Category: Events

Fourth Annual ECE Fair Offers Research Opportunities

February 10th, 2014 in Events, Faculty, Graduate Students, Jobs in ECE@BU, News-CE, News-EP, News-ISS, Research-CE, Research-EP, Research-ISS, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students

Associate Professor Kotiuga talks with a student discussing his research project at the Department of Electrical and Computer Engineering's annual fair.

Associate Professor Robert Kotiuga (ECE) discusses his research project at the Department of Electrical and Computer Engineering’s annual fair.

It’s been a bitter winter in Boston, but that didn’t keep students and faculty from making their way toward the Photonics Building Colloquium Room on January 22. Anxious undergraduate students looking for research opportunities mingled among the 28 tables of Boston University researchers at the recent ECE Undergraduate Research and Lab Job Fair hoping to find opportunities to gain hands-on engineering experience.

The story of the research fair goes back four years ago when Dean Kenneth R. Lutchen spoke to matriculating freshman about the importance of research. While listening to the talk, Professor Mark Horenstein (ECE) realized that while entering students were being encouraged to engage in research, no one was telling them how.

In response, Horenstein started the annual ECE Undergraduate Research and Lab Job Fair as a way for undergraduates and faculty to explore mutual interests related to research and for students to ask about available research positions. The event also provides a public forum in which faculty can showcase what is happening in their laboratories. “This is a get-to-know-you meet-and-greet event,” says Horenstein.

View photos of the event on Facebook.

Watching presentations and submitting resumes to BU faculty and graduate students, about 75 students attended this year. Two sophomores, Dean De Carli (EE ’16) and Matthew Owney (EE ’16), were scouting for summer and fall positions.

“Even though I didn’t get any research jobs, I was able to connect with the faculty,” said second-time attendee, De Carli. Owney added that he is looking for any opportunity since it’s his first time attending the fair.

Friends Dean De Carli (EE ’16) and Matthew Owney (EE ’16) travel from table to table together.

Friends Dean De Carli (EE ’16) and Matthew Owney (EE ’16) travel from table to table together.

Horenstein tells younger attendees, such as Alexandra Miller-Browne (CE ’17), that it’s important to “build up your skills as time goes on; don’t get discouraged.”

People on the other side of the table have a similar thought process. Dr. Traci Haddock, Executive Director of the Center for Synthetic Biology at BU, says, “Most students have no experience, but we will take anyone who is interested.” For example, she is looking for students to help develop the iGEM team’s website and build genetic devices this summer.

Third-time veteran, Associate Professor Robert Kotiuga, changes his presentation every year but remains steadfast in his belief that though people will always possess different areas of expertise, “it is important to be passionate about the project.”

Every year since the program’s initiation, the event has turned out eager attendees, and 2014 was no exception. Students continue to return each year, hoping to gain experience and take advantage of the department’s available opportunities.

-Chelsea Hermond (SMG ’15)

The Search for Satisfying Solutions

February 6th, 2014 in Events, Faculty, Graduate Programs, Graduate Students, Lectures, News-CE, Research, Research-CE, Students, Undergraduate Programs, Undergraduate Students

Professor Sharad Malik, Chair of the Department of Electrical Engineering at Princeton University, spoke as part of the ECE Distinguished Lecture Series on January 29.

Professor Sharad Malik, Chair of the Department of Electrical Engineering at Princeton University, spoke as part of the ECE Distinguished Lecture Series on January 29.

When a bug in Pentium processors was discovered that gave rise to incorrect solutions of scientific and mathematical calculations, the company was forced to take action. The result? Public outcry and the loss of $475 million worth of earnings.

It’s been almost two decades since the Pentium FDIV bug made headlines, but its discovery led to a new research thrust in computer science and engineering – one that Professor Sharad Malik, Chair of the Department of Electrical Engineering at Princeton University, knows quite well.

“It’s an instance of how real practical concerns have driven solutions to real, fundamental problems,” said Malik.

The incident brought the examination of Boolean Satisfiability or SAT, the challenge of determining if a logic formula will ever evaluate to true, to the forefront. In proving the correctness, this problem has a direct application to hardware and software and more specifically, avoiding costly bugs. SAT was already well known in computer science, but theoretical analysis deemed it to be too difficult to be applied in practice.

Malik is one of the nation’s experts on the topic, and his group has made several critical contributions to the field of SAT solvers that are now widely used in practice. On January 29, he visited Boston University to share his findings during the Department of Electrical & Computer Engineering Distinguished Lecture Series, which brings groundbreaking engineers to campus.

The latest ECE Distinguished Lecture was attended by BU faculty, students, researchers and staff who were hoping to learn more about Boolean Satisfiability, or SAT.

The latest ECE Distinguished Lecture was attended by BU faculty, students, researchers and staff who were hoping to learn more about Boolean Satisfiability, or SAT.

Currently, there is a strong motivation to discover useful SAT solvers thanks to all of the potential practical uses, such as in applications in artificial intelligence, circuit synthesis, and malware analysis.

“It’s already very widely used in hardware verification and we’re seeing an increasing use of the theory in software verification,” added Malik.

Though the SAT problem may be relatively unknown outside computer science and engineering, a very active community of researchers exists and can be found sharing their research and questions on the website, SAT Live!

Malik notes that the biggest change he’s noticed with SAT studies over the years is a revolution in how the topic is approached.

“There has been a significant shift from theoretical interest in SAT to how it can have a practical impact,” he said. What was once considered practically impossible due to its theoretical hardness is now within reach thanks to challenge-driven algorithmic and experimental research.

Malik’s talk was the first in the three-part Spring 2014 Distinguished Lecture Series. The next talk features Professor C. V. Hollot of University of Massachusetts, Amherst, who will speak on the topic, “Regulation of Cell Populations in Individuals Using Feedback-Based Drug-Dosing Protocols.” Hear him on March 5, 2014, at 4 p.m. in Room 211 of the Photonics Center, located at 8 Saint Mary’s St.

-Rachel Harrington (rachelah@bu.edu)

EPIC Ribbon-Cutting Welcomes Industry, Local Officials

January 21st, 2014 in Alumni, Events, Faculty, Graduate Programs, Graduate Student Opportunities, Graduate Students, News-CE, News-EP, News-ISS, Research, Research-CE, Research-EP, Research-ISS, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students

Features tour of ENG’s new design, manufacturing studio

The Engineering Product Innovation Center (EPIC) will train BU engineers “for the future manufacturing economy in this country,” says EPIC director Gerry Fine. Photos by Mike Spencer

The Engineering Product Innovation Center (EPIC) will train BU engineers “for the future manufacturing economy in this country,” says EPIC director Gerry Fine. Photos by Mike Spencer

The Engineering Product Innovation Center (EPIC) hadn’t yet opened for its inaugural semester, and it already had a wait list of students eager to register for classes in the sleek, glass-fronted Commonwealth Avenue building that not too long ago was the Guitar Center. That bodes well for the College of Engineering and the University officials and corporate sponsors who made the new facility possible.

ENG will host EPIC’s ribbon-cutting ceremony this Thursday, January 23. Among those present will be President Robert A. Brown, ENG Dean Kenneth Lutchen, local dignitaries, and key corporate partners, including representatives from principal industry sponsors GE AviationProcter & GamblePTC, and Schlumberger.

Lutchen, who is also an ENG professor of biomedical engineering, says that EPIC’s opening “now begins the opportunity for us to transform our engineering education at the undergraduate level to really create a much more powerfully enabled graduate who understands the process of designing products from conception to deployment.”

Those skills are particularly important, and valuable, now that manufacturing is making a comeback in the United States. US manufacturers have added at least 500,000 new workers since the end of 2009, energy costs have dropped, and labor costs in competing countries such as China and India have been inching upward.

Companies like Apple and GE are bringing high-tech facilities back home from overseas. While a positive development, “the problem is now there aren’t enough engineers trained in highly technological methods,” says Bruce Jordan, ENG assistant dean of development and alumni relations.

EPIC could help fill that void. “We’re hoping to set a standard for the training of engineers for the future manufacturing economy in this country,” says EPIC director Gerry Fine, an ENG professor of the practice.

Funded through the University, ENG alumni and friends, and regional industry, EPIC’s 20,000-square-foot space houses a computer-aided design (CAD) studio, demonstration areas, fabrication facilities, materials testing, and project management software available to engineering students in all specialties — from computer and electrical engineering to biomedical engineering and nanotechnology. The facility has a flexible design and offers students supply chain management software, 3-D printers, robotics, laser processing, and around-the-clock digital access to the studio’s online resources.

A representative from each principal industry sponsor, GE Aviation, Procter & Gamble, PTC, and Schlumberger, will sit on EPIC’s Industrial Advisory Board, whose primary function will be to offer suggestions on how the ENG undergraduate curriculum might be redesigned to better prepare students for employment in the years ahead.

Timothy Jackman (ENG’15) with one of EPIC’s 3-D printers, which he used to create a miniature car from a digital model.

Timothy Jackman (ENG ’15) with one of EPIC’s 3-D printers, which he used to create a miniature car from a digital model.

“We want to create as many options for our graduating students as possible,” Fine says. “By teaching them some of the things that regional industry wants, we think we’re giving our students more options. And we’re making our students more desirable to potential employers.”

Representatives from the principal sponsors will also participate in guest lectures and provide case studies and projects, and the companies will offer internship and employment opportunities to qualified students. 

While other universities have manufacturing-oriented centers, most focus on basic research, but EPIC allows engineering students to put theory into practice by converting their ideas into products that could one day benefit society.

Fine has given tours of the facility to at least five teams from other universities since June. “We’re not aware of anyone who’s invested in this scale and made this commitment to undergraduate education,” he says.

“When I first heard from Dean Lutchen about the idea of EPIC, I was thrilled,” says Michael Campbell (ENG ’94), executive vice president of PTC’s CAD segment, who will serve on EPIC’s advisory board. “I always felt that my engineering education lacked that real-world perspective, that real-world exposure to the challenges, processes, and complexities of collaboration and the sophistication of tools. Now we have a chance to share all of that with students.”

J. David Rowatt, research director and technical advisor at Schlumberger, echoes that sentiment. “There were so many things I didn’t learn in school that I picked up on the job,” he says. “Some of these are clearly being addressed by what EPIC is trying to do,” which is exposing students to the entire engineering process — from conception and manufacturing to working on deadlines and understanding resource constraints.

Greg Morris, strategy and business development leader for additive manufacturing with GE Aviation, says this generation of students grew up in a world where computers and software were second nature, but tinkering under the hood of a car was not. EPIC will provide engineering students with the hands-on experience that gives them an advantage in the marketplace. “I can’t tell you how much that resonates with an employer,” he says.

Both BU and its partners see EPIC as a win-win. ENG faculty and students will benefit from a revamped curriculum and access to global leaders in innovation and manufacturing, while industry partners will interact with the University’s deep bench of cutting-edge researchers and get exposure to a new crop of engineers.

“If we tap into EPIC,” says Bruno De Weer, the vice president of global engineering at Procter & Gamble, “we can find ourselves connected with another hub of innovation that brings the very best.”

The EPIC ribbon-cutting ceremony will be held at 4:30 p.m. on Thursday, January 23, at 750 Commonwealth Ave., followed by a reception and tours for those invited. The event is not open to the public.

-Leslie Friday, BU Today

Sharing Innovative Research, Succinctly

January 21st, 2014 in Awards, Events, Faculty, Graduate Programs, Graduate Student Opportunities, Graduate Students, Lectures, News-CE, News-EP, News-ISS, Recognition, Research, Research-CE, Research-EP, Research-ISS, Students

Ph.D. student, Delaram Motamedvaziri, was one of two winners of the Best CISE Presenter awards. Photo by Dan Aguirre for Boston University Photography.

Ph.D. student, Delaram Motamedvaziri, was one of two winners of Best CISE Presenter awards. Photo by Dan Aguirre for Boston University Photography.

Boston University students have big ideas – whether they’re aiming to prevent cyber attacks or using GPS data to improve cattle herding. As good as their work is though, they don’t always know the best way to present their research.

Enter the Center for Information & Systems Engineering (CISE) Graduate Student Workshop (CGSW), designed to give Ph.D. and Master’s candidates a chance to present their work.

View a slideshow from the event.

Ph.D. students, Yasaman Khazaeni, Greg Castanon, and Jing Wang, initially came up with the idea for the event last semester and hoped it would give their classmates a chance to practice speaking in front of a large audience.

“One of the main issues we have as students becomes clear at conferences,” said Khazaeni. “We’ve done great research but don’t present it well.”

Often times, she added, engineering students come from international backgrounds and don’t have enough confidence to present in English.

“By speaking in front of a friendly audience, as opposed to a conference where you’d know few people in the audience, your classmates and professors can offer feedback and really help you smooth out your final presentation,” said Khazaeni.

Ph.D. students, Jing Wang, Greg Castanon, and Yasaman Khazaeni (pictured from left to right), organized the CISE Graduate Student Workshop in hopes of giving their classmates a chance to practice speaking in front of a large audience. Photo by Dan Aguirre for Boston University Photography.

Ph.D. students, Jing Wang, Greg Castanon, and Yasaman Khazaeni (pictured from left to right), organized the CISE Graduate Student Workshop in hopes of giving their classmates a chance to practice speaking in front of a large audience. Photo by Dan Aguirre for Boston University Photography.

Khazaeni, who helped choose 14 students to present out of a pool of 23 applicants, said that the event also allowed CISE students to learn from classmates and discover more about the projects they’ve been working on.

Among those she learned from were Ph.D. students, Morteza Hashemi and Delaram Motamedvaziri, who took home the Best CISE Presenter awards.

Hashemi, who is advised by Professor Ari Trachtenberg (ECE, SE), spoke about his project, Coded Data Sharing in Intra-Car Wireless Sensor Networks. He has been working with Trachtenberg, Professor David Starobinski (ECE, SE), Ph.D. student, Wei Si, and General Motors Research to determine if using wireless sensor networks (WSN) might allow for a greener way to construct tomorrow’s vehicles. The work previously won the Center for Reliable Information Systems and Cybersecurity Award as well as the Provost’s Award at Scholars Day last year.

Advised by Professor Venkatesh Saligrama (ECE, SE), Motamedvaziri spoke about her work, “Poisson Statistics and the Future of Internet Marketing.”

“The effectiveness of search engine marketing is dropping while the power of social media marketing is rising,” she explained. “Mathematics would suggest that social media is now the better advertising strategy.”

She said that though her research focused on total hits advertisements received, she’d like to expand her work in the future by looking at data concerning how long a person stayed on a website.

“Ultimately, we’re more interested in seeing transactions occur as opposed to clicks,” said Motamedvaziri.

Also honored at a reception at the BU Castle following the presentations were Setareh Ariafar, the Most Attentive CISE Student, and Professor David Castañón (ECE, SE), awarded for his contributions to CISE. Because 20 students attended all fourteen presentations, the most attentive of them was chosen by raffle.

In case any students left the workshop having doubts about their speaking skills, Professor Christos Cassandras (ECE, SE) closed the day by offering some advice, including “never overestimate the intelligence of your audience” and “the maximum pieces of information that should appear on a slide is two.”

“Giving a good talk is a difficult thing,” he said. “It’s as much of an art as a science.”

-Rachel Harrington (rachelah@bu.edu)

Combatting the Age of Big Data

December 2nd, 2013 in Events, Faculty, Graduate Programs, Graduate Student Opportunities, Graduate Students, Lectures, News-EP, Research, Research-EP, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students

Professor Larry A. Coldren, University of California, Santa Barbara, takes questions during a Boston University Electrical & Computer Engineering Distinguished Lecture.

Professor Larry A. Coldren, University of California, Santa Barbara, takes questions during a Boston University Electrical & Computer Engineering Distinguished Lecture.

Telecommunications companies – those that allow us to talk on the phone, communicate over the Internet and watch cable television – used to operate under the notion that there was an infinite amount of fiber bandwidth available to transmit these signals. Then we moved into the Y2K era.

“There was a big explosion of data around the year 2000,” said Larry A. Coldren, the Fred Kavli Professor of Optoelectronics and Sensors at the University of California, Santa Barbara. “Computers were also getting faster and faster at this time and the demand for bandwidth was rising quickly.”

Coldren and his team had started looking at photonic integrated circuits (PICs), devices that allow signals to travel on optical waves on semiconductor chips, back in the 1980s and discovered that they could viably be produced much like analogous electronic integrated circuits (ICs) that generally use electrical wires for transferring data.

Last month, he spoke about his research during Boston University’s Electrical & Computer Engineering Distinguished Lecture Series. He suggested that PICs could be the key component in the future of telecommunications.

Just a couple of decades ago, wavelength-division multiplexing (WDM) was introduced to meet the demand for more fiber bandwidth. This method allowed a number of signals to be simultaneously transferred on a single optical fiber. However, at the terminals where the WDM channels must be either combined or separated, the optical and electronic equipment became more and more complex as the channel count and signal speed increased. That’s where Coldren’s research comes into play.

“PICs have the potential of improved performance, reliability and cost while also reducing the size, weight and power of the equipment,” said Coldren.

PICs for various applications have been made using indium phosphide, silica on silicon, polymer technologies, and silicon photonics. Electronic ICs, however, usually use silicon as a dominant ingredient. Coldren’s team currently focuses on a monolithic indium phosphide integration platform.

“Ultimately, we may find that the best results will come from a hybrid solution using more than one of these materials,” said Coldren.

Today, PICs are widely deployed commercially and outperform many discrete device approaches, but Coldren is optimistic that they can work even better in the future and hopefully result in more environmentally friendly supercomputers and data centers.

“Our efforts have always been focused on making PICs very efficient and very fast,” said Coldren. “Now we need to look at how they can be used to create more green data centers.”

Assistant Professor Jonathan Klamkin (ECE), who introduced Coldren at the lecture, previously had an opportunity to study with Coldren while earning his Ph.D. at UC Santa Barbara.

“I benefitted immensely from his guidance and even use his books in my class here,” Klamkin said. “It’s a pleasure having him on our campus.”

Prior to teaching, Coldren worked at Bell Labs, where he studied surface-acoustic-wave signal processing devices and tunable coupled-cavity lasers. He continued his work at UC Santa Barbara, where he has developed more widely-tunable DBR lasers and efficient, high-speed vertical-cavity-surface-emitting lasers (VCSELs) in addition to his PIC research.

Coldren is a member of the National Academy of Engineering and a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), the Optical Society (OSA) and the Institution of Electrical Engineers (IEE).

Coldren’s talk was the third in the three-part Fall 2013 Distinguished Lecture Series. The seminars will resume in Spring 2014.

-Rachel Harrington (rachelah@bu.edu)

Distinguished Alumni Awards Honor Exceptional ENG Grads

November 19th, 2013 in Alumni, Awards, Events, News-CE, News-EP, News-ISS, Recognition

Dean Kenneth R. Lutchen with Anton Papp (EE '90) (top), Dan Ryan and Aaron Ganick (both ECE '10) (middle) and George Savage (BME '81) (bottom) (Photos by Dave Green)

Dean Kenneth R. Lutchen with Anton Papp (EE '90) (Photo by Dave Green)

In a ceremony held October 25 at the Boston University Photonics Center, the College of Engineering celebrated its alumni and announced the 2013 Distinguished Alumni Awards. Presented by Dean Kenneth R. Lutchen following a buffet dinner and champagne toast, the awards recognize individuals who have made significant contributions to their alma mater, community and profession. Lutchen commended the recipients for bringing honor to the College through their careers, commitment to the highest standards of excellence, and devotion to the College.

Anton Papp (EE ’90), vice president for Corporate Development at Teradata, received the Service to Alma Mater award, which honors alumni who have enhanced the College of Engineering’s stature through voluntary service to BU.

Dean Kenneth R. Lutchen (center) with Dan Ryan (left) and Aaron Ganick (both ECE '10) (Photo by Dave Green)

Dean Kenneth R. Lutchen (center) with Dan Ryan (left) and Aaron Ganick (both ECE '10) (Photo by Dave Green)

At Teradata Papp oversees, evaluates and executes investments, mergers and acquisitions, and strategy. Prior to joining Teradata, he served as vice president of Corporate Development & Global Alliances at Aprimo and held numerous investment banking positions. A graduate of the prestigious US Navy Fighter Weapons School (TOPGUN), Papp attended BU on a Naval ROTC scholarship and served as a Naval Officer and F-14 Tomcat Flight Instructor. He also earned an MBA in Finance from Columbia Business School.

Papp serves on the College of Engineering Dean’s Advisory Board, the ENG West Coast Alumni Leadership Council, and the BU West Coast Regional Campaign Committee. He has been the leading supporter for the ENG/SMG Summer Leadership Institute program, and part of the College’s efforts to recruit top undergraduates.

Dan Ryan and Aaron Ganick (both ECE ’10), cofounders of the telecommunications company ByteLight, received the Distinguished Young Alumni award, which honors outstanding alumni within 10 years of graduation for outstanding service to their profession or community.

Dean Kenneth R. Lutchen and George Savage (BME '81) (Photo by Dave Green)

Dean Kenneth R. Lutchen and George Savage (BME '81) (Photo by Dave Green)

A startup that emerged out of the Smart Lighting Engineering Research Center at BU, ByteLight has produced a system that’s similar to an indoor GPS. Special LED lights provided by Bytelight enable your smartphone to determine your location and to bring up location-based information ranging from store coupons to museum exhibit descriptions.

George Savage (BME ’81), Chief Medical Officer and cofounder of Proteus Digital Health, and a member of the BU College of Engineering West Coast Advisory Council, received the Service to the Profession award, which honors alumni whose work has significantly contributed to the advancement of their profession and brought them recognition within their field.

Savage has started 10 companies since 1989 as entrepreneur or founding investor, including FemRx (acquired by Johnson and Johnson), CardioRhythm (acquired by Medtronic) and QRx Pharmaceuticals. He holds an M.D. from Tufts University School of Medicine and an M.B.A. from Stanford University Graduate School of Business, and serves on the boards of Menlo Healthcare Ministry, the Pacific Research Institute and Silent Cal Productions.

At Proteus, Savage has advanced a system of small, ingestible event markers that are implanted in a patient’s medications. A monitor worn as a patch on the patient identifies each pill upon swallowing and tracks vital signs, which are uploaded to the patient’s mobile phone and transmitted to caregivers and healthcare professionals. The system allows for instantaneous and personalized treatment and promises to transform the way doctors monitor patients’ medicine.

-Mark Dwortzan

Removing Communication Roadblocks

November 7th, 2013 in Alumni, Awards, Courses, Events, Faculty, Graduate Programs, Graduate Student Opportunities, Graduate Students, News-CE, Publications, Recognition, Research, Research-CE, Students

Distinguished Professor Lev Levitin (ECE)

Distinguished Professor Lev Levitin (ECE)

Over the last few weeks, nearly 20 million Americans tried accessing a broken United States health care site that couldn’t handle the traffic, among other problems. And even if you weren’t one of the many applying for health coverage, you’ve probably experienced network congestion at some point.

Typically, network congestion occurs if a link or node is carrying too much data; as a result, the quality of service drops. The most severe form of communication disruption is deadlocks. A deadlock happens when several messages mutually block each other so that their delivery is not just delayed but stopped permanently.

“This is a long-standing problem, which is practically important and theoretically challenging,” said Distinguished Professor Lev Levitin (ECE, SE). “It has been attracting the efforts of many researchers for decades.”

Professor Mark Karpovsky

Professor Mark Karpovsky (ECE)

Professors Levitin and Mark Karpovsky (ECE) have been working with their students on this problem for several years, developing new algorithms, specifically turn prohibition algorithms, to help direct data and essentially prevent information from being stuck in a deadlock as it travels through communication networks. This work covered a lot of ground by establishing lower and upper bounds for an optimal solution, outlining their discovery of a new class of algorithms, and developing a few algorithms that could actually solve the initial optimization problem.

The last advance on this project was achieved this year by Levitin and his team – ECE alum, Ye Wu (MEng ’13), and Visiting Scholar, Mehmet Mustafa. They have been working on developing new algorithms, specifically turn prohibition algorithms, to help direct data and essentially prevent information from being stuck in a deadlock as it travels through communication networks.

“Without changing the topology of existing networks, we managed to improve saturation points so that congestion is less likely to happen and latency is reduced which means lower waiting time for users,” said Wu.

The team recently presented their work at OPNETWORK 2013, a conference that focused on advancing the state of application and network performance management. Impressed by their research, “A Study of Modified Turn Prohibition Algorithms for Deadlock Prevention in Networks,” the judges awarded them Best Technical Paper.

Ye Wu (left) receives his MEng degree from Professor Selim Ünlü (ECE, BME) at Commencement 2013.

Ye Wu (left) receives his MEng degree from Professor Selim Ünlü (ECE, BME, MSE) at Commencement 2013.

“Computer experiments, executed earlier and in the latest work by Ye Wu and other students under the guidance of Dr. Mustafa, clearly showed the superior performance of our algorithms versus different algorithms suggested by other research groups,” said Levitin. He went on to add that the majority of publications in the field are on ad hoc algorithms as opposed to the “tree-free” algorithms he and his team explored.

The work gave Wu a chance to travel to Washington, D.C., and deliver the presentation at the Ronald Reagan Building and International Trade Center.

“I met some really nice students and professors from different countries who were happy to talk about their research,” said Wu. “The audience, I think, was also smart enough to understand the key points of our project and asked really good questions.”

Now a Boston University graduate, Wu looks back at his professor fondly, describing Levitin as open-minded, even when his student was questioning his own theories.

“Professor Levitin is the best professor I’ve ever known,” said Wu. “Even when we had no idea how to begin a project, he’d point us in the right direction.”

-Rachel Harrington (rachelah@bu.edu)

Bring in ’da Noise

November 6th, 2013 in Events, Faculty, Graduate Programs, Graduate Student Opportunities, Graduate Students, Lectures, News-ISS, Research, Research-ISS, Students, Undergraduate Programs, Undergraduate Student Opportunities, Undergraduate Students

Professor George J. Pappas, University of Pennsylvania, spoke as part of the Department of Electrical & Computer Engineering Distinguished Lecture Series, which aims to bring groundbreaking engineers to the university to speak about their work.

Professor George J. Pappas, University of Pennsylvania, spoke as part of the Department of Electrical & Computer Engineering Distinguished Lecture Series, which aims to bring groundbreaking engineers to the university to speak about their work.

Each day, we find ourselves sharing our personal information across the internet – whether it’s to pay a bill or buy a gift on Amazon.

As we send more of our data through these channels, there is a growing concern about privacy. Earlier this month, a breach at Adobe, for example, impacted more than 38 million users. Cases like this are not uncommon and as a result, cyber security has become a major area of research for electrical and computer engineers.

Last week, Professor George J. Pappas, the Chair of the Department of Electrical and Systems Engineering at the University of Pennsylvania, visited Boston University and shared his own work on the topic.

Pappas is looking at how differential privacy, a method that aims to maximize the accuracy of information extracted from databases while also minimizing the chance of records being identified, can be applied to systems like smart grids and intelligent transportation systems.

“Privacy breaches are generally due to side information that a company collects,” Pappas explained. He believes that by using a differentially private mechanism to transfer information, it’ll be possible to hide secure data.

“You’re trying to hide in the noise and make it hard to know who’s who,” he said.

Pappas spoke as part of the Department of Electrical & Computer Engineering Distinguished Lecture Series, which aims to bring groundbreaking engineers to the university to speak about their work.

Students, faculty members, and other members of the BU community listened to Pappas speak on October 23.

Students, faculty members, and other members of the BU community listened to Pappas speak on October 23.

Pappas believes that one of the greatest challenges is figuring out how to give companies like Google and eBay the information they need without the sensitive data they don’t.

An advantage of differential privacy, he said, is that once you indicate a particular segment of information is private, it stays private even after the data is sent to another system. Pappas believes that by adding noise during the streaming process, secure information can be blocked. The trick is figuring out how much noise should be added.

Pappas is a Fellow of IEEE and has received several awards including the Antonio Ruberti Young Research Prize, the George S. Axelby Award, and the National Science Foundation PECASE. In addition to differential privacy, his research focuses on control theory and, in particular, hybrid systems, embedded systems, hierarchical and distributed control systems, with application to unmanned aerial vehicles, distributed robotics, green buildings, and biomolecular networks.

Pappas’s talk was the second in the three-part Fall 2013 Distinguished Lecture Series. The next talk will feature Professor Larry A. Coldren, University of California, Santa Barbara, who will speak on the topic, “Photonic Integrated Circuits as Key Enablers for Coherent Sensor and Communication Systems.” Hear him on Wednesday, November 20, at 4 p.m. in PHO 211.

-Rachel Harrington (rachelah@bu.edu)

Ahmed (Magdy) Farouk Advances to Finals at MIT’s Future Energy

October 21st, 2013 in Alumni, Events, Graduate Programs, Graduate Student Opportunities, Graduate Students, News-EP, Recognition, Research, Research-EP, Students

Ahmed (Magdy) Farouk (MS ’12) may be a recent graduate, but that hasn’t kept him from having big ideas about how to improve solar energy efficiency.

Moray1

Ahmed (Magdy) Farouk (MS '12)

Just a few months ago, he was on stage at MIT’s Future Energy event, pitching his idea about new structures of organic solar cells that increase the light harvesting capabilities of these devices, as well as reduce their costs by eliminating many of their expensive components and making them more manufacturable.

Farouk’s plan involves using organic semiconductors that can be dissolved into a solvent and treated as ink. He then takes the ink and puts it in a printer to produce a drawing – on virtually any substrate – of a solar cell with all of its components. He said that by using this method with the new structure, solar energy could produce cheaper electricity than fossil fuels.

At the April 4 MIT event, Farouk introduced his proposal to a room full of investors, researchers, and other entrepreneurs. At Future Energy, about 100 start-ups focused on solving the world’s energy challenges present in front of an audience and a panel of four experts and investors. Only eight new projects, including Farouk’s, advanced to the finals, during which each team presented and took questions from a panel of judges.

Farouk decided to participate in Future Energy because of the collaborative platform the event provides. “For me, the real benefits were the exposure and the interaction with other entrepreneurs and experts in this community,” he explained. “It helped me understand more what investors are looking for, what their main concerns are, and how I can improve my business model.”

Farouk presented similar research during his master’s presentation at BU, but pitching the idea was different for Future Energy. The presentation needed to be more business-oriented rather than technically-detailed because investors were examining the economical viability of the idea.

Future Energy's Logo

“To be able to estimate the economical data requires a different kind of research that sometimes is even more demanding than the technical side,” Farouk stated.

Farouk said that in the past, the solar manufacturing industry has been volatile. Many solar companies failed because they raised more funds than they actually needed. Currently, many investors are hesitant to lend out funds.

Learning from his experience at the Future Energy event, Magdy is working on making his design technologically ready and creating a preliminary prototype. He believes he needs stronger proof to garner more investor interest, and he is eager to build upon his work based on what he learned during the competition.

- Chelsea Hermond (SMG ’15)

Embedded Systems Research Gaining Speed

October 7th, 2013 in Events, Faculty, Graduate Student Opportunities, Lectures, News-CE, Research, Research-CE, Undergraduate Student Opportunities

Professor Yehia Massoud, the Head of the Electrical and Computer Engineering Department at Worcester Polytechnic Institute, spoke at Boston University last month as part of the Electrical & Computer Engineering Department’s Fall 2013 Distinguished Lecture Series.

Professor Yehia Massoud, the Head of the Electrical and Computer Engineering Department at Worcester Polytechnic Institute, spoke at Boston University last month as part of the Electrical & Computer Engineering Department’s Fall 2013 Distinguished Lecture Series.

Computing and embedded systems might not be something you think about everyday, but they’re found in devices we see all the time like MP3 players and traffic lights.

The potential of these systems continues to rise as engineers perfect their design. Imagine driving a car that could recognize traffic and switch lanes to avoid congestion or using a brain pacemaker to treat Parkinson’s disease.

Those were just a few of the possibilities Professor Yehia Massoud, the Head of the Electrical and Computer Engineering Department at Worcester Polytechnic Institute, mentioned last month when he visited Boston University. He spoke as part of the Electrical & Computer Engineering Department’s Fall 2013 Distinguished Lecture Series.

Massoud was excited about current work being done on computing and embedded systems but said that before engineers are able to make some of the ideas a reality, scientists need to work on creating computing systems that are faster and perform better.

“Size is also important,” said Massoud. “They have to be small and very portable.”

He added that some of the problems engineers face concern overheating and configurability.

“Some of the ways we might solve this include new circuit design techniques, efficient signal processing techniques, developing new technologies, and using smart processing to sufficiently extract information,” said Massoud.

Massoud’s research team has been exploring how to automate analog/RF design and looking at how doing so could improve reliability, power consumption, and performance of embedded systems.

“The ultimate goal is to design a model in which there is an efficient trade-off for speed and accuracy,” he said.

Massoud is the editor of Mixed Signal Letters and an associate editor of the IEEE TVLSI and IEEE TCAS-I. He is a recipient of the National Science Foundation CAREER Award, the DAC fellowship, the Synopsys Special Recognition Engineering Award, and Best Paper Awards at the 2007 IEEE International Symposium on Quality Electronic Design and the 2011 IEEE International Conference on Nanotechnology.

Massoud’s talk was the first in the three-part Fall 2013 Distinguished Lecture Series. The next talk features Professor George J. Pappas of the University of Pennsylvania who will speak on the topic, “Differential Privacy in Estimation and Control.” Hear him on October 23, 2013, at 4 p.m. in PHO 211.

-Rachel Harrington (rachelah@bu.edu)