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Abstract— Leaf area index (LAI) and fraction of photosyn-
thetically active radiation (FPAR) absorbed by vegetation have
been successfully generated from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) data since early 2000. As the
Visible Infrared Imaging Radiometer Suite (VIIRS) instrument
onboard, the Suomi National Polar-orbiting Partnership (SNPP)
has inherited the scientific role of MODIS, and the develop-
ment of a continuous, consistent, and well-characterized VIIRS
LAI/FPAR data set is critical to continue the MODIS time series.
In this paper, we build the radiative transfer-based VIIRS-specific
lookup tables by achieving minimal difference with the MODIS
data set and maximal spatial coverage of retrievals from the main
algorithm. The theory of spectral invariants provides the config-
urable physical parameters, i.e., single scattering albedos (SSAs)
that are optimized for VIIRS-specific characteristics. The effort
finds a set of smaller red-band SSA and larger near-infrared-
band SSA for VIIRS compared with the MODIS heritage. The
VIIRS LAI/FPAR is evaluated through comparisons with one
year of MODIS product in terms of both spatial and temporal
patterns. Further validation efforts are still necessary to ensure
the product quality. Current results, however, imbue confidence
in the VIIRS data set and suggest that the efforts described
here meet the goal of achieving the operationally consistent
multisensor LAI/FPAR data sets. Moreover, the strategies of
parametric adjustment and LAI/FPAR evaluation applied to
SNPP-VIIRS can also be employed to the subsequent Joint Polar
Satellite System VIIRS or other instruments.

Index Terms— Earth System Data Record (ESDR), fraction of
photosynthetically active radiation (FPAR), leaf area index (LAI),
Moderate Resolution Imaging Spectroradiometer (MODIS),
spectral invariants, Visible Infrared Imaging Radiometer
Suite (VIIRS).
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I. INTRODUCTION

THE launch of the Moderate Resolution Imaging Spec-
troradiometer (MODIS) instruments onboard Terra and

Aqua satellites opened a new era in remote sensing of the earth
system by allowing for rich spectral and angular sampling of
the reflected and emitted radiation field [1], [2]. Supported
by sound cooperation mechanisms, MODIS science teams
have been routinely producing, validating, evaluating, and
distributing more than 40 high-quality science products of
earth system parameters since 2000. During the past 17 years,
the series of MODIS products has unprecedentedly supported
a broad range of studies of the earth environment and climate
changes [3]–[5], and the quality of these products has been
evaluated by both direct validation with ground measurements
and intercomparison with other data sets [6], [7].

Given the fact that the MODIS instruments have operated
significantly beyond their design lifetime of six years, the cal-
ibration team has observed obvious degradations [8]. It is
important to realize that the MODIS instruments will be retired
in the upcoming several years although constant and dedicated
efforts have been made to maintain the product quality [9].
In this context, the Visible Infrared Imaging Radiometer
Suite (VIIRS) instrument was designed with a strong MODIS
heritage and has the goal of ensuring long-term continuity of
the valuable Earth System Data Records (ESDRs) [10]–[12].
The VIIRS was planned to be one of the payloads of the Suomi
National Polar-orbiting Partnership (SNPP) and Joint Polar
Satellite System (JPSS) satellites. The on-orbit SNPP-VIIRS
provides a critical bridge between the observations from the
Earth Observing System (EOS) and the JPSS [13].

Leaf area index (LAI) [14] and the fraction of photo-
synthetically active radiation (FPAR) (0.4–0.7 μm) absorbed
by vegetation [15] are two key biophysical variables that
play important roles in most models of climate, hydrology,
biogeochemistry, and ecosystem productivity by characterizing
vegetation canopy structure and energy absorption capac-
ity [16]–[18]. Over the last decades, a number of global
LAI/FPAR products with varying temporal–spatial resolutions
have been retrieved from satellite observations [19]–[24].
Table I lists the characteristics of five well-known products
and the upcoming VIIRS product. Among them, the MODIS
product is noteworthy, because its radiative transfer (RT)-based
algorithm, unlike other algorithms such as GLASS and
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TABLE I

LONG-TERM GLOBAL LAI/FPAR PRODUCTS FROM REMOTE SENSING DATA

GEOV1 that are based on artificial neural networks, does
not require benchmark LAI/FPAR products. The latest version
(Collection 6, C6) of MODIS LAI/FPAR has been well tested
and is freely available [25], [26]. With the end of MODIS in
sight, there is now an urgent need to continue the LAI/FPAR
data series from other satellite observations.

Although the VIIRS was designed to be considerably similar
to MODIS, previous studies have shown that the discrepan-
cies between the two sensors cannot be ignored [27]–[29].
This makes it impossible to apply MODIS algorithms to
VIIRS data. The MODIS LAI/FPAR algorithm requires the
selection of sensor-specific values of configurable parame-
ters [30]. Previous efforts of implementing this algorithm
to Advanced Very High Resolution Radiometer and Landsat
data indicate that the discrepancies (e.g., spectral response,
spatial resolution) between sensors will result in inconsis-
tent LAI/FPAR products if the parameters are not adjusted
specifically [31]–[33]. Therefore, the primary objective of this
paper is to adjust the lookup tables (LUTs) of this algorithm
to address the differences between the MODIS and VIIRS
sensors. Our secondary objective is to evaluate the generated
VIIRS LAI/FPAR test products through comparisons with the
MODIS C6 data set.

This paper is organized as follows. The theoretical back-
ground is introduced in Section II and Appendix A. Section III
and Appendix B detail the methodologies for adjusting the
parameters and evaluating the generated VIIRS LAI/FPAR.
The results, including the comparability of MODIS and
VIIRS surface reflectance (SR) data sets and the parame-
terization specified for VIIRS, are detailed in Section IV.
Finally, Section V describes the characteristics of the global

VIIRS LAI/FPAR data set and shows the results of a
preliminary evaluation on it. Conclusions are presented
in Section VI.

II. THEORETICAL BACKGROUND

The proposed VIIRS LAI/FPAR algorithm is based on the
heritages of the long-term operational practice and theoretical
studies. The two key heritages are: 1) a mature 17-year-long
MODIS LAI/FPAR operational algorithm which is based on
the 3-D RT model and LUT-based inversion strategy and
2) a physically and practically proven procedure for achieving
intersensor consistency.

A. MODIS LAI/FPAR Algorithm

The MODIS LAI/FPAR algorithm ingests bidirectional
reflectance factors (BRFs) at the red and near-infrared (NIR)
bands, their uncertainties, sun-sensor geometry, and a biome
classification map [30]. It consists of a main algorithm that is
based on the 3-D RT equation and a backup algorithm that
uses empirical relationships between normalized difference
vegetation index (NDVI) and LAI/FPAR fields. The algorithm
finds the candidates of LAI/FPAR by comparing observed
BRFs with those evaluated from model-based entries stored
in the LUT. All canopy/soil patterns for which modeled and
observed BRFs differ within a specified level of uncertainty
are considered as acceptable solutions. The mean value and
the dispersion of these solutions are reported as retrieval and
its uncertainty, respectively. A biome map is another important
input, in which global vegetation is classified into eight biomes
(B1: grasses and cereal crops; B2: shrubs; B3: broadleaf crops;
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Fig. 1. RSR curves of VIIRS and MODIS red (VIIRS-I1 and MODIS-B1)
and NIR (VIIRS-I2 and MODIS-B2) bands. The data for MODIS and
VIIRS are available at http://mcst.gsfc.nasa.gov/calibration/parameters and
http://www.star.nesdis.noaa.gov/jpss/VIIRS.php, respectively.

B4: savannas; B5: evergreen broadleaf forests; B6: deciduous
broadleaf forests; B7: evergreen needleleaf forests; and B8:
deciduous needleleaf forests). With simplifying assumptions
and standard constants that are assumed to vary only with
biome, the biome map, as prior knowledge, can reduce the
number of unknowns in the “ill-posed” inverse problem [34].
To reduce the impact of day-to-day artificial variations in SRs
that are due to cloud and residual atmospheric effects, the daily
retrievals are composited over four-day or eight-day period by
selecting the LAI/FPAR corresponding to the maximum FPAR
value.

The algorithm path is the key quality assessment (QA)
flag that provides information about the overall quality of
the retrievals. It includes four types of algorithm paths: the
main algorithm without saturation (Main), the main algorithm
with saturation (Main-S), the backup algorithm due to bad
sun-sensor geometry (BackUp-G), and the backup algorithm
due to other reasons (e.g., large uncertainties in reflectance)
(BackUp-O). The Main algorithm outputs retrievals with high
precision when LAI is low. The Main-S outputs retrievals with
moderate precision when LAI is high, and thus, the reflectance
has low sensitivity to LAI. In the case of main algorithm fail-
ure, low-precision retrievals are obtained from the empirical
backup algorithm [35], [36]. Therefore, the retrieval rate of
the main algorithm [retrieval index (RI)] is the main quality
indicator of MODIS LAI/FPAR products.

B. Characteristics of the VIIRS Instrument

The same as Aqua, the SNPP is an afternoon sun-
synchronous satellite with an altitude of approximately 824 km
and a 16-day repeat cycle of data collection. Both MODIS
and VIIRS are cross-track scanning radiometers (whiskbroom)
that measure the globe in multispectral bands [37]. MODIS
has 36 bands and VIIRS has 22 bands. Fig. 1 compares
the relative spectral responses (RSRs) of the red and NIR
bands between the two sensors. It is apparent that VIIRS has
an NIR-band RSR that is similar to that of MODIS, with
almost the same bandwidth (0.039 versus 0.036 μm) and a

slightly right-shifted center band (0.865 versus 0.859 μm).
However, the RSRs of the MODIS and VIIRS red bands show
an obvious difference. At this band, VIIRS has a broader
bandwidth, with the full-width at half-maximum (FWHM)
ranging from 0.60 to 0.68 μm, compared with MODIS’s
FWHM (0.62–0.67 μm). The centers of red band for VIIRS
and MODIS are 0.639 and 0.645 μm, respectively. Differences
in sensor spectral bands result in a differential sensitivity of
the sensor’s spectral response functions to the impacts of
atmospheric conditions and reflection from the ground [32].
Thus, the BRF data sets from MODIS and VIIRS have
discrepancies in both BRF precision and magnitude, which
makes it difficult to directly apply MODIS’s LUTs for VIIRS
LAI/FPAR retrieval.

VIIRS scans the earth at a view angle ranging
between ±56.28° for a wider swath of 3000 km than the
MODIS’s swath of 2330 km [38]. Therefore, VIIRS has
the ability to cover the globe daily with no gap between
orbits, which cannot be achieved by MODIS. The larger swath
coverage results in more daily observations of VIIRS, which
provides the benefits for LAI/FPAR retrieval. Because of
the earth curvature and the whiskbroom mechanism, MODIS
pixels grow by a factor of six from nadir to edge of scan,
whereas VIIRS restricts the pixel to about twofold growth
using an onboard aggregation scheme. Many applications
have been reported to benefit from VIIRS’s near-constant
resolution [39]. The geometric instantaneous fields of views
(GIFOVs) of VIIRS and MODIS red and NIR bands are
375 and 250 m, respectively, and are gridded at 500 m as
the input of LAI/FPAR retrieval. Note that the measured BRF
at pixel scale also depends on the spatial resolution [32].
Therefore, the GIFOV difference is another potential reason
for the discrepancies between MODIS and VIIRS BRFs. The
nonlinear effects in the LAI-BRFs relationship should be
addressed in the VIIRS LAI/FPAR algorithm development.

C. Theory of Spectral Invariants

RT in vegetation canopies can be seen as a stochastic
process, i.e., interacting photons can either be scattered or
absorbed by a phytoelement [40]. The probability of a scat-
tering event, or single scattering albedo (SSA) (ωλ), depends
on the wavelength and is a function of the leaf biochemical
constitution. However, the probability that a photon will col-
lide with elements again is determined by the structure of the
canopy rather than the photon frequency or the optics of the
canopy [41]. Reference [42] proposed the “p-theory,” or “spec-
tral invariants theory,” that describes the unique positive eigen-
value of the RT equation as the product of the leaf albedo
and a wavelength-independent parameter (p). This theory
laid the foundation for the synergistic LUT-based LAI/FPAR
algorithm, which has been successfully implemented in the
MODIS operational algorithm. To provide a clear interpre-
tation of how p is related to canopy structure, [43] defined
p as the recollision probability, the conditional probability
that a photon scattered by a phytoelement will interact again
within the canopy. Furthermore, [44] proposed the concept
of the directional area scattering function (DASF) that is
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defined as the BRF of a canopy with nonabsorbing leaves
(ωλ = 1) that is bounded underneath by a nonreflecting
surface. Note that, the DASF is also determined only by the
canopy structure, rather than the wavelength. By introducing
the average recollision probability pA [40], [45], the BRF of
vegetation canopies bounded at the bottom by black soil can
be expressed as

BRFλ(�O ,�) = DASF(�o,�) · ωλ · (1 − pA)

1−ωλ · pA
. (1)

The spectral invariant principle is an important concept,
because knowing the invariants of the canopy and the SSA
of an average phytoelement at any wavelength makes it
possible to reconstruct the radiation field of the canopy at any
wavelength [46], [47]. Note that for vegetation canopies with
a dark background or for sufficiently dense vegetation where
the impact of the canopy background is negligible, the DASF
can be directly retrieved from spectral BRF without the use
of canopy reflectance models, prior knowledge, or ancillary
information regarding the leaf optical properties [44].

The formulation of (1) permits decoupling of the structural
and radiometric components of any optical sensor signal,
which is the theoretical foundation of optimizing configurable
parameters to achieve intersensor consistency in multisensor
LAI/FPAR retrievals. Thus, the MODIS LAI/FPAR algo-
rithm is applicable to any optical sensor by selecting the
proper sensor-specific values of SSA. The SSA is also a
function of the spatial scale, and therefore, it accounts for the
variation in BRFs not only with sensor spectral characteristics
but also with sensor spatial resolution [32]. Equation (1) shows
the nonlinear relationship between BRF and SSA if the canopy
structure parameters (e.g., LAI) are constant. However, it is
apparent that the BRFλ is an explicit function of SSA and,
if canopy structure parameters and background reflectance
are constant, is strictly monotonically increasing. With this
relationship, we expect that the direction of SSA changes
should agree with that of BRF changes to obtain a consistent
LAI/FPAR retrieval. This theoretical prediction can be used to
inspect the results of parametrical adjustment.

D. Inverse Problem and Stabilized Precision

Error-free measurements delivering sufficient informa-
tion content are generally not available in practice. Thus,
the retrieval of LAI/FPAR from satellite data cannot be
achieved through a one-to-one relationship but should be
treated as an “ill-posed” problem [32]. Both the wavelength-
dependent observation and model precisions σM,λ and σλ

(Appendix A) must be taken into account when comparing
measured and modeled BRFs. Ignoring the model precision
in the retrieval algorithm can cause a destabilization of
the retrieval process. Reference [48] introduced a stabilized
precision δλ, which prevents the destabilization and mini-
mizes the impact of model and observation precisions on
LAI/FPAR retrievals. The stabilized precision is a function
of σM,λ and σλ. The LAI/FPAR algorithm uses this stabilized
precision to select acceptable solutions, i.e., all canopy/soil
parameters for which modeled and measured BRFs agree

within the stabilized precisions. A detailed mathematical jus-
tification of this procedure is presented in [48] and [49].

In the MODIS/VIIRS retrieval approach, the atmospher-
ically corrected spectral surface BRFs are treated as
independent random variables with finite variances
(precisions) σλ. The deviations, ελ = (rλ − mλ)/δλ,
λ = band 1, band 2, . . . , band n, between measured rλ

and simulated mλ spectral BRFs are assumed to follow the
Gaussian distribution. The random variable χ2

δ [r−m] = ∑n
1 εk

has a chi-square distribution. The inequality χ2
δ ≤ n indicates

good precision.
The operational MODIS/VIIRS algorithm uses BRFs at two

spectral bands. It selects all canopy/soil parameters for which
modeled rM,λ and measured rλ spectral BRFs agree within the
stabilized precisions, i.e., satisfy the inequality χδ[r−rM ] ≤ 2.
Let mM = (mM,1, mM,2) represent model predicted BRFs.
χ2

δ [r − rM ] follows the Minkowski inequality [50], which
shows that χδ depends on how the modeled BRFs differ from
both the true BRFs and the observed BRFs, that is

χδ[r − rM ] ≤ χδ[r − m] + χδ[rM − mM ] + χδ[m − mM ].
(2)

Indeed, the use of very accurate model, i.e., mM,λ = mtrue,λ,
maximizes the term χδ[m − mM ]. This may cause a “true”
LAI does not pass the comparison test χδ[r − rM ] ≤ 2. This
term vanishes if one uses a model that tends to simulate the
measurements, i.e., mM,λ = mλ. This, however, increases
the contribution of the term χδ[rM − mM ]. The calibration,
therefore, is reduced to finding an SR model that optimally
approximates the observed and true spectral BRFs [51]. It is
apparent that the solution of this problem depends on model
and observation uncertainties. Input data and their uncertain-
ties are, “in general, the minimal information necessary to
construct approximate solution for ill-posed problems” [52].
Therefore, our second adjustable parameter is the stabilized
precision, which actually accounts for the varying information
content of the remote sensing observations and the model
uncertainty [32], [33].

III. METHODOLOGY

A. Investigation of the Surface Reflectance

We first investigated the VIIRS SR: 1) to assure comparabil-
ity of VIIRS BRF precision with MODIS and 2) to quantify
BRF differences between MODIS and VIIRS SR data sets.
The daily SR data for SNPP-VIIRS (VNP09GA V1) [53]
and Aqua-MODIS (MYD09GA C6) [54] during the period
July 4–11, 2015 were employed in this analysis. Selected
tiles, dominant of the eight biome types, were used for
precision examination, and global data sets were used for BRF
difference quantification. To achieve a good measure of BRF
precisions and their differences, only best quality observations
were used, i.e., cloud/adjacent–cloud free, snow free, aerosol
not high, and cirrus free. Discrepancy in sun-sensor geometry
between MODIS and VIIRS was minimized by only including
minimally different observations (a solar zenith angle (SZA)
difference of <2.5°, a solar azimuth angle difference of <5°,
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a sensor zenith angle difference of <5°, and a sensor azimuth
angle difference of <5°).

The relative stabilized precisions (RSPs) of input
BRFs are practically unmeasurable. Based on previous
works [48], [55], [56], we characterized the precision of
BRFs by the coefficient of variation (CV) of the strictly
quality controlled daily BRFs over these pixels who have
almost constant LAI values as

CV = S/μ (3)

where S is the standard deviation and μ is the mean value
during eight-day period. Thus, the precision comparability
was examined by comparing the CVs of BRFs rather than
estimating the RSPs. The VIIRS/MODIS observations, if there
were at least four daily SRs with best quality during the
eight-day period, were used in the precision comparison.
Uncertainties in BRFs of these pixels with best quality were,
therefore, due to incomplete atmospheric correction and not
due to improper cloud screening or instrumental anomalies.
For the time being, it was assumed that the surface was
unchanged over the measurement period of eight days and
that the sun-sensor geometry impact was minimal.

B. Solving the Optimization Problem

The theory of spectral invariants allows the possibility of
transplanting the MODIS LAI/FPAR algorithm to VIIRS by
selecting the proper values of SSA and RSP. As it will be
shown in Section IV-A, we discovered that VIIRS and MODIS
have quite comparable BRF precisions for all biomes, which
justified that the configuration of MODIS RSP can be inherited
by VIIRS. Therefore, the key problem of prototyping the
VIIRS LAI/FPAR algorithm is to obtain the SSAs corre-
sponding to VIIRS spectral characteristics. However, direct
measurement of SSA at the pixel scale is impossible to
implement [33]. Recall that, the objective of the VIIRS mission
is to continue the MODIS data record with best consistency.
With this aim, we proposed an optimization strategy to locate
the optimal VIIRS SSA combination, with the Aqua-MODIS
C6 product (MYD15A2H) [57] serving as the benchmark.

There are three reasons justifying the use of MODIS
LAI/FPAR retrievals as reference data: 1) ground LAI/FPAR
measurements are spatiotemporally limited to solve the opti-
mization problem; 2) MODIS operational algorithm has been
well optimized for its BRF inputs; and 3) the ultimate goal
is to assure the consistency between VIIRS and MODIS.
The performance metrics of the VIIRS LAI/FPAR operational
algorithm include: 1) the RI; 2) the root mean squared
error (RMSE) between VIIRS and MODIS retrievals; 3) the
proximity of the VIIRS and MODIS LAI histograms; and 4)
the algorithm match index (AMI). These are defined in the
following.

The RI is the percentage of pixels for which the main
algorithm produces a retrieval, that is

RI = number of pixels retrieved by the main algorithm

number of total processed pixels
. (4)

The RI characterizes the spatial coverage of the best quality
and high precision retrievals, but it does not characterize

their accuracies. The RMSE is an accuracy indicator represent-
ing the discrepancy between VIIRS retrievals and the reference
data

RMSE =
√√√√ 1

N

N∑
i=1

[LAIVIIRS(ω,i) − LAIMODIS(i)]2. (5)

The proximity of LAI histograms is another indicator of
disagreement, which, in this paper, is quantified by A, P,
and U (accuracy, precision, and uncertainty) statistics follow-
ing Tan et al.’s work [56] (Appendix B). Furthermore, the AMI
that accounts for the rate of retrieved pixels via the same
algorithm path is defined as

AMI = number of retrieved pixels via same algorithm path

number of total processed pixels
.

(6)

Apparently, the AMI can also magnify the disagreement
of two products. These complementary decision rules are
employed in addition to the RI and RMSE base rule to mediate
the bias problem.

The adjustment procedure can be formulated as follows:
find a combination of SSAs at the red ωred and NIR ωNIR
spectral bands that: 1) maximizes the RI and the AMI and
2) minimizes the RMSE and the disagreement between the
histograms. First, we calculated the RI and RMSE as a
function of ωred and ωNIR. Second, we separated a subset of
first ten best pairs (ω1

red, ω
1
NIR), (ω2

red, ω
2
NIR), . . . , (ω10

red, ω
10
NIR)

rather than using a preset threshold, as the RI and RMSE
vary significantly with biome types and sampled data sets.
Finally, we selected a pair (ωi

red, ω
i
NIR) from this subset for

which the AMI was maximized and the disagreement of the
LAI histograms was minimized. This procedure is illustrated
in Fig. 2, taking Biome 6 (deciduous broadleaf forest) as an
example. The global best quality MODIS C6 afternoon LAI
retrievals (MYD15A2H) generated by the main algorithm for
the entire overlapping year 2015 were used as the reference
data set. The input land cover (LC) map was the same for
MODIS and VIIRS (i.e., three-year dynamic MODIS LC).
Note that only these pixels that were retrieved by both the
MODIS and VIIRS main algorithm were used to calculate the
RMSE and to inspect the proximity of histograms.

C. Generation and Evaluation of VIIRS LAI/FPAR

The VIIRS daily SR product, called VNP09GA, is com-
posed of all available BRF observations for a given day with
global coverage [53]. By calculating the quality score of each
observation based on QA and geometry information, the algo-
rithm produces the intermediate SR data set that only contains
the best quality observation. This is beneficial to minimize the
impact of upstream products. The only required ancillary data
are global LC classification map (8-biome scheme) as a prior
knowledge to solve the “ill-posed” inverse problem.

VIIRS LAI/FPAR production should go through three pro-
cedures: algorithm development, product analysis, and valida-
tion [25]. This paper analyzes the product performance through
a series of comparisons with the MODIS C6 LAI/FPAR data
set. We compared the two data sets during the entire year
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Fig. 2. Illustration of the SSA adjustment approach taking an example for Biome 6. (a) RI [see (4)] and the difference [RMSE (5)] between the MODIS
and VIIRS LAI values and as a function of the SSA at the red (ωred) and NIR (ωNIR) spectral bands. Each dot represents a possible combination of the two
bands’ SSA. The diamond and star markers represent the MODIS-based and optimally selected parametric combinations, respectively. (b) LAI histograms
of MODIS and VIIRS with quantified A, P, and U statistics (Appendix B). Because considering only RI and RMSE introduces a biased optimized SSA
combination depending on given sample characteristics, we attempted to take account of APU measures. “MYD” and “VNP” stand for Aqua-MODIS LAI
and VIIRS LAI, respectively. The mean value, standard deviation, and main algorithm path rates without saturation, with saturation, and both are listed in
the plot, respectively. The AMI [see (6)] is additionally used to quantify the agreement. Here, three numbers following “AMI” represent the rates of matched
main algorithm path under without saturation (67.3%), saturation (29.2%), and both (96.6%) conditions. In this example, AMI is 96.6% suggesting that only
3.4% of the pair (retrieval and reference) pixels are retrieved through different algorithm paths.

TABLE II

PRECISION COMPARISON BETWEEN MODIS AND VIIRS SR DATA SETS DURING THE PERIOD JULY 4–11, 2015

of 2015 in terms of spatial distribution, seasonal variation,
and main algorithm coverage. The consistency was checked at
both global and regional scales. Note that only Aqua-MODIS
product was compared with VIIRS’s as Aqua and SNPP have
a similar satellite transit time.

IV. RESULTS

A. Comparability of Surface Reflectance

1) Precision Comparability: In this paper, the SR preci-
sion comparability is examined by comparing CVs of the
two sensors rather than estimating the RSP, as RSP is not
practically measurable. Table II summarizes the results of
precision comparison between VIIRS and MODIS BRF data
sets. It suggests that overall the VIIRS BRFs have slightly
lower precision (the difference of CV is 2.5%) than that
of MODIS in the red band, whereas they show a minimal
CV difference (less than 1%) in the NIR band. Note that
their difference of the red-band (NIR-band) SR precision is
a function of biome type and varies between 0.3% (–1.4%)
and 6.5% (3.4%). The biome dependence of SR precision can
be explained by the usage of an LC map, based on which dif-
ferent parameter configurations are applied in the atmospheric
correction process [58]. From this point of view, LAI/FPAR

retrievals should have varying accuracy over different biome
types even if the model was ideal. In addition, the red
band shows much higher precision differences than NIR band
over all biome types except Biome 5 (evergreen broadleaf
forest).

Spatial distributions of CV in Fig. 3, taking the tile
h17v07 (dominated by grasses/cereal crops) as an exam-
ple, reveal a strong spatial agreement between MODIS and
VIIRS. Both MODIS and VIIRS show relatively more sta-
ble (higher precision) SR at the NIR band than at the red
band, which supports the previous report in http://modis-
sr.ltdri.org/pages/validation.html. The observed comparable
BRF precisions justify setting the RSP as the same as that
used for MODIS LAI/FPAR C6 product.

2) Surface Reflectance Difference: All available daily
VIIRS and MODIS observations over the globe with the best
quality were used to quantify the BRF difference. Table III
summarizes the absolute and relative difference of BRFs
over the eight biome types. The same as the BRF precision,
the magnitude of a BRF difference also varies with biome
type. The two sensors have the most comparable BRFs over
Biome 2 (shrubs), whereas Biome 5 (evergreen broadleaf for-
est) shows the largest relative discrepancy. Generally, VIIRS
shows relatively lower BRF at the red band (from –13.9%
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Fig. 3. Spatial distribution of the VIIRS and MODIS BRF precisions quantified by CV. This is an example of Biome 1 (grasses/cereal crops) dominant tile
(h17v07). Pixels that were not classified into B1 among these 2400 × 2400 pixels were masked by white color. CVs of VIIRS BRF at (a) red and (b) NIR
bands. CVs of MODIS at (c) red and (d) NIR bands.

TABLE III

COMPARISON BETWEEN VIIRS AND MODIS BRF DATA SETS (VNP09GA AND MYD09GA) OVER THE GLOBE DURING THE PERIOD JULY 4–11, 2015

to –2.9%) and higher BRF at the NIR band (1.2%–4.9%)
than MODIS, indicating possible overestimation of LAI/FPAR
retrievals and shrinking performance of main algorithm if
the MODIS LUT configuration is directly applied to VIIRS.
Histograms of absolute BRF differences across all biomes
and the relative BRF differences over Biome 6 (deciduous
broadleaf forest) are shown in Fig. 4(a) and (b) as an
example, respectively. VIIRS shows relatively lower red-band
BRFs (−0.0027) and higher NIR-band BRFs (0.0059) than
MODIS. These results confirm the findings of the previous
study [59]. The obvious BRF shifts in the two bands from
MODIS to VIIRS indicate the necessity to do the sensor-
specific parametric optimization, as the main objective of this
paper.

B. VIIRS-Specific Parameterization

We obtained the biome- and spectral-specific SSAs for
VIIRS through the adjustment. Table IV shows the SSA
differences between MODIS and VIIRS configurations. VIIRS
has smaller SSAs at the red band for all biomes than the
heritage MODIS LUTs, but has larger SSAs at the NIR band
for most of biomes, except for Biomes 7 and 8 (they have
the same SSA). These SSA changes agree well with the shift
direction of the BRF reported in Section IV-A, which coincides
with the theoretical expectation discussed in Section II-C.

Fig. 5 shows an example (Biome 6) of model-based LUT
entries used in the MODIS C6 operational algorithm and
adjusted for the VIIRS instrument. For a given LAI and soil
pattern, the VIIRS LUT generates slightly lower red-band BRF
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TABLE IV

DIFFERENCES OF SSA BETWEEN VIIRS AND MODIS PARAMETRIC CONFIGURATIONS

Fig. 4. (a) Histogram of absolute BRF difference at the red and NIR bands across all biomes. A positive difference means that VIIRS BRF is higher than
MODIS or vice versa. VIIRS shows relatively lower red-band BRFs (−0.0027) and higher NIR-band BRFs (0.0059) than MODIS. (b) Relative BRF differences
over Biome 6 (deciduous broadleaf forest) are plotted in the red–NIR spectral domain. Obvious leftward and upward spectral shifts are observed. The median
and mean values of the red- and NIR-band BRF differences are given, respectively. For this comparison, strict quality control and minimal sun-view geometry
difference are applied to use only best quality observations.

Fig. 5. (a) LUT entries in the red–NIR spectral space configured for MODIS C6 (circle) and VIIRS (asterisk) BRF data sets. Each circle (asterisk) represents
a unique solution under a given canopy and soil pattern. For a given LAI and soil pattern, the VIIRS LUT generates slightly lower red-band BRF and higher
NIR-band BRF values than MODIS LUT. (b) Retrieval domain of the algorithm calibrated for VIIRS BRF data. The main algorithm retrieves an LAI value
only if the observed pair (BRFred, BRFNIR) of VIIRS BRFs falls within the retrieval domain. The LUT entries and retrieval domain are for deciduous
broadleaf forest (Biome 6). The LUT entries and retrieval domain are for broadleaf forests (Biome 6), SZA between 22.5° and 37.5°, view zenith angle
between 0° and 8.5°, and the relative azimuth angle between 0° and 25°.

and higher NIR-band BRF values compared with operational
MODIS LUT [see Fig. 5(a)]. This agrees with the shift direc-
tion of measured BRFs from MODIS and VIIRS [see Fig. 4(a)]
and, therefore, means that the proposed adjustment procedures

result in a successful spectral domain shift that enables a
VIIRS retrieval comparable with the MODIS product. The
retrieval domain is a set of points in the spectral space for
which the algorithm retrieves at least one acceptable solution.
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Fig. 6. (a) Distributions of LAI difference (VIIRS-MODIS) before (using MODIS LUT) and after optimization. Global SR and its retrieval during a
compositing period (July 4–11) in 2015 are used in this analysis. The cyan and magenta violin plots represent the distributions of LAI difference using the
MODIS LUT and the newly optimized VIIRS LUT. The blue line in each violin plot stands for the mean value of differences. (b) Same as (a) but for FPAR.

Recall that, the main algorithm accumulates acceptable solu-
tions, i.e., all canopy/soil parameters for which the observed
BRFs agree with the LUT entries within a precision ellipse
controlled by RSPs. Thus, the configuration of the retrieval
domain is controlled by both the SSA combination and RSPs.
In the case of dense canopies, the reflectances saturate, and
are therefore weakly sensitive to changes in canopy properties.
Fig. 5(b) shows the distribution of VIIRS LAI values in the
red–NIR spectral space. The saturated reflectances are shown
as a green-to-yellow subset in this retrieval domain.

Fig. 6 shows the distributions of LAI and FPAR dif-
ferences before (using MODIS LUT) and after optimiza-
tion over the globally sampled data generated by the main
algorithm during a compositing period (July 4–11) in 2015.
Note that the results shown here are based on the data
used for optimization—thus, further consistency evaluation is
required. Direct transplantation of the algorithm without any
parameter adjustment results in obvious VIIRS overestimation
of both LAI and FPAR. This has been predicted by the
theoretical analyses, as detailed in Section II-C. In particular,
forest biomes (Biomes 5–8) exhibit larger LAI overestimation
(0.174–0.427), whereas nonforest biomes (Biomes 1–4) show
relatively higher FPAR disparity (0.030–0.038). The plots also
show that the LAI of forest biomes has larger uncertainties
than that of nonforest biomes. All results demonstrate that the

implemented optimization and selected parameters success-
fully reduce differences between MODIS and VIIRS (from
0.146 down to 0.014 for LAI and from 0.030 down to 0.005 for
FPAR).

The adjustment procedure also results in the improvement
of the main algorithm execution rate, i.e., increasing the RI.
Fig. 7 shows the comparison of the algorithm retrieval rates
before and after the LUT optimization. Without parametric
adjustment, VIIRS shows comparable RIs over nonforest
biomes (less by 0.5%–1.7%) but significantly lower RIs in
forest biomes (less by 6%–12%). Recall that the RI is a key
indicator of the quality of retrievals. Thus, the discrepancy of
the two sensors could reduce the quality of retrievals if the
LAI/FPAR algorithm was not adjusted. Fig. 7(b) shows that
the optimized VIIRS LUT successfully increases the RIs and
yields equivalent RIs (within ±1.3%) with that of MODIS
over all biomes.

V. GLOBAL VIIRS LAI/FPAR

A. Description of VIIRS LAI/FPAR

The VIIRS LAI/FPAR fields are produced daily (VNP15A1)
at 500-m spatial resolution and composited to generate the
publicly available eight-day product (VNP15A2). The product
is projected on the sinusoidal 10° grid, where the globe is
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Fig. 7. Algorithm retrieval rate (%) of MODIS C6 (left bars) and VIIRS (right bars) by biome types. (a) Before adjustment. (b) After adjustment. Retrievals
during a compositing period (July 4–11) in 2015 are used. Algorithm retrieval rate is defined as the ratio of the number of pixels with LAI and FPAR retrieved
by each algorithm path to the total number of retrievals by both the main and backup algorithms.

tiled into 36 × 18 tiles, each containing 2400 × 2400 pixels.
Note that the HDF-EOS5 data format, replacing MODIS’s
HDF-EOS, is used to store six scientific data sets and
other information that describes some properties of the data.
In general, the VIIRS LAI/FPAR product follows the MODIS
C6 LAI/FPAR product [25], and its details can be found
in the VIIRS LAI/FPAR Algorithm Theoretical Basis Docu-
ment [60]. The VIIRS LAI/FPAR product has been generated,
since VIIRS started acquiring data in 2011 and will be freely
available.

The global distributions of LAI, FPAR, and corresponding
algorithm path during two compositing periods in January and
July of year 2015 are shown in Fig. 8. As expected from
the RT theory, FPAR shows a distribution pattern similar
to that of LAI, coinciding closely with the distribution of
biome types—high values over forests and low values over
herbaceous vegetation. Due to the polar night in Arctic regions,
we notice an obvious horizontal line (pixels above this line
were not retrieved) at high north latitude in January. The
larger use of a backup algorithm may be caused by the
data contamination of residual snow. From visual comparison,
VIIRS LAI/FPAR shows good agreement with MODIS data
set, as presented in [25]. Boreal summer shows higher main
algorithm coverage than during boreal winter. The large parts
of backup algorithm execution over high north latitudes during
boreal winter season are caused by large SZA [see Fig. 8(e)].
The large parts of Backup-O for evergreen broadleaf forest are
related to cloud/aerosol contamination [see Fig. 8(e) and (f)].
Note that, although LAI/FPAR values over the globe were
generated through different algorithms (main or backup),
the spatial consistency of the product is sound enough for most
applications related to spatial analysis. This is because the
LAI/FPAR-NDVI relationships used for the backup algorithm
were extracted from a data set generated from the main
RT-based algorithm.

B. Consistency With MODIS LAI/FPAR

1) Spatial Comparison: The histograms of LAI differences
demonstrate good consistency between MODIS and VIIRS

products in both seasons [see Fig. 9(a) and (b)]. The global
mean differences, across all biomes, are 0.024 and 0.029 in
January and July, respectively. The largest discrepancy is found
in the four forest biomes (Biome 5–8), which means larger
uncertainties of LAI. For both LAI and FPAR, the profiles
derived from the MODIS and VIIRS products match well
at most latitude bands [see Fig. 9(c) and (d)]. In the higher
latitudes, the Northern Hemisphere shows clearer seasonality
than the Southern Hemisphere, because the dominant biome
types in the Southern Hemisphere are savannas, shrubs, and
grasses that have smaller seasonal variations than the forests
that dominate the Northern Hemisphere. VIIRS overestimates
MODIS over tropical latitudes, especially over 5°N–10°S. This
is a result of the difference of algorithm path used in MODIS
and VIIRS, as will be further discussed later.

In general, MODIS and VIIRS show similar retrieval rate
patterns for all biomes and both periods (see Fig. 10) due
to comparable precision in MODIS and VIIRS SR data sets
and the same procedure applied to adjust the algorithm.
Boreal summer has a higher success rate of the main algo-
rithm than boreal winter, especially for needleleaf forests
(Biomes 7 and 8), which show a more than 50% improve-
ment. This difference occurred, because needleleaf forests are
located in high-latitude regions, where the SZAs are low in the
winter season, which results in a large proportion of the backup
algorithm. All biomes have RI that is larger than 60% in the
boreal summer season, but biomes, such as needleleaf forest,
may have very low RI (less than 20%) in the winter season.
Nonforest biomes (Biomes 1–4) show generally higher RI
than forest biomes (Biomes 5–8) in both seasons. The RIs of
nonforest biomes exceed 50% and 90% in winter and summer
seasons, respectively. Forest biomes show a large proportion
of retrievals under saturation (Main-S) in the summer season
because of SR saturation in dense canopies. This means
that the reflectances do not contain sufficient information to
localize an LAI value. The proportions of the backup algorithm
caused by “other reasons” (BackUp-O) for forest biomes are
also obviously high in the summer season, which is related to
cloud/aerosol contamination. The reason why some pixels are



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YAN et al.: GENERATING GLOBAL PRODUCTS OF LAI AND FPAR FROM SNPP-VIIRS DATA 11

Fig. 8. Global color-coded maps of (a) and (b) SNPP-VIIRS LAI, (c) and (d) FPAR, and (e) and (f) algorithm path during the boreal winter (January 17–24)
and summer (July 12–19) of year 2015. In (e) and (f), the term “Main” means the main algorithm without BRF saturation; “Main-S” means the main algorithm
with BRF saturation; “BackUp-G” means the backup algorithm caused by large view/SZA; “BackUp-O” means the backup algorithm caused by other reasons;
“Not-Ret” means algorithms are not executed, because BRFs are not available. An equal-area sinusoidal projection is used here.

not retrieved in winter season is because of the ice and snow
coverage that exists and the low SZA. Thus, the quality of the
LAI/FPAR products varies from season to season and biome
to biome.

For more detailed compression, the spatial distributions of
LAI over the American continent are shown in Fig. 11(a).
There is no visually distinguishable difference between the
two data sets over the entire continent with absolute differ-
ences within ±0.5 LAI units for most of the land surfaces.
However, there are some obvious differences over densely
vegetated regions. These discrepancies can exceed 2 LAI units
in Amazon rainforests and over the eastern United States.
An examination of the details revealed no systematic over-
estimation or underestimation—the differences are stochastic.
To investigate the reasons for these discrepancies, we com-
pared the corresponding spatial distributions of algorithm paths
[see Fig. 11(b)]. VIIRS and MODIS have very similar patterns

of algorithm paths over the continent. Main algorithms with
and without saturation were used to retrieve LAI for densely
vegetated regions and most other regions, respectively. The
backup algorithm covers the southern part of South America
in both MODIS and VIIRS data, which can be explained by
the poor sun-sensor geometry. We see that VIIRS has a slightly
higher backup algorithm rate because of “other reasons” than
MODIS over the Amazon forests. The fact that the backup
algorithm has lower accuracy than the main algorithm explains
LAI discrepancies over these regions. This suggests that the
input data play an important role in affecting the variation and
magnitude of LAI/FPAR retrievals.

2) Temporal Comparison: In this section, we compare the
seasonality of LAI/FPAR values and algorithm paths from
MODIS and VIIRS data sets over two representative tiles.
The tiles h11v04 and h12v04, located on both the west and
east sides of the Great Lakes region of the United States,
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Fig. 9. Comparison between VIIRS and MODIS LAI/FPAR products. (a) Histogram of LAI comparison between MODIS and VIIRS in January. Biome-
specific comparison results are also given. (b) Same as (a) but for July. (c) and (d) Latitudinal distributions of global LAI and FPAR, respectively. The latitude
interval is 0.1°. Solid and dashed lines depict January and July, respectively.

Fig. 10. Retrieval rates of different algorithm paths as a function of biome type at the global scale in (a) boreal winter season and (b) boreal summer season.
MODIS (left bars) and VIIRS (right bars) are compared.

are dominated by broadleaf crops (Biome 3) and deciduous
broadleaf forest (Biome 6), respectively. The scatter plots in
Fig. 12 show a comparison between the MODIS and VIIRS

LAI/FPAR values over the entire year of 2015. The 46 color-
coded circles in each plot represent the averaged LAI/FPAR
values of all biome-specific pixels during the corresponding
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Fig. 11. (a) Comparison of spatial distributions of LAI from MODIS and VIIRS products over the American continent. (b) Comparison of the spatial
distributions of algorithm paths corresponding to (a). The two plots in the middle figure show the zoomed-in details over the Amazon rainforests. The data
sets are from January 4–11, 2015. An equal-area sinusoidal projection is used here.

eight-day composites. Temporal variations in LAI and FPAR
show good consistency. Both LAI and FPAR show clear
seasonality of the two biomes. LAI and FPAR increase in
spring from low levels in winter and then reach to their peak
values in summer. Thereafter, the values decrease in autumn
until the next winter.

The LAI/FPAR differences between two neighboring eight-
day composites are varying rather than constant, which means
that the rate of LAI changes is different from time to time.
The larger distances in spring and autumn indicate that the
LAI/FPAR changes rapidly in these two seasons, whereas
the dense dots especially in the winter season indicate that
the LAI/FPAR does not change very much. This phenology
is related to the seasonality of the climatic conditions [61],
which, as we can see, has been captured by both LAI/FPAR

products. VIIRS LAI and FPAR agree well with MODIS, with
R2 larger than 0.99 for both biomes. There does not seem
to be any obvious systematic bias between the two products.
The reasonable LAI/FPAR seasonality and good agreement
between MODIS and VIIRS imbue confidence in the VIIRS
products.

The algorithm paths are of critical importance for retrieval
accuracy and could be affected by vegetation density, sun-
sensor geometry, and atmospheric conditions. Thus, algorithm
path should exhibit seasonality. Fig. 13 shows the annual
variation of algorithm retrieval rates over two selected tiles.
MODIS and VIIRS are compared in each of the 46 pairs
of bars. Clear seasonality of algorithm retrieval rate occurs
in both biome types. The RI in the winter season is much
lower than that in other seasons because of poor geometry and
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Fig. 12. (a) Comparison between MODIS and VIIRS LAI values over an entire one-year period (2015). Each circle represents the averaged LAI values of
all broadleaf crops (Biome 3) pixels in the h11v04 tile and its color stands for the Day of Year. (b) Same as (a) but for FPAR. (c) Same as (a) but for the
deciduous broadleaf forest (Biome 6). (d) Same as (b) but for Biome 6.

ice/snow coverage. With less human intervention, the forests
show smoother and clearer annual variation than the crops. The
crops have a very high main algorithm retrieval rate (>90%)
during the growing season. This ensures the high accuracy of
the LAI/FPAR retrievals and is meaningful for the use of these
products for purposes, such as crop yield estimation [62].

Higher geometry-caused backup algorithm rates are found
over crops than over forests in the winter season. This occurred
because, in this case study, the forests are located at higher
latitudes than the crops and so have larger SZA. The ice/snow
coverage in winter and the cloud/aerosol contamination in
summer explain failure of the main algorithm in these periods.
Comparing VIIRS with MODIS, we find that they are gener-
ally consistent during the entire year over both biomes. VIIRS
has slightly higher RI in winter but lower RI in summer than
MODIS. This may be related to the algorithm adjustment and
slight difference of BRF precision.

C. Other Potential Discrepancies

VIIRS has broader swath coverage than MODIS, which
means that more observations during a period of time can
be expected from VIIRS. This is beneficial to BRDF/albedo
retrieval as the algorithm uses all good quality observations to
fit the model [63]. Recall that, the LAI/FPAR algorithm uses

the optimal BRF observation to calculate the daily intermedi-
ate product and employs the maximum FPAR strategy to select
the best retrieval from eight days. More valid observations
during the repeat cycle mean more candidates for the selection
and provide a greater chance for cloudless observation. Thus,
the main algorithm retrieval rate should be improved. From
Fig. 14(a), we see that the observation numbers from both
MODIS and VIIRS increase with the latitude, as expected.
However, VIIRS shows a significantly larger observation num-
ber than MODIS, and the number of additional observations
can be as large as 13 over high latitudes. MODIS has fewer
than 16 observations during 16 days (sensor repeat cycle) over
30°N–30°S, which means that MODIS cannot have the daily
full coverage of the globe [64]. On the contrary, VIIRS has
more than 18 observations even over the very low latitude
bands.

The benefit of the additional observations is noticeable
in Fig. 14(b), where the RIs of MODIS and VIIRS are
compared. The RI varies with latitude because of the changes
of biome type, climatic condition, sun-sensor geometry, and
observation number. Although MODIS and VIIRS show sim-
ilar curves, we notice that VIIRS has better RI than MODIS
over most latitudes, especially over 30°N–30°S. This means
that the additional observations are more meaningful over
low latitudes, where MODIS has gaps in its daily data set.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YAN et al.: GENERATING GLOBAL PRODUCTS OF LAI AND FPAR FROM SNPP-VIIRS DATA 15

Fig. 13. Annual variation of algorithm retrieval rates (%) in 2015. (a) Algorithm retrieval rates of MODIS (left bars) and VIIRS (right bars) for Biome 3
(broadleaf crops). Consecutive 46 pairs of bar graph demonstrate the seasonal variation of algorithm retrieval rates over the entire one-year period. (b) Same
as (a) but for Biome 6 (deciduous broadleaf forest).

Fig. 14. Comparison of the latitudinal (a) total reflectance observation number during two compositing periods (16 days) and (b) LAI/FPAR RI between
VIIRS and MODIS. The total observation numbers during the 16 days near the spring equinox (March 14–29) were extracted from MODIS and VIIRS
daily reflectance data. The vertical bold and dotted line in (a) represents 16 observations. The RIs shown in (b) are the mean values of two eight-day
composites. “MOD,” “MYD,” and “VNP” represent Terra-MODIS, Aqua-MODIS, and NPP-VIIRS, respectively. The mean values within each 20° of latitude
were calculated and compared in the plots.

Over high latitudes, this is not important, because MODIS also
has sufficient observations. Although broader coverage makes
sense for increasing the RI, a large view angle associated

with such coverage can bring more uncertainties to the
retrieval process. We also note that the RIs from Terra- and
Aqua-MODIS are not totally consistent. For the Southern
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Hemisphere, Terra-MODIS shows obviously larger RI than
Aqua-MODIS, which is mostly due to afternoon clouds.

Compared with MODIS, VIIRS has fewer spectral
bands [37]. Although the LAI/FPAR algorithm only makes
use of two spectral bands, the absence of some other bands
can affect the LAI/FPAR product by affecting the quality of
upstream products, e.g., SR data set. Compared with MODIS,
we notice that some quality assurance flags (e.g., if the pixel is
adjacent to cloud) are missing in the VIIRS daily reflectance
data. This weaker quality assurance can be transferred to the
downstream LAI/FPAR products. From the LAI/FPAR prod-
ucts, we find that VIIRS has slightly larger backup algorithm
rate because of quality problems with BRF data. This may be
due to two reasons: 1) observations may be contaminated by
cloud or aerosol while not detected by the upstream procedure
because of fewer spectral bands and 2) VIIRS provides some
observations with higher uncertainties related to the larger
swath coverage (larger view zenith angle).

VI. CONCLUSION

LAI and FPAR have been derived from MODIS observa-
tions since 2000. To ensure continuity of ESDRs, the VIIRS
instrument, representing a continuation of MODIS, was
launched on board the SNPP satellite. This paper presents
an overview of studies related to the VIIRS LAI/FPAR
algorithm and its production. We adjusted the configurable
parameters of the algorithm to address discrepancies between
the two sensors based on the theory of spectral invariants.
Compared with MODIS, VIIRS has a set of lower red-band
SSA (differences range from 0.02 to 0.05 for eight biomes)
and larger NIR-band SSA (differences range from 0 to 0.02 for
eight biomes), which coincides with the theoretical prediction.
The results presented here show good agreement and con-
sistency between MODIS and VIIRS products (global LAI’s
RMSE is 0.537 and 0.572 for January and July, respectively).
They agree well in terms of both LAI/FPAR spatial and tempo-
ral patterns and main algorithm coverage. All of these results
imbue confidence in the VIIRS product. However, future vali-
dation efforts with the participation by the community-at-large
are still necessary to ensure the product quality following the
protocols established by the Committee on Earth Observation
Satellites. More detailed global and multiyear evaluation and
ground-measurements-based validation will be discussed in
our following paper.

Note that VIIRS and MODIS achieve the important oper-
ational multisensor consistent LAI/FPAR data sets. The algo-
rithm and evaluation strategy used for SNPP-VIIRS can be
employed in the subsequent JPSS-VIIRS era, i.e., the algo-
rithm proposed here can be used directly on later VIIRS
instruments. If good BRF consistency is not guaranteed,
the efforts of this paper can be repeated to find the proper
LUT parameters.

APPENDIX

A. Observation and Model Precisions
In this section, we formulate the inverse problem

of LAI/FPAR retrieval from atmospherically corrected
reflectance. Let r1, r2, . . . , rn be surface BRFs at n spectral

bands obtained by correcting at-sensor radiance for
atmospheric effects. The correction technique introduces
errors in the SR product. The LAI/FPAR algorithm
treats BRFs as independent random variables with
finite variances σ 2

k , k = 1, 2, . . . , n, and assumes that
the deviations εk = (rk − mk)/σk follow Gaussian
distribution [48]. Here, mk is the mathematical expectation
of rk , which approximates a true value. The random variable,
χ2

σ [r − m] = ∑n
k=1((rk − mk)/σk)

2, characterizing the
proximity of corrected data r = (r1, r2, . . . , rn) to the
expected values m = (m1, m2, . . . , mn), has a chi-square
distribution. The inequality χ2

σ ≤ n indicates good precision.
We assume that the atmospheric correction algorithm
provides BRFs r satisfying χ2

σ ≤ n with a probability 1 − α.
Dispersions σ = (σ 1, σ2, . . . , σn) are observation precisions,
i.e., precisions of BRFs. The deviation of m from a true
vector is the measurement accuracy, or bias. The uncertainty
is defined as the RMSE between the estimated and true values
and depends on both accuracy and precision [56].

The LAI/FPAR algorithm compares the measured BRFs,
r , with those evaluated from the RT model [65],
rM = (r M,1, rM,2, . . . , rM,n). rM also has errors, which are
characterized by εM,k = (rM,k − mM,k)/σM,k . Dispersions
σM = (σ M,1, σM,2, . . . , σM,n) are model precisions and are
determined by the range of natural variation in LAI/FPAR
that are not accounted for by the model. Deviations of the
model predictions mM,k from true values characterize the
model accuracy.

B. Accuracy, Precision, and Uncertainty (A, P, and U)

The proximity of LAI histograms mentioned
in Section III-B, in this paper, is quantified by A, P,
and U (accuracy, precision, and uncertainty) statistics. The
accuracy A, also called bias, is defined as

A = |μ − T | (B1)

where μ is the average of all the measured values Xi corre-
sponding to a single true value T . The precision P is defined
as the standard deviation of the measurements

P =
√√√√[

1

N − 1

N∑
i=1

[Xi − μ]2

]
. (B2)

Considering a number of true values Tk and their esti-
mates Yk , the uncertainty U , alternatively known as the
RMSE [66], is defined as

U =
√√√√[

1

M

M∑
k=1

[Yk − Tk]2

]
. (B3)
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