The following course syllabus is tentative and may change or be reordered as the semester unfurls. It is also likely that some topics will be skipped for sake of time.\(^{(1)}\)

Background

- Laws and Ethics
 - Jailed hackers
- Introduction to system programming
 - Intel Assembly
 - C/C++
 - low-level debugging
 - memory management
- Introduction to operating systems
 - shell
 - access permissions
 - file system
- Introduction to networking
 - TCP/IP
 - socket programming
 - network protocols: HTTP, FTP, DNS
- Basic math
 - core discrete math
 - core number theory

Social

- Social engineering
 - Psychology
 - Physical access
 - Phishing
- Social networking
- User interface attacks
 - Clickjacking, tapjacking, tabnabbing, cursorjacking
- Defenses

Web

- Google dorks
- SQL injection
- cross-side scripting
- cross-side request forgeries
- Defenses

Network

- Fingerprinting
 - Operating Systems
 - Applications
- Port scanning
- Protocol mangling
 - Packets in packets
- Wireless network cracking
- Defenses
 - tar pits
 - honeypots

Software

- Code analysis
 - Taxonomy of coding errors
 - Overflows
 - buffer, stack, heap overflow
 - format string overflow
 - Return-oriented programming
 - return to libc
 - Binary analysis
 - Reverse engineering
 - Fuzzing
- Shellcode
 - port binding
 - reverse bind
 - NOP sleds
 - polymorphism
- VM detection
- Interface errors
 - metric-English
 - java-C
- Defenses
 - Stack canaries
 - Address space layout randomization

Operating system

- Access control
 - executability
 - groups, users
 - password hashes
- Privilege escalation
 - password cracking
 - suid/sgid scripts
- Denial of Service
 - Fork bombs
- Backdoors
 - Rootkits
 - Trojans/worms/viruses
 - BOTs and BOTNETs
- Defenses

Disk

- Structure
- Hidden files/directories
- Deletion/undeletion
- Forensics
- Defenses

Advanced

- Cryptography
 - hashing
 - MD5, SHA1
 - birthday attacks
 - rainbow tables
 - hash chains, Merkle trees
 - symmetric-key encryption
 - ciphers, DES, 3DES, AES
- public-key encryption
 - RSA
 - attacks - factor attacks, Pollard rho, bad keys
 - signatures, authentication, steganography
 - general attacks
 - blinding, padding, timing, random faults, lattices
- Android attacks
 - sensors, SIM, adaptors, baseband processor, agps

Notes

1: In other words, this syllabus tells you nothing absolute about the course contents.