Tagged: Electrical and Computer Engineering

Five BU Teams to Advance to Final Round in National Competition

April 22nd, 2016 in ECE, Recognition, Senior Design, Students, Uncategorized, Undergraduate Student Opportunities

By Sara Elizabeth Cody

E-Fire team member Nathaniel Michener (ECE, '16)

E-Fire team member Nathaniel Michener (ECE, ’16)

Five teams of ECE students competing in the fifth annual Intel-Cornell Cup have advanced to the final round in the competition. The Intel-Cornell Cup is a college-level design competition that aims to empower inventors of the newest innovative applications of embedded technology.

“This is a major national competition and personally I think our teams’ performances reflect highly on the College,” says Associate Professor of Practice Alan Pisano (ECE), who is one of the faculty advisor for the competition. “We have five very interesting projects in the finals, more than any other school, which seek to tackle nationally relevant issues that will benefit society.”

The competition, which alternates between live and online competition annually, is following an online format this year. Initially, six teams from BU advanced to the semifinal round and competed against 31 other teams from around the country. Five teams from BU, comprised of senior design project teams, are competing with 24 other teams in the final round.

The BU finalist teams are:

  • BreakerBot
  • An interdisciplinary team of ECE and ME students and sponsored by Consolidated Edison to build an autonomous robot to move 800 pound circuit breakers in their substations.
  • Girodicer
  • A team of ECE students building a drone to locate ice dams and apply melting chemicals to “break the dam.”
  • Moove
  • Created by a team of ECE students (with one BME dual-degree student), this device is essentially a “Fitbit” for cows, networking them together and gathering data to analyze in a cloud.
  • TED
  • A team of ECE students designing a translating teddy bear toy for young children to help them learn different languages
  • E-Fire
  • An ECE team creating a device to measure high-energy electrons in space

 

Projects will be completed by the end of March, fulfilling both a course requirement and a competition requirement with support from Pisano and the other ECE Senior Design Capstone supporting faculty members, Lecturer Osama Alshaykh and Senior Lecturer Babak Kia. The final judging takes place at the end of April. The competition is sponsored primarily by Intel and Cornell University.

Tagged , , , , , , , , , , , , , , , , ,

Industry Partners Established for Massachusetts Open Cloud (MOC)

November 13th, 2015 in ECE, Faculty, News-CE, Research-CE, Uncategorized

MOC successfully rallies academia, government and industry in developing new cloud.

By Rebecca Jahnke (COM ’17)

MOC Cloud is the first Open Cloud Exchange implemented and designed in Massachusetts. Graphic by Corelyn Blog.

The Massachusetts Open Cloud (MOC) project – led by ECE Professor Orran Krieger – just announced a set of core industry partners, spanning key hardware, software and services industry sectors. The MOC is an ambitious project that aims to create a public cloud, based on a revolutionary model for a multi-provider Open Cloud eXchange (OCX).

In existing public clouds one provider operates the entire cloud.  In contrast, the OCX model underlying the MOC allows for multiple entities to provide computing resources and services in a level playing field. Having multiple providers – all with their own specialties – participating in the same cloud will enable a broader range of users and applications to be supported.

The core corporate partners of the MOC – Brocade, Cisco, Intel, Lenovo, Red Hat and Two Sigma – have made financial commitments as well as in-kind commitments, ranging from computer infrastructure in support of MOC deployment and operation, to engineering expertise to support the development of OCX functionality. The companies have also pledged executive sponsors to keep company and project goals aligned and to support MOC’s development. These new partnerships underscore the strong and growing industry support for the project, which has already secured in excess of  $14 million of funding – more than quadruple the $3 million in seed funding that the MOC received from the Mass Tech Collaborative in 2014.

ECE Professor Orran Krieger is the head of the MOC Project.

ECE Professor Orran Krieger is the head of the MOC Project.

Incubated at and seed-funded by the Hariri Institute for Computing at BU (as part of the Cloud Computing Initiative led by its Director, Orran Krieger), this complex project has benefitted from strong BU institutional and administrative support, including the offices of the Provost, Corporate Relations, General Council, and IS&T Research Computing.  Anchored at BU, the project is a collaboration that also involves Harvard University, MIT, UMass, and Northeastern University, as well as the Massachusetts Green High-Performance Computing Center (MGHPCC).  The project leverages and builds on current and prior research by a number of ECE and CS faculty members at BU including Jonathan Appavoo, Azer Bestavros, Ran Canetti, Ayse Coskun, and Orran Krieger.

Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

ECE’s Quantum Code Master

November 2nd, 2015 in ECE, Faculty, News-CE, Research, Research-CE

Using the strange laws of quantum mechanics to encrypt the world’s most secret messages

By Kate Becker, originally published in BU Research

Alexander Sergienko, a professor of electrical and computer engineering, is working to keep encrypted information safe, even over long distances. Photo by Cydney Scott

Alexander Sergienko, a professor of electrical and computer engineering, is working to keep encrypted information safe, even over long distances. Photo by Cydney Scott

Just outside Washington, DC, a heavily armored truck, protected by armed guards, rumbles toward the Pentagon. Its cargo is critical to keeping the most sensitive government communications secret. But it’s not what you might expect. That precious cargo is nothing but numbers.

Though the details are a government secret, according to Alexander Sergienko, a Boston University College of Engineering professor of electrical and computer engineering, trucks like this are one likely way that the United States government might transport the numbers that are at the heart of the only unbreakable encryption technique in the world: the one-time pad. The one-time pad is a string of random numbers, also called a key, which a sender uses to encrypt her message.

But the one-time pad has one big weakness: the random numbers that are the key to coding and decoding it have to be physically transported from one place to another. Sending them over the internet, encrypted by traditional security measures, would be like locking the keys to Fort Knox inside a child’s piggy bank. If the numbers are intercepted, the code is worthless. So, how can you get random numbers from place to place with absolute security? The answer isn’t more armed guards and armored trucks, says Sergienko, who also has an appointment as a professor of physics in BU’s College of Arts & Sciences. It’s quantum mechanics, the bizarre set of rules that governs the subatomic world, where the everyday norms we take for granted—that an object should have a well-defined location and speed, for instance, and that it can only be in one place at a time—go out the window.

The one-time pad encryption method dates back to before World War II, and was used to secure diplomatic communiqués and wartime dispatches. The sender encrypts her message by taking each letter, or bit, of the original message and combining it mathematically with successive random numbers from the key, transforming it into a sequence of totally random numbers. (The longer the message, the longer the key must be: a message that’s 100 letters long requires a key of at least 100 digits.) The encrypted message is now absolutely secure: the sender can broadcast it over a radio or even scream it from the rooftops, if she wants. Only someone with an identical copy of the key can crack the code, by subtracting a matching set of numbers from the broadcast to unlock it. But the key is unbreakable only if it is used just once; if used a second time, code breakers can begin to reverse-engineer the random-number list. With every additional use, the code gets weaker and weaker, so the bank of random numbers must be constantly refilled to keep secure government communication going. That means more numbers, more armored trucks—and more effort and expense.

Sergienko is one of a group of physicists and computer scientists at BU and beyond working to solve this problem with an encryption technique called secure quantum key distribution. They are harnessing cutting-edge technology to implement basic protocols that are some 30 years old. Quantum key distribution exploits the strange laws of quantum mechanics to create a truly random key that is totally secure from eavesdroppers.

Here’s how it works. Each “bit” of the key is encoded in the polarization of a single photon—essentially, the direction in which the light particle is “waving.” It can be up, down, or anything in between. In this case, though, each photon is prepared set in only one of two “bases”—horizontal/vertical, where horizontal might represent a one and vertical a zero; or tilted at an angle, with 45 degrees up representing one and 45 degrees down representing zero.

Sergienko maps out how it works using three characters well known to physics students: Alice, who’s sending the message; Bob, who is receiving it; and Eve, an eavesdropper out to covertly intercept it. To read out the state of each incoming photon, Bob has to pick the correct base. Alice can’t tell him the bases in advance, so he guesses randomly. Later, Alice reports the bases she used for each photon, and Bob throws away the readings for which he picked the wrong base. The result: Bob and Alice end up with identical, random strings of ones and zeros that they can use as a fresh key for their future communications.

If eavesdropper Eve tries to intercept photons traveling from Alice to Bob, Bob will notice a shortage of incoming photons. Eve could attempt to hide the theft by copying the polarization of each stolen photon and sending it on to Bob, but the laws of quantum mechanics, which make it impossible to perfectly “clone” the quantum state of a photon, get in her way, so she is bound to make mistakes that betray her presence. So, not only do Alice and Bob have truly random keys in hand, they also have the ultimate security against eavesdroppers: the laws of physics.

That’s the easy part, from Sergienko’s point of view. The hard part: making this technique work over practical distances. That’s because, to retain the quantum properties that make them so useful for secure communication, photons have to be kept isolated from all external disturbances. Another challenge: the same “no-cloning” law that thwarted Eve prohibits the use of any amplifiers, standard in traditional telecommunications, on the optical lines that transmit the photons. “One single photon has to travel from point A to point B,” says Sergienko. It’s as if the code were written on eggshells. How can you send millions or billions of those eggshells, far and fast?

“It’s a dilemma,” says Sergienko. “The quantum realm gives you more opportunities, but to make these opportunities work for people, you have to solve the problem of how the quantum state will survive in the classical environment,” the messy reality in which it’s nearly impossible to avoid interacting with other fields and particles.

Today’s “best of the best” technology can create a few million quantum states per second, says Sergienko. But the farther you try to send them, the more of them will “crack” like broken eggshells—that is, get absorbed into the line and disappear—before they reach their destination. So while some physicists are chasing distance records, dispatching quantum states across hundreds of kilometers, Sergienko is more interested in finding the optimal balance between transmission distance and the rate at which new states can be created. Today, data rates of about 100 kHz are possible within a modest city-sized network. Not exactly telecom speed—typical home broadband connections run 10 or 100 times faster—but good enough to transmit the bits of a robust key that guarantees the highest level of secure communication.

In 2003 and 2004, Sergienko and Gregg Jaeger, an associate professor of natural sciences and mathematics in BU’s College of General Studies, led a BU team that partnered with researchers at Harvard University and BBN Technologies (now a part of Raytheon) to build just such a system. With support from the Defense Advanced Research Projects Agency (DARPA), the military’s advanced research arm, they used standard commercial fiber optic cables in the ground to send photons between three sites in the greater Boston area: one at BU, one at Harvard, and a third at BBN’s headquarters, near Fresh Pond in Cambridge. The system spanned about 18 miles end-to-end. “We showed that this secure communication can be established between three nodes through the metropolitan fiber, and can go 24/7,” says Sergienko. Even though the data rate was not high—just about 1,000 bits per second, slower than a dial-up modem—over time, each site would build up a long enough key to enable secure communication on demand. The system ran for three years, and was followed several years later by similar, independent demonstration networks in Europe, Japan, and China.

What happened next? That’s a government secret. But Sergienko is confident that secure quantum key distribution networks are live today somewhere in the United States. The likeliest spots: Washington, DC, where such a network could enable secure communication between government agencies, eliminating the need for all those trucks; and Wall Street, where it would guarantee absolute privacy for transactions between financial institutions.

Today, Sergienko is trying to narrow the gap between quantum and classical data rates. With fiber quality nearly as good as it can get, and the rate at which new quantum states can be created almost maxed out, Sergienko and his colleagues around the world are taking a new tack: encoding more bits of information in a single photon. While photon polarization can only represent zero or one, a different property of photons, called orbital angular momentum, can encode at least 10 different distinguishable states, and possibly more. Instead of simple binary bits, cryptographers would have a whole mini alphabet to work with.

As for those armored trucks? Though they might still be standard for transporting secret keys to remote locations, Sergienko wouldn’t be surprised if they are no longer pulling up to the Pentagon. But the secrets of the unbreakable code are still just that: secret.

This research is a continuation of work done by Professor Sergienko in 2013, information on which can be found here.

Tagged , , , , , , , , , , , , , , , , , , , , , , , , ,

Coskun, Egele Partner with Sandia Labs for HPC Systems Research

October 23rd, 2015 in ECE, Faculty, News-CE, Research, Research-CE, Uncategorized

By Bhumika Salwan (Questrom ’16)

computing_grid

This is a typical high performance computing system used in laboratories such as Sandia Labs.

ECE Associate Professor Ayse Coskun and Assistant Professor Manuel Egele were awarded $189,000 for their research in data analytics with Sandia National Laboratories for improving energy efficiency and security of high performance computing (HPC) systems. Sandia Labs is one of the nation’s premier science and engineering laboratories for national security, with strategic areas in nuclear weapons, defense systems and assessments, energy and climate, and international, homeland, and nuclear security.

Professor Ayse Coskun’s research group at Boston University is widely-cited, with expertise in the topics of energy-efficient computing, computer system modeling and simulation, design of intelligent scheduling and power management techniques, and green computing in data centers and HPC systems. Professor Manuel Egele is an expert on systems and software security whose research has been published at top-tier peer reviewed conferences including NDSS and CCS.

Their project aims to identify which data collected out of HPC systems would be useful for identifying performance characteristics, inefficiencies, and malicious behavior. It will then design methods to leverage these data to design runtime strategies to improve efficiency and security. Professors Coskun and Egele’s research teams will first collect data on real HPC clusters at Sandia Labs and at the Massachusetts Green High Performance Computing Center (MGHPCC). They will then analyze that data to determine the most relevant, minimum set of metrics that are good indicators of energy and normal system behavior, and construct models that can predict performance variations and anomalous behavior resulting from security breaches or fraudulent activities.

The knowledge gained through this project will aid users and admins in answering questions such as the following: How much resources (e.g., how many cores or what size of memory) do I need for my application? Why does the performance of my application wildly vary across different runs?  What information can we provide to system administrators to enable more efficient problem diagnosis? Can we determine whether software applications are behaving “normally”?

Assistant Professor Manuele Egele. Photo by Frank Curran.

Assistant Professor Manuele Egele. Photo by Frank Curran.

Associate Professor Ayse Coskun. Photo by Mike Spencer.

Associate Professor Ayse Coskun. Photo by Mike Spencer.

 

 

Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Research Grants for Three ECE Undergraduates

July 14th, 2014 in Awards, ECE, Grants, Recognition, Research, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students

By Paloma Parikh (COM’15)

Three ECE undergraduate students won grants from two programs affiliated with Boston University’s Undergraduate Research Opportunities Program. Annie Lane (ENG’16) and Maya Saint Germain (ENG’16) are recipients of the Clare Boothe Luce Award; and Dean Shi, (ENG’16) won the Hariri Award.

Annie Lane; Clare Boothe Luce Award Recipient

Annie Lane; Clare Boothe Luce Award Recipient

Annie Lane won the Clare Boothe Luce Award for her research project, “Data Center Power Regulation Modeling,” which she is working on with mentor Assistant Professor Ayse Coskun (ECE). The goal of the project is to minimize electricity costs for data centers. To do so, Lane is developing a power control policy based on a mathematical model. Additionally, she will evaluate alternative research models in the hopes of finding the most effective process. Lane believes the practicality of her project caught the attention of the judges. In an email correspondence, Lane mentioned that the project has potential for real-life application, “BU has partnered with other universities, the state, and companies to build and manage the Massachusetts Green High Power Computing Center (MGHPCC) in Holyoke, MA. The research results will help increase energy savings at MGHPCC.”

 

Maya Saint Germain; Clare Boothe Luce Award Recipient

Maya Saint Germain; Clare Boothe Luce Award Recipient

Maya Saint Germain, with mentor Professor and Associate Chair for Graduate Studies Hamid Nawab (ECE), won the Clare Boothe Luce Award to fund a project entitled “Human-in-Circuit Signal Processing.” Saint Germain explains Human-in-Circuit Signal Processing as, “a subfield of signal processing in which the signal that is being processed is produced by a human, and – after processing – will be perceived by a human.” Her goal is to improve how the signal is processed. Saint Germain feels proud that she won the award, “It means that my research is important and relevant.”

 

 

Dean Shi; Hariri Award Recipient

Dean Shi; Hariri Award Recipient

Dean Shi won the Hariri Award for his project, “Power Optimization and Development of Power Policies on Mobile Devices,” which he is working on with mentor Assistant Professor Ayse Coskun (ECE). Shi is working to lengthen battery life for cell phones. To do so, he is researching how cell phones use battery power through different functions, such as applications. With this understanding, he will be able to optimize power usage and make cell phone batteries last longer. Shi recalls, All of my friends are always complaining, ‘Oh I just charged my phone this morning but it’s already at 10% battery.’” This award will help Shi achieve his goal of lengthening cell phone battery life.

 

The Undergraduate Research Opportunities Program (UROP) is a supportive resource for faculty-mentor research. It provides grants to students through various organizations such as the Clare Boothe Luce Program and the Rafik B. Hariri Institute for Computing and Computational Science & Engineering. The Clare Boothe Luce Program aims to support women in science, mathematics, and engineering. Recipients of the undergraduate research awards receive funding to conduct a research project with a faculty mentor. The Hariri Institute promotes innovation in the sciences of computing and engineering. With the Hariri award, they provide grants for collaborative research and training initiatives.

Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

ECE Seniors Share an Intention to Improve Societal Issues by Improving Technology

June 12th, 2014 in Alumni, Awards, Courses, ECE, Events, Recognition, Senior Design, Undergraduate Students, Video

By Gabriella McNevin

Print                                         Print                                            Print

 ECE Day 2014

Senior Capstone Design and Honors Thesis students in the Department of Electrical and Computer Engineering (ECE) spent May 5, 2014 showcasing projects that represented the culmination of their education at Boston University.

Each presentation accomplished more than just entertain the audience; it earned its creators their due respect. Topics covered technology like a 3D printer scanner, a remote controlled helicopter, and a Mario Kart video game.

During team 6’s presentation, “Danger Zone” by Kenny Loggins blared through the speakers. The big screen streamed a video of a search and rescue remote controlled car, which the team programmed to patrol a fire hazard site for survivors. (Click the controller to listen to “Danger Zone”).

Earlier in the day, the team that created EPIC/ EpiPen Calls concluded their presentation with a spirited Q&A. A number of people –including team members, the client that requested technological support, and a panel of judges– raised their voice to speak about the real-world application and potential of the invention.

Photo by Chitose Suzuki for Boston University Photography © 2010 Boston University all rights reserved.

Photo by Chitose Suzuki for Boston University Photography © 2010 Boston University all rights reserved.

The commercial application that teams intend for their projects were as diverse as the equipment they used. The purpose of the designs ranged from assisting the visually impaired, to improving search and rescue missions, to generating alternative energy harvesting methods.

A panel of ECE alumni judges watched each presentation and asked questions to pick a winner for five of the ECE Day Awards. The judges were well prepared to make the call because each had once walked in the students’ shoes and all are currently executing the engineering skills that they realized during their Senior Capstone Design Course. ECE graduates Peter Galvin, Mikhail Gurevich, Craig Laboda, Ryan Lagoy, George Matthews, Drew Morris, Bradley Rufleth, Dan Ryan and Stephen Snyder served as the 2014 judges. Each missed work –at companies such as General Electric, Microsoft, ByteLite, and Btiometry– to share insight with the graduating class of 2014, and decide the most impressive project.

“Wow,” muttered an impressed audience member after the AutoScan team calmly countered questions posed by judges on the technical depth of the team’s invention. The team’s pothole detection system demonstrated the technical skill that is only achievable by a team of well-matched individuals with different specialties.

The dynamic skill sets within each team is key in assembling the ECE Senior Capstone Design Project teams. Associate Professor of the Practice Alan Pisano (ECE) coordinated 20 well-rounded teams by measuring individual strengths. For example, he placed students that gravitate towards user interface development with those who lean towards sensor analytics or java script programming.

Photo by Chitose Suzuki for Boston University Photography © 2010 Boston University all rights reserved.

Photo by Chitose Suzuki for Boston University Photography © 2010 Boston University all rights reserved.

The team members that created AutoScan contributed either their hardware or software know-how to develop the project that won Best ECE Senior Design Project Award, 2014. The team was also nominated to show a poster of their project at the national Capstone Design Conference in Columbus, Ohio. The mission of the Capstone Design Conference in Columbus is to improve design-based courses around the country. On June 2nd, Professor Pisano and team members Vinny DeGenova, Stuart Minshull, Nandheesh Prasad, Austen Schmidt, and Charlie Vincent flew to Ohio for the two-day event. Professor Pisano led a workshop on assembling strong design teams.

A significant feature of the Senior Design Capstone project is the team client. Each team is paired with a client. The client (who is either a professor or actively working) requests software and/or hardware for a particular problem that will improve a societal issue.

Photo by Chitose Suzuki for Boston University Photography © 2010 Boston University all rights reserved.

Photo by Chitose Suzuki for Boston University Photography © 2010 Boston University all rights reserved.

The principle of a school in Boston that specializes in mentally and physically disabled student academics posed a task for one ECE senior design team. Carter School Principal Marianne Kopaczynski requested a learning tool that would impart fundamental communication and cognitive skills to students. The students created a user-friendly devise called the Automated Announcement System that generates announcements based on each student’s location. Principle Kopaczynski plans to install the system in the school to support location-based feedback learning.

ECE Day Award Winners

Best ECE Senior Design Project Award AutoScan
Entrepreneurial Award Cloud 3D Scanner
Design Excellence Award Cement Impedance Analyzer
Design Excellence Award dDOSI Spectrum Analysis Unit (dSAU)
Michael F. Ruane Award for Excellence in Senior Capstone Design Samuel Howes
Senior Honors Thesis Award Julie Frish, “Development of Low Loss Waveguides for Mid-Infrared Integrated Photonic Circuits”
Center for Space Physics Undergraduate Research Award Andrew Kelley
Teacher of the Year Ajay Joshi
Graduate Teaching Fellow of the Year/Teaching Assistant of the Year Lake Bu

Congratulations, Class of 2014!
Photo by Chitose Suzuki for Boston University Photography © 2010 Boston University all rights reserved.

Photo by Chitose Suzuki for Boston University Photography © 2010 Boston University all rights reserved.

 

By Gabriella McNevin

Tagged , , , , , , , , , , , , , , ,