denote the quality and cost e¤ort, both nonnegative,

chosen by Provider i, i = A;B. Under quality q and cost e¤ort e, each provider�s unit cost of serving a

consumer is given by the function C(q; e). The unit cost function is strictly increasing in quality and strictly

6Ma (1994) shows that prospective payment can achieve �rst-best quality and cost e¢ ciency. Ma and Mak (2013)
show that cost reimbursemnt together with information disclosure can implement the same outcome. Both papers
consider a purchaser contracting with a single provider.
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decreasing in e¤ort (Cq > 0 > Ce), so higher quality means higher unit cost, but higher e¤ort can reduce it.

We assume that the function C is strictly convex, and also that the marginal unit cost of quality, Cq(q; e),

is nonincreasing in cost e¤ort (Cqe(q; e) � 0).

While the two providers share the same variable cost structure, their �xed costs are di¤erent. One

provider is more e¢ cient than the other. A provider�s �xed cost is determined by the quality and cost e¤ort.

If Provider A takes quality and cost e¤ort (qA; eA), its �xed cost is G(qA) + H(eA), where G and H are

both strictly increasing and strictly convex functions. If Provider B takes quality and cost e¤ort (qB ; eB),

its �xed cost is �[G(qB) +H(eB)], with � > 1. Thus, the parameter � measures the ine¢ ciency of Provider

B relative to Provider A. The ine¢ ciency may be due to higher management costs, or tighter local market

conditions which drive up e¤ort and quality costs, etc. Although Provider B is less e¢ cient, it may still

operate because some consumers may naturally prefer using its services, as we describe next.

2.2 Consumers

The total mass of consumers covered by the health plan is normalized at 1. Each consumer is described by

a valuation of health services, v, and a proclivity parameter x towards the two providers. Each consumer

has the same valuation, so v is a strictly positive constant and identical for all consumers. We use the

common Hotelling, horizontal product-di¤erentiation structure to describe consumers� proclivity towards

the two providers. Consumers are uniformly distributed on the [0; 1] interval. A nonnegative parameter �

measures the strength of consumers�horizontal preferences. A consumer located at x incurs a mismatch

disutility �x when obtaining services from Provider A, and a mismatch disutility �(1 � x) when obtaining

services from Provider B. When � is large, each provider faces a less elastic demand.

A consumer may have to pay a copayment to use a provider. We will expand on copayment determinations

when we describe health plan networks in Subsection 2.4. Let sA and sB , both nonnegative, be the respective

copayments when a consumer uses Provider A and Provider B. When health care qualities at Providers A

and B are, respectively, qA and qB , a consumer at x obtains utilities vqA� sA� �x and vqB � sB � �(1� x)

from these providers. We let each consumer receive services from one of the two providers, so the market is

covered.
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We assume that consumers have the same valuation on quality. Our interpretation is that we consider

the subset of consumers within a health plan who view the quality of care of this service similarly. Within

this set of consumers, the horizontal product di¤erentiation aspect of consumer preferences can be broadly

interpreted. The Hotelling line can literally mean distance, and in health care, travel costs are important

determinants of demands. Alternatively, di¤erent providers may have di¤erent practice styles, even di¤erent

hours of operations, as well as other support services. Consumers may have diverse preferences towards these

attributes, which are captured by the location and intensity parameters, x and � .

2.3 First best

The health plan writes contracts with providers and consumers. In the �rst best, providers�qualities and

e¤orts, and consumers�provider choices are contractible. An allocation speci�es each provider�s quality and

cost-reduction e¤ort, as well as which provider should serve each consumer. The �rst-best allocation is one

that maximizes aggregate consumer utilities less the production cost, which we call social welfare. It is

obvious that the �rst best will assign consumers with small values of x to Provider A, and consumers with

large values of x to Provider B: The health plan chooses these variables to maximize the sum of consumer

utilities less the production cost. Let the health plan assign consumers with x � bx to Provider A, and the
remaining consumers to Provider B. Social welfare is

W (qA; qB ; eA; eB ; bx) �
Z bx
0

[vqA � �x� C(qA; eA)]dx+
Z 1

bx [vqB � �(1� x)� C(qB ; eB)]dx
�[G(qA) +H(eA)]� �[G(qB) +H(eB)]: (1)

The �rst term in the welfare expression (1) is the sum of consumers� utilities less the variable costs for

consumers obtaining services at Provider A; the second term is the corresponding value at Provider B. The

last two terms in (1) are the total �xed costs of qualities and e¤orts. The following Lemma characterizes the

�rst best. (All proofs are in the Appendix.)

Lemma 1 In the �rst best, Provider A sets a higher quality, a higher cost e¤ort, and serves more consumers

than Provider B. That is, if q�A, q
�
B, e

�
A, e

�
B, and bx� denote the �rst-best qualities and e¤orts by Providers

A and B and the consumer allocation across them, then q�A > q�B, e
�
A > e�B, and bx� > 1=2. Furthermore,
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they satisfy the following:

bx�[v � Cq(q�A; e�A)] = G0(q�A) (2)

(1� bx�)[v � Cq(q�B ; e�B)] = �G0(q�B) (3)

�bx�Ce(q�A; e�A) = H 0(e�A) (4)

�(1� bx�)Ce(q�B ; e�B) = �H 0(e�B) (5)

1

2
+
v(q�A � q�B)� [C(q�A; e�A)� C(q�B ; e�B)]

2�
= bx�: (6)

Because Provider A is more e¢ cient than Provider B (which has higher �xed costs (� > 1)), the �rst

best prescribes that Provider A has higher quality, high e¤ort, and serves more consumers. Equations (2)

to (6) have the usual interpretations. Raising a provider�s service quality increases consumer utilities, but

also the provider�s unit cost and �xed cost of quality. Equations (2) and (3) balance these marginal e¤ects.

Similarly, raising a provider�s cost e¤ort decreases unit cost, but increases �xed cost of e¤ort. Equations (4)

and (5) balance these two opposing e¤ects. Equation (6) de�nes bx�, the consumer who receives the same
net social bene�t from either provider.

2.4 Health plan, payment, and information

We �rst describe the provider payment contracts. Because of the complexity of health care services, contracts

that specify how providers choose qualities and cost-reduction e¤orts are infeasible. In practice, health plans

do use �nancial (and renewal) contracts that are based on how much health care services and cost providers

have supplied. Accordingly, we let qualities and cost-reduction e¤orts be noncontractible, but the quantities

and unit costs of services C(qi; ei), i = A;B, are ex post veri�able. We study the two most common forms

of provider payment. Under prospective payment, the health plan pays pi to Provider i for a unit of service.

Under cost reimbursement, the health plan pays any ex post unit cost C(qi; ei) plus a (positive) margin mi to

Provider i for a unit of service. In this paper, we only consider these two forms of payments in the analytical

models.7

7Consumer cost heterogenity can be readily incorporated into this framework. See, for example, Ma (1994), Ma
and Mak (2013).
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Consumers� choices of providers are also noncontractible. As mentioned above, the health plan may

impose copayments. Consumers do not observe providers�quality and cost-e¤ort choices; the health plan,

however, does observe these choices. The health plan decides how to convey quality and cost-e¤ort infor-

mation to consumers. In the literature, consumers are assumed to observe providers�care quality. In our

setup, this is equivalent to the health plan fully disclosing quality information to consumers. Here, we study

a general information disclosure strategy.

In a Tiered Network, the health plan uses the information on quality and cost e¤ort (qi; ei), i = A;B,

gathered from the providers in order to construct tiers. We consider two tiers: Excellent and Standard.

A provider belongs to the Excellent tier if its quality and cost e¤ort are above some given thresholds;

similarly for the Standard tier. (We de�ne these thresholds formally in the Section 3.) After assessing

providers�qualities and cost e¤orts, the health plan announces each provider�s tier. Consumers�copayments

for services obtained from a provider may depend on that provider�s designated tier. For example, if Provider

A is in the Excellent tier, then consumers may pay lower copayments when using it than if Provider A is in

the Standard tier.

In a Value-based Network, after observing a provider�s quality and cost e¤ort, the health plan constructs

a value index equal to a linearly weighted sum of the quality and the cost e¤ort. (The value index will be

formally de�ned in Section 4.) The health plan then discloses providers�quality indexes to consumers. The

health plan also sets consumers�copayments for obtaining services from the two providers.

3 Tiered Network

3.1 Network structure and extensive form

We �rst lay out how the health plan constructs the tiers and copayments. Figure 1 illustrates the network

structure. We use two triples, (qEx; eEx; sEx) and (qSt; eSt; sSt), to de�ne health plans�tiers and copayment

policies, where q, e, and s denote quality, cost e¤ort, and consumer copayment. The health plan assigns

Provider i to the Excellent tier if and only if quality and cost e¤ort (qi; ei) are both higher than (qEx; eEx):

(qi; ei) � (qEx; eEx) � (0; 0). This is the upper-right region in Figure 1. Next, suppose that Provider i
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Figure 1: Tiers and copayments

fails to qualify for the Excellent tier (because qi < qEX , e < eEX , or both). Then, Provider i is assigned

to the Standard tier if and only if quality and cost e¤ort (qi; ei) are both higher than (qSt; eSt): (qi; ei) �

(qSt; eSt) � (0; 0), where qSt < qEx and eSt < eEx. This is the shaded, L-shaped region in Figure 1. A

consumer pays sEx � 0 to obtain a unit of service from a provider in the Excellent tier, and sSt � 0 from

one in the Standard tier. If a provider fails to achieve any tier, it is excluded from the network. (We will

assume that insured consumers will not obtain service from an excluded provider.)

We study the following Tiered Network, extensive-form game:

Stage 1: The health plan sets (qEx; eEx; sEx) and (qSt; eSt; sSt). Under cost reimbursement, the health

plan commits to reimbursing Provider i�s operating cost, and sets the margin mi, i = A;B. Under

prospective payment, the health plan sets the price pi, i = A;B, for each unit of service supplied by

Provider i.

Stage 2: Providers A and B choose qualities and cost-reduction e¤orts simultaneously.

Stage 3: The health plan observes the providers�chosen qualities and e¤orts, and reports the tier that each

provider belongs to.

Stage 4: Consumers learn the providers� designated tiers, and decide on obtaining services from one of
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them.

Consumers do not observe the providers�qualities and e¤orts. The health plan does observe these, and

assign providers to di¤erent tiers. In Stage 4, consumers form beliefs about qualities and e¤orts based on

providers� tiers. Therefore, we characterize prefect-Bayesian equilibria of the Tired Network game. The

health plan�s objective is to implement the �rst best as a perfect-Bayesian equilibrium. The next two

subsections study, respectively, equilibria under cost reimbursement and prospective payment. Upon seeing

providers�tier designations, consumers believe that q0A and q
0
B are service qualities of Providers A and B,

respectively. Consumers believe that utilities from Providers A and B are, respectively, vq0A � sA � �x and

vq0B � sB � �(1 � x). Let bx be de�ned by vq0A � sA � �bx = vq0B � sB � �(1 � bx), then market shares of
Providers A and B are, respectively, bxA = bx and bxB = 1� bx.
3.2 Cost reimbursement and �rst best

When consumers can directly observe qualities and cost e¤orts, a provider is free to choose any nonnegative

pair of quality and cost e¤ort to maximize pro�t. In the conventional setup, a large literature shows that cost

reimbursement leads to zero cost e¤ort and suboptimal quality. In the Tiered Network, consumers observe

the providers�tiers but not their qualities and e¤orts. Our �rst result shows that in any perfect-Bayesian

equilibrium, an active provider�s choice can only be either (qEx; eEx) or (qSt; eSt).

Lemma 2 Consider cost reimbursement in a Tiered Network. If a provider is assigned to the Excellent

tier in a perfect-Bayesian equilibrium, its quality and cost e¤ort are (qEx; eEx). Likewise, if a provider is

assigned to the Standard tier in a perfect-Bayesian equilibrium, its quality and cost e¤ort are (qSt; eSt).

According to Lemma 2, in equilibrium, a provider must use the lowest possible quality and cost e¤ort to

qualify for the Excellent or Standard tier. This is because in Stage 4 consumers only observe a provider�s

designated tier, but not its quality or e¤ort choices. Consumers�beliefs on providers�qualities depend only

on the tier designation, so the tier designation also determines each provider�s market share and revenue.

Among combinations of quality and cost e¤ort that qualify a provider for a tier, a pro�t-maximizing provider

must choose the least costly pair, one that minimizes G(q) +H(e). Hence, in equilibrium, when consumers
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observe the providers�designated tiers, they must believe that the providers have chosen the lowest possible

quality and cost e¤ort in a quali�ed tier.

The health plan can utilize the tiers to incentivize optimal quality and cost-e¤ort choices. In fact, the

following is an immediate consequence of Lemma 2 (and its proof is omitted).

Corollary 1 Consider cost reimbursement in a Tiered network. The �rst best is implementable as a perfect-

Bayesian equilibrium only if the health plan sets thresholds (qEx; eEx) = (q�A; e
�
A) for the Excellent tier and

(qSt; eSt) = (q�B ; e
�
B) for the Standard tier.

We next derive the condition on the copayments for the implementation of the �rst best. Suppose that in

Stage 2, Providers A and B choose equilibrium (q�A; e
�
A) and (q

�
B ; e

�
B), respectively. In Stage 3 the health plan

then reports that Provider A belongs to the Excellent tier and Provider B to the Standard tier. By Lemma

2, consumers�demand for services from Provider A in Stage 4 is 1=2 + (1=2�)[v(q�A � q�B) � (sEx � sSt)].

To implement the �rst best, the health plan must choose sEx and sSt such that the consumer demand for

provider A�s services equals bx� in condition (6). Therefore, in a �rst-best equilibrium, the copayments must
satisfy sEx � sSt = C(q�A; e

�
A) � C(q�B ; e�B): the di¤erence between the copayments in the Excellent and

Standard tiers must be equal to the di¤erence in �rst-best unit costs of the more e¢ cient Provider A and

the less e¢ cient Provider B.

Lemma 3 Suppose the �rst best is implementable as a perfect-Bayesian equilibrium in a Tiered Network.

The lowest, nonnegative copayments are sEx = 0, sSt = C(q�B ; e
�
B) � C(q�A; e�A) if C(q�A; e�A) < C(q�B ; e

�
B),

and sEx = C(q�A; e
�
A)� C(q�B ; e�B), sSt = 0 if C(q�A; e�A) � C(q�B ; e�B).

Our assumptions do not pin down the relative magnitude of C(q�A; e
�
A) and C(q

�
B ; e

�
B). Lemma 1 prescribes

higher quality and higher cost e¤ort for Provider A, due to its lower �xed costs, so the operating cost

C(q�A; e
�
A) may be lower or higher than Provider B�s operating cost C(q

�
B ; e

�
B). Consider a set of parameters

for which C(q�A; e
�
A) < C(q�B ; e

�
B). De�ne the iso-unit cost line by the combinations of q and e such that

C(q; e) = C(q�B ; e
�
B). If C(q

�
A; e

�
A) < C(q

�
B ; e

�
B), then we have (q

�
A; e

�
A) located strictly above the iso-unit cost

line. The dotted, upward-sloping curve in Figure 2 is the iso-unit cost curve of (the less e¢ cient) Provider B
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Figure 2: Equilibrium tiers and copayments

at the �rst-best unit cost level.8 In this case, the copayment for a Standard-tier provider is higher than an

Excellent-tier provider, and the lowest nonnegative copayments are sEx = 0, sSt = C(q�B ; e
�
B) � C(q�A; e�A).

Now if C(q�A; e
�
A) � C(q�B ; e�B), then the �rst best requires sEx = C(q�A; e�A) � C(q�B ; e�B), and sSt = 0; the

copayment at the Excellent tier is higher than at the Standard tier.

We now study the providers�quality and e¤ort choices. In Stage 2, the two providers simultaneously

choose qualities and e¤orts to maximize pro�ts. Because consumers�beliefs about qualities and e¤orts are

constrained by Lemma 2, a pro�t-maximizing provider must choose (qEx; eEx) to qualify for the Excellent

tier and (qSt; eSt) to qualify for the Standard tier. Let the tier thresholds and copayments be given by

Corollary 1 and Lemma 3. Table 1 de�nes the providers�market shares in continuation games with di¤erent

tier designations. For example, if Provider A chooses (q�A; e
�
A) and Provider B chooses (q

�
B ; e

�
B), then Provider

A quali�es for the Excellent tier, while Provider B quali�es for the Standard tier. Therefore, their market

shares are bx� and 1� bx�, respectively. This shows up as the �rst row and the second column in Table 1. If
they both qualify for the Excellent tier or the Standard tier, they split the market equally; these are in the

�rst-row-�rst-column, and second-row-second-column cells in Table 1.

8The iso-unit cost curve is upward sloping because C is increasing in q and decreasing in e. Furthermore, the
lower-contour set of a convex function is convex, and hence the iso-unit cost curve has the shaped as drawn.
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Provider B

(q�A; e
�
A) (q�B ; e

�
B) (0; 0)

(q�A; e
�
A) 1=2; 1=2 bx�; 1� bx� 1; 0

Provider A (q�B ; e
�
B) 1� bx�; bx� 1=2; 1=2 1; 0

(0; 0) 0; 1 0; 1 0; 0

Table 1: Equilibrium qualities, e¤orts, and market shares

In a �rst-best equilibrium under cost reimbursement, Provider A must choose (q�A; e
�
A) and its pro�t is

mAbx�� [G(q�A)+H(e�A)]. Similarly, Provider B must choose (q�B ; e�B) and its pro�t is mB(1�bx�)��[G(q�B)+
H(e�B)]. To implement the �rst best, the health plan sets margins mA and mB such that neither provider

�nds a unilateral deviation pro�table.

The �rst best is implementable if there are margins mA and mB that satisfy the following incentive

constraints:

mAbx� � [G(q�A) +H(e�A)] � mA=2� [G(q�B) +H(e�B)] (7)

mB(1� bx�)� �[G(q�B) +H(e�B)] � mB=2� �[G(q�A) +H(e�A)]; (8)

and nonnegative pro�t constraints:

mAbx� � [G(q�A) +H(e�A)] � 0 (9)

mB(1� bx�)� �[G(q�B) +H(e�B)] � 0: (10)

In a �rst-best equilibrium, Provider A chooses (q�A; e
�
A). The incentive constraint (7) says that Provider A

should not pro�t by deviating to (q�B ; e
�
B) and capturing 1=2 of the market (see Table 1). The incentive

constraint (8) has the corresponding meaning for Provider B. The incentive constraints guarantee that

Provider A picking (q�A; e
�
A) and Provider B picking (q�B ; e

�
B) are mutual best responses (given equilibrium

consumer beliefs). The nonnegative pro�t constraints (9) and (10) guarantee that in equilibrium both

providers prefer to be active. Can we �nd margins mA and mB to implement the �rst best as a perfect-

Bayesian equilibrium? In other words, which of the incentive and nonnegative pro�t constraints are more

binding?

By Lemma 1, bx� > 1=2 and G(q�A) + H(e
�
A) > G(q�B) + H(e

�
B). Therefore, a su¢ ciently big mA can

satisfy both (7) and (9), so Provider A has no incentive to deviate from the Excellent tier if mA is su¢ ciently
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big. The incentive and nonnegative pro�t constraints for Provider B work di¤erently. Conditions (8) and

(10) constrain mB in opposite directions. The incentive constraint (8) requires mB to be small, so that

deviating to (q�A; e
�
A) and getting the additional (bx��1=2) consumers is unpro�table. The nonnegative pro�t

constraint (10) requires mB to be big so that Provider B remains active. Combining both constraints, we

obtain

�[G(q�A) +H(e
�
A)�G(q�B)�H(e�B)]bx� � 1=2 � mB �

�[G(q�B) +H(e
�
B)]

1� bx� (11)

which yields the condition in the next Proposition.

Proposition 1 Consider cost reimbursement in a Tiered Network. Let the tier and copayment policies be

given by those in Corollary 1 and Lemma 3. The �rst best is implemented as a perfect-Bayesian equilibrium

if and only if

G(q�A) +H(e
�
A) �

G(q�B) +H(e
�
B)

2(1� bx�) : (12)

Inequality (12) in Proposition 1 says that in the �rst best, the total �xed cost of quality and cost e¤ort

for the more e¢ cient Provider A must still be quite larger than the less e¢ cient Provider B. This is a direct

consequence of the requirement that mB stays within the bounds in (11) for the �rst best.

We next turn to the cost of �rst-best implementation. The health plan�s total payment to the providers in

a �rst-best equilibrium is [mA+C(q
�
A; e

�
A)]bx�+[mB+C(q

�
B ; e

�
B)](1�bx�). Therefore, the health plan minimizes

payment to the providers when the margins are chosen to be the smallest required for implementation. The

value of mB must satisfy (11), so the minimum feasible value must be
�[G(q�B)+H(e

�
B)]

1�bx� . The value of mA must

satisfy (7) and (9). Our next result shows that the incentive constraint (7) is the more binding one.

Corollary 2 Consider the implementation of the �rst best in a Tiered Network. The cost-minimizing mar-

gins are

mA =
[G(q�A) +H(e

�
A)�G(q�B)�H(e�B)]bx� � 1=2 (13)

mB =
�[G(q�B) +H(e

�
B)]

1� bx� : (14)

The minimum margin mA in (13) for implementing the �rst best is obtained by a binding Provider A

incentive constraint (7). Provider A�s nonnegative pro�t constraint (9) is slack. The more e¢ cient Provider
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A must make a pro�t in a �rst-best equilibrium. This is a consequence of condition (12) in Proposition 1;

this requires bx� to be not much larger than 1=2, and G(q�A) +H(e�A) larger than G(q�B) +H(e�B). Condition
(12) ensures that the more e¢ cient Provider A makes a positive pro�t if it deviates to (q�B ; e

�
B). Conversely,

the value of mB in (14) comes from a binding Provider B nonnegative pro�t constraint (10). Condition

(12) in Proposition 1 says that at that value the incentive constraint (8) is slack: the less e¢ cient Provider

B makes a negative pro�t if it deviates to (q�A; e
�
A). Therefore, Provider B�s pro�t is zero in the �rst-best

equilibrium.

3.3 Prospective payment and �rst best

We now study the implementation of the �rst best under prospective payment. Here, Providers A and B

receive pA and pB , respectively, for each unit of service. Each provider fully internalizes the service unit

costs and �xed costs. Because of this internalization, the speci�cation of tiers according to (qEx; eEx) or

(qSt; eSt) in Lemma 2 can be relaxed. We can alternatively de�ne a tier based on a provider�s quality only.

For example, a provider belongs to the Excellent tier if its quality is at least qEx; a provider belongs to the

Standard tier if its quality is at least qSt. However, for ease of exposition, we will continue to use the same

tier construction as in the last subsection, as in Corollary 1.

Given the same tier construction, an active provider�s choice of quality and e¤ort continue to be either

(q�A; e
�
A) or (q

�
B ; e

�
B) in a perfect-Bayesian equilibrium. We specify consumers�beliefs in the same way. That

is, in a perfect-Bayesian equilibrium, consumers believe that a provider�s quality and cost e¤ort are the

minimum that would qualify for its tier designation. We also let the health plan use the same copayments

for �rst-best implementation as in Lemma 3 in the last subsection.

The �rst best is implementable if there are prospective prices pA and pB that satisfy the incentive

constraints:

[pA � C(q�A; e�A)]bx� � [G(q�A) +H(e�A)] � [pA � C(q�B ; e�B)]=2� [G(q�B) +H(e�B)] (15)

[pB � C(q�B ; e�B)](1� bx�)� �[G(q�B) +H(e�B)] � [pB � C(q�A; e�A)]=2� �[G(q�A) +H(e�A)] (16)
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and nonnegative pro�t constraints:

[pA � C(q�A; e�A)]bx� � [G(q�A) +H(e�A)] � 0 (17)

[pB � C(q�B ; e�B)](1� bx�)� �[G(q�B) +H(e�B)] � 0: (18)

Incentive constraints (15) and (16) say that Providers A and B, respectively, prefer to achieve the Excellent

and Standard tiers. The nonnegative pro�t constraints (17) and (18) ensure that both providers are active.

Because bx� > 1=2, both (15) and (17) can be satis�ed when pA is su¢ ciently high. A high prospective
price pA encourages the more e¢ cient Provider A to attain the Excellent Tier to get a larger market share.

By contrast, again because 1 � bx� < 1=2, Provider B�s incentive constraint (16) requires that pB be small,
while the nonnegative pro�t constraint (18) requires pB to be large. By combining (16) and (18), we get the

condition in the following Proposition.

Proposition 2 Consider prospective payment in a Tiered Network. Let the tier and copayment policies be

given by those in Corollary 1 and Lemma 3. The �rst best is implemented as a perfect-Bayesian equilibrium

if and only if

G(q�A) +H(e
�
A) �

G(q�B) +H(e
�
B)

2(1� bx�) +
C(q�B ; e

�
B)� C(q�A; e�A)
2�

: (19)

Under prospective payment, each provider internalizes its variable cost C(q; e). This accounts for the

extra term in (19) in Proposition 2 compared to (12) in Proposition 1. Provider A is more e¢ cient, and in the

�rst best puts in more quality and cost e¤ort, so the comparison between variable costs of the two providers

is ambiguous in general. Indeed, (19) implies (12) if and only if C(q�A; e
�
A) < C(q

�
B ; e

�
B). When Provider A�s

�rst-best variable cost is lower than Provider B�s, C(q�A; e
�
A) < C(q

�
B ; e

�
B), the �rst best is implementable by

prospective payment only if it is implementable by cost reimbursement. Symmetrically, (12) implies (19) if

and only if C(q�A; e
�
A) � C(q�B ; e

�
B), so the �rst best is implementable by prospective payment only if it is

implementable by cost reimbursement when Provider A�s variable cost is higher.

The health plan pays pAbx� + pB(1� bx�) to implement the �rst best. The minimum feasible value of pB

must satisfy the binding nonnegative pro�t constraint (18). The minimum feasible value of pA must satisfy

both the incentive constraint (15) and the nonnegative pro�t constraint (17). However, either one of these
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may be the binding constraint. Indeed, if Provider A earns a strictly positive pro�t by deviating to the

Standard tier (so that the right-hand side of (15) is strictly positive), then the nonnegative constraint (17)

is slack. The converse is also true.

Whether Provider A�s incentive constraint or nonnegative pro�t constraint binds depends on the com-

parison of the right-hand side of (15) and the left-hand side of (17). Clearly, the incentive constraint (15)

implies the nonnegative pro�t constraint (17) if and only if

C(q�A; e
�
A) +

G(q�A) +H(e
�
A)bx� � C(q�B ; e�B) +

G(q�B) +H(e
�
B)

1=2
: (20)

Given consumers�equilibrium responses to tier designation, the left-hand side of (20) is Provider A�s average

service cost when quality and cost e¤ort qualify for the Excellent tier, while the right-hand side is the average

cost when Provider A deviates to the Standard tier. Condition (20) requires bx� � 1=2 and C(q�B ; e�B) �
C(q�A; e

�
A) to be small, and G(q

�
A) +H(e

�
A)�G(q�B)�H(e�B) to be large.

For Provider B, condition (19) in Proposition 2 says that its incentive constraint (16) is slack. The

binding nonnegative pro�t constraint (18) determines the minimum feasible value of pB . The next Corollary

shows how inequality (20) determines the minimum costs of �rst-best implementation.

Corollary 3 Consider the implementation of the �rst best in a Tiered Network. Suppose that the incen-

tive constraint (15) implies the nonnegative pro�t constraint (17) (equivalent to (20) satis�ed), the cost-

minimizing prospective price for Provider A is

pA =
C(q�A; e

�
A)bx� � C(q�B ; e�B)=2 +G(q�A) +H(e�A)�G(q�B)�H(e�B)bx� � 1=2 : (21)

Suppose that the nonnegative pro�t constraint (17) implies the incentive constraint (15) (equivalent to (20)

violated), the cost-minimizing prospective price for Provider A is

pA = C(q
�
A; e

�
A) +

[G(q�A) +H(e
�
A)]bx� : (22)

The cost-minimizing prospective price for Provider B is

pB = C(q
�
B ; e

�
B) +

�[G(q�B) +H(e
�
B)]

1� bx� : (23)
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3.4 Payment mechanism and implementation cost

We now compare the implementation costs under cost reimbursement and prospective payment. Clearly,

the comparison is meaningful only when the �rst best can be implemented by both mechanisms. According

to Propositions 1 and 2, this is true when conditions (12) and (19) are satis�ed. The resource costs under

the �rst best are predetermined, so the implementation cost comparison has to do with providers�pro�ts.

In other words, we should compare the margin-unit-cost combinations under cost reimbursement and the

prospective prices. By Corollaries 2 and 3, the less e¢ cient Provider B always makes a zero pro�t, so

mB + C(q
�
B ; e

�
B) = pB (see also (14) and (23) in the two Corollaries). The comparison therefore boils down

to the values of mA + C(q
�
A; e

�
A) and pA in the two Corollaries.

By Corollary 2, the minimum margin for Provider A is in (13). By Corollary 3, the minimum prospective

price for Provider A is either (21) or (22), depending on whether the incentive constraint binds or the

nonnegative pro�t constraint binds. First, suppose that Provider A�s price is given by (21). Combining this

and (13), we obtain (details in the proof)

pA � [mA + C(q
�
A; e

�
A)] =

C(q�A; e
�
A)� C(q�B ; e�B)
2bx� � 1 : (24)

The equality says that pA � [mA + C(q
�
A; e

�
A)] if and only if C(q

�
A; e

�
A) � C(q�B ; e�B).

Under prospective payment, when deviating from (q�A; e
�
A) to (q

�
B ; e

�
B), Provider A internalizes the change

in unit cost. This internalization is absent under cost reimbursement. Therefore, when C(q�A; e
�
A) �

C(q�B ; e
�
B), a deviation from (q�A; e

�
A) to (q

�
B ; e

�
B) is more pro�table under prospective payment. The health

plan has to pay a higher price to keep Provider A from deviating to (q�B ; e
�
B). Symmetrically, if C(q

�
A; e

�
A) <

C(q�B ; e
�
B), the same deviation to (q

�
B ; e

�
B) is less pro�table under prospective payment. The health plan only

has to pay a lower price.

Second, suppose that Provider A�s price is given by (22). Here, Provider A makes a zero pro�t under

prospective payment. However, according to Corollary 2, Provider A always makes a strictly positive pro�t

under cost reimbursement. (The proof of that Corollary establishes that the minimum margin is obtained

from a binding incentive constraint while the nonnegative pro�t constraint remains slack.) Therefore, we
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must have pA < [mA + C(q
�
A; e

�
A)], so that implementation cost is lower under prospective payment.

Now, Provider A�s price being given by (22) requires the violation of (20). As the proof of the next

Proposition shows, this, together with the necessary condition of implementation by prospective payment

implies C(q�B ; e
�
B) > C(q

�
A; e

�
A).

Proposition 3 Suppose the �rst best can be implemented by cost reimbursement and prospective payment

in a Tiered Network. The health plan minimizes the payment to providers by using cost reimbursement if

and only if C(q�A; e
�
A) � C(q�B ; e�B).

In this section we have compared cost reimbursement and prospective payment in Tiered Networks. We

have focused on the implementation of the �rst best. In fact, our results can be applied to the implementation

of other qualities, cost e¤orts, and assignments of consumers across the providers. In the �rst best, Provider

A chooses higher quality and cost e¤ort, and serves more consumers than Provider B. These are the only

properties used for all the lemmas, propositions, and corollaries here. If we replace q�A, e
�
A, q

�
B , e

�
B , and bx�

by eqA, eeA, eqB , eeB , and ex in these lemmas, propositions, and corollaries, the statements remain correct when
eqA > eqB , eeA > eeB , and ex > 1=2. This can be veri�ed by inspection.
Cost and quality e¢ ciencies di¤er among the providers, and this yields an asymmetric �rst best. Suppose

that, for whatever reason, a health plan wants to implement an allocation di¤erent from the �rst best. Our

results continue to hold as long as the allocation exhibits the same kind of asymmetry, namely, the more

e¢ cient provider puts in more quality and cost e¤ort, and serves more consumers. It is hard for us to imagine

situations in which any health plan would want to implement allocations that favor the less e¢ cient provider.

Therefore, we do not consider implementation of these uninteresting allocations.

4 Value-based Network

4.1 Network structure and extensive form

In this section we consider the implementation of the �rst best in Value-based Networks. Here, the health

plan constructs a value index for each provider based on its quality and cost-reduction e¤ort, and continues
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to pay the providers by either cost reimbursement or prospective payment. A value index is a weighted

average of a provider�s quality and cost e¤ort. Suppose that Provider i, i = A;B, chooses quality qi and

cost e¤ort ei. As in the previous section, these choices are noncontractible, but the health plan can observe

them, and disclose some information about them. The value index for Provider i, i = A;B, is Ii(�i) � �iqi+

(1 � �i)ei, where 0 � �i � 1, is the weight on quality. The health plan can commit to the weights �A and

�B , as well as payment parameters and consumer copayments before the providers make decisions.

The extensive form for the Value-based Network game is as follows.

Stage 1: The health plan sets (�A; �B) and copayments (sA; sB). Under cost reimbursement, the health

plan sets the margin mi, i = A;B, and commits to reimbursing Provider i�s operating cost. Under

prospective payment, the health plan sets the price pi, i = A;B, for each unit of service supplied by

Provider i.

Stage 2: Providers A and B choose qualities and cost-reduction e¤orts simultaneously.

Stage 3: The health plan observes the providers�chosen qualities and e¤orts, and reports the value index

Ii(�i) = �iqi+ (1� �i)ei of each Provider i = A;B.

Stage 4: Consumers learn the providers�value indexes (but not providers�qualities and cost e¤orts), and

decide between obtaining services from Provider A and Provider B.

We study perfect-Bayesian equilibria under cost reimbursement and prospective payment in the next two

subsections.

4.2 Cost reimbursement and �rst best

In Tiered Networks, a health plan would only announce if a provider quali�es for one of two possible tiers.

In Value-based Networks, a provider�s value index can take on any nonnegative number. Each level of index

Ii(�i) can be achieved by many combinations of qi and ei. Given such indexes, what do consumers believe

about providers�qualities and cost e¤orts in a perfect-Bayesian equilibrium?

Suppose that equilibrium value indexes of Providers A and B are, respectively, IA(�A) and IB(�B), and
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that in equilibrium, Provider A serves bx of consumers while Provider B serves the rest. The next Lemma

shows that in any perfect-Bayesian equilibrium, Provider i must choose the pro�t-maximizing qi and ei to

achieve index Ii(�i).

Lemma 4 Consider cost reimbursement in a Valued-based Network. Suppose that in equilibrium Provider

A serves bx of consumers while Provider B serves the rest. Equilibrium qualities and cost e¤orts (qA; eA) and

(qB ; eB) must solve

max
q0A;e

0
A

mAbx� [G(q0A) +H(e0A)]
subject to �Aq

0
A + (1� �A)e0A = �AqA + (1� �A)eA

and

max
q0B ;e

0
B

mB(1� bx)� [G(q0B) +H(e0B)]
subject to �Bq

0
B + (1� �B)e0B = �BqB + (1� �B)eB :

Hence, (qi; ei), i = A;B, satisfy

G0(qi)

H 0(ei)
=

�i
1� �i

: (25)

As in Tiered Networks, a provider will attempt to achieve a level of the value index in the most pro�table

way. In equilibrium, consumers must believe that pro�t-maximizing qualities and e¤orts are used to achieve

an index. Once providers�index levels are given, demands, and hence revenues, are �xed. Then Lemma 4

implies that in equilibrium qi and ei must minimize the total �xed cost to achieve index Ii(�i). Condition

(25) is the solution to this minimization problem. It says that the ratio of marginal �xed cost G0(qi)=H 0(ei)

must be set equal to the ratio of quality and cost-e¤ort weights �i=(1 � �i). In other words, the marginal

contributions of quality and cost e¤ort to achieve an index must be in-line to their respective marginal costs.

Figure 3 illustrates Provider i�s cost-minimization problem. The downward sloping straight line contains

(q; e) pairs that have the same level of value index Ii with the weight on quality being set at �i. The iso-cost

curve plots (q; e) pairs that have the same total �xed cost; it is concave to the origin because G and H

are strictly convex. The tangency point (qi(�i); ei(�i)) shows the cost-minimizing quality and cost e¤ort at

Ii(�i). For a �xed �i, the dotted �expansion path� from the origin describes the cost-minimizing qualities
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Figure 3: Cost-minimizing quality and cost e¤ort

and cost e¤orts that achieve di¤erent levels of value index Ii(�i) in a cost-minimizing way. When the value

of �i changes, the entire expansion path will pivot around the origin. For example, if �i increases so that

more weight is given to quality, then more quality will be chosen to achieve any given level of the index, so

the dotted expansion path will rotate in a clockwise direction.

To implement the �rst best, the health plan has to choose index weights �A and �B so that the �rst best

is on the providers�expansion paths, or equivalently (25) holds at the �rst-best qualities and e¤orts.

Corollary 4 Consider cost reimbursement in a Value-based Network. The �rst best is implementable as

a perfect-Bayesian equilibrium only if the health plan sets index weights �A =
G0(q�A)

G0(q�A) +H
0(e�A)

and �B =

G0(q�B)

G0(q�B) +H
0(e�B)

.

The health plan also sets copayments sA and sB in Stage 1. Suppose that in Stage 2, Providers A and

B choose (q�A; e
�
A) and (q

�
B ; e

�
B), respectively. By Lemma 4, consumers can correctly infer qualities from

the value indexes. Their demand for services from Provider A is 1=2 + (1=2�)[v(q�A � q�B) � (sA � sB)].

To implement the �rst-best consumer allocation, the copayment di¤erential sA � sB has to internalize the

di¤erence in unit costs C(q�A; e
�
A)�C(q�B ; e�B). Therefore, the lowest, nonnegative sA and sB are, respectively,

identical to sEx and sSt in the optimal Tiered Network (see Lemma 3). Consumers�copayments remain the

same whether the �rst best is implemented under Tiered or Value-based Networks; it follows that they obtain
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exactly the same utilities in each network.

Next, we derive the margins mA and mB for �rst-best implementation. By Lemma 4, each provider has

to choose among combinations of qualities and cost e¤orts under constraint (25), which describe what can

arise in equilibrium. Given mA and mB , the equilibrium in Stage 2 is given by the solutions of the two

following programs:

max
qA;eA

mA

�
1

2
+
v(qA � qB)� (sA � sB)

2�

�
� [G(qA) +H(eA)] (26)

subject to
G0(qA)

H 0(eA)
=

�A
1� �A

and

max
qB ;eB

mB

�
1

2
+
v(qB � qA)� (sB � sA)

2�

�
� �[G(qB) +H(eB)] (27)

subject to
G0(qB)

H 0(eB)
=

�B
1� �B

:

In Stage 1, the health plan must choose mA and mB so that the �rst best is a continuation equilibrium.

Proposition 4 Consider cost reimbursement in a Valued-based Network. Let the index weights be given by

Corollary 4 and let the copayments satisfy sA � sB = C(q�A; e�A)� C(q�B ; e�B). The �rst best is implemented

as a perfect-Bayesian equilibrium if and only if

mA =
1

v=2�

�
G0(q�A) +H

0(e�A)�
d lnG0(q�A)

d lnH 0(e�A)

�
(28)

mB =
�

v=2�

�
G0(q�B) +H

0(e�B)�
d lnG0(q�B)

d lnH 0(e�B)

�
: (29)

Proposition 4 presents a unique pair of margins (mA;mB) for �rst-best implementation. To obtain these

margins, we begin with the constraints in (26) and (27). Each implicitly de�nes the equilibrium ei, i = A;B,

as a function of qi, say ei(qi) (and this is illustrated by the dotted expansion path in Figure 3). The slope

of this function,
1� �i
�i

G00(qi)

H 00(ei)
(derived in the Appendix), describes how, in equilibrium, ei changes with

respect to qi. Consider Provider A. To induce the �rst-best quality and e¤ort, the health plan has to set

the margin mA such that the provider�s marginal bene�t of quality investment, mA � v=2� , is equal to the

marginal �xed cost due to investment, G0(qA)+H 0(eA)�e0A(qA), evaluated at the �rst best. The expressions

for mA in Proposition 4 is obtained by solving this equation. The expression for mB is derived in the same

way.
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4.3 Prospective payment and �rst best

We now study �rst-best implementation under prospective payment. The provider payment literature has

shown that health plans and providers have aligned cost-e¢ ciency incentives under complete information.

Our next result says that when the health plan constructs value indexes under prospective payment, it

assigns zero weight to cost e¤ort in order to implement the �rst best. Our result rea¢ rms those in the

extant literature.

Lemma 5 Consider prospective payment in a Value-based Network. The �rst best is implementable as a

perfect-Bayesian equilibrium only if the health plan sets �A = �B = 1.

Under prospective payment, a provider fully internalizes the bene�t of cost reduction. There is no need

for extra incentive for cost e¤ort. In other words, simply ignoring cost e¤ort in the value index, disclosing

the quality, is su¢ cient. Under prospective payment, a value index should put all weights on quality.

In the last subsection, we have established that consumers have to pay the same minimum copayments

whenever the �rst best is implementable. But as the next Proposition shows, the optimal prospective prices

and cost margins in Value-based Networks are chosen to address distinctive incentive problems.

Proposition 5 Consider prospective payment in a Value-based Network. Let the index weights be �A =

�B = 1 and the copayments satisfy sA � sB = C(q�A; e
�
A) � C(q�B ; e�B). The �rst best is implemented as a

perfect-Bayesian equilibrium if and only if

pA = � + C(q�B ; e
�
B) + v(q

�
A � q�B)

pB = � + C(q�A; e
�
A) + v(q

�
B � q�A):

Because the providers internalize the costs and bene�ts of e¤orts, their e¤ort incentives are aligned

with the health plan�s. We only need to choose prospective prices to align providers� quality incentives.

Indeed, there is a basic divergence between a provider�s private quality bene�t and social quality bene�t.

For example, if Provider A raises qA by one unit, its gross pro�t increases by [pA � C(qA; eA)]
v

2�
, where

pA�C(qA; eA) is the gross pro�t margin and where
v

2�
is the provider�s gain in market share. However, the
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increase in quality also bene�ts Provider A�s current consumers so the increase in social bene�t is vbx. This
divergence of incentives can be likened to the problem of monopolistic quality provision in Spence (1975).

To implement the �rst best, the health plan must choose prices so that a provider�s marginal pro�t due

to quality is equal to the marginal social bene�t. The expressions for pA and pB in Proposition 5 are chosen

to do that. Speci�cally, the optimal prospective price of a provider is increased when demand becomes less

responsive to quality, or when the rival provider has a higher unit cost at the �rst best. Moreover, Provider

A is rewarded for its higher average social bene�t v(q�A� q�B) > 0, whereas the prospective price for Provider

B is reduced for its lower average social bene�t v(q�B � q�A) < 0.

4.4 Payment mechanism and implementation cost

We now study implementation costs under the two payment systems. Unlike in Tiered Networks where

only Provider A can make positive pro�ts, both providers earn positive pro�ts in Value-based Networks.

Implementation costs take the form of provider pro�ts. Provider i�s, i = A;B, pro�t margin under prospective

payment is pi �C(q�i ; e�i ), and mi under cost reimbursement, so it is su¢ cient to compare these two values.

In the next proposition we compare the values of mi + C(q
�
i ; e

�
i ) and pi.

Proposition 6 For Value-based Networks, Provider i earns a higher pro�t under prospective payment than

cost reimbursement, pi > mi + C(q
�
i ; e

�
i ), if and only if

�Cq(q
�
i ; e

�
i )

Ce(q�i ; e
�
i )
>
d lnG0(q�i )

d lnH 0(e�i )
: (30)

The comparison between a provider�s pro�ts under cost reimbursement and prospective payment depends

on the curvatures of the unit cost C and the �xed costs G and H at the �rst best. Figure 4 illustrates an

example where inequality (30) in Proposition 6 holds. The solid curve in the diagram is the iso-unit cost

curve of Provider i at the �rst best (see the discussion following Lemma 3). By the implicit function theorem,

the slope of this curve is �Cq(qi; ei)
Ce(qi; ei)

at (qi; ei). The dashed curve in Figure 4 plots the combinations of

�xed-cost minimizing (qi; ei) that we have introduced in Figure 3. There, we also have shown that under

Proposition 4, the slope of the dashed curve is
1� �i
�i

G00(qi)

H 00(ei)
at (qi; ei) and can be written as

d lnG0(q�i )

d lnH 0(e�i )
at

(q�i ; e
�
i ).
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Figure 4: Comparison of providers�pro�ts

Under prospective payment, the �rst-best pi is set to make Provider i�s iso-pro�t (net of unit cost) line

tangent to the solid curve at (q�i ; e
�
i ). Similarly, under cost reimbursement, the �rst-best mi is set such that

Provider i�s iso-pro�t line tangents to the dashed curve at (q�i ; e
�
i ). In Figure 4 the inequality (30) is satis�ed,

so the solid curve is steeper than the dashed curve at (q�i ; e
�
i ). In other words, the �rst-best cost e¤ort is

more costly to Provider i under prospective payment. In order to implement the �rst best, the health plan

has to o¤er a higher price under prospective payment to make Provider i�s iso-pro�t curve steeper. This

means that pi is higher than mi+C(q
�
i ; e

�
i ). Because the comparison between pi and mi+C(q

�
i ; e

�
i ) depends

on the curvatures of the cost functions at (q�i ; e
�
i ), it is possible that Provider A earns a higher pro�t under

cost reimbursement, but Provider B earns a higher pro�t under prospective payment, and vice versa.

5 Optimal network

In the previous two sections, we have studied how the �rst best can be implemented in Tiered and Value-

based Networks. By Propositions 1 and 2, the �rst best can be implemented in Tiered Networks only if either

condition (12) or (19) is satis�ed. On the other hand, by Propositions 4 and 5, the �rst best can always be

implemented in Value-based Networks. This di¤erence is due to the interaction between network design and

providers�nonnegative pro�t constraints. In Tiered Networks, an active provider can only choose between
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(q�A; e
�
A) and (q

�
B ; e

�
B) (see Lemma 2 and Corollary 4). Conditions (12) and (19) are necessary conditions for

the less e¢ cient Provider B to make a nonnegative pro�t at (q�B ; e
�
B). In Value-based Networks, an active

provider can choose many pairs of qualities and cost e¤orts. Provider payments are chosen to satisfy the

providers�incentive constraints, while providers�nonnegative pro�t constraints never bind.

When the �rst best can be implemented in both Tiered and Value-based Networks, Provider B�s nonneg-

ative pro�t constraint binds in Tiered Networks only. However, the binding constraint does not imply that

the total implementation cost must be lower in Tiered Networks. To compare total implementation cost, we

have to consider the total pro�ts of Providers A and B under di¤erent networks and payment mechanisms.

We now make this comparison assuming conditions (12) and (19) are satis�ed.

Proposition 7 Suppose that the �rst best can be implemented in both Tiered and Value-based Networks.

If condition (30) for Provider A is violated, the health plan pays a lower cost to providers by using Tiered

Networks. On the other hand, if condition (30) for Provider A holds, the health plan may pay a lower cost

to providers by using either Tiered or Value-based Networks.

First, consider the case where condition (30) for Provider A is violated. By Proposition 6, in Value-

based Networks the health plan pays Provider A less by using prospective payment than by using cost

reimbursement. Now compare Provider A�s gross pro�t margin pA � C(qA; eA) in Value-based Networks to

its cost margin mA in Tiered Networks. In the Appendix, we show that the latter has a smaller value if and

only if

bx�[vq�A � C(q�A; e�A)]� [G(q�A) +H(e�A)] > bx�[vq�B � C(q�B ; e�B)]� [G(q�B) +H(e�B)]:
However, this inequality always holds because in the �rst best, q�A and e

�
A maximize bx�[vqA � C(qA; eA)]�

[G(qA) +H(eA)]. Therefore, Provider A earns a lower pro�t under cost reimbursement in Tiered Networks,

compared to either cost reimbursement or prospective payment in Value-based Networks. Because Provider

B also earns a lower pro�t in Tiered Networks, Value-based Networks are dominated by cost reimbursement

in Tiered Networks in terms of implementation cost. The health plan�s optimal choice is between cost

reimbursement and prospective payment in Tiered Networks, and the tradeo¤ is fully characterized by

Proposition 3.

28



When condition (30) for Provider A holds, the health plan pays less to Provider A by cost reimbursement

rather than by prospective payment in Value-based Networks. We now use an example to illustrate that in

this case, the health plan may pay a lower cost to providers by using either Tiered or Value-based Networks.

Example 1 Suppose that the �xed costs of quality and e¤ort are quadratic, that is, let G(q) = Gq2 and

H(e) = He2, where G and H are some positive parameters. Using (13) and (14), we can express the total

cost margin, mAbx� +mB(1� bx�), in Tiered Networks as�
Gq�2A +He�2A �Gq�2B �He�2Bbx� � 1=2

� bx� + � �Gq�2B +He�2B
1� bx�

�
(1� bx�): (31)

Similarly, using (28) and (29), we can express the total cost margin in Value-based Networks as

�
(2=q�A)(Gq

�2
A +He�2A )

v=2�

� bx� + � � (2=q�B)(Gq�2B +He�2B )

v=2�

�
(1� bx�): (32)

Upon simpli�cation, the value of (31) is smaller than the value of (32) if � � 2 and

1bx� � 1=2(Gq�2A +He�2A ) <
1

v=2�
(2=q�A)(Gq

�2
A +He�2A ); (33)

but the reverse can be true if inequality (33) fails to hold.9

In general, the comparison between the cost margins in Tiered and Value-based Networks depends on the

values of G(q), H(e), and their �rst-order and second-order derivatives at the �rst best. The quadratic �xed

costs in Example 1 allow us to simplify the comparison, and focus on the incentive properties of network

design. On the left-hand side of (33), bx� � 1=2 is the demand response when Provider A raises quality from
q�B to q�A in Tiered Networks, and Gq

�2
A + He�2A is the total �xed cost of Provider A. On the right-hand

side of (33),
v

2�
is the demand response when Provider A raises qA by one unit in Value-based Networks,

whereas (2=q�A)(Gq
�2
A + He�2A ) is the equivalent of the �rst-best marginal �xed costs under the quadratic

costs assumption. Example 1 shows that when condition (30) for Provider A holds, neither Tiered nor

9Subtract (31) from (32) and rearrange terms, the value of (31) is smaller than the value of (32) if and only if�
2=q�A
v=2�

� 1bx� � 1=2
�
[Gq�2A +He

�2
A ]bx�+� �2=q�Bv=2�

� 1bx� � 1=2
�
�(bx� � 1=2)� bx�

�(1� bx�)
��
[Gq�2B +He

�2
B ](1�bx�) > 0. Because

q�A < q�B and
�(bx� � 1=2)� bx�

�(1� bx�) � 1 for any bx� < 1 if � � 2, the value of the �rst square-bracketed term is smaller

than the value of the second square-bracketed term. Moreover, the value of the �rst square-bracketed term is positive
if inequality (33) is satis�ed.
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Valued-based Network must dominate the other in terms of implementation cost. In the example, a network

design is more likely to have a lower implementation cost if it can generate a stronger demand response.

6 Conclusion

In this paper, we have studied health plan designs. Our contribution is threefold. First, we introduce Tiered

and Value-based Networks. A health plan uses one of these two disclosure methods to inform consumers

about providers�qualities and costs, as well as to incentivize providers to choose qualities and cost e¤orts.

Second, we pair each disclosure method with a payment mechanism, either cost reimbursement or prospective

payment, for the implementation of e¢ cient qualities and cost e¤orts. Third, we set consumer copayments

to implement the e¢ cient allocations of consumers across providers. We have derived conditions for each

type of networks to implement the �rst best. Where the �rst best can be implemented, we compare the

associated costs in di¤erent networks.

Our approach illustrates the multifaceted nature of health plan designs. The previous literature has

contrasted provider incentives due to cost reimbursement and prospective payment. We view payment

mechanism only as a component in the overall health plan design. Together, payment mechanisms for

providers and information mechanism for consumers determine how providers choose qualities and cost e¤ort,

and how consumers choose providers. We show how health plans can exploit this interaction. In fact, we

show how health plans may implement �rst best in various ways, which may require di¤erent implementation

costs.

We have looked at payment policies and information-based health plans with a broad perspective. While

�nancial incentives are certainly important, our innovation is to supplement provider �nancial incentives with

information disclosure to consumers. The simplistic way of disclosing all relevant information to consumers

misses the point. Optimal network design considers optimal information disclosure. Both Tiered and Value-

based Networks add to the power of �nancial incentives. Information-based policies may prove powerful in

many aspects of health care deliveries.
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Appendix

Proof of Lemma 1: We obtain equations (2) to (6) by setting the �rst-order derivatives of (1) with respect

to qA, qB , eA, eB , and bx, to 0. These are necessary conditions for the maximization of (1).
We now show that q�A > q�B , e

�
A > e�B , and bx� > 1=2. By symmetry, if � was set at 1, then we would

have q�A = q�B , e
�
A = e�B , bx� = 1=2. Therefore, it is su¢ cient to show that q�A, �q�B , e�A, �e�B , and bx� are

monotone increasing in �. Our assumptions on C and G and H are laid out in Subsection 2.1. However, for

the purpose here, we would strengthen them by restricting the sets of feasible quality and cost e¤ort, q and

e for each provider to those values where v � Cq(q; e) > 0. According to the �rst-order conditions (2) and

(3), there cannot be any solution at which v � Cq(q; e) < 0. Such a restriction, v � Cq(q; e) > 0, does not

a¤ect the �rst best.

Now we can apply Theorems 5 and 6 in Milgrom and Shannon (1994), which say that solutions, q�A,

�q�B , e�A, �e�B , and bx�, that maximize (1) are monotone increasing in � when all the pairwise cross-partial
derivatives of qA, �qB , eA, �eB , bx, and � are nonnegative. Indeed, we have:
@2W

@�@qA
= 0 � @2W

@�@qB
= G0(qB) > 0

@2W

@�@eA
= 0

� @2W

@�@eB
= H 0(eB) > 0

@2W

@�@bx = 0 � @2W

@qA@qB
= 0

@2W

@qA@eA
= �bxCqe(qA; eA) � 0 � @2W

@qA@eB
= 0

@2W

@qA@bx = v � Cq(qA; eA) > 0
� @2W

@qB@eA
= 0

@2W

@qB@eB
= �(1� bx)Cqe(qB ; eB) � 0 � @2W

@qB@bx = v � Cq(qB ; eB) > 0
� @2W

@eA@eB
= 0

@2W

@eA@bx = �Ce(qA; eA) > 0 � @2W

@eB@bx = �Ce(qB ; eB) > 0:
Proof of Lemma 2: Suppose that the Lemma is false, so suppose that in a perfect-Bayesian equilibrium,

Provider i is assigned to the Excellent tier and (qEx; eEx) 6= (qi; ei). By the de�nition of the Excellent tier, we

must have qi > qEx, ei > eEx, or both. Let the equilibrium margin and market share of provider i be mi and

bxi, respectively. Under cost reimbursement, Provider A�s equilibrium pro�t is mibxi�G(qi)�H(ei). Now let
Provider i deviate from (qi; ei) to (qEx; eEx). Provider i still belongs to the Excellent tier, which means that

consumers�beliefs about Provider A�s quality remain the same, and so Provider A�s market share must remain
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at bxi. But because G and H are strictly increasing, we have mibxi�G(qEx)�H(eEx) > mibxi�G(qi)�H(ei),
which says that the deviation is pro�table, a contradiction. The proof for the Standard tier is similar, and

omitted.

Proof of Lemma 3: The Lemma follows immediately from the equation sEx � sSt = C(q�A; e
�
A) �

C(q�B ; e
�
B) and the inequalities s

Ex � 0 and sSt � 0.

Proof of Proposition 1: Rearranging inequalities (7) to (10), we have

mA � G(q�A) +H(e
�
A)�G(q�B)�H(e�B)bx� � 1=2 (34)

mB � �[G(q�A) +H(e
�
A)�G(q�B)�H(e�B)]bx� � 1=2 (35)

mA � [G(q�A) +H(e
�
A)]bx� (36)

mB � �[G(q�B) +H(e
�
B)]

1� bx� : (37)

A su¢ ciently big value of mA can always be chosen to satisfy both (34) and (36), so the �rst best is

implementable if and only if there is an mB satisfying both (35) and (37). This is equivalent to

�[G(q�A) +H(e
�
A)�G(q�B)�H(e�B)]bx� � 1=2 � �[G(q�B) +H(e

�
B)]

1� bx� ; (38)

which simpli�es to (12) in the Proposition.

Proof of Corollary 2: The minimum value formB has already been derived just before the presentation

of the Corollary.

Consider Provider A. The value of mA must satisfy both (34) and (36) (see the proof of Proposition

1). The minimum value for mA must be the larger of the right-hand side expressions of (34) and (36). We

now show that the right-hand side expression in (34) is the larger one. The di¤erence between them, after

simpli�cation, is:

G(q�A) +H(e
�
A)�G(q�B)�H(e�B)bx� � 1=2 � [G(q

�
A) +H(e

�
A)]bx�

=
[G(q�A) +H(e

�
A)]=2� [G(q�B) +H(e�B)]bx�bx�(bx� � 1=2) :

Since the denominator is always positive (bx� > 1=2), the sign of the above is that of the numerator. That
is, the right-hand side of (34) is larger than the right-hand side of (36) if and only if

G(q�A) +H(e
�
A)

G(q�B) +H(e
�
B)
> 2bx�.
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Now by (12), it is su¢ cient to show that
1

2(1� bx�) > 2bx�. For this, we calculate
1

2(1� bx�) � 2bx�
=

(1� 2bx�)2
2(1� bx�) > 0:

Hence, the lowest possible �rst-best equilibrium mA is the one in (13).

Proof of Proposition 2: Rearranging inequalities (15) to (18), we get

pA � C(q�A; e
�
A)bx� � C(q�B ; e�B)=2 +G(q�A) +H(e�A)�G(q�B)�H(e�B)bx� � 1=2 (39)

pB � C(q�A; e
�
A)=2� C(q�B ; e�B)(1� bx�) + �[G(q�A) +H(e�A)�G(q�B)�H(e�B)]bx� � 1=2 (40)

pA � C(q�A; e
�
A) +

[G(q�A) +H(e
�
A)]bx� (41)

pB � C(q�B ; e
�
B) +

�[G(q�B) +H(e
�
B)]

1� bx� : (42)

Conditions (39) and (41) can be satis�ed by setting pA to a su¢ ciently large value. Therefore, the �rst best

is implementable only if there exists pB that satis�es (40) and (42). This is equivalent to

C(q�A; e
�
A)=2� C(q�B ; e�B)(1� bx�) + �[G(q�A) +H(e�A)�G(q�B)�H(e�B)]bx� � 1=2 � C(q�B ; e�B) +

�[G(q�B) +H(e
�
B)]

1� bx�
which can be rewritten as

�[G(q�A) +H(e
�
A)�G(q�B)�H(e�B)]bx� � 1=2 +

C(q�A; e
�
A)=2� C(q�B ; e�B)(1� bx�)bx� � 1=2 � �[G(q�B) +H(e

�
B)]

1� bx� +C(q�B ; e
�
B):

Next, we note that inequality (12) in Proposition 1 follows from inequality (38) in the proof of that Propo-

sition. By inspection, we only have to simplify the second term on each side of the above. Indeed, after the

simpli�cation, we obtain (19).

Proof of Corollary 3: We obtain (23) by setting expression (18) as an equality.

For Provider A, the minimum value of pA is the larger of the right-hand side expressions of (15) and (17).

The di¤erence between the two expressions is

C(q�A; e
�
A)bx� � C(q�B ; e�B)=2 +G(q�A) +H(e�A)�G(q�B)�H(e�B)bx� � 1=2 � C(q�A; e�A)�

[G(q�A) +H(e
�
A)]bx�

=
1

2bx� � 1
�
C(q�A; e

�
A) +

G(q�A) +H(e
�
A)bx� � C(q�B ; e�B)�

G(q�B) +H(e
�
B)

1=2

�
:
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This expression is positive if and only if condition (20) is satis�ed. When condition (20) holds, the minimum

pA must satisfy (15) as an equality. When condition (20) fails, the minimum pA must satisfy (17) as an

equality. We thereby obtain expressions (21) and (22) for the minimum pA.

Proof of Proposition 3: We have shown that mB + C(q
�
B ; e

�
B) = pB before the presentation of the

Proposition. We now compare the minimum values of mA+C(q
�
A; e

�
A) and pA. There are two cases. Case 1:

The prospective price is given by (21) in Corollary 3 (which is equivalent to inequality (20) satis�ed). Using

expressions (13) and (21), we have

pA � [mA + C(q
�
A; e

�
A)]

=

�
C(q�A; e

�
A)bx� � C(q�B ; e�B)=2 +G(q�A) +H(e�A)�G(q�B)�H(e�B)bx� � 1=2

�
�
�
G(q�A) +H(e

�
A)�G(q�B)�H(e�B)bx� � 1=2

�
� C(q�A; e�A)

=
C(q�A; e

�
A)� C(q�B ; e�B)
2bx� � 1 ;

which is positive if and only if C(q�A; e
�
A) � C(q�B ; e�B).

Case 2: The prospective price is given by (22), which is equivalent to inequality (20) failing to hold:

C(q�A; e
�
A) +

G(q�A) +H(e
�
A)bx� < C(q�B ; e

�
B) +

G(q�B) +H(e
�
B)

1=2
;

which simpli�es to

2bx�[G(q�B) +H(e�B)] + bx�[C(q�B ; e�B)� C(q�A; e�A)] > G(q�A) +H(e�A): (43)

In this case, Provider A makes a positive pro�t under cost reimbursement and zero pro�t under prospective

payment. Hence we have pA < mA+C(q
�
A; e

�
A). Now from Proposition 2, �rst-best implementation requires

(19). This condition and (43) can be satis�ed simultaneously only if

C(q�B ; e
�
B)� C(q�A; e�A) >

(1� 2bx�)2
(2bx� � 1=�)(1� bx�) [G(q�B) +H(e�B)] > 0;

where the last inequality follows from bx� > 1=2 and � > 1.
We conclude that pA � mA + C(q

�
A; e

�
A) if and only if C(q

�
A; e

�
A) � C(q�B ; e�B).

Proof of Lemma 4: Suppose that in equilibrium ProviderA�s market share is bx. Let equilibrium (qA; eA)
achieve index �AqA+ (1 � �A)eA. Next, suppose that Provider A deviates to any (q0A; e

0
A) where �Aq

0
A+
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(1��A)e0A = �AqA+ (1��A)eA. Consumers must continue to believe that the quality and cost e¤ort remain

at qA and eA. Provider A�s demand remains at bx. Moreover,mAbx�[G(q0A)+H(e0A)] � mAbx�[G(qA)+H(eA)],
with a strict inequality when (q0A; e

0
A) 6= (qA; eA) due to the strict convexity of G and H. Hence (q0A; e

0
A) is

not a pro�table deviation and (qA; eA) has the property as stated in the Lemma. The proof for equilibrium

(qB ; eB) follows symmetrically. Finally, (25) are the �rst-order conditions of the two pro�t maximization

programs in the Lemma. Equilibrium (qi; ei), i = A;B, must satisfy (25).

Proof of Proposition 4: Suppose that the quality and cost e¤ort of Provider B is (q�B ; e
�
B). Consider

the pro�t-maximization problem of Provider A. By Corollary 4, the �rst-best quality and e¤ort satisfy

G0(q�A)

H 0(e�A)
=

�A
1� �A

and hence can be Provider A�s optimal choice. By Lemma 4, we use (25) to de�ne eA as

a function of qA, say eA(qA). Then we calculate its derivative:

e0A(qA) =
1� �A
�A

G00(qA)

H 00(eA)
> 0: (44)

We then rewrite Provider A�s constrained pro�t maximization program as

max
qA

mA

�
1

2
+
v(qA � qB)� (sA � sB)

2�

�
� [G(qA) +H(eA(qA))]:

The �rst-order condition is

mA
v

2�
= G0(qA) +H

0(eA)e
0
A(qA): (45)

The margin mA for �rst-best implementation must satisfy (45) at qA = q�A and qB = q�B . This margin is

unique because both G0(qA) and H 0(eA)e
0
A(qA) are increasing in qA. We obtain the expression for mA in the

Proposition by using equations (25), (44), and the identity d ln f = f 0=f to simplify (45). The derivation of

mB follows the same steps. Given the two margins in the Proposition, no unilateral deviation from the �rst

best is pro�table. Moreover, the consumer demand for services at Provider A is

1

2
+
v(q�A � q�B)� (sA � sB)

2�
=
1

2
+
v(q�A � q�B)� [C(q�A; e�A)� C(q�B ; e�B)]

2�
� bx�:

Hence, the �rst best is implemented as a perfect-Bayesian equilibrium.

Proof of Lemma 5: Suppose in equilibrium Provider A serves bx of consumers. Let the equilibrium
prospective price and index weight be pA, and �A, respectively. Equilibrium quality and cost e¤ort (qA; eA)
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must solve

max
q0A;e

0
A

[pA � C(q0A; e0A)]bx� [G(q0A) +H(e0A)] s.t. �Aq0A + (1� �A)e0A = �AqA + (1� �A)eA:

After simplifying the �rst-order conditions, and setting q0A = qA, q
0
B = qB , we have

�bxCe(qA; eA) = H 0(eA)�
(1� �A)

�A[G0(qA) + bxCq(qA; eA)] : (46)

Let bx = bx� and qA = q�A. Condition (46) is identical to (4), which implicitly de�nes e�A, only if �A = 1.
The proof that the �rst best is implementable only if �B = 1 follows the same steps.

Proof of Proposition 5: Let the quality and cost e¤ort of Provider B be (q�B ; e
�
B). By Lemma 5,

�A = 1 and hence consumers perfectly learn qA from the value index. Provider A chooses qA and eA to

maximize

[pA � C(qA; eA)]
�
1

2
+
v(qA � qB)� (sA � sB)

2�

�
� [G(qA) +H(eA)]:

The �rst-order conditions with respect to qA and eA are

[pA � C(qA; eA)]
v

2�
� Cq(qA; eA)bx = G0(qA) (47)

�Ce(qA; eA)bx = H 0(eA); (48)

where bx � �1
2
+
v(qA � qB)� (sA � sB)

2�

�
. Conditions (4) and (48) are identical at qA = q�A and eA = e

�
A.

To obtain the optimal prospective price pA, consider conditions (2) and (47). They are identical if and only

if

bx�[v � Cq(q�A; e�A)] = [pA � C(q�A; e�A)] v2� � Cq(q�A; e�A)bx�:
Simplifying further, we get

pA = 2�bx� + C(q�A; e�A)
= 2�

�
1

2
+
v(q�A � q�B)� [C(q�A; e�A)� C(q�B ; e�B)]

2�

�
+ C(q�A; e

�
A)

= � + C(q�B ; e
�
B) + v(q

�
A � q�B):

Given this value of pA, (q�A; e
�
A) is the unique solution to (47) and (48). The optimal pB is obtained by the

same steps. Finally, the demand for Provider A�s services is

1

2
+
v(q�A � q�B)� (sA � sB)

2�
=
1

2
+
v(q�A � q�B)� [C(q�A; e�A)� C(q�B ; e�B)]

2�
� bx�:
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This completes the �rst-best implementation.

Proof of Proposition 6: First, in the proof of Proposition 4 we have shown that e0A(q
�
A) =

d lnG0(q�A)

d lnH 0(e�A)
.

Using this identity, we can rewrite the �rst-order condition (45) under cost reimbursement as

mA
v

2�
�G0(q�A)

H 0(e�A)
=
d lnG0(q�A)

d lnH 0(e�A)
: (49)

Second, combining �rst-order conditions (47) and (48) under prospective payment, we have

[pA � C(q�A; e�A)]
v

2�
�G0(q�A)

H 0(e�A)
= �Cq(q

�
A; e

�
A)

Ce(q�A; e
�
A)
: (50)

By inspecting (49) and (50), we conclude that pA > mA+C(qA; eA) if and only if �
Cq(q

�
A; e

�
A)

Ce(q�A; e
�
A)
>
d lnG0(q�A)

d lnH 0(e�A)
.

The proof that pB > mB + C(q
�
B ; e

�
B) if and only if �

Cq(q
�
B ; e

�
B)

Ce(q�B ; e
�
B)
>
d lnG0(q�B)

d lnH 0(e�B)
follows the same steps.

Proof of Proposition 7: Suppose that condition (30) for Provider A is violated. We now show that

the health plan incurs a lower payment to providers by using Tiered Networks. First, because Provider B�s

nonnegative constraint is only binding in Tiered Networks, the health plan always minimizes the payment

to Provider B by using Tiered Networks, irrespective of the choice of the payment system.

Next, consider Provider A. By Proposition 6, the health plan minimizes the payment to Provider A

by using prospective payment in Value-based Networks if the Provider�s cost functions violate condition

(30). Now compare Provider A�s gross pro�t margin under prospective payment in Value-based Networks,

pA � C(qA; eA), to its cost margin under cost reimbursement in Tiered Networks, mA. By Corollary 2 and

Proposition 5, the value of pA � C(qA; eA) is bigger if and only if

� + v(q�A � q�B)� [C(q�A; e�A)� C(q�B ; e�B)] >
[G(q�A) +H(e

�
A)�G(q�B)�H(e�B)]bx� � 1=2 :

Using the de�nition of bx� in (6) and noting that bx� � 1=2 = v(q�A � q�B)� [C(q�A; e�A)� C(q�B ; e�B)]
2�

, we can

rewrite the inequality as

bx�fv(q�A � q�B)� [C(q�A; e�A)� C(q�B ; e�B)]g > G(q�A) +H(e�A)�G(q�B)�H(e�B)
or

bx�[vq�A � C(q�A; e�A)]� [G(q�A) +H(e�A)] > bx�[vq�B � C(q�B ; e�B)]� [G(q�B) +H(e�B)]: (51)
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By Lemma 1, the values of q�A and e
�
A are chosen to maximize bx�[vqA � C(qA; eA)] � [G(qA) +H(eA)] and

(q�A; e
�
A) 6= (q�B ; e�B). Because of the strict convexity of C, G, and H, inequality (51) holds. Hence the health

plan incurs a lower payment to Provider A by using cost reimbursement in Tiered Networks, compared to

using either cost reimbursement or prospective payment in Value-based Networks. This completes the proof

that the health plan minimizes the payment to providers by using Tiered Networks when condition (30) for

Provider A is violated.

Finally, in the discussion after the statement of the Proposition, we show by an example that if condition

(30) for Provider A is satis�ed, the health plan may minimize the payment to providers by using either

Tiered or Value-based Networks. This completes the proof of the Proposition.
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