Category: News-CE

Invisible Glass Films to Protect Solar Mirrors and Panels from Dust, Boost Energy Output

October 26th, 2015 in ECE, Faculty, News-CE, Research, Research-CE, Students

U.S. Department of Energy’s SunShot Initiative Awards Boston University in Partnership with Sandia National Laboratories $1.15 million

By Rebecca Jahnke (COM ’17) and Bhumika Salwan (Questrom ’16)

The photo in the upper left hand corner shows the development of a transparent electrodynamic screen (EDS) at a Boston University laboratory.  In the image below, the transparent electrodynamic screens have been installed on solar mirrors at the Sandia National Laboratories.

The photo in the upper left hand corner shows the development of a transparent electrodynamic screen (EDS) at a Boston University laboratory. In the image below, the transparent electrodynamic screens have been installed on solar mirrors at the Sandia National Laboratories.

Boston University has been awarded $1.15 million from the U.S. Department of Energy SunShot Initiative to advance self-cleaning solar collector technology and bring the new application to solar fields across the country. With partner Sandia National Laboratories, BU aims to improve high efficiency operations of large solar plants in semi-arid and desert lands. Industrial partners of BU include Corning Inc., Eastman Kodak, Industrial Technology Research Institute (Taiwan) and Geodrill (Chile).

When solar mirrors are first placed in fields, they have very high efficiency rates. However, when dust accumulates on the surface of these solar collectors, their efficiency decreases – the dust obstructs sunlight, thus reducing the amount of energy a solar plant can produce and, in turn, the revenue the plant can generate.

Students and faculty from the Electrical and Computer Engineering Department and Questrom School of Business are developing a transparent electrodynamic screen (EDS) film technology that can retrofit solar collectors with a transparent film and protect them from dust. Leading the graduate students are ECE research professor of electrical and computer engineering and materials science and engineering Malay Mazumder, ECE professor of electrical and computer engineering Mark Horenstein and Questrom associate professor of operations and technology management Nitin Joglekar. A team of four graduate and five undergrad students are working on this project at BU.

The team’s developments are especially important given that, in the United States, solar plants are most commonly located in southwestern states with dry and semi-dry climates that have a high dust deposition rate and little rain. Until now, the most common solution has been to clean solar collectors by deluge spray, washing with water and detergent. Under this process, cleaning a 300 MW plant in the southwest would require more than one million gallons of water and cost upwards of $1 million dollars every year in an area already subject to drought. By advancing solar mirrors’ self-cleaning abilities, solar plants could significantly lower their costs.

Through the EDS film technology, voltage pulses would activate the EDS film and allow the electric field to charge dust particles on its surface. Electrodynamic traveling wave motion created by the pulsed phase voltages would then remove the particles. The intent is for the EDS film to activate the film as frequently as needed without requiring water, thus allowing the solar devices to maintain maximum efficiency. By keeping panels clean, heightening operational efficiency and conserving water, the EDS film would have the double effect of driving down solar electricity’s cost and conserving natural resources.

The SunShot Initiative is a collaborative national effort that supports innovation by private companies, universities and national laboratories seeking to make solar energy fully cost-competitive with traditional energy sources before the end of the decade.

Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Coskun, Egele Partner with Sandia Labs for HPC Systems Research

October 23rd, 2015 in ECE, Faculty, News-CE, Research, Research-CE, Uncategorized

By Bhumika Salwan (Questrom ’16)

computing_grid

This is a typical high performance computing system used in laboratories such as Sandia Labs.

ECE Associate Professor Ayse Coskun and Assistant Professor Manuel Egele were awarded $189,000 for their research in data analytics with Sandia National Laboratories for improving energy efficiency and security of high performance computing (HPC) systems. Sandia Labs is one of the nation’s premier science and engineering laboratories for national security, with strategic areas in nuclear weapons, defense systems and assessments, energy and climate, and international, homeland, and nuclear security.

Professor Ayse Coskun’s research group at Boston University is widely-cited, with expertise in the topics of energy-efficient computing, computer system modeling and simulation, design of intelligent scheduling and power management techniques, and green computing in data centers and HPC systems. Professor Manuel Egele is an expert on systems and software security whose research has been published at top-tier peer reviewed conferences including NDSS and CCS.

Their project aims to identify which data collected out of HPC systems would be useful for identifying performance characteristics, inefficiencies, and malicious behavior. It will then design methods to leverage these data to design runtime strategies to improve efficiency and security. Professors Coskun and Egele’s research teams will first collect data on real HPC clusters at Sandia Labs and at the Massachusetts Green High Performance Computing Center (MGHPCC). They will then analyze that data to determine the most relevant, minimum set of metrics that are good indicators of energy and normal system behavior, and construct models that can predict performance variations and anomalous behavior resulting from security breaches or fraudulent activities.

The knowledge gained through this project will aid users and admins in answering questions such as the following: How much resources (e.g., how many cores or what size of memory) do I need for my application? Why does the performance of my application wildly vary across different runs?  What information can we provide to system administrators to enable more efficient problem diagnosis? Can we determine whether software applications are behaving “normally”?

Assistant Professor Manuele Egele. Photo by Frank Curran.

Assistant Professor Manuele Egele. Photo by Frank Curran.

Associate Professor Ayse Coskun. Photo by Mike Spencer.

Associate Professor Ayse Coskun. Photo by Mike Spencer.

 

 

Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Hip to Hacking Square

August 11th, 2015 in Alumni, Awards, ECE, Events, News-CE, Recognition, Uncategorized, Undergraduate Student Opportunities

ECE alums’ class project earns spot at Black Hat USA 2015

By Joel Brown, published in BU Today

Alexandrea Mellen (from left) (photo by Dmellendesigns), John Moore (photo by Chris Welch Photography), and Artem Losev (photo by Alexandrea Mellen).

Alexandrea Mellen (from left) (photo by Dmellendesigns), John Moore (photo by Chris Welch Photography), and Artem Losev (photo by Alexandrea Mellen).

The Square Reader, used by millions of businesses in the United States, could at one point be converted in less than 10 minutes into a skimmer that could steal and save credit card information, according to three recent ENG grads. Their findings will be presented today at the Black Hat USA 2015 cybersecurity conference in Las Vegas.

Computer engineering grads Alexandrea Mellen (ENG’15), John Moore (ENG’15), and Artem Losev (ENG’15) discovered the vulnerability last year in a project for their Cybersecurity class, taught by Ari Trachtenberg, an ENG professor of electrical and computer engineering.“The beauty of the hardware attack itself was that there would be no sure way to know if it was the merchant with the Square Reader that actually took your information,” Mellen says.

The trio also found that Square Register software could be hacked to enable unauthorized transactions at a later date.

“The merchant could swipe the card an extra time at the point of sale,” says Moore. “You think nothing of it, and a week later when you’re not around, I charge you $20, $30, $100, $200… You might not notice that charge. I get away with some extra money of yours.”

Moore, who was valedictorian of his ENG class, says the three reported the vulnerabilities to Square last fall, and the company quickly moved to close them. Square also sent Moore a $500 “bounty” for the software hack.

Moore says there is no evidence that either of the vulnerabilities has been used to scam credit card holders, but warns that the group’s findings raise red flags for the fast-growing mobile commerce field in general.

“This isn’t just about Square,” he says. “Over the past six years, mobile point-of-sale has really taken off…and all of these providers are offering new hardware and software to process payments, and customers are trusting their credit card information to new devices that haven’t been tested as much as traditional point-of-sale devices. They’re interacting with the personal cell phone of the merchant in a lot of cases. There’s just a lot going on.”

The three turned their class project into a paper that submitted to the Black Hat conference and waited two months before learning it had been accepted, which was a huge thing, “because Black Hat is the premiere information security conference in the world,” Mellen says. The weeklong event draws everyone from hackers to government officials. Mellen and Moore will give a 25-minute presentation on their work at the conference, where they get free passes to the briefings at the Mandalay Bay Resort and Casino, worth $2,195.

The Square Reader mobile point-of-sale device is the small white object plugged into the iPad Mini in this photo. Photo courtesy of Square Inc.

The Square Reader mobile point-of-sale device is the small white object plugged into the iPad Mini in this photo. Photo courtesy of Square Inc.

Trachtenberg says students have derived papers from class projects before, but none were undergraduates and none of the conferences have had the stature of Black Hat. “This is a conference with a very high impact,” he says. “There are 10,000 security professionals that pay a lot of money to come to this conference and listen to the latest interesting security research.”

Vulnerabilities in payment software present more of an inconvenience than a financial risk, he says, at least for consumers who check their credit card statements regularly, because losses are generally covered by the credit card companies.

“The bigger reason to be scared is that Square had security in mind from the very beginning and designed these to be secure,” he says. “They should have known better than to have left these kind of holes. It kind of bodes poorly for other vendors who might not be taking security quite as seriously and what kind of problems they might be having.”

Square doesn’t disclose how many businesses use its software or how much revenue it derives by taking a small percentage of their transactions, but Bloomberg quoted one analyst as estimating that the company took in $300 million in merchant fees in 2013.

Mellen and Moore say they made Square aware of the two potential problems late last fall, and the company was receptive to their warning.

Through the winter and spring, Square staffers discussed possible solutions and their difficulties with Moore on a page on the HackerOne platform, and they eventually settled on a solution that would alert the company if the hack was ever used.

Square did not respond in detail and declined to discuss specific solutions on the record with BU Today, but a spokesperson offered a statement: “With so many sellers relying on Square to run their business, we’ve made protecting them a priority. We protect sellers by encrypting transactions at the moment of swipe, tokenizing data once it reaches our servers, and monitoring every transaction to detect suspicious behavior. We’ve also recently migrated the small percentage of remaining sellers who use an out-of-date, unencrypted card reader to new hardware. Today, those unencrypted card readers no longer work. We’re always making advances in security, and we appreciate John Moore’s research, which encouraged us to speed up our deprecation plans.”

All three alums have other plans now. In September, Mellen will return to running her own company, Terrapin Computing LLC in Cambridge, which sells four iOS apps. Moore will start work as a software engineer for Google, and Losev will continue his computer science education at New York University.

Moore says another lesson to draw from their experience has nothing to do with hackers or credit cards and everything to do with the classroom.

“Don’t be afraid to take on a project that goes a little bit above and beyond what’s required,” he says. “We could have done a project that was a lot simpler and easier, but instead we decided to do something that was quite challenging for us. We learned a lot in the process. We put in a lot more time than we expected, and it ended up paying off in the long run.”

______________________________

Mellen update4-01

Additional press coverage on ECE alums cyber security discovery: 

Tagged ,

BU to Launch a Satellite in the Final Round of a US Air Force Space Challenge

July 28th, 2015 in Awards, ECE, Events, Faculty, Graduate Programs, Graduate Student Opportunities, News-CE, News-EP, Recognition, Research, Research-CE, Research-EP, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students

One of Six Teams Selected

By Gabriella McNevin

ANDESITE team presenting their satellite to a team of judges at the Air Force Final Competition Review (FCR) in Albuquerque, NM, February 2015.   BU was one of 6 schools out of 16 selected to move on.

ANDESITE team presenting their satellite to a team of judges at the Air Force Final Competition Review (FCR) in Albuquerque, NM, February 2015. BU was one of 6 schools out of 16 selected to move on.

ANDESITE, a task force within Boston University’s Small Satellite Program, qualified to launch a self-designed satellite into orbit. The ANDERSITE team is one of six that qualified for the final round of the US Air Force University Nanosat Program competition.

The ANDESITE satellite is on the forefront of an international movement to advance our understanding of “space weather” and its effects on society.  Space weather arises from interactions between the Earth’s plasma environment and the impinging solar wind.   These interactions can damage satellites, harm astronauts in space, render GPS information erratic and unreliable, disrupt ground-space communications, and even cause electricity blackouts on Earth.  In 2013, the White House raised inadequate space weather forecasting to the global agenda, citing the significant  “threat to modern systems posed by space weather events” and “the potential for “significant societal, economic, national security, and health impacts.”

The ANDESITE satellite has been designed to deploy a network of magnetic sensors from a central mother ship. The ejected sensors will operate collectively as a space-based wireless mesh network with the aim of studying fine-scale variations in Earth’s geomagnetic environment caused by space weather events.   The ANDESITE satellite’s scientific and technological innovations place it at the cutting edge of the burgeoning cubesat movement.

A computer generated image of the satellite.

A computer generated image of the satellite.

ANDESITE is a unique interdisciplinary university-wide collaboration.  The team of 16 students is comprised of Astronomy, Electrical, Computer, and Mechanical Engineering scholars. The group is under the guidance of two faculty advisors, Joshua Semeter (ECE/Photonics) and Ray Nagem (ME). Research Engineer Aleks Zosuls also provides support and acts as a liaison with the Engineering Product Innovation Center (EPIC).

The qualifying competition took place in the Kirtland Air Force Base in Albuquerque, New Mexico in February 2015. Now, the qualifiers must shift their focus from satellite fabrication to implementation. The University Nanosat Program will provide Air Force technical guidance and $110,000 to support each of the remaining six competitors.

After returning to Boston from New Mexico, ANDESITE advisor Professor Semeter recalled, “it was a stressful experience for the students with an exciting outcome.”

The University Nanosat Program provides hands-on experience for graduate and undergraduate students and an opportunity to create and launch a satellite with a specific research capacity. The Air Force Research Laboratory’s Space Vehicles Directorate, Air Force Office of Scientific Research and American Institute of Aeronautics and Astronautics developed the program in 1999.

Bhatia Receives First Annual Biodesign Automation Award

July 20th, 2015 in Awards, ECE, Faculty, Grants, News-CE, News-EP, Research-CE, Research-EP

By Mark Dwortzan

Swapnil-Bhatia-small1

Research Assistant Professor Swapnil Bhatia (ECE)

Research Assistant Professor Swapnil Bhatia (ECE) was awarded the first annual Allan Kuchinksy International Workshop on Bio-Design Automation (IWBDA) Scholarship by the Bio Design Automation Consortium, which promotes education, research, training and advancement of state-of-the-art technology in synthetic biology and bio-design automation.

Kuchinsky made seminal contributions to synthetic biology and design automation that have led to the creation of foundational, state-of-the-art technologies and tools. The scholarship recognizes his efforts by highlighting a student or young researcher who shares his vision for the field.

Bhatia, who is also a co-founder of Lattice Automation, has made significant contributions to bio-design automation in the areas of liquid handling automation, design space specification/generation, and end-to-end toolchain integration. He collaborated with Kuchinsky on several occasions and was an active participant in many of his interactions with Boston University.

This award will be presented at IWBDA 2015, and includes an honorarium provided by Cytoscape. More information on this award will be posted in the coming weeks to www.bio-design-automation.org.

College Announces New Masters Degree Specializations

June 25th, 2015 in ECE, News-CE, News-EP, News-IDS, Research, Students, Uncategorized, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students

Students Can Amplify Expertise in a High-Value Career Path

By Jan A. Smith

shutterstock_128057873Data_Analytics_CMS

Motivated by emerging economic sectors, the College of Engineering has created new Master’s degree specializations in the high-impact, interdisciplinary fields of Data Analytics, Cybersecurity and Robotics. The specializations are designed to meet the demand for highly skilled professionals in these rapidly expanding fields.shutterstock_138612407_cybersecurity_CMS

“The corporate sector has voiced frustration with the shortage of trained engineers in key sectors of the innovation economy,” said Dean Kenneth Lutchen. “By combining a Master’s degree in a foundational engineering discipline with a Specialization in a fast-growing, interdisciplinary field, students will be well positioned to meet this need and impact society. This unique combination should greatly enhance the power of their degrees in the marketplace.”

Quadrocopter_shutterstock_261695444_CMS300Enormous quantities of data are driving rapid growth in the field of data analytics. The College’s approach to data science emphasizes decisions, algorithms, and analytics grounded in engineering application areas. This specialization is intended to yield graduates who will fulfill a variety of innovation needs for applications in finance, healthcare, urban systems, commerce, pharmaceutical and other engineering fields.

“Big Data engineers are critical pioneers and sorely needed in every industry,” said George Anton Papp, vice president for Corporate Development at Teradata, Inc. “The massive amounts of data being collected create enormous opportunities to innovate data architecture and analysis to solve pressing real-world problems.”

The Cybersecurity field is expanding exponentially, with career paths growing twice as fast as other information technology jobs. This Specialization will foster security-oriented software skills and enable an understanding of cybersecurity applications in software engineering, embedded systems, and networking. It will also provide a context for cybersecurity threats and mitigation strategies ranging from protecting corporate and government systems to home and building automation accessories and medical devices.

“Demand for cybersecurity professionals continues to outstrip supply and is a major concern to organizations in every sector,” noted Proteus Digital Health Co-Founder and Chief Medical Officer George Savage. “In our industry, it’s critical to protect the highly personal health data of consumers, providers, and insurers as we enter the digital and personalized health era powered by the smart phone in each of our pockets.”

The Robotics industry is predicted to grow to $67 billion by 2025 with applications in everything from prosthetics and telemedicine to autonomous vehicles, feedback control systems, brain-machine interfaces, and the Internet of Things. Robotics is inherently interdisciplinary, combining elements of electrical, computer, biomedical, systems, and mechanical engineering. The Specialization will prepare Master’s students for careers in research and development, deployment and operation of advanced individual or multi-coordinated robotic systems.

“There is enormous need for engineers skilled in robotics and the cross-disciplinary applications of robotics,” said Michael Campbell, executive vice president,
CAD Segment at PTC. “While the field today is very much concerned with applications in manufacturing, autonomous vehicles, healthcare, and military uses, we anticipate the field expanding into everything from education to home entertainment.”

Available to all Master’s Degree candidates, the Specialization options have been designed so that students can access from every Master’s degree program. Students who opt to add a Specialization – which is noted on their degree title and transcript – choose at least four of their eight courses from a list specific to each Specialization.

BU Team Only US Finalist in Student Supercomputer Challenge

June 15th, 2015 in Awards, ECE, News-CE, Recognition, Research-CE, Students, Undergraduate Student Opportunities, Undergraduate Students

By Gabriella McNevin

The Boston Green team in Taiyuan City, China. From left to right, Quentin Li, Winston Chen, event organizer, Scott Woods,  Nicolas Hinderling, and Huy Le.

The Boston Green Team in Taiyuan City, China. From left to right, Quentin Li, Winston Chen, an event organizer, Scott Woods, Nicolas Hinderling, and Huy Le.

 

 

One hundred and fifty-one teams from 6 continents were admitted into the preliminary round of the ASC 15 (ASC15) Student Supercomputer Challenge, which was held in Taiyuan City, China. Sixteen teams were accepted into the final round, only one of which was from a university in the United States.

A group of five Boston University students specializing in supercomputing, entered the competition as The Boston Green Team. The students- Winston Chen (CE ’16), Nicolas Hinderling (CS ‘17), Huy Le (CS ’16 ), Quentin Li (CE ‘15), and Scott Woods (CS ‘16)- met through a student organization, BUILDS, which serves as the Association of Computer Machinery local university chapter. Boston University Professor Martin Herbordt (ECE) and MIT Professor Kurt Keville advise the team.

The Boston Green Team working on the final challenge at Taiyuan University of Technology in Taiyuan City. From left to right, Scott Woods, Quentin Li, Huy Le, Winston Chen, and Nicolas Hinderling.

The Boston Green Team working on the final challenge at Taiyuan University of Technology in Taiyuan City. From left to right, Scott Woods, Quentin Li, Huy Le, Winston Chen, and Nicolas Hinderling.

The preliminary round of the competition, involving a remote cluster located in Japan, consisted of a three-tier challenge. To advance, the teams were measured by performance metrics like LINPACK testing, NAMD, and their input on the Square Kilometre Array project.

On April 10 the Boston Green Team was notified that they were invited to the ASC15 Finals, held at Taiyuan University of Technology. The teams were given four days to solve six supercomputing application challenges. Ultimately, the top prize went to the Tsinghua University team, and Nanyang Technological University from Singapore broke the world record for their performance on LINPACK.

The ASC Student Supercomputer Challenge is organized by Asia Supercomputer Community, Inspur Group, and the Taiyuan University of Technology. The competition began four years ago, and has since become the world’s largest supercomputer contest.

The ASC Student Supercomputer Challenge is organized by Asia Supercomputer Community, Inspur Group and the Taiyuan University of Technology. Initiated four years ago, the competition has since become the world’s largest supercomputer contest.

“ASC15 has encouraged more and more college students to learn, understand and love the cutting-edge technology of supercomputers,” said Lv Ming, president of Taiyuan University of Technology. “[It] will significantly boost interdisciplinary academic study and talent cultivation in universities, sparking creativity and innovation in students.”

The next student cluster competitions will take place on November 15-20 in Austin, Texas. Students interested in BUILDS are encouraged to subscribe to the mailing list and follow the group on Facebook.

 

 

The BEST Time to Be an Engineer is Now!

May 20th, 2015 in Alumni, Awards, ECE, Events, Faculty, Graduate Programs, Graduate Student Opportunities, Graduate Students, News-CE, News-EP, News-IDS, Recognition, Research, Students, Uncategorized

College of Engineering Celebrates New Graduates

By Jan A. Smith

Graduate Convocation speaker Farzad Kamalabadi (ECE, MS'94, PhD'01) professor of ECE and Statistics at University of Illinois at Urbana-Champaign (UIUC), exhorted the new masters and PhD graduates to combine science with policy work.

Graduate Convocation speaker Farzad Kamalabadi (ECE, MS’94, PhD’01) professor of ECE and Statistics at University of Illinois at Urbana-Champaign (UIUC), exhorted the new masters and PhD graduates to combine science with policy work.

There has never been a better time to be an engineer, because society has never needed these skills more urgently. This was the overarching message in speeches delivered at the College of Engineering’s undergraduate and graduate Commencement ceremonies on May 16.
In the morning, Dean Kenneth R. Lutchen welcomed the 268 graduating seniors and their families by acknowledging their accomplishment in completing what he described as the most challenging curriculum at Boston University.

“The single most important skill in life is the ability to work really hard,” he said. “There isn’t a student in any other college on this campus who has worked as hard as you to earn your place at today’s commencement. Now begins the opportunity to apply what you’ve learned and move society forward.”

2015-ENG-Commencement-Floral_web

The College of Engineering awarded 268 undergraduate degrees on May 16th. At a separate ceremony in the afternoon, Dean Ken Lutchen presented 68 Master of Science and 60 Master of Engineering degrees, and presided over the hooding of 18 PhD students.

Atri Raychowdhury (ECE’15), past Class of 2015 president and this year’s BU IEEE student chapter vice president, echoed this sentiment in his student address. He exhorted all to keep their passion for engineering strong. “Let us use our education to solve the Grand Challenges of society. This truly is our responsibility as Societal Engineers,” he noted to resounding cheers. “The end of our time here marks the beginning of a new journey.”

“Now is the best and most exciting time to be an engineer,” said Commencement speaker Dr. Angela M. Belcher, the W.M. Keck Professor of Energy at MIT’s Biological Engineering Laboratory and leader of a research team that engineers viruses to grow and assemble materials for energy, electronics and medicine. “From clean energy and the environment to healthcare, education, food and water, there has never been a time when we have had more opportunities to make an impact.”

Belcher, who founded Cambros Technologies and Siluria Technologies, has been cited by Rolling Stone, Time and Scientific American for her work’s impact on society.

Dean Lutchen presented Department Awards for Teaching Excellence to asst. professor Ahmad Khalil (BME), lecturer Osama Alshaykh (ECE) and assoc. professor Raymond Nagem (ME), who also received Outstanding Professor of the Year Award. The Faculty Service Award went to professor Joyce Wong (BME).

Later in the day, Lutchen presented 68 Master of Science and 60 Master of Engineering degrees, and presided over the hooding of 18 PhD students.

Farzad Kamalabadi (ECE, MS’94, PhD’01) professor of ECE and Statistics at University of Illinois at Urbana-Champaign (UIUC), exhorted the new masters and PhD graduates to combine science with policy work. “The world faces multiple problems of diminishing resources, which are all intertwined with social and economic stability,” he said. “You are poised to address these vital questions from a fresh, solutions-oriented perspective. But you can’t do it from within the scientific community alone. We need more engineers in Washington, Brussels, and the other policy centers of the world. It is crucial that the engineering leaders of the future – you – play central roles in social policy.”

A Robotic Approach to Engineering Living Cells

May 12th, 2015 in ECE, Faculty, Graduate Student Opportunities, Grants, News-CE, News-EP, Recognition, Research, Research-CE, Research-EP, Uncategorized

$4.5M NSF CPS Frontier Award to Fund BU-Led Project

By Mark Dwortzan

Liver-like tissue formation in human-induced pluripotent stem cells. The research team's robotic approach to engineering living cells could lead to technologies that transform human stem cells into tissues and organs for transplantation or drug design. (Image courtesy of the Weiss Lab, MIT)

Liver-like tissue formation in human-induced pluripotent stem cells. The research team’s robotic approach to engineering living cells could lead to technologies that transform human stem cells into tissues and organs for transplantation or drug design. (Image courtesy of the Weiss Lab, MIT)

Researchers have long sought to enable collections of living cells to perform desired tasks that range from decontaminating waterways to growing tissue in the lab, but their efforts have largely relied on trial and error. Now a team of scientists and engineers led by Boston University is developing a more systematic approach through a deft combination of synthetic biology and micro-robotics. Supported by a National Science Foundation (NSF) five-year, $4.5 million Cyber-Physical Systems Program (CPS) Frontier grant, the researchers aim to engineer bacterial or mammalian cells to exhibit specified behaviors, and direct a fleet of micro-robots to corral the engineered cells into working together to perform desired tasks.

Drawing on experts in control theory, computer science, synthetic biology, robotics and design automation, the team includes Professor Calin Belta (ME, ECE, SE), the lead principal investigator, and Associate Professor Douglas Densmore (ECE, BME, Bioinformatics) from the BU College of Engineering; University of Pennsylvania Professor Vijay Kumar; and MIT Professor Ron Weiss, who directs the Institute’s Synthetic Biology Center; and members of SRI International.

“We came up with the idea of bringing robotics in to control in a smart way the emergence of desired behavior patterns among collections of engineered cells,” said Belta, who will develop algorithms to catalyze such behavior. “Our ultimate goal is to automate the entire process from engineering individual cells to controlling their global behavior, so that any user could submit requests from the desktop.”

If successful, the research could yield new insights in developmental biology, lead to greater standardization and automation in synthetic biology, and enable a diverse set of applications. These range from nanoscale robots that can manipulate objects at the micron (one-millionth of a meter) level to chip-scale technologies that transform stem cells into tissues and organs for human transplantation or drug design.

The team’s first main challenge is to advance a synthetic biology platform—what it calls a Bio-Design Automation (BDA) workflow system—that can predictably engineer cells to sense their environment, make decisions, and communicate with neighboring cells. To produce such “smart cells,” Densmore will use and enhance software he’s developed to specify, design and assemble gene networks (also known as gene circuits) with desired functions, and insert them in living cells.

The complex behaviors we wish to engineer are too difficult to manually specify and analyze,” said Densmore. “Design software makes this project manageable as well as formally captures the process so that it can be used in the future to enable new discoveries.”

The second challenge is to design micron-scale, mobile robots that can affect cells’ interactions so that they ultimately bring about a specified global behavior. Composed of organic and inorganic material and controlled by magnetic fields and light, each micro-robot interacts and communicates with individual cells at specified locations and times, implementing control strategies needed to achieve the desired global behavior. For example, the micro-robots could be controlled to optimize tissue formation from stem cells by triggering desired chemical reactions within the cells.

Finally, the researchers will test how well the micro-robots are able to direct the emergent, global behavior of collections of engineered bacterial cells and mammalian cells. They’ll attempt to form Turing patterns—dots and patches of varying sizes—in E. coli and hamster ovarian cells, and liver tissue from human stem cells. In the process, they will employ a magnetic manipulation system developed by SRI to control multiple robots with sub-millimeter precision.

Project leaders also plan to develop associated educational activities for high school students; lab tours and competitions for high school and undergraduate students; workshops, seminars and courses for graduate students; and specific initiatives for underrepresented groups. At BU, the Technology Innovation Scholars Program will develop hands-on design challenges and disseminate them in Boston schools.

Designed to address grand challenge research areas in science and engineering and limited to one or two multi-university teams per year, NSF CPS Frontier Awards support large-scale engineered systems built from, and dependent on, the seamless integration of computational algorithms and physical components.

See NSF press release about this research.

Tagged , , , , , , , , , ,

ECE Senior Design Team Wins Top ENG Societal Impact Award

May 12th, 2015 in Alumni, Awards, ECE, Events, News-CE, News-EP, Recognition, Senior Design, Students, Undergraduate Programs, Undergraduate Student Opportunities

Project Enhances Learning for Students with Disabilities

By Mark Dwortzan

Each student takes a card (an RFID tag), taps it on the device, and in response they hear a greeting from a teacher or parent.

Each student takes a card (an RFID tag), taps it on the device, and in response they hear a greeting from a teacher or parent.

The students who attend Boston’s William E. Carter School come with major mental and physical disabilities, making learning a challenge. Seeking to enhance the learning environment at the school, the principal, Marianne

Kopaczynski, came up with the idea to install automated announcing systems that would deliver a personalized greeting for each student upon taking a specific action when entering a room. Her rationale: the technology would help the students, who range in age from 12 to 22, to make associations between cause and effect, developing their cognitive skills while making them feel welcome.

ECE seniors Yicheng Pan, Sihang Zhou, Alexis Weaver, Sinan Eren and Jose Bautista with their award-winning card reader at the Carter School.

ECE seniors Yicheng Pan, Sihang Zhou, Alexis Weaver, Sinan Eren and Jose Bautista with their award-winning card reader at the Carter School.

Now an ECE senior design team has designed and built three such devices and installed them in the school, to the delight of students and teachers alike. Each student takes a card (an RFID tag), taps it on the device, triggering a greeting from a teacher or parent, such as “Hi [student’s name], welcome to Art.”

In recognition of this achievement, the College of Engineering has named the team as first-place winners of the annual Societal Impact Capstone Award, which honors outstanding senior design projects aimed at improving the quality of life. Team members are Yicheng Pan, Sihang Zhou, Alexis Weaver, Sinan Eren and Jose Bautista.

“What possibly could be more societal than to provide a system to make a student who struggles with severe physical and mental challenges just to smile, make them feel comfortable, and at the same time help them understand cause and effect?” said Associate Professor of the Practice Alan Pisano (ECE), who advised the team and runs the ECE Senior Design Program.

To develop the system, the ECE seniors drew on their knowledge and skills in remote sensing, circuit design, application and database development and user interface development. Adhering to all applicable safety standards and taking advantage of resources at the Engineering Product Innovation Center (EPIC), they produced custom handheld and wearable RFID tags for each student; a desktop application and database to enter each student’s identification information; and a rugged, durable, user-friendly interface that can be updated and maintained by the school.

“For our students to acquire a skill, repetition is needed in everything we do,” said Kevin Crowley, an instructor at the Carter School who was a 2015 Massachusetts Teacher of the Year semifinalist. “The technology is easy to use, helps establish a consistent routine and will benefit our school greatly.”

Two previous ECE senior design teams took on the principal’s challenge but were unsuccessful.

“This team succeeded where prior teams failed, even solving last-minute problems and working around the clock to fix them,” said Pisano. “They visited the school on many occasions and stand ready to provide support if any operational issues arise. We plan to do additional projects for the school next year.”

The 2015 Societal Impact Capstone Award second place winners are “Pressure Profile for Kidney Stone Removal” by Nikolaos Farmakidis, Alexandros Oratis, Syed Shabbar Shirazi, John Subasic and See Wong, who assisted a Massachusetts General Hospital physician in determining the most suitable surgical procedure for medium kidney stone removal.

Tagged , , , ,