Tagged: Electric Circuit Theory (EK307)

Reimagining Engineering Education

August 6th, 2014 in Courses, Students, Undergraduate Programs, Undergraduate Student Opportunities

How ENG is Transforming the Classroom through Digital Learning Technology

By Mark Dwortzan

Active learning in EK301, Engineering Mechanics

Active learning in EK301, Engineering Mechanics

You’ve seen it before: a single faculty member on stage delivering a lecture to row after row of students dutifully taking notes, with little or no interaction between the lecturer and the note takers. It’s been the model for science and engineering education for more than a century, but a new paradigm is emerging that turns this model on its head, all while improving student outcomes: the flipped classroom.

Screenshot of online course video from EK 127, Introduction to Engineering Computation

Screenshot of online course video from EK 127, Introduction to Engineering Computation

In the flipped classroom, students view lectures online while at home, and spend classroom time applying what they learned both individually and in small group exercises. Collaborating with their peers at round tables in a revamped “learning studio” and guided by the faculty member and a team of teaching assistants moving from table to table, they solve problems that reflect the scope of the lecture material. And the difficulty: some problems are chosen based on trouble spots identified via mandatory quizzes that accompany the online lectures to assess student comprehension.

This is where engineering education is heading, and Boston University, which launched its Digital Learning Initiative (DLI) last year to spearhead innovative projects in online learning at all of its schools and colleges, is fully on board. The DLI recently awarded $80,000 to fund a College of Engineering proposal to enhance two core undergraduate engineering courses, EK127 (Introduction to Engineering Computation) and EK307 (Electric Circuits), with a suite of classroom-flipping, studio-based educational technologies and techniques. Lessons learned from this pilot program could be used to upgrade the learning experience in other engineering courses.

Professor Thomas Little (ECE, SE), the College of Engineering’s associate dean for Educational Initiatives, sees these pilot projects as part of a broader College-wide effort to use digital learning technologies—from tablets to Massively Open Online Courses (MOOCs)—to bring engineering education into the 21st century.

“Inspired by the success of these technologies in other disciplines and energized by the support and training that the DLI is providing, we are developing new ways to improve what’s important to the student: learning; retention; and career preparation,” said Little.

In both EK127 and EK307, instructors and teaching assistants funded by the DLI grant will develop course content using edX, a non-profit online platform that offers interactive online classes and MOOCs—not as a vehicle to reach large numbers of students via the Internet, but as a tool to boost active learning in the classroom. For each class meeting, they will record a video on the material students need to learn for that class, make it accessible through the edX platform, use edX assessment tools to set up online quizzes, and design active learning exercises.

The instructor for EK127, 2014 Metcalf Cup and Prize winner and Assistant Professor Stormy Attaway (ME), has been gradually flipping the course over the last three years. With the new funding—and support by “course builders” such as Declan Bowman (BME’15), one of the first students in the College’s STEM Educator-Engineer Program (STEEP)—she aims to completely flip the course. Once all course content is placed online along with assessments, Attaway will devote all classroom time to active learning in Photonics Room 117, an instructional space that the College is converting into an active learning studio complete with round tables and modern electronic displays.

“At this point there is ample evidence that flipped classes with active learning environments work; the focus is now on how to get faculty to adopt these best practices,” she said, noting that transforming a traditional lecture into an online course module—breaking it into bite-sized chunks, recording the video and hosting it on the edX platform—can take up to 20 hours. “Although my primary goal is to improve the learning experience for my students, my secondary goal is to be a resource for my colleagues so that I can help them transform their courses.”

With his portion of the DLI funding, Professor Mark Horenstein (ECE) is developing a series of 30-minute course modules to aid fellow EK307 instructors who wish to flip their classrooms or enhance them with online instruction. Always available to students and consisting of animated, voice-over PowerPoint and/or videotaped lectures, the modules are intended to provide an interactive learning tool to supplement traditional textbooks, lectures, discussions and lab work.

“In my experience, students learn in a myriad of different ways,” said Horenstein. “Some students thrive in the traditional lecture/homework environment, while others learn best in a hands-on setting, for example, when a small group works with a professor during office hours on specific problems and concepts. Still other students learn best in the laboratory, where they can transfer lecture/discussion concepts into the hands-on design of electric circuits that solve a problem or meet a desired specification. The hope is that these modules will service all of these learning styles, and more.”

The two pilot projects leverage earlier digital technology-enabled active learning efforts by Lecturer Caleb Farny (ME) in EK301 (Engineering Mechanics) and Assistant Professor Martin Steffin (BME, MED) in BE 209 (Principles of Molecular Cell Biology and Biotechnology), and pioneering work by faculty in the Physics Department in peer-based learning and the use of studio space.

“As these early adopters show what’s possible, we look forward to bringing additional faculty on board,” said Little. “By working with people who are taking risks to do the right thing for students, we’re going to demonstrate the potential of digital learning technologies to make a difference for our engineering students.”

Tagged , , , , , , , , , ,

Sophomores Win 1st Prize at #HackBostonStrong

June 17th, 2014 in Awards, Events, News-CE, Recognition, Students, Undergraduate Students

Hacking for a Good Cause

By Gabriella McNevin and Donald Rock (COM ’17)


A year after the tragic Boston Marathon Bombings, a group of engineers and computer scientists wanted to commemorate the tragedy. To help the community, mobile application development firm Intrepid Pursuits organized HackBostonStrong, an event that took place to encourage technological advancements to solve marathon-related issues. In an event announcement, Intrepid Pursuits said, “Armed with years of Boston Marathon running data, we’re calling all designers, developers and tech-minded folks to produce the best marathon-related tool.” The event was to take place on Friday, April 18th.

A member of the winning team, working hard through the night.

Winston Chen (ECE ’16) working hard through the night.

On Saturday, April 19th, three BU students and one UMass Lowell student were named the winners of HackBostonStrong. Winston Chen (ECE ’16), Dean Shi (ECE ’16), Huy Le (CAS ‘16), and Corey Prak (UMass Lowell ’15) joined the ranks of industry professionals and student-hackers to show their support for the city. The team was one of the few groups that worked through the night to take advantage of the 26.2 hours allotted to each team.

The team worked at Intrepid Pursuits’ design space in Cambridge, MA, which was open to all 6 teams who participated in the event. The organizers kept participants fed and hydrated with meals and snacks throughout the night. Participants brought their own toothbrushes and laptops for “all-night productivity.”


The Echo Can prototype. The photo shows the bottom/landing platform of the trash receptacle. The microphone is the black device in the center of the platform.

The Echo Can prototype. The photo shows the bottom/landing platform of the trash receptacle. The microphone is the black device in the center of the platform.

The students worked diligently. Team member Huy Le recalls getting the most sleep of anyone in the group with 5.5 hours. Winston slept 3 hours, Corey slept around 5 hours, and Dean gave into 1 hour of sleep.

Their hard work paid off. The team developed the “Echo Can,” which is a device that could change the way people think about recycling. It is a green bin that sorts recyclable waste from unrecyclable. It tracks the audio signals of an object being dropped into the trashcan. A microphone, placed inside the can, discerns the analog signal, which is later translated into a digital format.

Team members worked together to blend their unique skills. Le and Prak used an open source program to see graphs of the frequencies of the sound waves detected from the platform and were able to find reasonable thresholds to distinguish between recyclable and waste material. Chen and Shi used their ECE skillset to develop the electrical engineering circuits with tools they had learned in Electric Circuit Theory (EK307). The pair also recalled lessons from Intro to Software Engineering (EC327) to apply C-language software programming.

The team was equipped with the few supplies allowed by a college student’s budget. They arrived with supply kits from Chen and Shi’s EK307 course, some resistors, servos they borrowed from BU’s hackerspace, and transistors they purchased at RadioShack. Other than those materials, everything else used were items one would be able to find in a dorm room – batteries, a bin, some cardboard, and tape. As Le explained, “not having the best material and supplies was a real issue.”

The team felt the Echo Can would be more beneficial to the community than any of the marathon-related tools they had conjured. The fine print in the competition rules revealed “if running’s not your jam, you could honor Boston by creating a more general product or prototype that benefits Boston and its citizens as a whole.”

In the end, the underdogs won. They were so surprised to win that Chen joked, “When I first heard them say Echo Can as the grand prize winner, I thought to myself, ‘Who is Echo Can?’”

This image shows the bottom view of the microphone and landing platform. The sound trash makes when dropping onto the platform is recorded. The sound, or analog signal, is then translated into a digital format.

This image shows the bottom view of the microphone and landing platform. The sound trash makes when dropping onto the platform is recorded. The sound, or analog signal, is then translated into a digital format.

Andrea Garvey of Intrepid Pursuits noted that the judges were impressed by Echo Can because it was “an elegant solution to a common problem.” Contests were judged on four criteria: innovation, design, impact, and execution. They were expected to create a practical design that would solve a real problem in a feasible way and could impact a lot of people. Le believes his team was different from his impressive competitors because the team “fulfilled the criteria in an interesting way.” Echo Can addresses a common aversion to recycling and offers a solution that is convenient to potential users.

This win may be the first highlight for the young hackers’ recycling initiative. In addition to winning $2,000, Intrepid Pursuits put the team in touch with BigBelly Solar, the company that created the sustainability solar cans found on BU’s campus, to help the students going forward. The team feels that their current design is not ready for a business venture and they look forward to continuing to work on the project without the time and resource restrictions. Le remarked, “an imperfect product doesn’t fulfill our vision.” He continued, “our plan is to improve, perfect, and innovate a polished Echo Can for practical use for the fall, and hopefully, we have something that fits the original goal and vision our team had.”

Tagged , , , , , , , , , , ,