Providing Students with Computational Tools for Working with Data

Center for Excellence and Innovation in Teaching, Boston University January 10, 2013

David G. Sullivan, Ph.D. CAS Computer Science

Databases Are Everywhere
 Example collections of data: account data: banks, credit-card companies, etc. airline data: flights, reservations, etc. biological data: DNA sequences, protein sequences, etc. socioeconomic data other examples?
 Some are managed by a <i>database management system</i> (DBMS) like Oracle, SQLServer, etc.
 Some are not. text files (CSV files, tab-delimited, etc.) etc.

Unit 1, part II: Data Modeling

- The relational model
 - data is organized into *tables*
 - example: a table of student info

ld	name	address	class	dob
12345678	Jill Jones	Warren Towers 100	2013	3/10/95
25252525	Alan Turing	Student Village A210	2015	2/7/97
33566891	Audrey Chu	300 Main Hall	2014	10/2/96
45678900	Jose Del gado	Student Village B300	2016	7/13/98
66666666	Count Dracula	The Dungeon	2007	11/1431

- Other data-modeling topics:
 - keys, types, schema, etc.

Unit 1, part III: SQL

- SQL is the query language used in relational databases.
- Include fairly advanced topics:
 - · joins of two or more tables
 - simple subqueries
 - aggregates, GROUP BY, HAVING
 - outer joins

Example Problem Without Scaffolding

Body Mass Index

A person's body mass index (BMI) is equal to the person's weight in pounds, multipled by 720, and then divided by the square of the person's height in inches. 19-25 is the range of healthy BMI values. Write a program that reads a person's weight and height, computes and prints the person's BMI to the nearest integer, and prints a message indicating whether they are below, above, or within the healthy range. You may assume that both inputs are positive.

Example Problem With Scaffolding

Body Mass Index

Body mass index (BMI) is a measure of body fat that is based on a person's weight and height. 19-25 is the range of healthy BMI values. Write a program named bmi.py that can be used to compute a person's BMI, and to determine whether it is below, above, or within the healthy range.

Step 1: The program should begin by getting the following inputs from the user:

- the person's weight, storing it in a variable named weight
- the person's height, storing it in a variable named height

Step 2: The program should then use the values of the variables weight and height to compute and print the person's BMI as a real number using the following formula:

```
BMI = -----
height * height
```

```
...
```

Unit 3: Data Visualization

- A shorter unit taught by Wayne Snyder
- Based on the work of Edward Tufte
- Principles for creating data graphics that combine:
 - simplicity of design
 - · complexity of data
- Show the value that computational tools can add

Unit 4: Data Mining

- The process of finding patterns in data.
 - "hidden knowledge"
 - vs. the "shallow", factual knowledge given by SQL queries
- Data mining applies *machine-learning* algorithms that:
 - operate on a set of training data
 - learn some type of model

Classification Learning

- One type of machine learning
- Learns a model that can classify/categorize
- Something that human beings have always done!
 - example: how do we learn to identify a dog?

Patient	sore	ιαια (Γι	Swollen	5 c aiz).		
ID#	Throat	Fever	Glands	Congestion	Headache	Diagnosis
1	Yes	Yes	Yes	Yes	Yes	Strep throa
2	No	No	No	Yes	Yes	Allergy
3	Yes	Yes	No	Yes	No	Cold
4	Yes	No	Yes	No	No	Strep throa
5	No	Yes	No	Yes	No	Cold
6	No	No	No	Yes	No	Allergy
7	No	No	Yes	No	No	Strep throa
8	Yes	No	No	Yes	Yes	Allergy
9	No	Yes	No	Yes	Yes	Cold
10	Yes	Yes	No	Yes	Yes	Cold

Patient ID#	Sore Throat	Fever	Swollen Glands	Congestion	Headache	Diagnosis
1	Yes	Yes	Yes	Yes	Yes	Strep throa
2	No	No	No	Yes	Yes	Allergy
3	Yes	Yes	No	Yes	No	Cold
4	Yes	No	Yes	No	No	Strep throa
5	No	Yes	No	Yes	No	Cold
6	NO	No	No	Yes	No	Allergy
/	INO	NO No	res	INO	NO Xee	Strep throa
8	res	INO Voc	NO	Yes	Yes	Cold
10	Vec	Ves	No	Vec	Vec	Cold
One pos	sible mo	del is a	set of ru	iles:		
if Sw then	ollen Gla Diagnosis	nds == ` = Stre	Yes p Throat			

Student Assessment
Nine problem sets
Three 50-minute "quizzes"
Final exam
 Final project choose a dataset of interest analyze it using techniques learned from the course written report brief in-class presentation work alone or in pairs Hall of Fame on course website http://cs-people.bu.edu/dgs/courses/cs105/ball.of_fame/

Major	Number of Students
Economics	32
Business Admin / Management	30
Computer Science	21
International Relations	19
Archeology	16
Mathematics	16
Anthropology	14
Undeclared	13
Political Science	13
English	11

