Category: Undergraduate Student Opportunities

College Announces New Masters Degree Specializations

June 25th, 2015 in News-CE, News-EP, News-IDS, Research, Students, Uncategorized, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students

Students Can Amplify Expertise in a High-Value Career Path

By Jan A. Smith


Motivated by emerging economic sectors, the College of Engineering has created new Master’s degree specializations in the high-impact, interdisciplinary fields of Data Analytics, Cybersecurity and Robotics. The specializations are designed to meet the demand for highly skilled professionals in these rapidly expanding fields.shutterstock_138612407_cybersecurity_CMS

“The corporate sector has voiced frustration with the shortage of trained engineers in key sectors of the innovation economy,” said Dean Kenneth Lutchen. “By combining a Master’s degree in a foundational engineering discipline with a Specialization in a fast-growing, interdisciplinary field, students will be well positioned to meet this need and impact society. This unique combination should greatly enhance the power of their degrees in the marketplace.”

Quadrocopter_shutterstock_261695444_CMS300Enormous quantities of data are driving rapid growth in the field of data analytics. The College’s approach to data science emphasizes decisions, algorithms, and analytics grounded in engineering application areas. This specialization is intended to yield graduates who will fulfill a variety of innovation needs for applications in finance, healthcare, urban systems, commerce, pharmaceutical and other engineering fields.

“Big Data engineers are critical pioneers and sorely needed in every industry,” said George Anton Papp, vice president for Corporate Development at Teradata, Inc. “The massive amounts of data being collected create enormous opportunities to innovate data architecture and analysis to solve pressing real-world problems.”

The Cybersecurity field is expanding exponentially, with career paths growing twice as fast as other information technology jobs. This Specialization will foster security-oriented software skills and enable an understanding of cybersecurity applications in software engineering, embedded systems, and networking. It will also provide a context for cybersecurity threats and mitigation strategies ranging from protecting corporate and government systems to home and building automation accessories and medical devices.

“Demand for cybersecurity professionals continues to outstrip supply and is a major concern to organizations in every sector,” noted Proteus Digital Health Co-Founder and Chief Medical Officer George Savage. “In our industry, it’s critical to protect the highly personal health data of consumers, providers, and insurers as we enter the digital and personalized health era powered by the smart phone in each of our pockets.”

The Robotics industry is predicted to grow to $67 billion by 2025 with applications in everything from prosthetics and telemedicine to autonomous vehicles, feedback control systems, brain-machine interfaces, and the Internet of Things. Robotics is inherently interdisciplinary, combining elements of electrical, computer, biomedical, systems, and mechanical engineering. The Specialization will prepare Master’s students for careers in research and development, deployment and operation of advanced individual or multi-coordinated robotic systems.

“There is enormous need for engineers skilled in robotics and the cross-disciplinary applications of robotics,” said Michael Campbell, executive vice president,
CAD Segment at PTC. “While the field today is very much concerned with applications in manufacturing, autonomous vehicles, healthcare, and military uses, we anticipate the field expanding into everything from education to home entertainment.”

Available to all Master’s Degree candidates, the Specialization options have been designed so that students can access from every Master’s degree program. Students who opt to add a Specialization – which is noted on their degree title and transcript – choose at least four of their eight courses from a list specific to each Specialization.

BU Team Only US Finalist in Student Supercomputer Challenge

June 15th, 2015 in Awards, News-CE, Recognition, Research-CE, Students, Undergraduate Student Opportunities, Undergraduate Students

By Gabriella McNevin

The Boston Green team in Taiyuan City, China. From left to right, Quentin Li, Winston Chen, event organizer, Scott Woods,  Nicolas Hinderling, and Huy Le.

The Boston Green Team in Taiyuan City, China. From left to right, Quentin Li, Winston Chen, an event organizer, Scott Woods, Nicolas Hinderling, and Huy Le.



One hundred and fifty-one teams from 6 continents were admitted into the preliminary round of the ASC 15 (ASC15) Student Supercomputer Challenge, which was held in Taiyuan City, China. Sixteen teams were accepted into the final round, only one of which was from a university in the United States.

A group of five Boston University students specializing in supercomputing, entered the competition as The Boston Green Team. The students- Winston Chen (CE ’16), Nicolas Hinderling (CS ‘17), Huy Le (CS ’16 ), Quentin Li (CE ‘15), and Scott Woods (CS ‘16)- met through a student organization, BUILDS, which serves as the Association of Computer Machinery local university chapter. Boston University Professor Martin Herbordt (ECE) and MIT Professor Kurt Keville advise the team.

The Boston Green Team working on the final challenge at Taiyuan University of Technology in Taiyuan City. From left to right, Scott Woods, Quentin Li, Huy Le, Winston Chen, and Nicolas Hinderling.

The Boston Green Team working on the final challenge at Taiyuan University of Technology in Taiyuan City. From left to right, Scott Woods, Quentin Li, Huy Le, Winston Chen, and Nicolas Hinderling.

The preliminary round of the competition, involving a remote cluster located in Japan, consisted of a three-tier challenge. To advance, the teams were measured by performance metrics like LINPACK testing, NAMD, and their input on the Square Kilometre Array project.

On April 10 the Boston Green Team was notified that they were invited to the ASC15 Finals, held at Taiyuan University of Technology. The teams were given four days to solve six supercomputing application challenges. Ultimately, the top prize went to the Tsinghua University team, and Nanyang Technological University from Singapore broke the world record for their performance on LINPACK.

The ASC Student Supercomputer Challenge is organized by Asia Supercomputer Community, Inspur Group, and the Taiyuan University of Technology. The competition began four years ago, and has since become the world’s largest supercomputer contest.

The ASC Student Supercomputer Challenge is organized by Asia Supercomputer Community, Inspur Group and the Taiyuan University of Technology. Initiated four years ago, the competition has since become the world’s largest supercomputer contest.

“ASC15 has encouraged more and more college students to learn, understand and love the cutting-edge technology of supercomputers,” said Lv Ming, president of Taiyuan University of Technology. “[It] will significantly boost interdisciplinary academic study and talent cultivation in universities, sparking creativity and innovation in students.”

The next student cluster competitions will take place on November 15-20 in Austin, Texas. Students interested in BUILDS are encouraged to subscribe to the mailing list and follow the group on Facebook.



ECE Senior Design Team Wins Top ENG Societal Impact Award

May 12th, 2015 in Alumni, Awards, Events, News-CE, News-EP, Recognition, Senior Design, Students, Undergraduate Programs, Undergraduate Student Opportunities

Project Enhances Learning for Students with Disabilities

By Mark Dwortzan

Each student takes a card (an RFID tag), taps it on the device, and in response they hear a greeting from a teacher or parent.

Each student takes a card (an RFID tag), taps it on the device, and in response they hear a greeting from a teacher or parent.

The students who attend Boston’s William E. Carter School come with major mental and physical disabilities, making learning a challenge. Seeking to enhance the learning environment at the school, the principal, Marianne

Kopaczynski, came up with the idea to install automated announcing systems that would deliver a personalized greeting for each student upon taking a specific action when entering a room. Her rationale: the technology would help the students, who range in age from 12 to 22, to make associations between cause and effect, developing their cognitive skills while making them feel welcome.

ECE seniors Yicheng Pan, Sihang Zhou, Alexis Weaver, Sinan Eren and Jose Bautista with their award-winning card reader at the Carter School.

ECE seniors Yicheng Pan, Sihang Zhou, Alexis Weaver, Sinan Eren and Jose Bautista with their award-winning card reader at the Carter School.

Now an ECE senior design team has designed and built three such devices and installed them in the school, to the delight of students and teachers alike. Each student takes a card (an RFID tag), taps it on the device, triggering a greeting from a teacher or parent, such as “Hi [student’s name], welcome to Art.”

In recognition of this achievement, the College of Engineering has named the team as first-place winners of the annual Societal Impact Capstone Award, which honors outstanding senior design projects aimed at improving the quality of life. Team members are Yicheng Pan, Sihang Zhou, Alexis Weaver, Sinan Eren and Jose Bautista.

“What possibly could be more societal than to provide a system to make a student who struggles with severe physical and mental challenges just to smile, make them feel comfortable, and at the same time help them understand cause and effect?” said Associate Professor of the Practice Alan Pisano (ECE), who advised the team and runs the ECE Senior Design Program.

To develop the system, the ECE seniors drew on their knowledge and skills in remote sensing, circuit design, application and database development and user interface development. Adhering to all applicable safety standards and taking advantage of resources at the Engineering Product Innovation Center (EPIC), they produced custom handheld and wearable RFID tags for each student; a desktop application and database to enter each student’s identification information; and a rugged, durable, user-friendly interface that can be updated and maintained by the school.

“For our students to acquire a skill, repetition is needed in everything we do,” said Kevin Crowley, an instructor at the Carter School who was a 2015 Massachusetts Teacher of the Year semifinalist. “The technology is easy to use, helps establish a consistent routine and will benefit our school greatly.”

Two previous ECE senior design teams took on the principal’s challenge but were unsuccessful.

“This team succeeded where prior teams failed, even solving last-minute problems and working around the clock to fix them,” said Pisano. “They visited the school on many occasions and stand ready to provide support if any operational issues arise. We plan to do additional projects for the school next year.”

The 2015 Societal Impact Capstone Award second place winners are “Pressure Profile for Kidney Stone Removal” by Nikolaos Farmakidis, Alexandros Oratis, Syed Shabbar Shirazi, John Subasic and See Wong, who assisted a Massachusetts General Hospital physician in determining the most suitable surgical procedure for medium kidney stone removal.

Tagged , , , ,

Paying it Forward: Masters Alumni Share Tip with Current Students

March 26th, 2015 in Alumni, Events, Graduate Students, Undergraduate Student Opportunities, Undergraduate Students

By Jan Smith

Carolyn Gaut, (BME MEng ’14), Study Manager for InviCRO LLC was one of six Masters program alumni who returned to campus to share job advice with current students.

Carolyn Gaut, (BME MEng ’14), Study Manager for InviCRO LLC was one of six Masters program alumni who returned to campus to share job advice with current students.

Six graduates of the Masters programs at College of Engineering returned to campus in February to help 29 current graduate students with their job searches. For many of the attendees of the latest Professional Development Series event, it was a needed boost.

“I’m always trying to look for ways to give back because I had a great experience at BU,” said Carolyn Gaut (BME Meng ’14), Study Manager for InviCRO LLC. “Talking to students, encouraging them, and giving them some advice makes my struggles when I was looking for a job worth it.”

Even for the strongest students, the job search process can be stressful. In today’s competitive marketplace, employers want to see candidates who offer both professional experience and advanced education. Students don’t always recognize how to present the value of their experiences in the classroom, practicum, work-study, or workplace internships or coops. And many lack the confidence or know-how to network effectively.

The Professional Development Series are tailored to the needs of graduate students. Dr. Jonathan Rosen, Director, Technology Innovation and Senior Lecturer in the BME Department, co-designed the series with Director of Professional Education and Corporate Relations Kirstie Miller to “prepare and successfully launch our professional graduate engineers onto challenging and rewarding career paths.” Many of the evening’s panelists noted that the workshops and Dr. Rosen’s help during their own job search had been invaluable.

Real-World Experience, Practical Advice

Alumni panelists seated L to R): Yuval Harel (BME MEng ’12), Bhavesh Patel (ME MEng ’14), Ben Hertz (ME MEng ’14), Abhinav Nair (CE MEng ’14), Samantha Messier (BME MEng ’14), and Carolyn Gaut (BME MEng ’14). With Professor Rosen and Kirstie Miller.

Alumni panelists seated L to R): Yuval Harel (BME MEng ’12), Bhavesh Patel (ME MEng ’14), Ben Hertz (ME MEng ’14), Abhinav Nair (CE MEng ’14), Samantha Messier (BME MEng ’14), and Carolyn Gaut (BME MEng ’14). With Professor Rosen and Kirstie Miller.

In presentations and roundtable discussions, all six of the recent graduates shared their job-search experiences and what their day-to-day responsibilities and opportunities are in their new jobs. They were eager to “pay it forward,” offering inspiration and advice on how to stay motivated and to be most effective.

Yuval Harel (BME MEng ’12), and Quality Engineer for DePuy Synthes spine, a division of J&J, stressed the importance of using all of the College’s workforce resources. “I started my job search the day I arrived at BU,” he explained. “I asked for help from Dr. Rosen to choose the right courses and to know how to network and what to do.”

Havel advised students to have confidence and sell themselves. “Even graduate students can think that they don’t have value for industry because they are students. You need to be very confident in who you are. Look at what you really have to offer – you’re a master. Now is the time to show your expertise.”

All of the panelists emphasized networking, which Dr. Rosen also stresses throughout the Professional Development Series. Havel added that while social media can help students find critical connections and gain introductions, maintaining those connections is key “When I got out of BU I worked for another company for a year before coming to J&J,” he explained. “One of the only reasons I got my current job is because I had previously met someone at a networking event at BU, and I maintained that connection. When a position arose at J&J, I contacted that individual to say that I was applying and had the experience required. That connection was invaluable.”

Stressing Networking, Internships, Self-Confidence

Bhavesh Patel (ME MEng 2014), R&D Engineer for Medtronic. “Just one year ago, I was in the same shoes as these students.”

Bhavesh Patel (ME MEng 2014), R&D Engineer for Medtronic. “Just one year ago, I was in the same shoes as these students.”

Bhavesh Patel (ME MEng ‘14), R&D Engineer with Medtronic, relished the opportunity to share his experience through the Alumni Panel.

“Just one year ago, I was in the same shoes as these students,” he explained. “The Professional Development Seminars I attended definitely helped me mentally prepare for the job search process. I learned important tips and tricks from the alumni and professionals that were invited to speak at the events. Hearing about the speakers’ experiences gave me a different and unique perspective of the process and was tremendously helpful.

Internships and co-ops were also front and center in the discussion. Carolyn Gaut’s management position at her current company came about through two prior internships with the company, which helped her to hone her career goals and even her coursework as a Masters student.

“The internship was what opened my career and helped many of my friends find jobs,” she said. “so I really encouraged the students to take advantage of any opportunity they have. Work the network you establish for yourself. If you start off in an internship, a lot of times they’ll hire you.”

Manya Chen (ECE MS ’14). “The alumni panelists re-energized me and gave me new ideas and inspiration.”

Manya Chen (ECE MS ’14). “The alumni panelists re-energized me and gave me new ideas and inspiration.”

By the end of the evening, the mood was decidedly upbeat. Even students who had been feeling discouraged in their own job search said they came away with new energy. “The alumni panelists re-energized me and gave me new ideas and inspiration,” said Manya Chen (ECE MS ’14). Manya switched from a PhD track to the Masters program this semester and seeking a position as a quality engineer or software quality assurance engineer in a technology company. “ They all had different approaches to finding their dream job. I’m taking their suggestions into my search for professional happiness.”

Tagged , , , , ,

Two ECE Senior Design Teams in Intel-Cornell Cup Finals

February 18th, 2015 in Awards, Courses, Events, News-CE, News-EP, Recognition, Senior Design, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students

Projects Address Everyday Problems with Embedded Technology

By Mark Dwortzan 


Omar Rana (CE), Luke Poitras (EE), Caroline Wu (EE), Jason Tow (CE, Jeremy Bensabat (CE). Photo by Gabriella McNevin

Two Electrical & Computer Engineering senior design teams have been named finalists in the Intel-Cornell Cup 2015 competition, which challenges science and engineering college students to conceive of, design and demonstrate the next great embedded technology application. One team’s project, C.A.R.R. System (Cyclist Alert Real-time Response), notifies drivers of potential collisions with approaching cyclists. The other, GrowBox, is an automated hydroponic device that enables users to grow an edible plant, virtually carefree.

A high-level illustration of the C.A.R.R. team's prototype. The system uses two cameras (one mounted on each side-view mirror) that feed a detection algorithm housed within an alert hub mounted on the dashboard. The alert hub processes live video of the road, determines if a cyclist is present and delivers feedback to the driver.

A high-level illustration of the C.A.R.R. team’s prototype. The system uses two cameras (one mounted on each side-view mirror) that feed a detection algorithm housed within an alert hub mounted on the dashboard. The alert hub processes live video of the road, determines if a cyclist is present and delivers feedback to the driver.

The C.A.R.R. System and GrowBox teams will attend talks, network with leading engineering firms and showcase their work along with 20 other finalists from across the country on May 1-2 at NASA Kennedy Space Center. They’ll vie for the competition’s grand prize, $10,000 or one of up

to seven $2,500 awards, all of which include an invitation to exhibit in Intel’s booth at the Maker Fair in New York City or San Mateo, California.

Having survived an hour-long, online semifinal round in February to make it to the finals, both teams subsequently received

$1,500, Intel Atom boards and other equipment, and access to technical experts at Intel and other sponsoring companies to develop their systems.

“Both teams are passionate about their projects and are dedicated to using their engineering skills for the betterment of society,” said Associate Professor of the Practice Alan Pisano(ECE), the lead faculty member for the ECE Senior Design Project course. “They are continually seeking ways to improve their designs, and it’s rare not to see them in the lab working on aspects of their projects.”

Concerned about the rising number of annual bicycle accidents in Boston and other metropolitan areas, the C.A.R.R. System team aims to equip motorists with a bike detection system that consists of cameras attached to both side-view mirrors and a real-time image-processing algorithm. When the system pinpoints a potential or impending collision through the algorithm, it displays and announces a warning on an alerting device that’s easily mountable on the dashboard. Issued within about 200 milliseconds from the moment of detection, the warning indicates which side of the vehicle is on a collision course with an approaching cyclist. In a recent test producing one hour of sample footage, the system successfully identified 92.55 percent of cyclists present, with an overall accuracy of 83.65 percent.


Alexandru Rosca (CE), Patrick Crawford (CE), Mark Barrasso (CE), Ahmed Alfuwaires (EE), Jesse Fordyce (EE). Photo by Gabriella McNevin

Testing out several designs and detection algorithms, the team settled on a dual camera system with a single, centralized alert hub, and an algorithm that provided the most accuracy and fastest response time.

“After living in Boston for four years, we are very aware of the dangers that exist on the road for drivers and cyclists alike,” said C.A.R.R. team member Omar Rana (CE). “We wanted to create a product that could fit both old and new vehicles, be easy to install and remove, and theoretically reach the market at an affordable price.”

Conceptual model of GrowBox prototype

Conceptual model of GrowBox prototype

Seeking to help would-be vegetable gardeners who lack the space, time or requisite green thumb to grow their own food, the GrowBox team has designed an automated system that can see to a plant’s needs and report on its status through a combination of sensors, actuators and image processing software. If human intervention is required, an iOS app will notify the user with instructions. GrowBox consists of a hydroponic subsystem that periodically floods the plant with water and nutrients; red, white and blue LEDs tuned to provide optimal lighting conditions for the plant; a backend subsystem that controls all sensors, actuators and lights; and a cloud-based database that backs up all sensor and image data. GrowBoxes are designed to be stackable so a user could grow a column of vegetables in a compact space.

The team’s biggest challenge has been to create and maintain the water/nutrient solution that’s needed to sustain the plant. To solve the problem, they found a nutrient mixture that keeps pH, electrical conductivity and other essential GrowBox parameters constant.

“Together, we developed ideas for the GrowBox and the reduction of the user’s role in the growth of a plant,” said Sasha Rosca (CE), who came up with the idea for the project. “Once the automation technology is developed, it can be implemented in large grow houses around the world to provide people with food year-round.”

Electrical Engineering Student Marissa Petersile Wins IEEE Power & Energy Society Scholarship

November 18th, 2014 in Awards, Recognition, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students

By Donald Rock (COM 17)

Marissa Petersile (EE '15)

Marissa Petersile (EE ’15)

Marissa Petersile (EE ’15) is among a small percentage of students to be recognized by the IEEE Power and Energy Society (PES) Scholarship Plus Initiative™. PES is the world’s largest forum for technological developments in the electric power industry.

The scholarship program recognizes undergraduate electrical engineering students. To receive the award, applicants must demonstrate high academic achievement, strong GPAs, distinctive accomplishments in extracurricular activities, and commitment to exploring the power and energy field. The scholarship is listed at $2,000 and recipients are able to receive funding for up to 3 years.

“I was motivated to apply when I recognized that many of the goals described for IEEE PES scholars aligned with my own,” Petersile elaborated. “I am interested in a career in the power and energy field, and I am hoping to make a positive impact on the role of clean energy sources on the grid.”

Petersile spent the past year conducting research in the Applied Electromagnetics Lab at BU. She worked on a team that addressed the buildup of dust and sand on large-scale solar panel arrays in arid, desert regions. Although there is ample sunlight in those regions, the collection of dust on the solar panels can trigger major efficiency losses. Petersile worked on a custom power system for self-cleaning electrodynamic screens that induce electrical waves across the surface of solar panels, cleaning them off in a fast, lower-power way. This research received international press coverage and was featured in esteemed publications like The New York Times.

Currently, Petersile is working on her team Senior Design Project entitled, “Smart Grid Test Facility.” She is designing an educational tool for undergraduate students that research power electronics and grid networks. The grid test she is developing would allow students to connect designed loads and generators to a small-scale grid to examine how the grid reacts to their designs.

Petersile’s resume boasts well-rounded experiences from around the university. She serves as a Dean’s Host for BU’s College of Arts and Sciences where she welcomes high school students to Boston University at Open House events, meets with distinguished alumni of the university, and conducts information sessions for prospective students at the undergraduate admissions office. Additionally, she serves as a tutor at the engineering tutoring center. She also runs half marathons and triathlons in her free time.

“I truly appreciate this scholarship award, not just because it will financially assist my college tuition, but because it makes me feel supported by IEEE PES—a group of motivated, distinguished, and hardworking engineers and scientists,” Marissa explained. “This support encourages me to continue my efforts in clean energy technologies and power grid improvements. I am so thrilled to be a member of this inspiring group, and I’m proud to say that this scholarship will not only help me financially, but also academically, career-wise, and beyond.”

Tagged , , , , , , , , , , , , , ,

Reimagining Engineering Education

August 6th, 2014 in Courses, Students, Undergraduate Programs, Undergraduate Student Opportunities

How ENG is Transforming the Classroom through Digital Learning Technology

By Mark Dwortzan

Active learning in EK301, Engineering Mechanics

Active learning in EK301, Engineering Mechanics

You’ve seen it before: a single faculty member on stage delivering a lecture to row after row of students dutifully taking notes, with little or no interaction between the lecturer and the note takers. It’s been the model for science and engineering education for more than a century, but a new paradigm is emerging that turns this model on its head, all while improving student outcomes: the flipped classroom.

Screenshot of online course video from EK 127, Introduction to Engineering Computation

Screenshot of online course video from EK 127, Introduction to Engineering Computation

In the flipped classroom, students view lectures online while at home, and spend classroom time applying what they learned both individually and in small group exercises. Collaborating with their peers at round tables in a revamped “learning studio” and guided by the faculty member and a team of teaching assistants moving from table to table, they solve problems that reflect the scope of the lecture material. And the difficulty: some problems are chosen based on trouble spots identified via mandatory quizzes that accompany the online lectures to assess student comprehension.

This is where engineering education is heading, and Boston University, which launched its Digital Learning Initiative (DLI) last year to spearhead innovative projects in online learning at all of its schools and colleges, is fully on board. The DLI recently awarded $80,000 to fund a College of Engineering proposal to enhance two core undergraduate engineering courses, EK127 (Introduction to Engineering Computation) and EK307 (Electric Circuits), with a suite of classroom-flipping, studio-based educational technologies and techniques. Lessons learned from this pilot program could be used to upgrade the learning experience in other engineering courses.

Professor Thomas Little (ECE, SE), the College of Engineering’s associate dean for Educational Initiatives, sees these pilot projects as part of a broader College-wide effort to use digital learning technologies—from tablets to Massively Open Online Courses (MOOCs)—to bring engineering education into the 21st century.

“Inspired by the success of these technologies in other disciplines and energized by the support and training that the DLI is providing, we are developing new ways to improve what’s important to the student: learning; retention; and career preparation,” said Little.

In both EK127 and EK307, instructors and teaching assistants funded by the DLI grant will develop course content using edX, a non-profit online platform that offers interactive online classes and MOOCs—not as a vehicle to reach large numbers of students via the Internet, but as a tool to boost active learning in the classroom. For each class meeting, they will record a video on the material students need to learn for that class, make it accessible through the edX platform, use edX assessment tools to set up online quizzes, and design active learning exercises.

The instructor for EK127, 2014 Metcalf Cup and Prize winner and Assistant Professor Stormy Attaway (ME), has been gradually flipping the course over the last three years. With the new funding—and support by “course builders” such as Declan Bowman (BME’15), one of the first students in the College’s STEM Educator-Engineer Program (STEEP)—she aims to completely flip the course. Once all course content is placed online along with assessments, Attaway will devote all classroom time to active learning in Photonics Room 117, an instructional space that the College is converting into an active learning studio complete with round tables and modern electronic displays.

“At this point there is ample evidence that flipped classes with active learning environments work; the focus is now on how to get faculty to adopt these best practices,” she said, noting that transforming a traditional lecture into an online course module—breaking it into bite-sized chunks, recording the video and hosting it on the edX platform—can take up to 20 hours. “Although my primary goal is to improve the learning experience for my students, my secondary goal is to be a resource for my colleagues so that I can help them transform their courses.”

With his portion of the DLI funding, Professor Mark Horenstein (ECE) is developing a series of 30-minute course modules to aid fellow EK307 instructors who wish to flip their classrooms or enhance them with online instruction. Always available to students and consisting of animated, voice-over PowerPoint and/or videotaped lectures, the modules are intended to provide an interactive learning tool to supplement traditional textbooks, lectures, discussions and lab work.

“In my experience, students learn in a myriad of different ways,” said Horenstein. “Some students thrive in the traditional lecture/homework environment, while others learn best in a hands-on setting, for example, when a small group works with a professor during office hours on specific problems and concepts. Still other students learn best in the laboratory, where they can transfer lecture/discussion concepts into the hands-on design of electric circuits that solve a problem or meet a desired specification. The hope is that these modules will service all of these learning styles, and more.”

The two pilot projects leverage earlier digital technology-enabled active learning efforts by Lecturer Caleb Farny (ME) in EK301 (Engineering Mechanics) and Assistant Professor Martin Steffin (BME, MED) in BE 209 (Principles of Molecular Cell Biology and Biotechnology), and pioneering work by faculty in the Physics Department in peer-based learning and the use of studio space.

“As these early adopters show what’s possible, we look forward to bringing additional faculty on board,” said Little. “By working with people who are taking risks to do the right thing for students, we’re going to demonstrate the potential of digital learning technologies to make a difference for our engineering students.”

Tagged , , , , , , , , , ,

Where Students Play & Design Video Games

July 31st, 2014 in Courses, Faculty, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students, Video

The Digital Design Industry & ECE Evolve with New Programing Techniques; Verilog and FPGA

By Gabriella McNevin

Video created by Donald Rock (COM ’17 ) and Paloma Parikh (COM ’15)

Assistant Professor Douglas Densmore (ECE) organizes the course around fundamental computer aided design techniques, the hardware description language Verilog, and finally introduces lessons on “synthesizing” the Verilog to a Field Programmable Gate Array (FPGA), which is technology similar to a microprocessor but is programmable at the hardware level.

FPGA technology is important because it gives the engineer an opportunity to reprogram and reconfigure the digital design after manufacturing. By using FPGAs, engineers do not have to fabricate a new chip for every design. This allows for rapid prototyping of designs quickly and at a low cost.

Student projects are evaluated on their success in creating an FPGA design of their choosing for their final project. Teaching assistants like Prashant Vaidyanathan mentor the students and provide help with the design tools. For example, in Spring 2014, four students submitted a digital design video game which performed like an improved version of the game Flappy Bird by allowing multiplayer game mode, and cell phone integration via Bluetooth.

A student rendition of the 1993 game Super Bomberman was submitted in Fall 2012. The game included standard functions of Super Bomberman, including display engine, character movement, and graphics. Additionally, the team programmed multi-screen display modes, an operating scoreboard, and character blocking.

Producing a functioning FPGA prototype provides a student experience that is essential in developing an overall, hands on proficiency with the technology. With the support of Prof. Densmore and ECE resources, students can conclude EC551 with skills that have the potential to jump-start their careers.

Tagged , , , , , , , , , , , , , , , ,

Research Grants for Three ECE Undergraduates

July 14th, 2014 in Awards, Grants, Recognition, Research, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students

By Paloma Parikh (COM’15)

Three ECE undergraduate students won grants from two programs affiliated with Boston University’s Undergraduate Research Opportunities Program. Annie Lane (ENG’16) and Maya Saint Germain (ENG’16) are recipients of the Clare Boothe Luce Award; and Dean Shi, (ENG’16) won the Hariri Award.

Annie Lane; Clare Boothe Luce Award Recipient

Annie Lane; Clare Boothe Luce Award Recipient

Annie Lane won the Clare Boothe Luce Award for her research project, “Data Center Power Regulation Modeling,” which she is working on with mentor Assistant Professor Ayse Coskun (ECE). The goal of the project is to minimize electricity costs for data centers. To do so, Lane is developing a power control policy based on a mathematical model. Additionally, she will evaluate alternative research models in the hopes of finding the most effective process. Lane believes the practicality of her project caught the attention of the judges. In an email correspondence, Lane mentioned that the project has potential for real-life application, “BU has partnered with other universities, the state, and companies to build and manage the Massachusetts Green High Power Computing Center (MGHPCC) in Holyoke, MA. The research results will help increase energy savings at MGHPCC.”


Maya Saint Germain; Clare Boothe Luce Award Recipient

Maya Saint Germain; Clare Boothe Luce Award Recipient

Maya Saint Germain, with mentor Professor and Associate Chair for Graduate Studies Hamid Nawab (ECE), won the Clare Boothe Luce Award to fund a project entitled “Human-in-Circuit Signal Processing.” Saint Germain explains Human-in-Circuit Signal Processing as, “a subfield of signal processing in which the signal that is being processed is produced by a human, and – after processing – will be perceived by a human.” Her goal is to improve how the signal is processed. Saint Germain feels proud that she won the award, “It means that my research is important and relevant.”



Dean Shi; Hariri Award Recipient

Dean Shi; Hariri Award Recipient

Dean Shi won the Hariri Award for his project, “Power Optimization and Development of Power Policies on Mobile Devices,” which he is working on with mentor Assistant Professor Ayse Coskun (ECE). Shi is working to lengthen battery life for cell phones. To do so, he is researching how cell phones use battery power through different functions, such as applications. With this understanding, he will be able to optimize power usage and make cell phone batteries last longer. Shi recalls, All of my friends are always complaining, ‘Oh I just charged my phone this morning but it’s already at 10% battery.’” This award will help Shi achieve his goal of lengthening cell phone battery life.


The Undergraduate Research Opportunities Program (UROP) is a supportive resource for faculty-mentor research. It provides grants to students through various organizations such as the Clare Boothe Luce Program and the Rafik B. Hariri Institute for Computing and Computational Science & Engineering. The Clare Boothe Luce Program aims to support women in science, mathematics, and engineering. Recipients of the undergraduate research awards receive funding to conduct a research project with a faculty mentor. The Hariri Institute promotes innovation in the sciences of computing and engineering. With the Hariri award, they provide grants for collaborative research and training initiatives.

Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Andrew Kelley Wins The Center for Space Physics Undergraduate Research Award

May 19th, 2014 in Alumni, Awards, Events, Recognition, Research, Senior Design, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students, Video

Kelley found his passion while working with the BU Satellite Program & Rocket Group

By Gabriella McNevin

On May 5, 2014, Andrew Kelley (middle) received The Center for Space Physics Undergraduate Research Award at the senior capstone event, ECE Day. Standing to Kelley's left is Associate Professor Semeter, and to Kelley's right is ECE Department Chair Professor David Castañón. Photo by Chitose Suzuki  for Boston University Photography.

From left to right: Associate Professor Semeter, Andrew Kelley (ENG ’14), and ECE Department Chair Professor David Castañón. Photo by Chitose Suzuki for Boston University Photography.

Andrew Kelley (ENG ’14) won The Center for Space Physics Undergraduate Research Award for his contribution to the BU Satellite Program and the Boston University Rocket Propulsion Group. The award recipient was decided by the Director of the BU Center of Space Physics, Professor John Clarke (AS); and Associate Director of the BU Center for Space Physics, Professor Joshua Semeter (ECE).

Kelley’s success was achieved in a relatively short period of time. Kelley entered BU excited to gain a versatile education in computer engineering in an accelerated 3-year program. For his first two years, like many, Kelley was unsure of his passion and did not know what career would best unite his academic skills and interests. He explored the possibilities by researching extracurricular activities that involved computer engineering. Ultimately, Kelley joined his first space program venture after his freshman year, and realized his passion in the field after his second year. It was not until his third and final year at Boston University, that Kelley dove, head-first, into space programs.


Andrew Kelley showing off one of the BU Rocket Propulsion Group’s model rockets in Amesbury, MA.

A future that blended computer engineering and space programs was first proposed to Kelley at Splash Day his freshmen year. Splash Day is an annual fair that features student organizations. Kelley recalls noticing a ten-foot model rocket hoisted on the shoulders of two students laughing and jogging to the opposite side of the field. He thought to himself, “follow those footsteps!” The name of the student organization in charge of that rocket, now known as the BU Rocket Propulsion Group, was painted on the side.

Before joining a team, Kelley weighed his enthusiasm about the BU Rocket Propulsion Group with his interest in other groups, and his collegiate goals. He spent the remaining year developing relationships with organization members, contemplating rocketry, and discovering how to best manage his time.

At the end of the academic year, Kelley and a member of the Rocket Propulsion Group were chatting about the organization. Kelley’s friend expressed some concern about the group’s leadership. The group insider mentioned that the vice president was expected to graduate with no prospect of a predecessor. Instinctively Kelley responded, “I will do it.”

Two years later, Kelley recalls those four words as the best he ever said. Joining the group helped Kelley to realize his passion for space programs, and introduced him to a network of some of his most trusted advisors, including Professor Semeter and Principal Fellow at Raytheon Missile Systems Joe Sebeny.

Towards the end of his second year at BU, Kelley was at a crossroad. He needed a summer job, and had been denied internships at Google and Microsoft. Uninterested in returning to his home in Texas, Kelley took the advice of Professor Semeter and applied to work at Boston University Student Satellite for Applications and Training program, specifically ANDESITE. It was a pivotal time for the satellite program, as it had recently been awarded an Air Force Research Laboratory grant and joined a national competition to win the opportunity to launch a satellite to orbit. As one of the newest members to the satellite program, the Texan embraced the organization’s mission to design, fabricate, and operate a low-earth-orbiting satellite.


Kelley stands ready to present a poster on his honors thesis research topic at ECE Day. Photo by Chitose Suzuki for Boston University Photography.

In September 2013, the beginning of Kelley’s final year at BU, his extracurricular and academic interests melted into one. Kelley opted to complete his academic capstone requirements by completing an honors thesis, rather than a senior design project. His theses work, entitled “Design and Implementation of a 3-DOF Rocket Autopilot,” advanced both the BU Student Satellite and supported the BU Rocket Propulsion Group.

“Design and Implementation of a 3-DOF Rocket Autopilot” provided an analysis and design investigation of rocket trajectory systems to develop a functioning autopilot. Without trajectory control, a rocket would run the risk of becoming a missile.

After graduation, Kelley will spend a week with his family in Fort Worth, Texas before jet-setting to Los Angles, California to be a Space X intern.  Kelley will be involved in vehicle and systems integration for the Dragon capsule.

Boston University Rocket Propulsion Group Watch the group’s second hot fire test:

Tagged , , , , , , ,