Tagged: IEEE

Horenstein Elevated to IEEE Fellow

January 28th, 2016 in Awards, ECE, Faculty, News-EP, Recognition

Prominence of ECE Faculty Continues to Grow

By Gabriella McNevin

ECEHEADONEBoston University Department of Electrical and Computer Engineering Professor Mark Horenstein has been named an IEEE Fellow. He is being recognized for contributions to the modeling and measurements of electrostatics in industrial processes. His experimental and theoretical work has focused on some of the more complex electrostatic problems that relate to instrumentation and safety and well as to an understanding of the fundamental theories behind many industrial processes. His work has spanned such broad subjects at the propagating brush discharge, electrostatic phenomena in MEMS devices, modeling of corona discharge, and the electrostatics of parachutes.

The IEEE grade of Fellow is conferred by the IEEE Board of Directors upon a person with an outstanding record of accomplishments in any of the IEEE fields of interest. The total number selected in any one year cannot exceed one-tenth of one-percent of the total voting membership. IEEE Fellow is the highest grade of membership and is recognized by the technical community as a prestigious honor and an important career achievement.

Until 2015, Horenstein served as the Editor-in-Chief for the Journal of Electrostatics for 14 years, and he is an honorary life member of the Electrostatics Society of America (ESA). He was selected to be the Bill Bright Memorial Lecturer for the Institute of Physics’ Electrostatics 2015 conference, where he discussed “The Contribution of Surface Potential to Diverse Problems in Electrostatics.” He was also named International Fellow by the Electrostatics Working Group of the European Federation of Chemical Engineers at their Electrostatics 2013 conference, where he gave an invited lecture on “Future Trends in Industrial Electrostatics.  In 2012, he was named Outstanding Professor of the Year by the College of Engineering at Boston University. Horenstein is a named inventor on five patents. He received his Ph.D. degree in Electrical Engineering from MIT in 1978, and his M.S. in Electrical Engineering from the University of California at Berkeley in 1975.

In addition to Horenstein’s expertise in electrostatics, he is known for his textbooks on microelectronics and engineering design. He currently works on technology for self-cleaning photovoltaic solar panels and concentrating solar mirrors, and ultra-sensitive electrostatic field sensors

The IEEE is the world’s leading professional association for advancing technology for humanity. Through its 400,000 members in 160 countries, the IEEE is a leading authority on a wide variety of areas ranging from aerospace systems, computers and telecommunications to biomedical engineering, electric power and consumer electronics.

Tagged , , , , , , , , , , , , ,

Pavlidis Wins 2015 IEEE Distinguished Educator Award

August 27th, 2015 in Alumni, Awards, ECE, Faculty, News-EP, Recognition, Research, Research-EP

By Gabriella McNevin


Professor Pavlidis receiving the IEEE MTT-S “Distinguished Educator Award” from the MMT-S Society President Tim Lee at the IEEE-IMS symposium in Phoenix, AZ, on May 20, 2015

Professor Dimitris Pavlidis (ECE) received the 2015 Distinguished Educator Award from the IEEE Microwave Theory and Techniques Society (MTT-S). The award recognizes an individual who has achieved outstanding success in the field of microwave engineering and science as an Educator, Mentor, and Role Model for Microwave Engineers and Engineering Students. The award consists of a recognition plaque, a certificate and an honorarium of $2,500. Pavlidis was conferred at the IEEE International Microwave Symposium the week of 17-22 May 2015 in Phoenix, Arizona.

Pavlidis has pursued microwave research while remaining active in both academia and the microwave engineering industry. He boasts citation in more than 550 publications, and his work with semiconductor devices and circuits have an extraordinary impact on high-speed, high-frequency and photonic applications.

Early in Pavlidis career, he recognized the importance of mentoring engineering students, and in improving microwave engineering academic programs. In 1989 he introduced the first comprehensive Microwave Monolithic Integrated Circuits (MMIC) course, of many, that would be taught around the world. The MMIC course (IEEE Trans. on Education, 1989) was followed by courses covering design, processing and characterization of high frequency components; also, microwave and millimeter-wave circuits and devices. The courses have been well received by students, because they are structured to shed light on the fundamental principles of each topic, and simultaneously provide information on cutting-edge applications.

Pavlidis’ decorated academic career is complemented by achievements in the field of microwave engineering. Pavlidis was involved in pioneering University Research Centers like the Space Terahertz Center and the High-Frequency Microelectronics Center and played a key role in establishing Nanofabrication facilities.

Pavlidis is recognized for a dedication to advancing global microwave engineering efforts. He was appointed to be the Chair of the High Frequency Electronic Department at the Technical University of Darmstadt (TUD) and Director of International Relations at the Institute of Electronics, Microelectronics and Nanotechnology (IEMN). In this capacity, Prof. Pavlidis created an entirely new facility for high frequency micro-/nano-electronics at TUD that served for education and research.

Artwork for the IEEE MTT-S 2015 International Microwave Symposium program

Artwork for the IEEE MTT-S 2015 International Microwave Symposium program

He introduced double degree teaching programs between the universities of Georgia Tech. and the University of Lille1 that have been supported by the US Department of Education/EU Directorate General for Education and Culture (ATLANTIS Program) and Partner University Fund (PUF Program). He initiated major programs for graduate education through transatlantic mobility of students and obtaining of double degrees from US and European institutions. These involved consortia consisting of the universities of Darmstadt, Lille1, Imperial College, Michigan, Illinois, Georgia Tech and UC Irvine and funded by the Funds for Improvement of Postsecondary Education (FIPSE) and the European Union under joint US-EU initiatives. He has also coordinated and contributed to the initiation of CINTRA, a new international laboratory in Singapore’s Nanyang Technological University for research and education in micro/nano technology and high frequency electronics and optoelectronics. This laboratory is sponsored by the CNRS French Agency, and encourages graduate and postdoctoral students gain experience in Singapore. He played a key role in promoting microwave to Terahertz engineering, chaired and assisted in the organization of numerous international and IEEE meetings and was the general TPC Chair of the 2010 European Microwave Conference.

Ultimately, Prof. Pavlidis has trained and inspired several generations of students by providing them with the tools for setting up extremely successful careers in science and engineering.

Pavlidis has guided students to become highly influential Professors at top schools (Purdue; Seoul National University; Central University Taiwan; Nanyang University, Singapore) as well as key managers and senior scientists in industry (Northrop Grumman, TRW, IQE, Raytheon, Tyco, Freescale, Thales Alenia Space, EADS, Skyworks, Intel, Global Foundries, Samsung, ITRI).

His contributions to Education continue as the Program Director of the National Science Foundation’s Program on “Electronic, Photonic and Magnetic Devices”, Coordinator of future emerging technologies such as the “Beyond Graphene” (2DARE) program, and ECCS Coordinator of the Materials Genome (DMREF) program and various ERC Centers. In his present capacity, he is focused on boosting innovative potential by integrating the education of future scientists, engineers, and educators into a broad portfolio.

Tagged , , , ,

Silicon: The Material That Fueled Technological Revolutions

November 17th, 2014 in ECE, Events, Faculty, Lectures, News-EP, Research, Research-EP

Vanderbilt University Dean Philippe Fauchet Visits BU to join the ECE Distinguished Lecture Series

By Gabriella McNevin

Mechanical Engineering Department Chair of Mechanical Engineering, Professor Alice White (left) and Dean of the School of Engineering at Vanderbilt University, Professor Philippe Fauchet (right) paused for a photo after the lecture. White and Fauchet met while she was working at Bell Labs.

Mechanical Engineering Department Chair of Mechanical Engineering, Professor Alice White (left) and Dean of the School of Engineering at Vanderbilt University, Professor Philippe Fauchet (right) paused for a photo after the lecture. White and Fauchet met while she was working at Bell Labs.

“Aside from oxygen, silicon is the most abundant material on earth’s crust,” stated Professor Philippe Fauchet while speaking as part of the ECE Distinguished Lecture Series at Boston University.

On Wednesday, October 29th, Fauchet’s lecture audience sat waiting to learn how silicon has evolved in the last 20 years to become an almost universal material outside electronics. He answered their anticipation with a disclaimer.

“I will not cover the details of the extensive research. I will give a tour.”

Thus, Fauchet began a lecture, entitled ‘Nanoscale Silicon as an Optical Material,’ to share a big picture view of a wide-ranging subject. He provided an overview on the history of silicon research, and insight on how it may be practically applied for mass-market consumption. He reviewed properties of bulk silicon and techniques by which is may be exploited in research.

In the last 20 years, researchers have expanded and repurposed silicon for use in new industries. Professor Fauchet elaborated on breakthrough silicon biosensor technology that can lead to Ebola detection equipment. Early work was considered to be a success, but was not adapted for wide-use in the health care sector. Its detection capacity was not considered sensitive enough.

Currently, Professor Fauchet is working to advance research on silicon biosensors for the detection of viruses such as Ebola. Fauchet and his team are developing technology with increasing sensitivity, and the ability to concentrate affected Ebola viruses.

Professor Philippe Fauchet has been the Dean of the School of Engineering at Vanderbilt University since 2012. He has founded a successful startup, has over 400 publications, and is a Fellow of SPIE, OSA, IEEE, APS, and MRS.

Professor Fauchet concluded the 2014 Fall ECE Distinguished Lecture Series. The 2015 Spring ECE Distinguished Lecture Series will include Professor Ken Loparo (3/4), Professor Luke Lester (3/18), and Professor John Lach (4/1).

Tagged , , , , , , , , , , , , , , , ,

Klamkin Wins NASA Early Career Faculty Award

July 23rd, 2014 in Awards, ECE, Faculty, Grants, Recognition, Research, Research-EP, Uncategorized

Recognized for Efforts to Improve Deep Space Communication

By Gabriella McNevin

Klamkin (ECE, MSE) at the Jeppix Photonic Integration Training Workshop at the Boston University Photonics Center.

Klamkin (ECE, MSE) at the Jeppix Photonic Integration Training Workshop at the Boston University Photonics Center.

Assistant Professor Jonathan Klamkin (ECE, MSE) is one of seven university researchers nationwide to receive the 2014 NASA Early Career Faculty Award. The recognition honors early career faculty focused on space technology that address critical needs in the US space program.

Since joining Boston University in 2013, Klamkin’s impressive accomplishments include, winning the College of Engineering Dean’s Catalyst Award in 2013 and being elevated to Senior Member status of the IEEE in 2014.

Klamkin caught NASA’s attention with a proposal to develop integrated laser transmitter technology for deep space communications. NASA recently completed a mission, the Lunar Laser Communication Demonstration (LLCD), which demonstrated high-rate laser communication between Earth and the Moon. Now NASA wants to further this technology for future missions to Mars, and Klamkin will develop technology to allow for such deep space communication.

High-rate space communication is made possible by laser communication transmitters. The laser sends data to Earth through space similar to how ground-based lasers send data over fiber-optic cables for the Internet.

With funding from the NASA grant and partnerships with MIT Lincoln Laboratory and Jet Propulsion Laboratory, Klamkin expects to apply photonic integrated circuit technology to reduce the size, weight, and power of space laser transmitters. Photonic integration is a means to integrate several photonic functions on a chip in a manner analogous to integrating transistors in an electronic integrated circuit. Klamkin hopes that this technology will inspire new design methodologies for space laser transmitter hardware.

NASA’s Early Career Faculty Award will serve as a benchmark to measure the achievements to come for Professor Klamkin. To put the award into perspective, Michael Gazarik of NASA Space Technology Mission Directorate said, “Technology drives exploration, and these researchers will provide fuel for NASA’s innovation engine.”

Tagged , , , , , , , , , , , , , , , ,