Category: Undergraduate Programs

Reimagining Engineering Education

August 6th, 2014 in Courses, Students, Undergraduate Programs, Undergraduate Student Opportunities

How ENG is Transforming the Classroom through Digital Learning Technology

By Mark Dwortzan

Active learning in EK301, Engineering Mechanics

Active learning in EK301, Engineering Mechanics

You’ve seen it before: a single faculty member on stage delivering a lecture to row after row of students dutifully taking notes, with little or no interaction between the lecturer and the note takers. It’s been the model for science and engineering education for more than a century, but a new paradigm is emerging that turns this model on its head, all while improving student outcomes: the flipped classroom.

Screenshot of online course video from EK 127, Introduction to Engineering Computation

Screenshot of online course video from EK 127, Introduction to Engineering Computation

In the flipped classroom, students view lectures online while at home, and spend classroom time applying what they learned both individually and in small group exercises. Collaborating with their peers at round tables in a revamped “learning studio” and guided by the faculty member and a team of teaching assistants moving from table to table, they solve problems that reflect the scope of the lecture material. And the difficulty: some problems are chosen based on trouble spots identified via mandatory quizzes that accompany the online lectures to assess student comprehension.

This is where engineering education is heading, and Boston University, which launched its Digital Learning Initiative (DLI) last year to spearhead innovative projects in online learning at all of its schools and colleges, is fully on board. The DLI recently awarded $80,000 to fund a College of Engineering proposal to enhance two core undergraduate engineering courses, EK127 (Introduction to Engineering Computation) and EK307 (Electric Circuits), with a suite of classroom-flipping, studio-based educational technologies and techniques. Lessons learned from this pilot program could be used to upgrade the learning experience in other engineering courses.

Professor Thomas Little (ECE, SE), the College of Engineering’s associate dean for Educational Initiatives, sees these pilot projects as part of a broader College-wide effort to use digital learning technologies—from tablets to Massively Open Online Courses (MOOCs)—to bring engineering education into the 21st century.

“Inspired by the success of these technologies in other disciplines and energized by the support and training that the DLI is providing, we are developing new ways to improve what’s important to the student: learning; retention; and career preparation,” said Little.

In both EK127 and EK307, instructors and teaching assistants funded by the DLI grant will develop course content using edX, a non-profit online platform that offers interactive online classes and MOOCs—not as a vehicle to reach large numbers of students via the Internet, but as a tool to boost active learning in the classroom. For each class meeting, they will record a video on the material students need to learn for that class, make it accessible through the edX platform, use edX assessment tools to set up online quizzes, and design active learning exercises.

The instructor for EK127, 2014 Metcalf Cup and Prize winner and Assistant Professor Stormy Attaway (ME), has been gradually flipping the course over the last three years. With the new funding—and support by “course builders” such as Declan Bowman (BME’15), one of the first students in the College’s STEM Educator-Engineer Program (STEEP)—she aims to completely flip the course. Once all course content is placed online along with assessments, Attaway will devote all classroom time to active learning in Photonics Room 117, an instructional space that the College is converting into an active learning studio complete with round tables and modern electronic displays.

“At this point there is ample evidence that flipped classes with active learning environments work; the focus is now on how to get faculty to adopt these best practices,” she said, noting that transforming a traditional lecture into an online course module—breaking it into bite-sized chunks, recording the video and hosting it on the edX platform—can take up to 20 hours. “Although my primary goal is to improve the learning experience for my students, my secondary goal is to be a resource for my colleagues so that I can help them transform their courses.”

With his portion of the DLI funding, Professor Mark Horenstein (ECE) is developing a series of 30-minute course modules to aid fellow EK307 instructors who wish to flip their classrooms or enhance them with online instruction. Always available to students and consisting of animated, voice-over PowerPoint and/or videotaped lectures, the modules are intended to provide an interactive learning tool to supplement traditional textbooks, lectures, discussions and lab work.

“In my experience, students learn in a myriad of different ways,” said Horenstein. “Some students thrive in the traditional lecture/homework environment, while others learn best in a hands-on setting, for example, when a small group works with a professor during office hours on specific problems and concepts. Still other students learn best in the laboratory, where they can transfer lecture/discussion concepts into the hands-on design of electric circuits that solve a problem or meet a desired specification. The hope is that these modules will service all of these learning styles, and more.”

The two pilot projects leverage earlier digital technology-enabled active learning efforts by Lecturer Caleb Farny (ME) in EK301 (Engineering Mechanics) and Assistant Professor Martin Steffin (BME, MED) in BE 209 (Principles of Molecular Cell Biology and Biotechnology), and pioneering work by faculty in the Physics Department in peer-based learning and the use of studio space.

“As these early adopters show what’s possible, we look forward to bringing additional faculty on board,” said Little. “By working with people who are taking risks to do the right thing for students, we’re going to demonstrate the potential of digital learning technologies to make a difference for our engineering students.”

Tagged , , , , , , , , , ,

Where Students Play & Design Video Games

July 31st, 2014 in Courses, Faculty, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students, Video

The Digital Design Industry & ECE Evolve with New Programing Techniques; Verilog and FPGA

By Gabriella McNevin

Video created by Donald Rock (COM ’17 ) and Paloma Parikh (COM ’15)

Assistant Professor Douglas Densmore (ECE) organizes the course around fundamental computer aided design techniques, the hardware description language Verilog, and finally introduces lessons on “synthesizing” the Verilog to a Field Programmable Gate Array (FPGA), which is technology similar to a microprocessor but is programmable at the hardware level.

FPGA technology is important because it gives the engineer an opportunity to reprogram and reconfigure the digital design after manufacturing. By using FPGAs, engineers do not have to fabricate a new chip for every design. This allows for rapid prototyping of designs quickly and at a low cost.

Student projects are evaluated on their success in creating an FPGA design of their choosing for their final project. Teaching assistants like Prashant Vaidyanathan mentor the students and provide help with the design tools. For example, in Spring 2014, four students submitted a digital design video game which performed like an improved version of the game Flappy Bird by allowing multiplayer game mode, and cell phone integration via Bluetooth.

A student rendition of the 1993 game Super Bomberman was submitted in Fall 2012. The game included standard functions of Super Bomberman, including display engine, character movement, and graphics. Additionally, the team programmed multi-screen display modes, an operating scoreboard, and character blocking.

Producing a functioning FPGA prototype provides a student experience that is essential in developing an overall, hands on proficiency with the technology. With the support of Prof. Densmore and ECE resources, students can conclude EC551 with skills that have the potential to jump-start their careers.

Tagged , , , , , , , , , , , , , , , ,

Research Grants for Three ECE Undergraduates

July 14th, 2014 in Awards, Grants, Recognition, Research, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students

By Paloma Parikh (COM’15)

Three ECE undergraduate students won grants from two programs affiliated with Boston University’s Undergraduate Research Opportunities Program. Annie Lane (ENG’16) and Maya Saint Germain (ENG’16) are recipients of the Clare Boothe Luce Award; and Dean Shi, (ENG’16) won the Hariri Award.

Annie Lane; Clare Boothe Luce Award Recipient

Annie Lane; Clare Boothe Luce Award Recipient

Annie Lane won the Clare Boothe Luce Award for her research project, “Data Center Power Regulation Modeling,” which she is working on with mentor Assistant Professor Ayse Coskun (ECE). The goal of the project is to minimize electricity costs for data centers. To do so, Lane is developing a power control policy based on a mathematical model. Additionally, she will evaluate alternative research models in the hopes of finding the most effective process. Lane believes the practicality of her project caught the attention of the judges. In an email correspondence, Lane mentioned that the project has potential for real-life application, “BU has partnered with other universities, the state, and companies to build and manage the Massachusetts Green High Power Computing Center (MGHPCC) in Holyoke, MA. The research results will help increase energy savings at MGHPCC.”

 

Maya Saint Germain; Clare Boothe Luce Award Recipient

Maya Saint Germain; Clare Boothe Luce Award Recipient

Maya Saint Germain, with mentor Professor and Associate Chair for Graduate Studies Hamid Nawab (ECE), won the Clare Boothe Luce Award to fund a project entitled “Human-in-Circuit Signal Processing.” Saint Germain explains Human-in-Circuit Signal Processing as, “a subfield of signal processing in which the signal that is being processed is produced by a human, and – after processing – will be perceived by a human.” Her goal is to improve how the signal is processed. Saint Germain feels proud that she won the award, “It means that my research is important and relevant.”

 

 

Dean Shi; Hariri Award Recipient

Dean Shi; Hariri Award Recipient

Dean Shi won the Hariri Award for his project, “Power Optimization and Development of Power Policies on Mobile Devices,” which he is working on with mentor Assistant Professor Ayse Coskun (ECE). Shi is working to lengthen battery life for cell phones. To do so, he is researching how cell phones use battery power through different functions, such as applications. With this understanding, he will be able to optimize power usage and make cell phone batteries last longer. Shi recalls, All of my friends are always complaining, ‘Oh I just charged my phone this morning but it’s already at 10% battery.’” This award will help Shi achieve his goal of lengthening cell phone battery life.

 

The Undergraduate Research Opportunities Program (UROP) is a supportive resource for faculty-mentor research. It provides grants to students through various organizations such as the Clare Boothe Luce Program and the Rafik B. Hariri Institute for Computing and Computational Science & Engineering. The Clare Boothe Luce Program aims to support women in science, mathematics, and engineering. Recipients of the undergraduate research awards receive funding to conduct a research project with a faculty mentor. The Hariri Institute promotes innovation in the sciences of computing and engineering. With the Hariri award, they provide grants for collaborative research and training initiatives.

Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Andrew Kelley Wins The Center for Space Physics Undergraduate Research Award

May 19th, 2014 in Alumni, Awards, Events, Recognition, Research, Senior Design, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students, Video

Kelley found his passion while working with the BU Satellite Program & Rocket Group

By Gabriella McNevin

On May 5, 2014, Andrew Kelley (middle) received The Center for Space Physics Undergraduate Research Award at the senior capstone event, ECE Day. Standing to Kelley's left is Associate Professor Semeter, and to Kelley's right is ECE Department Chair Professor David Castañón. Photo by Chitose Suzuki  for Boston University Photography.

From left to right: Associate Professor Semeter, Andrew Kelley (ENG ’14), and ECE Department Chair Professor David Castañón. Photo by Chitose Suzuki for Boston University Photography.

Andrew Kelley (ENG ’14) won The Center for Space Physics Undergraduate Research Award for his contribution to the BU Satellite Program and the Boston University Rocket Propulsion Group. The award recipient was decided by the Director of the BU Center of Space Physics, Professor John Clarke (AS); and Associate Director of the BU Center for Space Physics, Professor Joshua Semeter (ECE).

Kelley’s success was achieved in a relatively short period of time. Kelley entered BU excited to gain a versatile education in computer engineering in an accelerated 3-year program. For his first two years, like many, Kelley was unsure of his passion and did not know what career would best unite his academic skills and interests. He explored the possibilities by researching extracurricular activities that involved computer engineering. Ultimately, Kelley joined his first space program venture after his freshman year, and realized his passion in the field after his second year. It was not until his third and final year at Boston University, that Kelley dove, head-first, into space programs.

600642_3945593760100_354146220_n

Andrew Kelley showing off one of the BU Rocket Propulsion Group’s model rockets in Amesbury, MA.

A future that blended computer engineering and space programs was first proposed to Kelley at Splash Day his freshmen year. Splash Day is an annual fair that features student organizations. Kelley recalls noticing a ten-foot model rocket hoisted on the shoulders of two students laughing and jogging to the opposite side of the field. He thought to himself, “follow those footsteps!” The name of the student organization in charge of that rocket, now known as the BU Rocket Propulsion Group, was painted on the side.

Before joining a team, Kelley weighed his enthusiasm about the BU Rocket Propulsion Group with his interest in other groups, and his collegiate goals. He spent the remaining year developing relationships with organization members, contemplating rocketry, and discovering how to best manage his time.

At the end of the academic year, Kelley and a member of the Rocket Propulsion Group were chatting about the organization. Kelley’s friend expressed some concern about the group’s leadership. The group insider mentioned that the vice president was expected to graduate with no prospect of a predecessor. Instinctively Kelley responded, “I will do it.”

Two years later, Kelley recalls those four words as the best he ever said. Joining the group helped Kelley to realize his passion for space programs, and introduced him to a network of some of his most trusted advisors, including Professor Semeter and Principal Fellow at Raytheon Missile Systems Joe Sebeny.

Towards the end of his second year at BU, Kelley was at a crossroad. He needed a summer job, and had been denied internships at Google and Microsoft. Uninterested in returning to his home in Texas, Kelley took the advice of Professor Semeter and applied to work at Boston University Student Satellite for Applications and Training program, specifically ANDESITE. It was a pivotal time for the satellite program, as it had recently been awarded an Air Force Research Laboratory grant and joined a national competition to win the opportunity to launch a satellite to orbit. As one of the newest members to the satellite program, the Texan embraced the organization’s mission to design, fabricate, and operate a low-earth-orbiting satellite.

ECE Day

Kelley stands ready to present a poster on his honors thesis research topic at ECE Day. Photo by Chitose Suzuki for Boston University Photography.

In September 2013, the beginning of Kelley’s final year at BU, his extracurricular and academic interests melted into one. Kelley opted to complete his academic capstone requirements by completing an honors thesis, rather than a senior design project. His theses work, entitled “Design and Implementation of a 3-DOF Rocket Autopilot,” advanced both the BU Student Satellite and supported the BU Rocket Propulsion Group.

“Design and Implementation of a 3-DOF Rocket Autopilot” provided an analysis and design investigation of rocket trajectory systems to develop a functioning autopilot. Without trajectory control, a rocket would run the risk of becoming a missile.

After graduation, Kelley will spend a week with his family in Fort Worth, Texas before jet-setting to Los Angles, California to be a Space X intern.  Kelley will be involved in vehicle and systems integration for the Dragon capsule.

Boston University Rocket Propulsion Group Watch the group’s second hot fire test:

Tagged , , , , , , ,

Got Time?

April 3rd, 2014 in Students, Undergraduate Programs, Video

App Connects You to Nearby Friends
Mark Dwortzan

Living_Room_iphone_screen_small_WEB_READY

Downtyme encourages you to spend less time on your smartphone and more time connecting offline. (Images Courtesy of Downtyme LLC)

You’ve just emerged from a lecture in fluid mechanics with 90 minutes to spare before your next class. You’re also hungry, and wouldn’t mind some company while you chow down. So you whip out your smartphone, click on an app and tap on the names of two friends who the app shows are available and close by. Seconds after you send them a request—“[Your name] wants to hang out with you at 3:15 p.m. at The Fresh Food Co. at Marciano Commons.”—you receive

notification that one of the friends has accepted. Problem solved.

The app that’s enabling such connections,Downtyme, is the brainchild of Barron Roth and Luke Sorenson (both CE’16), who came up with the idea last November when deciding on a final project for

PlayStore_1_Now_2_WEB_READY

their Introduction to Software Engineering course. They subsequently turned it into a startup, Downtyme LLC, within three months. After releasing the app for beta testing to students at colleges and universities in Boston on March 31, Downtyme LLC aggregated nearly 500 downloads the first day.

The app’s immediate popularity is no surprise to Roth.

“It’s very difficult for college students to find opportunities to get together with friends, given the intricacies of our schedules,” he said. “Having access to a list of people you care about who are available and nearby makes life more social and enjoyable.” It also encourages you to spend less time on your smartphone and more time connecting offline.

Users identify their friends by linking the app to their Facebook account, and indicate t

heir availability by entering or importing their calendars. To bring up a list of nearby

Facebook friends, they may either press “Now” or “Later,” depending on when they want to get together.  Users may also press “Hide me” to keep their schedules hidden until further notice, or “Bulletins” to post an open invitation to all their Downtyme friends to join them for activities ranging from study sessions to frat parties.

“Downtyme is a fantastic example of students taking a real-world need—scheduling free time—and translating that into a software application,” said Assistant Prof

essor Douglas Densmore (ECE, BME), the Introduction to Software Engineeringinstructor. “Its level of polish and presentation are on par with a professional-level startup, and the leadership of the project is committed to its success.”

Convinced that the idea had commercial potential after they and three other teammates completed a functioning version for Android mobile devices in December, Roth and Sorenson began laying the groundwork for a startup. Over the winter break, the co-founders brought in Nicholas Sorenson (SMG’14) for financial expertise, and recruited Timothy Chong (CE’16) and John Moore (CE’15) to help Luke develop the app for the iPhone and improve the server infrastructure. Roth focuse

d on branding, marketing and customizing the look and feel of Downtyme.

“It’s very rewarding working on a startup, where every decision you make has a big impact and can affect the future of your company,” said Roth, who is now working on Downtyme after hours while serving as a spring semester co-op at AMD in Austin, Texas. Taking advantage of his Austin location, Roth recently pitched the app to 500 technology enthusiasts at the city’s annual South by Southwest festival.

Downtyme plans to launch the app across the country in the fall, distributing it through campus representatives at Stanford University, University of California, Berkeley, and other colleges and universities. The company’s initial goal is to build a substantial user base for the free app, and then develop revenue-generating partnerships with academic institutions and industry.

See video.

 

ENG@50

February 27th, 2014 in Faculty, Graduate Programs, Graduate Students, News-CE, News-EP, News-ISS, Research, Research-CE, Research-EP, Research-ISS, Students, Undergraduate Programs, Undergraduate Students

Cultivating Excellence, Transforming Society

Opening of the College of Engineering Building at 110 Cummington Street in February, 1964. Left to right are, Merritt A. Williamson, dean of the College of Engineering and Architecture at Penn State, BU President Harold C. Case and BU College of Engineering Dean Arthur T. Thompson. Williamson gave the Convocation Address at the inaugural ceremony of the College. (Photo by BU Photography)

Opening of the College of Engineering Building at 110 Cummington Street in February 1964. Left to right are, Merritt A. Williamson, dean of the College of Engineering and Architecture at Penn State, BU President Harold C. Case and BU College of Engineering Dean Arthur T. Thompson. Williamson gave the Convocation Address at the inaugural ceremony of the College. (Photo by BU Photography)

In 1963, the College of Industrial Technology (CIT) offered only three degree programs — in technology, aeronautics and management — and occupied a single, four-story building, but the former aviation school’s new dean, Arthur T. Thompson, was bullish about CIT’s future. He aspired to do no less than transform this dot on the Boston University map into an accredited engineering program, and to develop engineers with “the capacity for responsible and effective action as members of our society.”

Thompson began to work this transformation on February 27, 1964 — 50 years ago today — when CIT was officially renamed as the Boston University College of Engineering. Since then the College has grown to become one of the world’s finest training grounds for future engineers and platforms for innovation in synthetic biology, nanotechnology, photonics and other engineering fields, attracting record levels of student applications, research funding and philanthropic support.

Between 1964 and 2013, the number of degrees conferred annually has increased from zero to 281 bachelors, 184 masters and 53 PhDs; enrollment from around 100 to 1416 undergraduate, zero to 394 masters and zero to 349 PhDs; faculty from 10 to more than 120; advanced degree programs offered from zero to nine masters and six PhDs; and annual sponsored research dollars from zero to $52 million. Meanwhile, the College’s position in the annual US News & World Report’s annual survey of US engineering graduate programs has surged from unranked to the top 20 percent nationally.

At the same time, the College’s faculty, students and alumni have significantly advanced their fields and spearheaded major innovations in healthcare, energy, information and communication, transportation, security and other domains.

Building a World Class Institution

College of Engineering students in a typical lab setting on Cummington Street in 1964 (Photo by BU Photography)

College of Engineering students in a typical lab setting on Cummington Street in 1964 (Photo by BU Photography)

The infrastructure for the world class research and education taking place at today’s College of Engineering was built in stages.

During Thompson’s deanship from 1964 to 1974, the new Aerospace, Manufacturing and Systems Engineering departments received accreditation, with the Manufacturing Engineering program the first of its kind to be accredited in the US. The College also instituted the nation’s first BS degree program in bioengineering and expanded to five BS and three MS programs in five fields. Between 1975 and 1985, when Louis Padulo was dean, the College’s student body grew from 250 to 2481; minority and female enrollments skyrocketed; degree offerings rose to 24 BS, MS and PhD programs in eight fields; full-time faculty increased to 67; and sponsored research exceeded $3 million.

When Professor Charles DeLisi (BME) became the new dean in 1990, he recruited many leading researchers in biomedical, manufacturing, aerospace, mechanical, photonics and other engineering fields, establishing a research infrastructure that ultimately propelled the College to its ranking in US News & World Report’s top 50 engineering graduate schools (realized in 2003). A case in point is the BME Department, which DeLisi turned into the world’s foremost biomolecular engineering research hub, paving the way for his successor, Professor David K. Campbell (Physics, ECE), to oversee the department’s receipt in 2001 of a $14 million Whitaker Foundation Leadership Award and discussions leading to additional support from the Wallace H. Coulter Foundation. Between 1990 and 2005, as the number of full-time faculty rose to 120, research centers to eight, and PhD programs to seven, the College’s external research funding surpassed $26 million.

When Professor Kenneth R. Lutchen (BME) took over as dean in 2006, he aligned the curriculum with undergraduates’ growing interest in impacting society, redefining the educational mission of the College to create Societal Engineers, who “use the grounded and creative skills of an engineer to improve the quality of life.”

Lutchen rolled out several programs to advance this agenda, ranging from the Technology Innovation Scholars Program, which sends ENG students to K-12 schools to show how engineering impacts society, to the new Engineering Product Innovation Center (EPIC), a unique, hands-on facility, that will educate all ENG students on product design-to-deployment-to-sustainability. He also ushered in a new era of multidisciplinary education and research collaboration by establishing the Systems Engineering and Materials Science & Engineering divisions along with several new minors and concentrations. Meanwhile, professional education opportunities surged on campus with the introduction of eight new Master of Engineering programs and four new certificate programs.

Moving On to the Next 50 Years

That said, what do the next 50 years hold for the College of Engineering? For starters, upcoming educational initiatives include increased integration of digital technologies in courses; new programs with the schools of Management, Education and Public Health; continued efforts to build the engineering pipeline through outreach to K-12 students; and the Summer Institute for Innovation and Technology Leadership, which recruits companies to host teams of ENG and SMG students to tackle targeted problems.

BU also plans to construct the Center for Integrated Life Sciences and Engineering Building — a seven-story, 150,000-square-foot facility that will include interdisciplinary research space for faculty and students in systems and synthetic biology (expanding the College’s recently launched Center of Synthetic Biology (CoSBi)) — within the next 10 years, as well as a 165,000-square-foot science and engineering research building. By 2016, ENG expects to add about 61,500 square feet of new lab and classroom space.

In its first half-century, the College of Engineering — through its students, faculty and alumni — has made its mark on several fields while improving the quality of life around the globe. If its rich history of high-impact education and innovation is any guide, the College can expect many more life-enhancing achievements in the coming 50 years.

-Mark Dwortzan

Engineering in the Alps

February 25th, 2014 in Alumni, Courses, Faculty, Graduate Programs, Graduate Students, News-CE, News-EP, News-ISS, Research, Research-EP, Research-ISS, Senior Design, Students, Undergraduate Programs, Undergraduate Students

Kevin Mader (ECE '08, MS '08, who is teaching at ETH Zürich, bikes in one of the side valleys of Engadin in the Swiss Alps.

Kevin Mader (ECE ’08, MS ’08), who is teaching at ETH Zürich, bikes in one of the side valleys of Engadin in the Swiss Alps.

As a master’s candidate studying Photonics at Boston University, Kevin Mader (ECE ’08, MS ’08) decided to become an Undergraduate Teaching Fellow, a position that allowed him to work with students and help them master difficult concepts.

“I felt like I could help students because I had just struggled with learning the concepts a year before and could relate well to what they were going through,” he said.

The experience made Mader realize he wanted to become a teacher and today, he is a lecturer at ETH Zürich in Switzerland, where he is hoping to inspire the next generation to get excited about engineering.

“I think that a lot of students lose interest in science and engineering early on because it becomes too technical before it gets interesting,” he said. “I hope to try and make it exciting without watering it down too much.”

Prior to living in Switzerland, Mader’s roots were in the United States, where he lived in California, Ohio, Oregon, and Massachusetts. Still, moving abroad wasn’t quite the challenge you might expect.

“For some things it is no adjustment at all – there are Starbucks and McDonald’s restaurants on nearly every street corner – but for other aspects getting used to a new language and a different culture can take some time,” he explained. “Luckily, students seem to be pretty similar all around the world and Zürich is a very international city so it’s never a problem finding interesting people and somewhere to fit in.”

As an undergraduate studying Electrical Engineering at BU, Mader worked closely with Senior Lecturer, Babak Kia, on his senior design project. Like in Switzerland, Mader never had any problems finding other researchers he could collaborate with effortlessly.

“He was a very effective team player, espousing a humble leadership style and patiently sharing his thoughts and ideas with his team,” said Kia, who served as Mader’s customer during senior design.

Mader’s team, Esplanade Runner, was tasked with enabling a robot to navigate a Google Maps route while avoiding obstacles in its path. Known as autonomous navigation, the project was assigned a few years before Google Street View cars were popularized.

Calling the research one of his “most valuable experiences at BU,” Mader said, “Our project was particularly cool since it was tangible: make a little car follow a route and avoid obstacles. It was also deceptively simple, and I learned how difficult it is to make timelines and get everything running on time. We spent a few nights in the lab banging our heads against the wall trying to synchronize our vehicle, compass, sensors, and GPS.”

The hard work ultimately paid off and their team won the ECE Day Best Presentation Award that year.

“Kevin could hardly contain his drive and enthusiasm throughout the project,” said Kia. “He has such a natural ability and curious mind for exploring the unknown that is just a joy to witness.”

After earning his bachelor’s degree, Mader decided to continue his studies by pursuing a master’s in Photonics at BU.

“Initially I was intrigued by Photonics because I had no idea what it really was and had studied in the building by that name for years,” said Mader. “After taking the introductory class I was surprised by how complicated imaging really is – iPhones make it so easy – and how much potential there was in the field.”

Mader had completed a summer internship at the Center for Biophotonics at the University of California, Davis, where he looked at how cellular spectroscopy and imaging could be used to detect cancer. Upon returning to BU, he decided to build upon what he learned by taking a course on imaging and microscopy with Professor Jerome Mertz (BME).

“What struck me about Professor Mertz from my first interaction with him was how much interest and passion he had for the science he was working on,” explained Mader. “He seemed like one of those people who would continue to do the exact same thing even after winning the lottery because he enjoyed it so much.”

Mader went on to work on his master’s thesis in Mertz’s laboratory, where he worked on improving bioluminescence imaging so that a small group of cells, like a tumor, could be detected without using lasers or X-rays.

“Kevin was great to work with – really creative,” said Mertz. “He could always look at things from different and unexpected perspectives that were really intriguing. I think he’ll make a great professor someday.”

Since completing his master’s, Mader has taken more steps toward eventually becoming a professor, including earning a Ph.D. in Electrical Engineering and Biomechanics from ETH Zürich.

He has also earned a Pioneer Fellowship from the university, which will allow him to work toward pairing microscopes, MRIs and CT-scanners with tools that will turn pictures into meaningful statistics.

“There seems to be sufficient industrial interest. The real challenge will be connecting with the right people at the right times,” he said.

As Mader balances research with teaching, he continues to give his all in both.

“I think one of the best ways to really understand a topic is to have to disseminate it to other people,” he said. “In particular, I enjoy trying to connect abstract concepts like parallel computing to everyday ones like card games with friends.”

Truly committed to being the best teacher he can be, Mader can often be found tweaking his lecture slides minutes before a talk, even though he’d finished preparing weeks before.

Said Kia: “I have no doubt, not even for a second, that he will become a highly effective professor and that his deep passion for research and discovery will be surpassed only by his immense passion for his students.”

Learn more about Mader’s new company, 4Quant.

-Rachel Harrington (rachelah@bu.edu)

Fourth Annual ECE Fair Offers Research Opportunities

February 10th, 2014 in Events, Faculty, Graduate Students, Jobs in ECE@BU, News-CE, News-EP, News-ISS, Research-CE, Research-EP, Research-ISS, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students

Associate Professor Kotiuga talks with a student discussing his research project at the Department of Electrical and Computer Engineering's annual fair.

Associate Professor Robert Kotiuga (ECE) discusses his research project at the Department of Electrical and Computer Engineering’s annual fair.

It’s been a bitter winter in Boston, but that didn’t keep students and faculty from making their way toward the Photonics Building Colloquium Room on January 22. Anxious undergraduate students looking for research opportunities mingled among the 28 tables of Boston University researchers at the recent ECE Undergraduate Research and Lab Job Fair hoping to find opportunities to gain hands-on engineering experience.

The story of the research fair goes back four years ago when Dean Kenneth R. Lutchen spoke to matriculating freshman about the importance of research. While listening to the talk, Professor Mark Horenstein (ECE) realized that while entering students were being encouraged to engage in research, no one was telling them how.

In response, Horenstein started the annual ECE Undergraduate Research and Lab Job Fair as a way for undergraduates and faculty to explore mutual interests related to research and for students to ask about available research positions. The event also provides a public forum in which faculty can showcase what is happening in their laboratories. “This is a get-to-know-you meet-and-greet event,” says Horenstein.

View photos of the event on Facebook.

Watching presentations and submitting resumes to BU faculty and graduate students, about 75 students attended this year. Two sophomores, Dean De Carli (EE ’16) and Matthew Owney (EE ’16), were scouting for summer and fall positions.

“Even though I didn’t get any research jobs, I was able to connect with the faculty,” said second-time attendee, De Carli. Owney added that he is looking for any opportunity since it’s his first time attending the fair.

Friends Dean De Carli (EE ’16) and Matthew Owney (EE ’16) travel from table to table together.

Friends Dean De Carli (EE ’16) and Matthew Owney (EE ’16) travel from table to table together.

Horenstein tells younger attendees, such as Alexandra Miller-Browne (CE ’17), that it’s important to “build up your skills as time goes on; don’t get discouraged.”

People on the other side of the table have a similar thought process. Dr. Traci Haddock, Executive Director of the Center for Synthetic Biology at BU, says, “Most students have no experience, but we will take anyone who is interested.” For example, she is looking for students to help develop the iGEM team’s website and build genetic devices this summer.

Third-time veteran, Associate Professor Robert Kotiuga, changes his presentation every year but remains steadfast in his belief that though people will always possess different areas of expertise, “it is important to be passionate about the project.”

Every year since the program’s initiation, the event has turned out eager attendees, and 2014 was no exception. Students continue to return each year, hoping to gain experience and take advantage of the department’s available opportunities.

-Chelsea Hermond (SMG ’15)

The Search for Satisfying Solutions

February 6th, 2014 in Events, Faculty, Graduate Programs, Graduate Students, Lectures, News-CE, Research, Research-CE, Students, Undergraduate Programs, Undergraduate Students

Professor Sharad Malik, Chair of the Department of Electrical Engineering at Princeton University, spoke as part of the ECE Distinguished Lecture Series on January 29.

Professor Sharad Malik, Chair of the Department of Electrical Engineering at Princeton University, spoke as part of the ECE Distinguished Lecture Series on January 29.

When a bug in Pentium processors was discovered that gave rise to incorrect solutions of scientific and mathematical calculations, the company was forced to take action. The result? Public outcry and the loss of $475 million worth of earnings.

It’s been almost two decades since the Pentium FDIV bug made headlines, but its discovery led to a new research thrust in computer science and engineering – one that Professor Sharad Malik, Chair of the Department of Electrical Engineering at Princeton University, knows quite well.

“It’s an instance of how real practical concerns have driven solutions to real, fundamental problems,” said Malik.

The incident brought the examination of Boolean Satisfiability or SAT, the challenge of determining if a logic formula will ever evaluate to true, to the forefront. In proving the correctness, this problem has a direct application to hardware and software and more specifically, avoiding costly bugs. SAT was already well known in computer science, but theoretical analysis deemed it to be too difficult to be applied in practice.

Malik is one of the nation’s experts on the topic, and his group has made several critical contributions to the field of SAT solvers that are now widely used in practice. On January 29, he visited Boston University to share his findings during the Department of Electrical & Computer Engineering Distinguished Lecture Series, which brings groundbreaking engineers to campus.

The latest ECE Distinguished Lecture was attended by BU faculty, students, researchers and staff who were hoping to learn more about Boolean Satisfiability, or SAT.

The latest ECE Distinguished Lecture was attended by BU faculty, students, researchers and staff who were hoping to learn more about Boolean Satisfiability, or SAT.

Currently, there is a strong motivation to discover useful SAT solvers thanks to all of the potential practical uses, such as in applications in artificial intelligence, circuit synthesis, and malware analysis.

“It’s already very widely used in hardware verification and we’re seeing an increasing use of the theory in software verification,” added Malik.

Though the SAT problem may be relatively unknown outside computer science and engineering, a very active community of researchers exists and can be found sharing their research and questions on the website, SAT Live!

Malik notes that the biggest change he’s noticed with SAT studies over the years is a revolution in how the topic is approached.

“There has been a significant shift from theoretical interest in SAT to how it can have a practical impact,” he said. What was once considered practically impossible due to its theoretical hardness is now within reach thanks to challenge-driven algorithmic and experimental research.

Malik’s talk was the first in the three-part Spring 2014 Distinguished Lecture Series. The next talk features Professor C. V. Hollot of University of Massachusetts, Amherst, who will speak on the topic, “Regulation of Cell Populations in Individuals Using Feedback-Based Drug-Dosing Protocols.” Hear him on March 5, 2014, at 4 p.m. in Room 211 of the Photonics Center, located at 8 Saint Mary’s St.

-Rachel Harrington (rachelah@bu.edu)

EPIC Ribbon-Cutting Welcomes Industry, Local Officials

January 21st, 2014 in Alumni, Events, Faculty, Graduate Programs, Graduate Student Opportunities, Graduate Students, News-CE, News-EP, News-ISS, Research, Research-CE, Research-EP, Research-ISS, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students

Features tour of ENG’s new design, manufacturing studio

The Engineering Product Innovation Center (EPIC) will train BU engineers “for the future manufacturing economy in this country,” says EPIC director Gerry Fine. Photos by Mike Spencer

The Engineering Product Innovation Center (EPIC) will train BU engineers “for the future manufacturing economy in this country,” says EPIC director Gerry Fine. Photos by Mike Spencer

The Engineering Product Innovation Center (EPIC) hadn’t yet opened for its inaugural semester, and it already had a wait list of students eager to register for classes in the sleek, glass-fronted Commonwealth Avenue building that not too long ago was the Guitar Center. That bodes well for the College of Engineering and the University officials and corporate sponsors who made the new facility possible.

ENG will host EPIC’s ribbon-cutting ceremony this Thursday, January 23. Among those present will be President Robert A. Brown, ENG Dean Kenneth Lutchen, local dignitaries, and key corporate partners, including representatives from principal industry sponsors GE AviationProcter & GamblePTC, and Schlumberger.

Lutchen, who is also an ENG professor of biomedical engineering, says that EPIC’s opening “now begins the opportunity for us to transform our engineering education at the undergraduate level to really create a much more powerfully enabled graduate who understands the process of designing products from conception to deployment.”

Those skills are particularly important, and valuable, now that manufacturing is making a comeback in the United States. US manufacturers have added at least 500,000 new workers since the end of 2009, energy costs have dropped, and labor costs in competing countries such as China and India have been inching upward.

Companies like Apple and GE are bringing high-tech facilities back home from overseas. While a positive development, “the problem is now there aren’t enough engineers trained in highly technological methods,” says Bruce Jordan, ENG assistant dean of development and alumni relations.

EPIC could help fill that void. “We’re hoping to set a standard for the training of engineers for the future manufacturing economy in this country,” says EPIC director Gerry Fine, an ENG professor of the practice.

Funded through the University, ENG alumni and friends, and regional industry, EPIC’s 20,000-square-foot space houses a computer-aided design (CAD) studio, demonstration areas, fabrication facilities, materials testing, and project management software available to engineering students in all specialties — from computer and electrical engineering to biomedical engineering and nanotechnology. The facility has a flexible design and offers students supply chain management software, 3-D printers, robotics, laser processing, and around-the-clock digital access to the studio’s online resources.

A representative from each principal industry sponsor, GE Aviation, Procter & Gamble, PTC, and Schlumberger, will sit on EPIC’s Industrial Advisory Board, whose primary function will be to offer suggestions on how the ENG undergraduate curriculum might be redesigned to better prepare students for employment in the years ahead.

Timothy Jackman (ENG’15) with one of EPIC’s 3-D printers, which he used to create a miniature car from a digital model.

Timothy Jackman (ENG ’15) with one of EPIC’s 3-D printers, which he used to create a miniature car from a digital model.

“We want to create as many options for our graduating students as possible,” Fine says. “By teaching them some of the things that regional industry wants, we think we’re giving our students more options. And we’re making our students more desirable to potential employers.”

Representatives from the principal sponsors will also participate in guest lectures and provide case studies and projects, and the companies will offer internship and employment opportunities to qualified students. 

While other universities have manufacturing-oriented centers, most focus on basic research, but EPIC allows engineering students to put theory into practice by converting their ideas into products that could one day benefit society.

Fine has given tours of the facility to at least five teams from other universities since June. “We’re not aware of anyone who’s invested in this scale and made this commitment to undergraduate education,” he says.

“When I first heard from Dean Lutchen about the idea of EPIC, I was thrilled,” says Michael Campbell (ENG ’94), executive vice president of PTC’s CAD segment, who will serve on EPIC’s advisory board. “I always felt that my engineering education lacked that real-world perspective, that real-world exposure to the challenges, processes, and complexities of collaboration and the sophistication of tools. Now we have a chance to share all of that with students.”

J. David Rowatt, research director and technical advisor at Schlumberger, echoes that sentiment. “There were so many things I didn’t learn in school that I picked up on the job,” he says. “Some of these are clearly being addressed by what EPIC is trying to do,” which is exposing students to the entire engineering process — from conception and manufacturing to working on deadlines and understanding resource constraints.

Greg Morris, strategy and business development leader for additive manufacturing with GE Aviation, says this generation of students grew up in a world where computers and software were second nature, but tinkering under the hood of a car was not. EPIC will provide engineering students with the hands-on experience that gives them an advantage in the marketplace. “I can’t tell you how much that resonates with an employer,” he says.

Both BU and its partners see EPIC as a win-win. ENG faculty and students will benefit from a revamped curriculum and access to global leaders in innovation and manufacturing, while industry partners will interact with the University’s deep bench of cutting-edge researchers and get exposure to a new crop of engineers.

“If we tap into EPIC,” says Bruno De Weer, the vice president of global engineering at Procter & Gamble, “we can find ourselves connected with another hub of innovation that brings the very best.”

The EPIC ribbon-cutting ceremony will be held at 4:30 p.m. on Thursday, January 23, at 750 Commonwealth Ave., followed by a reception and tours for those invited. The event is not open to the public.

-Leslie Friday, BU Today