EC 471
Physics of Semiconductor Devices, Spring 2016

Professor Sahar Sharifzadeh
e-mail: ssharifz@bu.edu

Lectures: Tu/Th 2-4 pm Room 204 EPC
Office hours: W 2-3 pm, Th 4-5 Room 535 PHO

Description
The goal of this course is to provide a sound understanding of the physical principals of modern semiconductor devices and to develop the fundamental knowledge needed to understand next-generation devices. By the end of the semesters, students will:

- Be familiar with concepts and definitions related to band diagrams
- Understand the physical mechanisms that contribute to the behavior of semiconductor devices
- Explain key concepts regarding device behavior
- Identify important material design parameters (e.g. doping, bandgap, mobility, physical dimensions...)
- Calculate the response for a variety of ideal device structures (e.g. diodes, MOSFETs, BJTs...)
- Qualitatively understand non-ideal behavior

Course Prerequisite
PY 313- Elementary Modern Physics or PY 354- Modern Physics

Textbooks and References

Grading Policy
- Homework: 10%
- Mid Term I: 30%
- Mid Term II: 30%
- Final Exam: 30%
Class Syllabus

Jan. 19 Crystal Structures Chapter 1
Jan. 21 Crystal Growth Chapter 1
Jan. 25 Introduction to Atomic Bonding and Quantum Mechanics Chapter 2
Jan. 27 Introduction to Atomic Bonding and Quantum Mechanics Chapter 2
Feb. 2 Energy Bands, Effective Masses, and Charge Carriers in Semiconductors Chapter 3
Feb. 4 Charge Carrier Concentration and Carrier Drift Chapter 3
Feb. 9 Photoexcitations and Non-Equilibrium Excess Carriers Chapter 4
Feb. 11 Carrier Diffusion Chapter 4
Feb. 18 The Continuity Equation, Diffusion Lengths Chapter 4
Feb. 23 Introduction to pn Junctions Chapter 5
Feb. 25 Midterm 1 Review (Ch 1-4)
Mar. 1 Midterm 1 (Ch 1-4)
Mar. 3 pn Junctions Continued Chapter 5
Mar. 5-13 Spring Recess
Mar. 15 pn Junctions in Devices Chapter 5
Mar. 17 pn Junctions in Devices Chapter 5
Mar. 22 Metal-Semiconductor Junctions and Heterojunctions Chapter 5
Mar. 24 Field Effect Transistors: Fundamental Properties Chapter 6
Mar. 29 Midterm 2 Review (Covers up to Mar. 24)
Mar. 31 Midterm 2 (Covers up to Mar. 24)
Apr. 5 The MOSFET Chapter 6
Apr. 7 The MOSFET Chapter 6
Apr. 12 The MOSFET Chapter 6
Apr. 14 Bipolar Junction Transistors Chapter 7
Apr. 19 Bipolar Junction Transistors Chapter 7
Apr. 21 Bipolar Junction Transistors Chapter 7
Apr. 26 Light Emitting Diodes, Lasers Chapter 8
Apr. 28 Final Review