Category: Research-CE

CE Assistant Professor Densmore Joins the Ranks of IEEE Senior Members

November 7th, 2014 in Awards, Faculty, News-CE, Recognition, Research, Research-CE

By Gabriella McNevin

Assistant Professor Douglas Densmore (ECE, BME, Bioinformatics). Photo by Mike Pecci for Boston University Photography.

Assistant Professor Douglas Densmore (ECE, BME, Bioinformatics). Photo by Mike Pecci for Boston University Photography.

Douglas Densmore (ECE) was selected to be elevated to the grade of IEEE Senior Member, which is bestowed on those who have made significant contributions to the profession.

As a Senior Member, Densmore has the ability to hold executive IEEE positions and serve as a reference for other applicants for senior membership. To be eligible one must have shown significant performance in at least ten years in professional practice. Additionally, three references must be submitted on behalf of the applicant.

Densmore’s research is focused on bio-design automation.  He elaborated, “my work uses principles from computer engineering like abstraction, modularity, and standardization to design living systems. Computer software is going to be vital to not only store large amounts of biological material but also to implement algorithms for its specification, design, and assembly.”

Densmore is pleased to receive IEEE validation for interdisciplinary research.  “It is great that IEEE is realizing that those working in interdisciplinary fields have an important role to play in the organization and serve as ambassadors for IEEE.”

Douglas Densmore is an Affiliated Investigator in the Synthetic Biology Engineering Research Center (SynBERC), an Affiliate Faculty Member of the Department of Biomedical Engineering, and Bioinformatics faculty member. Densmore participated in the 2013 National Academy of Engineering (NAE) U.S. Frontiers of Engineering Symposium and received a National Science Foundation CAREER award.

In regards to recognition received from Boston University’s internal programs, Densmore received a 2013 Ignition Award, 2013 College of Engineer Early Career Excellence Award, and was named 2012-2014 Hariri Institute Junior Faculty Fellow. A list of Densmore’s awards, research interest, and selected publications are available on the Department of Electrical and Computer Engineering website.

Tagged , , , , , , ,

Stochastic Computing Approach can increase the Energy Efficiency of Future Computing Systems

October 24th, 2014 in Events, Faculty, News-CE, Research-CE

Louis John Schnell Professor & ECE Department Head at University of Minnesota in Minneapolis David Lilja.

Louis John Schnell Professor & ECE Department Head at University of Minnesota in Minneapolis David Lilja.

“When I told my wife I was coming here to speak as a Distinguished Lecturer, she laughed and replied, ‘that just means you are growing more gray hair.’”

Professor David Lilja opened his lecture on “When Close is Good Enough: Exploiting Randomness for Highly Reliable Approximate Computing” with humor before diving into the details of his research findings. Professor Lilja is the Louis John Schnell Professor of Electrical and Computer Engineering at the University of Minnesota in Minneapolis, where he also serves as the ECE departmenthead,a member of he graduate faculties in Computer Science and Scientific Computation, and a fellow of the Minnesota Supercomputer Institute. Lilja visited Boston University as part of the Department of Electrical and Computer Engineering Distinguished Lecture Series.

In his lecture Professor Lilja related the technological movement towards miniaturized systems and the resulting need to improve energy efficiency and reliability. He proposed to use stochastic techniques for improving the cost-performance of computing operations while ensuring that the resulting solution is within acceptable limits i.e. the approximate result is close enough to the true result. In addition, Professor Lilja also addressed the issue of greater variability, defects and noise in today’s circuits due to the aggressive scaling of device technologies. He demonstrated that the proposed stochastic approach makes the circuits more tolerant to noise. In particular, any bit flips that may occur in the logic circuits do not result in large errors.

ECE Department Chair Professor David Castañón (right), Louis John Schnell Professor & Department Head of the Electrical and Computer Engineering at University of Minnesota in Minneapolis David Lilja (middle), Faculty Host and Assistant Professor Ajay Joshi (left).

ECE Department Chair Professor David Castañón (left), Louis John Schnell Professor & ECE Department Head at University of Minnesota in Minneapolis David Lilja (middle), Faculty Host & Assistant Professor Ajay Joshi (right).

Lilja showed that a variety of functions can be implemented using the stochastic approach. He focused on four common image processing applications – edge detection, median filter noise reduction, contrast enhancement and segmentation based on kernel density estimation, and pointed out that energy-efficient approximate image processing solutions using stochastic methods would be highly suitable for cameras, for instance.

Lilja was the second speaker to be featured in the three-part Fall 2014 Distinguished Lecture Series. Next, Philippe Fauchet, Professor of Electrical Engineering, College of Engineering of Vanderbilt University will take part in the series. He will speak on the topic, “Nanoscale Silicon as an Optical Material.” His lecture will be held October 29, 2014 at 4 pm in PHO 210.

By Gabriella McNevin

Tagged , , , , ,

A Computer Engineering Approach to Synthetic Biology

August 20th, 2014 in Faculty, News-CE, Publications, Research, Research-CE

By Donald Rock (COM’17)

Assistant Professor Douglas Densmore

Assistant Professor Douglas Densmore

A reader picking up Nature Methods would not expect to see an article about computer engineering. ECE Assistant Professor Douglas Densmore and BU researcher Evan Appleton have just changed that notion by publishing a paper on automated DNA assembly, which offers a computer engineering approach to synthetic biology.

The researchers’ novel methodology may profoundly affect the field of synthetic biology. If utilized, this software can help biologists build genetic constructs at greater efficiency and scale so that organisms can be more efficiently altered to act as biosensors to detect harmful chemicals in the environment or act as biotherapeuthics to produce low cost drugs for patients, or as biomaterials, such as specialized silks.

 

BU Researcher, Evan Appleton

BU Researcher, Evan Appleton

The paper entitled “Interactive Assembly Algorithms for Molecular Cloning“ describes how software can provide optimized assembly plans for genetic constructs made from numerous DNA segments. Once assembled, these DNA segments can be introduced to living organisms to alter their behavior. The software not only provides optimized plans to build these constructs, but in the event of an assembly failure, it also offers alternative plans that reuse much of the original plan. Additionally, the software allows for assembly “standards” to be followed which democratize the process across the field.

Professor Densmore is not a newcomer to interdisciplinary research. He serves as the director of BU’s Cross-disciplinary Integration of Design Automation Research (CIDAR) group. His CIDAR team works to develop computational and experimental tools for synthetic biology.

Tagged , , , , , , , , , ,

Bellotti Receives Two Grants for Engineering Advancements

July 8th, 2014 in Awards, Faculty, Grants, News-CE, Recognition, Research, Research-CE

Professor Bellotti Receives Two New Grants to Develop Vertical Power Electronic Devices and Heterogeneous Computer Architectures

Bellotti’s work will benefit a number of industries including railroad transportation and electrical power distribution. The switch concept is expected to improve utility pole efficiency and reduce developmental costs of electric trains. Image provided by Photobucket (GreenThoughts), and Sidewalkbranding.net.

Bellotti’s work will benefit a number of industries including railroad transportation and electrical power distribution. The switch concept is expected to improve utility pole efficiency and reduce developmental costs of electric trains. The left image provided by Photobucket (GreenThoughts); and right image provided by Sidewalkbranding.net.

The Computational Electronics Group led by Professor Enrico Bellotti (ECE, MSE) has been awarded funding for two new programs to study novel power electronic devices based on III-Nitride semiconductors and to develop and evaluate heterogeneous computer architectures to simulate advanced materials and devices.

The new grant from the National Science Foundation will provide Prof. Bellotti with $336,000 over a period of three years to establish the theoretical foundation of vertical power switches based on III-Nitride semiconductors. If successfully developed, the power switches proposed in this program may lead to a number of breakthroughs in the areas of energy conversion that may profoundly change how and to what extent energy is consumed by society. First of all, these devices will aid in the implementation of the smart grid concept, delivering an unprecedented quality of service to the utilities’ customers while reducing transmission losses and increasing the capacity of these systems for wind and solar sources. In the area of transportation systems, they will enable the cost and size effective design of electric drives, not only for cars, but also for large vehicles, such as trucks or buses with immediate environmental benefits. They will reduce the development cost of electric trains, reducing the size of the motor control systems, leading to a further expansion and upgrade of local and regional railway systems.

The Army Research Office (ARO), through a DURIP Award, will provide the Computational Electronics Group with the resources totaling $150,000 to develop a heterogeneous computational hardware platform composed of distributed and shared memory systems integrated with GPUs to evaluate novel simulation methodologies for the design of electronic and optoelectronic materials and devices. Exploiting heterogeneous computing platform may significantly increase the ability of material scientists to predict novel material properties and possibly design new ones with specific properties.

For further information contact Prof. E. Bellotti at bellotti@bu.edu

Tagged , , , , , ,

ENG@50

February 27th, 2014 in Faculty, Graduate Programs, Graduate Students, News-CE, News-EP, News-ISS, Research, Research-CE, Research-EP, Research-ISS, Students, Undergraduate Programs, Undergraduate Students

Cultivating Excellence, Transforming Society

Opening of the College of Engineering Building at 110 Cummington Street in February, 1964. Left to right are, Merritt A. Williamson, dean of the College of Engineering and Architecture at Penn State, BU President Harold C. Case and BU College of Engineering Dean Arthur T. Thompson. Williamson gave the Convocation Address at the inaugural ceremony of the College. (Photo by BU Photography)

Opening of the College of Engineering Building at 110 Cummington Street in February 1964. Left to right are, Merritt A. Williamson, dean of the College of Engineering and Architecture at Penn State, BU President Harold C. Case and BU College of Engineering Dean Arthur T. Thompson. Williamson gave the Convocation Address at the inaugural ceremony of the College. (Photo by BU Photography)

In 1963, the College of Industrial Technology (CIT) offered only three degree programs — in technology, aeronautics and management — and occupied a single, four-story building, but the former aviation school’s new dean, Arthur T. Thompson, was bullish about CIT’s future. He aspired to do no less than transform this dot on the Boston University map into an accredited engineering program, and to develop engineers with “the capacity for responsible and effective action as members of our society.”

Thompson began to work this transformation on February 27, 1964 — 50 years ago today — when CIT was officially renamed as the Boston University College of Engineering. Since then the College has grown to become one of the world’s finest training grounds for future engineers and platforms for innovation in synthetic biology, nanotechnology, photonics and other engineering fields, attracting record levels of student applications, research funding and philanthropic support.

Between 1964 and 2013, the number of degrees conferred annually has increased from zero to 281 bachelors, 184 masters and 53 PhDs; enrollment from around 100 to 1416 undergraduate, zero to 394 masters and zero to 349 PhDs; faculty from 10 to more than 120; advanced degree programs offered from zero to nine masters and six PhDs; and annual sponsored research dollars from zero to $52 million. Meanwhile, the College’s position in the annual US News & World Report’s annual survey of US engineering graduate programs has surged from unranked to the top 20 percent nationally.

At the same time, the College’s faculty, students and alumni have significantly advanced their fields and spearheaded major innovations in healthcare, energy, information and communication, transportation, security and other domains.

Building a World Class Institution

College of Engineering students in a typical lab setting on Cummington Street in 1964 (Photo by BU Photography)

College of Engineering students in a typical lab setting on Cummington Street in 1964 (Photo by BU Photography)

The infrastructure for the world class research and education taking place at today’s College of Engineering was built in stages.

During Thompson’s deanship from 1964 to 1974, the new Aerospace, Manufacturing and Systems Engineering departments received accreditation, with the Manufacturing Engineering program the first of its kind to be accredited in the US. The College also instituted the nation’s first BS degree program in bioengineering and expanded to five BS and three MS programs in five fields. Between 1975 and 1985, when Louis Padulo was dean, the College’s student body grew from 250 to 2481; minority and female enrollments skyrocketed; degree offerings rose to 24 BS, MS and PhD programs in eight fields; full-time faculty increased to 67; and sponsored research exceeded $3 million.

When Professor Charles DeLisi (BME) became the new dean in 1990, he recruited many leading researchers in biomedical, manufacturing, aerospace, mechanical, photonics and other engineering fields, establishing a research infrastructure that ultimately propelled the College to its ranking in US News & World Report’s top 50 engineering graduate schools (realized in 2003). A case in point is the BME Department, which DeLisi turned into the world’s foremost biomolecular engineering research hub, paving the way for his successor, Professor David K. Campbell (Physics, ECE), to oversee the department’s receipt in 2001 of a $14 million Whitaker Foundation Leadership Award and discussions leading to additional support from the Wallace H. Coulter Foundation. Between 1990 and 2005, as the number of full-time faculty rose to 120, research centers to eight, and PhD programs to seven, the College’s external research funding surpassed $26 million.

When Professor Kenneth R. Lutchen (BME) took over as dean in 2006, he aligned the curriculum with undergraduates’ growing interest in impacting society, redefining the educational mission of the College to create Societal Engineers, who “use the grounded and creative skills of an engineer to improve the quality of life.”

Lutchen rolled out several programs to advance this agenda, ranging from the Technology Innovation Scholars Program, which sends ENG students to K-12 schools to show how engineering impacts society, to the new Engineering Product Innovation Center (EPIC), a unique, hands-on facility, that will educate all ENG students on product design-to-deployment-to-sustainability. He also ushered in a new era of multidisciplinary education and research collaboration by establishing the Systems Engineering and Materials Science & Engineering divisions along with several new minors and concentrations. Meanwhile, professional education opportunities surged on campus with the introduction of eight new Master of Engineering programs and four new certificate programs.

Moving On to the Next 50 Years

That said, what do the next 50 years hold for the College of Engineering? For starters, upcoming educational initiatives include increased integration of digital technologies in courses; new programs with the schools of Management, Education and Public Health; continued efforts to build the engineering pipeline through outreach to K-12 students; and the Summer Institute for Innovation and Technology Leadership, which recruits companies to host teams of ENG and SMG students to tackle targeted problems.

BU also plans to construct the Center for Integrated Life Sciences and Engineering Building — a seven-story, 150,000-square-foot facility that will include interdisciplinary research space for faculty and students in systems and synthetic biology (expanding the College’s recently launched Center of Synthetic Biology (CoSBi)) — within the next 10 years, as well as a 165,000-square-foot science and engineering research building. By 2016, ENG expects to add about 61,500 square feet of new lab and classroom space.

In its first half-century, the College of Engineering — through its students, faculty and alumni — has made its mark on several fields while improving the quality of life around the globe. If its rich history of high-impact education and innovation is any guide, the College can expect many more life-enhancing achievements in the coming 50 years.

-Mark Dwortzan

Call for 2014 Institute Research Proposals

February 21st, 2014 in Awards, Faculty, Grants, News-CE, News-EP, News-ISS, Research, Research-CE, Research-EP, Research-ISS

banner21In pursuit of the Hariri Institute’s mission to catalyze and propel collaborative, interdisciplinary research through the use of computational and data-driven approaches, the Institute supports a portfolio of ambitious computational research projects, as well as forward-looking educational and outreach initiatives at Boston University.

In line with this mission, we are pleased to announce the Call for selecting and funding 2014 Institute portfolio projects. The process is designed to be fairly lightweight, imposing minimal overhead on proposing investigators, while ensuring that the process itself acts as a catalyst for the exchange and development of research ideas among Institute affiliates.

The process for exploring and developing projects to be sponsored by the Institute encourages principal investigators to involve the Institute in shaping and refining their research ideas, suggesting potential collaborations, identifying additional or alternative sources of funding, and finding other creative ways to help support the project.

Eligibility: Faculty affiliates of the Hariri Institute are eligible to submit proposals for support from the Institute for research and other activities by completing the Research Funding Application.

Process: For details, please check the project proposal development, submission, and evaluation process and complete the Research Funding Application.

Deadline: April 4, 2014 is the deadline for Summer/Fall start dates. There will be a November 2014 deadline for Spring 2015 start date projects.

For more information: please contact Linda Grosser, Director, Program & Project Development, of the Hariri Institute, by email at lgrosser@bu.edu.

Atlas Changing the Workout Experience

February 18th, 2014 in Alumni, Graduate Students, News-CE, News-EP, News-ISS, Recognition, Research, Research-CE, Senior Design, Students, Undergraduate Students

Mike Kasparian (ECE ’12, MS ’13)

As many of us try to stick to our New Year’s resolution of going to the gym more, we often find ourselves looking toward apps and equipment that can help us keep track of our progress.

Jawbone and Nike Fuel Band are just some of the wearable products on the market that allow you to keep track of this data, but what if these devices could be more customizable?

2013-8-9_Michael

Mike Kasparian (ECE ’12, MS ’13)

That’s the idea behind Atlas, the company founded by Mike Kasparian (ECE ’12, MS ’13) and his preschool friend, Peter Li.

Atlas tracks and identifies exercises, counts reps, calculates burned calories, and evaluates form. It also displays workouts live and is compatible with many popular fitness apps such as MapMyFitness.

Said Kasparian: “It’s one thing to come up with a great idea that will disrupt a technology, but it’s another thing to formulate the idea into a business and develop it into something that will one day not only generate revenue but also be in the hands of consumers.”

Li initially came up with the idea and contacted Kasparian to help with the hardware. Techstars, a startup accelerator in Austin, provided them office space, funding, and mentorship.

It was not an easy decision for Kasparian, who had a stable position at Philips Healthcare, to leave his day job. However, he took the risk and now holds the position of Chief Technology Officer (CTO) of the growing company.

The company gained funding through a campaign on indiegogo, a web platform that helps people raise money for new ideas and products. Atlas has surpassed its $125,000 fundraising goal, collecting over $450K.

Even though there is a lot of uncertainty associated with this venture, Kasparian feels that providing people with a personalized workout experience outweighs the risk.

Kasparian, who studied Electrical Engineering at Boston University, attributes the Department of Electrical & Computer Engineering’s senior design course as having a significant impact on his career. He said, “It was really the first time I was able to fully apply all of the technical skills from my coursework toward a legitimate project.”

As his advisor, Professor Bakak Kia gave Kasparian invaluable help and guidance during senior design. Kia is very proud of Mike, saying, “To reach this level, where he is competing with some of the most innovative companies in this field, speaks volumes about Mike’s vision, ability, and the value of the education he has received at BU.”

While working on the project, MINSensory, for senior design, Kasparian said he learned the importance of both collaboration and taking feedback. He did both well, too, winning the top team prize, the P. T. Hsu Memorial Award for Outstanding Senior Design Project, and an individual honor, the Michael F. Ruane Award for Excellence in Senior Capstone Design.

Later, his M.S. research project involved designing the hardware platform that would be used in the Atlas wristband. Professor Ajay Joshi (ECE) was Kasparian’s academic and research advisor, and he advised him during the platform design process. Joshi believes “the fitness band market is just picking up” and said he hopes “the Atlas wristband becomes the preferred choice of most fitness enthusiasts.”

Kasparian continues to remain close to the department, serving as one of the judges for senior design last year and graduating with his M.S. in December.

- Chelsea Hermond (SMG ’15)

Looking Beyond the Lab

February 11th, 2014 in Awards, Courses, Events, Faculty, Graduate Programs, Graduate Student Opportunities, Graduate Students, Grants, News-CE, News-EP, News-ISS, Research, Research-CE, Research-EP, Research-ISS, Students

Postdoctoral associate, George Daaboul; research associate, David Freedman; and lecturer and entrepreneur, Rana Gupta (SMG) were among the Boston University participants of the NSF I-Corps program.

Postdoctoral associate, George Daaboul; research associate, David Freedman; and lecturer and entrepreneur, Rana Gupta (SMG) were among those participating from Boston University in the NSF I-Corps program.

Many engineers have great ideas for products, but unfortunately, they don’t often have a background in business that will allow them to bring their designs to market.

To help with this problem, two Boston University research teams recently participated in the National Science Foundation (NSF) Innovation Corps (I-Corps), a program that encourages scientists and engineers to broaden their focus beyond lab work through entrepreneurship training.

“We had been trying to bring some of our ideas to a commercial state when we heard about the program,” said David Freedman, a BU research associate in the Department of Electrical & Computer Engineering. “It seemed like a great fit for us.”

Freedman and postdoctoral associate, George Daaboul, had been working closely with Professor Selim Ünlü’s (ECE, BME, MSE) research group trying to determine how their technology, IRIS, used to detect viruses and pathogens, might be applied in doctors’ offices, hospitals, and emergency care centers. They soon decided that forming an I-Corps team would allow them to evaluate the commercial potential.

Teams receive $50K in grant money and consist of an Entrepreneurial Lead (Daaboul), a Principal Investigator (Freedman), and a business mentor. The researchers asked BU lecturer and entrepreneur, Rana Gupta (SMG), to take on the latter role.

Also participating from BU were Assistant Professor Douglas Densmore (ECE) and Research Assistant Professor Swapnil Bhatia (ECE). They pitched Lattice Automation, technology that will allow technology by the Cross-disciplinary Integration of Design Automation Research (CIDAR) group to transition into commercial products. Ultimately, they hope to create software that will help synthetic biologists work more efficiently.

“Our technology is building upon state-of-the-art techniques in computer science, electrical engineering, and bioengineering,” explained Densmore.

Conceptual illustration of SP-IRIS technology used for pathogen diagnostics.

Conceptual illustration of SP-IRIS technology used for pathogen diagnostics.

Over eight weeks in the fall, participants attended workshops in Atlanta, Ga., met with researchers from the 21 teams, followed an online curriculum, and spoke with up to 100 different potential consumers of their technology – a process known as “customer discovery.”

Through this experience, Freedman and Daaboul quickly learned that introducing a new technology to customers might not be the right approach for their research.

“We decided instead to focus on the pains customers had with existing technologies and hone in on how we could alleviate those,” said Freedman.

Added Daaboul: “Finding out what people really needed before developing a technology really allowed for a much different perspective than what I’m used to.”

Much of the knowledge gained through I-Corps will be used to advance science and engineering research. Some products tested during the workshops even show immediate market potential by the conclusion of the curriculum.

“I would recommend this program to anyone working in science or industry,” said Freedman. “Not only did this change how we think about our research, we also learned how to better tell our narrative.”

-Rachel Harrington (rachelah@bu.edu)

Fourth Annual ECE Fair Offers Research Opportunities

February 10th, 2014 in Events, Faculty, Graduate Students, Jobs in ECE@BU, News-CE, News-EP, News-ISS, Research-CE, Research-EP, Research-ISS, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students

Associate Professor Kotiuga talks with a student discussing his research project at the Department of Electrical and Computer Engineering's annual fair.

Associate Professor Robert Kotiuga (ECE) discusses his research project at the Department of Electrical and Computer Engineering’s annual fair.

It’s been a bitter winter in Boston, but that didn’t keep students and faculty from making their way toward the Photonics Building Colloquium Room on January 22. Anxious undergraduate students looking for research opportunities mingled among the 28 tables of Boston University researchers at the recent ECE Undergraduate Research and Lab Job Fair hoping to find opportunities to gain hands-on engineering experience.

The story of the research fair goes back four years ago when Dean Kenneth R. Lutchen spoke to matriculating freshman about the importance of research. While listening to the talk, Professor Mark Horenstein (ECE) realized that while entering students were being encouraged to engage in research, no one was telling them how.

In response, Horenstein started the annual ECE Undergraduate Research and Lab Job Fair as a way for undergraduates and faculty to explore mutual interests related to research and for students to ask about available research positions. The event also provides a public forum in which faculty can showcase what is happening in their laboratories. “This is a get-to-know-you meet-and-greet event,” says Horenstein.

View photos of the event on Facebook.

Watching presentations and submitting resumes to BU faculty and graduate students, about 75 students attended this year. Two sophomores, Dean De Carli (EE ’16) and Matthew Owney (EE ’16), were scouting for summer and fall positions.

“Even though I didn’t get any research jobs, I was able to connect with the faculty,” said second-time attendee, De Carli. Owney added that he is looking for any opportunity since it’s his first time attending the fair.

Friends Dean De Carli (EE ’16) and Matthew Owney (EE ’16) travel from table to table together.

Friends Dean De Carli (EE ’16) and Matthew Owney (EE ’16) travel from table to table together.

Horenstein tells younger attendees, such as Alexandra Miller-Browne (CE ’17), that it’s important to “build up your skills as time goes on; don’t get discouraged.”

People on the other side of the table have a similar thought process. Dr. Traci Haddock, Executive Director of the Center for Synthetic Biology at BU, says, “Most students have no experience, but we will take anyone who is interested.” For example, she is looking for students to help develop the iGEM team’s website and build genetic devices this summer.

Third-time veteran, Associate Professor Robert Kotiuga, changes his presentation every year but remains steadfast in his belief that though people will always possess different areas of expertise, “it is important to be passionate about the project.”

Every year since the program’s initiation, the event has turned out eager attendees, and 2014 was no exception. Students continue to return each year, hoping to gain experience and take advantage of the department’s available opportunities.

-Chelsea Hermond (SMG ’15)

The Search for Satisfying Solutions

February 6th, 2014 in Events, Faculty, Graduate Programs, Graduate Students, Lectures, News-CE, Research, Research-CE, Students, Undergraduate Programs, Undergraduate Students

Professor Sharad Malik, Chair of the Department of Electrical Engineering at Princeton University, spoke as part of the ECE Distinguished Lecture Series on January 29.

Professor Sharad Malik, Chair of the Department of Electrical Engineering at Princeton University, spoke as part of the ECE Distinguished Lecture Series on January 29.

When a bug in Pentium processors was discovered that gave rise to incorrect solutions of scientific and mathematical calculations, the company was forced to take action. The result? Public outcry and the loss of $475 million worth of earnings.

It’s been almost two decades since the Pentium FDIV bug made headlines, but its discovery led to a new research thrust in computer science and engineering – one that Professor Sharad Malik, Chair of the Department of Electrical Engineering at Princeton University, knows quite well.

“It’s an instance of how real practical concerns have driven solutions to real, fundamental problems,” said Malik.

The incident brought the examination of Boolean Satisfiability or SAT, the challenge of determining if a logic formula will ever evaluate to true, to the forefront. In proving the correctness, this problem has a direct application to hardware and software and more specifically, avoiding costly bugs. SAT was already well known in computer science, but theoretical analysis deemed it to be too difficult to be applied in practice.

Malik is one of the nation’s experts on the topic, and his group has made several critical contributions to the field of SAT solvers that are now widely used in practice. On January 29, he visited Boston University to share his findings during the Department of Electrical & Computer Engineering Distinguished Lecture Series, which brings groundbreaking engineers to campus.

The latest ECE Distinguished Lecture was attended by BU faculty, students, researchers and staff who were hoping to learn more about Boolean Satisfiability, or SAT.

The latest ECE Distinguished Lecture was attended by BU faculty, students, researchers and staff who were hoping to learn more about Boolean Satisfiability, or SAT.

Currently, there is a strong motivation to discover useful SAT solvers thanks to all of the potential practical uses, such as in applications in artificial intelligence, circuit synthesis, and malware analysis.

“It’s already very widely used in hardware verification and we’re seeing an increasing use of the theory in software verification,” added Malik.

Though the SAT problem may be relatively unknown outside computer science and engineering, a very active community of researchers exists and can be found sharing their research and questions on the website, SAT Live!

Malik notes that the biggest change he’s noticed with SAT studies over the years is a revolution in how the topic is approached.

“There has been a significant shift from theoretical interest in SAT to how it can have a practical impact,” he said. What was once considered practically impossible due to its theoretical hardness is now within reach thanks to challenge-driven algorithmic and experimental research.

Malik’s talk was the first in the three-part Spring 2014 Distinguished Lecture Series. The next talk features Professor C. V. Hollot of University of Massachusetts, Amherst, who will speak on the topic, “Regulation of Cell Populations in Individuals Using Feedback-Based Drug-Dosing Protocols.” Hear him on March 5, 2014, at 4 p.m. in Room 211 of the Photonics Center, located at 8 Saint Mary’s St.

-Rachel Harrington (rachelah@bu.edu)