Category: Graduate Student Opportunities

Master’s Programs Now Include Internship Option

January 7th, 2015 in Graduate Programs, Graduate Student Opportunities, News-CE, News-EP, News-IDS, Students, Uncategorized

By Janet A Smith

Graduate-Practice-Image_fullThe College of Engineering has introduced a new Engineering Practice option for Master of Science (MS) and Master of Engineering (MEng) students in all concentrations. Students may now add the designation “with Engineering Practice” to their degree by completing an approved internship in their field of study. The designation is widely recognized by employers and research institutions.

 

The Engineering Practice option recognizes the power of combining rigorous academic coursework with supervised real-world research or industrial applications. Participating students enhance classroom learning with practical experiences that enable them to both develop and apply technical, project management and leadership skills.


Opening Doors to Future Careers

The new designation formalizes and gives recognition to graduate-level internships, which several engineering students have pursued in recent years. Some, like Abhinav Nair (MEng’14), who last summer helped develop a major new online educational curriculum for the educational publisher Pearson, have parlayed their internships into a full-time jobs.  He was paired up with a senior developer at Pearson who was available round the clock to answer questions, and reported to a development manager who held one-on-one sessions with him to provide feedback and guidance. The position ultimately led to a full-time post for Nair when the developer left the company.

“Over the course of my experience at Pearson, I learned the importance of truly being accountable for work that I produced,” said Nair. “The product that I worked on caters to millions of students and thousands of educators all over the world and everything we did as a part of the team touched their lives in a positive way every day. I learned the importance of maintaining that standard. Handling work that was this important also instilled a great deal of confidence in me as an engineer.”

 

Nair believes that practical work experience is a vital adjunct to classroom learning. “There is no doubt about how inspiring classroom education at Boston University is,” he noted. “But for a truly eye-opening experience it is extremely important for a graduate student to step out of their comfort zone into the real world. It is a fantastic platform to apply one’s expertise and knowledge.

 

“The program has been a great stepping stone for me into industry. My internship helped me transition from being a student in a nest to spreading my wings as a professional engineer. I wouldn’t think twice before endorsing it to my peers.”


Real-World Mastery, Exciting Projects

College of Engineering graduate students have completed internships with many leading companies, including industry leaders such as Intel, GE, and iRobot.

MEng student Anish Shah (CE) discovered this during a 12-week internship with Intel in which he and his team captured the attention of world-renowned physicist Stephen Hawking. The interns worked on creating a practical gateway device to improve the wheelchair experience and benefit health care monitoring for disabled individuals.

“My internship at Intel allowed me to apply everything I have learned in the classroom and involved working and interacting with multiple groups in the company,” said Shah. “Practical experience is very important if you are looking for a job after graduation. It gives you exposure to a professional work environment. It adds value to your resume/CV and serves as a platform to launch your career.”

All Master of Science or of Master of Engineering students can apply for the new Engineering Practice designation. They must first identify an internship opportunity and seek faculty approval for their project. Specific requirements are available online. For more information, contact the ENG Graduate Programs Office.

Boston is Becoming a “Smart City” with ENG Support

December 18th, 2014 in Awards, Faculty, Graduate Programs, Graduate Student Opportunities, News-EP, Research-EP, Students, Uncategorized

IBM & IEEE recognize ECE & SE research contributions that are expected to improve urban life in Boston.

By Gabriella McNevin

Screenshots of the "Street Bump" application.

Screenshots of the “Street Bump” application.

Ushered in with the 21st century, are challenges that require real technological innovations. The global population is growing and, like magnets, people are moving to cities. According to the UN, by 2030, 60% of the population will live in a city, and by 2050, 70% (source). City officials are taking measures to adapt to the steadily increasing population. Today, Boston is zeroing in on population sustainability issues that threaten driver safety and drain energy: Inadequate road infrastructure and an antiquated repair system.

As part of a multifaceted collaboration to create technology to solve urban problems, the City of Boston and a Boston University-led team of researchers have developed equipment to improve the local thoroughfare, called “Street Bump.”

IBM and IEEE has recognized “Street Bump” as a significant contribution to Boston, and have presented the developers the second place prize in “IBM Students for a Smarter Planet/IEEE Smarter Planet Challenge: Student Projects Changing the World.” The team’s project, entitled, “Street Bumps and Big Data Analytics: Crowdsourcing Our Way to Better Roads,” demonstrates engineering expertise and a commitment to improving the world.

The team of researchers includes graduate students Theodora Brisimi (ECE), Yue Zhang (SE), Wuyang Dai (ECE), Setareh Ariafar (SE) and Nicholas Baladis (MIT). Professor Christos Cassandras (ECE, SE) and Professor Ioannis Paschalidis (ECE, SE, BME) are team advisors. All BU researchers are affiliated with the Center for Information and Systems Engineering.

The project focuses on an iPhone app – “Street Bump” – developed by the City of Boston to collect data on road conditions. The app is used by city employees and many citizens and was designed to facilitate crowdsourcing in collecting relevant road condition data. It uses the iPhone’s accelerometer to detect “bumps” sensed during a trip. The app then transmits the data to the City of Boston. The information can be used to alert repair crews of road damage. The algorithms developed by the BU-led team analyze the data received by the City and classifies the detected bumps into  “actionable” and “non-actionable.” Severe bumps like potholes are actionable and can be prioritized in scheduling repairs.

In this work, the team collaborated with The City of Boston’s Office of New Urban Mechanics, which provided actual data from the City’s servers. Office Co-Chair Nigel Jacob and Chris Osgood have echoed the Office’s website saying, “there is a revolution going on in how cities are designed & built. This new focus on technology infrastructure and sustainable design links how a city is built with how it is managed and experienced.”

“Street Bump” is the second smart city application Professor Casssandras has advised that received national attention. The first app, Smart Parking, also won 2nd place in the “IBM Students for a Smarter Planet/IEEE Smarter Planet Challenge: Student Projects Changing the World” competition in 2011.

downlowad

 

Tagged , , ,

ENG Grad Students Win Awards at Premier Materials Research Conference

December 11th, 2014 in Awards, Graduate Student Opportunities, Graduate Students, Recognition, Research

By Mark Dwortzan

Second-place poster author Steven Scherr (ME, PhD'16) (second from left) with 2014 MRS Fall Meeting Chairs

Second-place poster author Steven Scherr (ME, PhD’16) (second from left) with 2014 MRS Fall Meeting Chairs

Vying with nearly 3,000 entries in the Poster Session competition at the 2014 Materials Research Society (MRS) Fall Meeting and Exhibit on December 3, a Boston University College of Engineering entry won second place honors. In addition, another ENG poster received the award for the MRS University Chapters Program’s “Sustainability @ My School” competition highlighting leading-edge sustainability research.

Attended by up to 6,000 materials researchers from around the world, the MRS Fall Meeting is the preeminent annual event for those in the field.

Former LEAP student Steven Scherr’s (ME, PhD’16) second-place-winning poster, “Real-Time Digital Virus Detection for Diagnosis of Ebola Virus Disease,” describes an optical detection system he developed for real-time, highly sensitive, label-free virus detection. The system, which combines an optical interference reflectance imaging biosensor(SP-IRIS) with a microfluidics cartridge, could be used for early detection of the Ebola virus at the point of care.

Working with a sample of bovine blood serum, Scherr recently used the system to digitally detect individual 100 nanometer-diameter vesicular stomatitis viruses—safe-for-human models of Ebola—as they adhered to an antibody microarray. Completed within 10 minutes, this lab test demonstrates the potential of SP-IRIS as the core technology for field-ready, point-of-care viral diagnostic tests that’s fast, sensitive, cheap and easy to implement, and requires minimal sample preparation.

Funded by the National Institutes of Health, the research was a collaboration between Scherr, who designed the microfluidics components, and ECE postdoc George Daaboul (BME, PhD’13), Professor Bennett Goldberg (Physics, ECE, BME, MSE), Professor John H. Connor (MED) and Professor Selim Ünlü (ECE, BME, MSE, Physics), who developed SP-IRIS.

Shizhao Su and Yihong Jiang (both MSE, PhD'15) with their first place award in the "Sustainability @ My School" poster contest

Shizhao Su and Yihong Jiang (both MSE, PhD’15) with their first place award in the “Sustainability @ My School” poster contest

“I think we have the potential to make a big impact in the world of diagnostics and controlling future outbreaks like the current Ebola epidemic in West Africa,” said Scherr, who is continuing to develop the microfluidic cartridge.

Shizhao Su and Yihong Jiang’s (both MSE, PhD’15) winning entry in the MRS university chapter’s “Sustainability @ My School” contest, “Carbon-free Solid Oxide Membrane (SOM) Based Electrolysis for Metals Production and Sustainable Energy Applications,” showcases SOM electrolysis, an environmentally friendly, low-cost metals production technology.  Developed by Professor Uday Pal (ME, MSE) over the past 15 years, it requires far less energy than existing methods to extract pure magnesium, silicon, aluminum and other metals from their oxides. Poster co-author Abhishek Patnaik, who is also an MSE doctoral candidate, is exploring adapting SOM electrolysis for waste-to-energy conversion.

Conducted with guidance from Pal, Professor Soumendra Basu (ME, MSE) and Assistant Professor Jillian Goldfarb (ME, MSE), the research was funded by the National Science Foundation and US Department of Energy.

“I was delighted when Boston University was announced as the first place winner,” said Su. “It was an honor to present our work in front of peers in the MRS community, including some of the world’s leading experts in sustainable research and development. I was glad to see our lab’s many years of hard work recognized and appreciated by the community.”

The Materials Research Society comprises more than 16,000 researchers from academia, industry and government in more than 80 countries, and is a recognized leader in the advancement of interdisciplinary materials research.

Tagged , , , , ,

ECE Technology Helping People With Disabilities

December 3rd, 2014 in Graduate Programs, Graduate Student Opportunities, News-CE, Recognition, Research-CE, Students, Video

While Interning at Intel, a BU CE Student Caught Stephen Hawking’s Attention

By Gabriella McNevin and Donald Rock (COM ’17)

Anish Shah was hired to be 2014 Intel intern. Shah is working towards a Master of Engineering Degree and specializing  in computer  engineering.

CE MEng student Anish Shah working at an Intel Lab

The wheelchair and the man are suited for this situation. The man and his chair are connected to devices that transmit information through the Internet to the man’s health care provider. The caretaker is alarmed to see the chair’s abnormal degree of orientation, the acceleration, and the man’s rapid heartbeat. The health care provider jumps into action and rushes to the man’s aid.

Although the story above is fictitious, the technology is not. Anish Shah, a Boston University electrical and computer engineering graduate student, developed the novel technology with a team of Intel interns. For twelve weeks Shah was focused on creating a practical gateway device to improve the wheelchair experience and benefit health care monitoring.

The team linked the wheelchair to the “Internet of Things” by developing technology that attaches to the chair and to the user to collect and send information. The technology monitors fluctuating data and transmits it to a second party by route of an Internet application. The story above illustrates how the technology can be used to help caretakers respond in emergency situations.

Shah and his team started the design thinking process with a 3-4 week research period. The team discovered a huge variation in the needs of wheelchair users due to varying mobility and health restraints of each individual. To answer the range in needs, the team created technology that measured and sent information to Internet applications. The applications were designed for different health and wellbeing needs.

The technology integrated a bio-harness able to track bio data of the wheelchair user. It was programmed to track a range of body measurements like heart rate, skin temperature, and the orientation of whoever sits in the wheelchair. The harness was a tool with a number of applications when it was connected to the Internet. The technology can connect to Internet applications specifically designed to allow health care providers to respond to emergency situations. The technology can also be connected to applications designed to improve how long-term internal vitals were monitored.

Another feature of the gateway device was mechanical data monitoring. Here, the orientation of the chair, rather than the orientation of the user was observed. This capability can be applied to identify mechanical usage patterns and anomalies.

The wheelchair’s battery was also connected to the internet-of-things to answer questions like, “Will the chair battery die tomorrow?” and “is the chair consuming an irregular amount of energy?

Lastly, a geo-location monitor was enabled to benefit user navigation of urban areas. With this technology, wheelchair users could find wheelchair accessible venues and thus improve their future transportation preparations.

Shah and his team tested the technology during a two-week trial period. They collected data and feedback and found highly positive results.

Stephen Hawking, world-renowned theoretical physicist and user of wheelchairs, publicly lauded the technological advancement. In a video response, Hawking applauded the design for it’s potential to change lives. “Medicine can’t cure me so I rely on technology,” noted Hawking. “It lets me interface with the world. It propels me. It is how I’m speaking to you now. It is necessary for me to live.”

Shah started the Intel internship one year into the Master of Engineering program at Boston University. He arrived at the Department of Electrical and Computer Engineering with an interest in embedded systems in 2013, and successfully applied the knowledge to create a device that received press coverage around the world. Now, he is working under Professor Thomas Little in the NSF Smart Lighting Engineering Research Center at Boston University.

Tagged , , , , , ,

BU-Brigham & Women’s Hospital Partnership Celebrates First Year

September 16th, 2014 in Faculty, Graduate Student Opportunities, News-ISS, Research, Research-ISS

Joint Research Focused on Medical Imaging and Image-Guided Interventions

By Mark Dwortzan

Researchers from Boston University and Brigham & Women's Hospital are collaborating to improve medical imaging and image-guided interventions. (Images courtesy of Brigham & Women's Hospital)

Researchers from Boston University and Brigham & Women’s Hospital are collaborating to improve medical imaging and image-guided interventions. (Images courtesy of Brigham & Women’s Hospital)

Boston University College of Engineering Assistant Professor Darren Roblyer (BME) and Brigham & Women’s Hospital radiologist Srinivisan Mukundan are exploring a strategy that combines a new optical imaging device developed by Roblyer with emerging magnetic resonance imaging (MRI) techniques to probe malignant brain tumors during chemotherapy treatment. Their research could enable clinicians to monitor the effectiveness of chemotherapy over the course of treatment and implement changes to chemotherapy drugs and dose levels as needed.Sept. 12 present_ 2_WEB_READY

The project is one of five now receiving funding through an ongoing partnership between Boston University and Brigham & Women’s Hospital. On September 12 at the BU Photonics Center, Dean Kenneth R. Lutchen and Dr. Steven Seltzer, Chair of the BWH Department of Radiology, announced the second year of the partnership, which has already provided one year of seed funding to projects ranging from image-guided cancer drug delivery to early detection of heart disease.

“The goal is to leverage synergies between Brigham & Women’s Hospital’s Radiology Department in imaging and image-guided interventions with the College of Engineering’s strengths in developing new materials and technologies as well as novel techniques for processing images and large data sets,” said Associate Professor Tyrone Porter (ME, BME, MSE), who is coordinating the partnership. “The hope is to stimulate research collaborations between the two campuses and develop a National Institutes of Health training program in clinical imaging and image-guided interventions.”

The brainchild of Lutchen and Seltzer, the BU-BWH partnership brings together world-class expertise and equipment from Boston University entities such as the BU Photonics Center and the BU Center for Nanoscience & Nanobiotechnology, and from the BWH Department of Radiology, home to the National Institutes of Health’s National Center for Image-Guided Therapy and the Advanced Multimodality Image Guided Operating Suite (AMIGO). Joint research between the two campuses could result in less invasive, more accurate medical imaging and image-guided interventions.

“There’s no question that in so many dimensions, imaging is at the foundation of a tremendous amount of potential breakthroughs in medical discoveries and practice, but there are huge challenges from a scientific and technical point of view,” said Lutchen. “We’ve got tons of interested students and faculty here that need and want to use imaging technologies to address interesting and important questions.”

First-round projects include the engineering of a new “molecular imaging” MRI contrast agent for detecting early calcification of the aortic valve; the combination of ultrasound and MR data to evaluate the elastic properties of tissues, which are associated with pathological indicators of disease; a clinical decision support system for patient-specific cancer diagnosis and management; and ultrasound-guided delivery of chemotherapy drug-laden nanoparticles to metastasized lung cancer cells in the brain. Applications for second-round projects are now underway.

All projects involve at least one principal investigator from each of the partnering institutions, who jointly advise a doctoral student on a project that could positively impact clinical practice. Participating ENG faculty include Professors Joyce Wong (BME, MSE), Paul Barbone (ME, MSE), Venkatesh Saligrama (ECE, SE) and Yannis Paschalidis (ECE, SE); Associate Professor Porter; and Assistant Professor Roblyer.

“The fields of biomedical imaging and bioengineering have been converging and collaborating for decades, and that collaboration continues to get closer and closer,” said Seltzer, noting a burgeoning clinical need for advanced technologies in functional and molecular imaging; information technologies ranging from data mining to image processing; and minimally-invasive diagnostic and therapeutic procedures guided by high-technology imaging techniques.

Tagged , , , , , , ,

2014 Best ECE Ph.D. Dissertation Award goes to Dr. Jie Meng

July 10th, 2014 in Alumni, Awards, Graduate Programs, Graduate Student Opportunities, Graduate Students, Recognition, Research, Students

By Donald Rock (COM ’17)

On May 17th, Dr. Jie Meng received a Ph.D. in Electrical Engineering and was presented with the 2014 Best ECE Ph.D. Dissertation Award. Her dissertation is entitled Modeling and Optimization of High-Performance Many-core Systems for Energy-Efficient and Reliable Computing and focuses on improving the energy efficiency of many-core processors and large-scale computing systems.

PhD Story Block Quote

Accomplishing this goal, as Meng’s thesis argues, requires detailed, full-system simulation tools that can simultaneously evaluate power, performance, and temperature. Her award-winning thesis includes the design of such simulation methods and leveraging these methods for the development of dynamic optimization policies for computing systems.

This prestigious award is just one of a number of awards that the ambitious engineer has received throughout her Ph.D. career. In 2012, Dr. Meng won the Best Paper Award at the High Performance Extreme Computing Conference; in 2011 she won the A. Richard Newton Graduate Scholarship Award with her advisor, Assistant Professor Ayse Coskun (ECE), at the Design Automation Conference; and in 2010 she received the Google Scholarship at the Google GRAD CS Forum. Furthermore, Dr. Meng has won a number of awards from Boston University, including the Outstanding Graduate Teaching Fellow in the School of Engineering and the 2009 ECE Graduate Teaching Fellow of the Year Award.

Professor Ayse Coskun (left) and Dr. Jie Ming (right) at the 2014 College of Engineering Ph.D. Commencement Ceremony (Photo provided by Professor Ayse Coskun).

Professor Ayse Coskun (left) and Dr. Jie Ming (right) at the 2014 College of Engineering Ph.D. Commencement Ceremony (Photo provided by Professor Ayse Coskun).

Dr. Meng started her academic career at the University of Science and Technology of China (USTC), where she earned a Bachelor of Engineering Degree in Electrical Engineering in 2004. She went on to earn a Master of Applied Science in Electrical and Computer Engineering at McMaster University before coming to Boston University in 2008 to pursue her Ph.D.

Dr. Meng simultaneously pursued career advancement while maintaining her academic workload. She landed an internship at the Intel Corporation, and another at Sandia National Laboratories.

Currently, Dr. Meng works as a software engineer at CGG, a French-based geophysical services company. “To be specific, I am working on developing software modules for modeling and imaging geological structures in the exploration [of] seismic field,” Meng clarified in an email correspondence.

When Dr. Meng reflects back on her time at BU, she remembers, “I was very lucky and grateful to have Professor Ayse Coskun as my advisor. [She was] a role model for me.” Professor Coskun felt similarly, noting, “Jie is a very hard-working researcher and she has the necessary perseverance to succeed. Seeing Jie graduate successfully as my first Ph.D. student and continue to her career has been among the most satisfying accomplishments of my time at BU.”

Tagged , , , , , , , , , , , , , , , , ,

College Expands Master’s Options

February 28th, 2014 in Courses, Graduate Programs, Graduate Student Opportunities, Graduate Students

By Michael G Seele

08-2055-042The College of Engineering is expanding its suite of master’s degree programs to give students more flexibility in choosing a program best suited to their career aspirations. Anticipated to be fully in place for the fall 2014 semester, these programs emphasize advanced technical coursework and include an individual or team-based practicum design project. Students will be able to choose among Master of Science and Master of Engineering programs.

“We’ve added new dimensions to our master’s degree programs that speak to the career paths of prospective graduate students,” said College of Engineering Dean Kenneth R. Lutchen. “Whether students want a strictly technical program, one that includes some leadership training or one that prepares them for doctoral work, all options will be available to them.”

All Master of Science programs emphasize advanced technical coursework and include an individual or team-based practicum design project, as well as a range of opportunities to gain practical experience, including company or research internships. MS programs are available in Computer, Electrical, Mechanical, Manufacturing, Systems and Photonics engineering. Programs in Biomedical and Materials Science & Engineering are expected to be available in the fall.

Master of Engineering programs include advanced technical coursework, as well as the option to take elective courses in Project Management and Product Design, some of which are offerred in the School of Management. The programs—offered in Biomedical, Computer, Electrical, Manufacturing, Mechanical, Systems, Photonics, and Materials Science & Engineering—also include a practicum requirement.

All programs can be completed in one or two years. The application deadline for the fall 2014 semester is March 15.

Looking Beyond the Lab

February 11th, 2014 in Awards, Courses, Events, Faculty, Graduate Programs, Graduate Student Opportunities, Graduate Students, Grants, News-CE, News-EP, News-ISS, Research, Research-CE, Research-EP, Research-ISS, Students

Postdoctoral associate, George Daaboul; research associate, David Freedman; and lecturer and entrepreneur, Rana Gupta (SMG) were among the Boston University participants of the NSF I-Corps program.

Postdoctoral associate, George Daaboul; research associate, David Freedman; and lecturer and entrepreneur, Rana Gupta (SMG) were among those participating from Boston University in the NSF I-Corps program.

Many engineers have great ideas for products, but unfortunately, they don’t often have a background in business that will allow them to bring their designs to market.

To help with this problem, two Boston University research teams recently participated in the National Science Foundation (NSF) Innovation Corps (I-Corps), a program that encourages scientists and engineers to broaden their focus beyond lab work through entrepreneurship training.

“We had been trying to bring some of our ideas to a commercial state when we heard about the program,” said David Freedman, a BU research associate in the Department of Electrical & Computer Engineering. “It seemed like a great fit for us.”

Freedman and postdoctoral associate, George Daaboul, had been working closely with Professor Selim Ünlü’s (ECE, BME, MSE) research group trying to determine how their technology, IRIS, used to detect viruses and pathogens, might be applied in doctors’ offices, hospitals, and emergency care centers. They soon decided that forming an I-Corps team would allow them to evaluate the commercial potential.

Teams receive $50K in grant money and consist of an Entrepreneurial Lead (Daaboul), a Principal Investigator (Freedman), and a business mentor. The researchers asked BU lecturer and entrepreneur, Rana Gupta (SMG), to take on the latter role.

Also participating from BU were Assistant Professor Douglas Densmore (ECE) and Research Assistant Professor Swapnil Bhatia (ECE). They pitched Lattice Automation, technology that will allow technology by the Cross-disciplinary Integration of Design Automation Research (CIDAR) group to transition into commercial products. Ultimately, they hope to create software that will help synthetic biologists work more efficiently.

“Our technology is building upon state-of-the-art techniques in computer science, electrical engineering, and bioengineering,” explained Densmore.

Conceptual illustration of SP-IRIS technology used for pathogen diagnostics.

Conceptual illustration of SP-IRIS technology used for pathogen diagnostics.

Over eight weeks in the fall, participants attended workshops in Atlanta, Ga., met with researchers from the 21 teams, followed an online curriculum, and spoke with up to 100 different potential consumers of their technology – a process known as “customer discovery.”

Through this experience, Freedman and Daaboul quickly learned that introducing a new technology to customers might not be the right approach for their research.

“We decided instead to focus on the pains customers had with existing technologies and hone in on how we could alleviate those,” said Freedman.

Added Daaboul: “Finding out what people really needed before developing a technology really allowed for a much different perspective than what I’m used to.”

Much of the knowledge gained through I-Corps will be used to advance science and engineering research. Some products tested during the workshops even show immediate market potential by the conclusion of the curriculum.

“I would recommend this program to anyone working in science or industry,” said Freedman. “Not only did this change how we think about our research, we also learned how to better tell our narrative.”

-Rachel Harrington (rachelah@bu.edu)

A Google for Surveillance Videos

January 22nd, 2014 in Awards, Faculty, Graduate Programs, Graduate Student Opportunities, Graduate Students, Grants, News-ISS, Recognition, Research, Research-ISS, Students

Professor Venkatesh Saligrama (ECE, SE) and his research team address the problem of retrieving video segments which contain user-defined events of interest, with a focus on detecting objects moving in routes.

Professor Venkatesh Saligrama (ECE, SE) and his research team address the problem of retrieving video segments, which contain user-defined events of interest, by focusing on detecting objects moving in routes.

After the Boston Marathon bombings last year, it took authorities just three days to sift through an abundance of footage and find their suspects – light speed compared to the weeks it took to find those responsible for the London bombings in 2005.

Still, can this happen faster? Professor Venkatesh Saligrama (ECE, SE) thinks so, and he’s working to making that vision a reality.

The Office of Naval Research awarded him $900K for his project, Video Search and Retrieval, which will focus on developing a visual search system. Think Google but for security videos.

“Our initial idea was to develop a system that could annotate web videos,” said Saligrama, who collaborated with Pierre-Marc Jodoin at the University of Sherbrooke on early stages of this research. “That project turned out to be extremely challenging so we started to focus on surveillance videos, where the footage is obtained in a controlled environment.”

Manually searching large archives of footage can be both time-consuming and monotonous. Saligrama and Ph.D. students, Greg Castanon (ECE) and Yuting Chen (SE), are now working closely with the U.S. Naval Research Laboratory to help change this.

Professor Venkatesh Saligrama (ECE, SE)

Professor Venkatesh Saligrama (ECE, SE)

Chen said she is looking forward to working on this project with Saligrama, who she first encountered while conducting her own research.

“I spent almost a year and a half working on an idea that employs correlating motion clues to calibrating camera networks,” she said. “When I came to BU Systems Engineering and browsed the research papers, I found the exact idea implemented by Venkatesh’s group. I was surprised and just a little bit bitter.”

From there, she knew that she wanted to study with Saligrama.

“He is an experienced researcher and just as passionate and curious as a young freshman,” she said. “I find that one sentence from him can help me through a problem that’s been troubling me for weeks.”

Chen, Castanon and Saligrama hope that together, they can make the process of searching through security footage more automated and responsive to user query video searches.

“Currently, for many YouTube videos, there are textual meta-tags that are used in the search process,” Saligrama explained. “For surveillance videos, we do not often have this so our searches need to be based purely on visual features and patterns.”

One of the challenges in video search is that activity patterns can be highly inconsistent and can occur for unpredictable amounts of time.

“Unlike image search though, videos have some temporal patterns we can exploit,” said Saligrama.

In the future, Saligrama hopes that the research will not only improve security but improve medical database searches as well.

For more information about the project, visit our Research Spotlight page.

-Rachel Harrington (rachelah@bu.edu)

EPIC Ribbon-Cutting Welcomes Industry, Local Officials

January 21st, 2014 in Alumni, Events, Faculty, Graduate Programs, Graduate Student Opportunities, Graduate Students, News-CE, News-EP, News-ISS, Research, Research-CE, Research-EP, Research-ISS, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students

Features tour of ENG’s new design, manufacturing studio

The Engineering Product Innovation Center (EPIC) will train BU engineers “for the future manufacturing economy in this country,” says EPIC director Gerry Fine. Photos by Mike Spencer

The Engineering Product Innovation Center (EPIC) will train BU engineers “for the future manufacturing economy in this country,” says EPIC director Gerry Fine. Photos by Mike Spencer

The Engineering Product Innovation Center (EPIC) hadn’t yet opened for its inaugural semester, and it already had a wait list of students eager to register for classes in the sleek, glass-fronted Commonwealth Avenue building that not too long ago was the Guitar Center. That bodes well for the College of Engineering and the University officials and corporate sponsors who made the new facility possible.

ENG will host EPIC’s ribbon-cutting ceremony this Thursday, January 23. Among those present will be President Robert A. Brown, ENG Dean Kenneth Lutchen, local dignitaries, and key corporate partners, including representatives from principal industry sponsors GE AviationProcter & GamblePTC, and Schlumberger.

Lutchen, who is also an ENG professor of biomedical engineering, says that EPIC’s opening “now begins the opportunity for us to transform our engineering education at the undergraduate level to really create a much more powerfully enabled graduate who understands the process of designing products from conception to deployment.”

Those skills are particularly important, and valuable, now that manufacturing is making a comeback in the United States. US manufacturers have added at least 500,000 new workers since the end of 2009, energy costs have dropped, and labor costs in competing countries such as China and India have been inching upward.

Companies like Apple and GE are bringing high-tech facilities back home from overseas. While a positive development, “the problem is now there aren’t enough engineers trained in highly technological methods,” says Bruce Jordan, ENG assistant dean of development and alumni relations.

EPIC could help fill that void. “We’re hoping to set a standard for the training of engineers for the future manufacturing economy in this country,” says EPIC director Gerry Fine, an ENG professor of the practice.

Funded through the University, ENG alumni and friends, and regional industry, EPIC’s 20,000-square-foot space houses a computer-aided design (CAD) studio, demonstration areas, fabrication facilities, materials testing, and project management software available to engineering students in all specialties — from computer and electrical engineering to biomedical engineering and nanotechnology. The facility has a flexible design and offers students supply chain management software, 3-D printers, robotics, laser processing, and around-the-clock digital access to the studio’s online resources.

A representative from each principal industry sponsor, GE Aviation, Procter & Gamble, PTC, and Schlumberger, will sit on EPIC’s Industrial Advisory Board, whose primary function will be to offer suggestions on how the ENG undergraduate curriculum might be redesigned to better prepare students for employment in the years ahead.

Timothy Jackman (ENG’15) with one of EPIC’s 3-D printers, which he used to create a miniature car from a digital model.

Timothy Jackman (ENG ’15) with one of EPIC’s 3-D printers, which he used to create a miniature car from a digital model.

“We want to create as many options for our graduating students as possible,” Fine says. “By teaching them some of the things that regional industry wants, we think we’re giving our students more options. And we’re making our students more desirable to potential employers.”

Representatives from the principal sponsors will also participate in guest lectures and provide case studies and projects, and the companies will offer internship and employment opportunities to qualified students. 

While other universities have manufacturing-oriented centers, most focus on basic research, but EPIC allows engineering students to put theory into practice by converting their ideas into products that could one day benefit society.

Fine has given tours of the facility to at least five teams from other universities since June. “We’re not aware of anyone who’s invested in this scale and made this commitment to undergraduate education,” he says.

“When I first heard from Dean Lutchen about the idea of EPIC, I was thrilled,” says Michael Campbell (ENG ’94), executive vice president of PTC’s CAD segment, who will serve on EPIC’s advisory board. “I always felt that my engineering education lacked that real-world perspective, that real-world exposure to the challenges, processes, and complexities of collaboration and the sophistication of tools. Now we have a chance to share all of that with students.”

J. David Rowatt, research director and technical advisor at Schlumberger, echoes that sentiment. “There were so many things I didn’t learn in school that I picked up on the job,” he says. “Some of these are clearly being addressed by what EPIC is trying to do,” which is exposing students to the entire engineering process — from conception and manufacturing to working on deadlines and understanding resource constraints.

Greg Morris, strategy and business development leader for additive manufacturing with GE Aviation, says this generation of students grew up in a world where computers and software were second nature, but tinkering under the hood of a car was not. EPIC will provide engineering students with the hands-on experience that gives them an advantage in the marketplace. “I can’t tell you how much that resonates with an employer,” he says.

Both BU and its partners see EPIC as a win-win. ENG faculty and students will benefit from a revamped curriculum and access to global leaders in innovation and manufacturing, while industry partners will interact with the University’s deep bench of cutting-edge researchers and get exposure to a new crop of engineers.

“If we tap into EPIC,” says Bruno De Weer, the vice president of global engineering at Procter & Gamble, “we can find ourselves connected with another hub of innovation that brings the very best.”

The EPIC ribbon-cutting ceremony will be held at 4:30 p.m. on Thursday, January 23, at 750 Commonwealth Ave., followed by a reception and tours for those invited. The event is not open to the public.

-Leslie Friday, BU Today