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we summarize the beneficial aspects of sports participa-
tion on psychological, emotional, physical and cognitive 
health, and specifically analyze some of the less com-
mon adverse neuropathological outcomes, including con-
cussion, second-impact syndrome, juvenile head trauma 
syndrome, catastrophic sudden death, and CTE. CTE 
is a latent neurodegeneration clinically associated with 
behavioral changes, executive dysfunction and cognitive 
impairments, and pathologically characterized by frontal 
and temporal lobe atrophy, neuronal and axonal loss, and 
abnormal deposits of paired helical filament (PHF)-tau and 
43 kDa TAR deoxyribonucleic acid (DNA)-binding pro-
tein (TDP-43). CTE often occurs as a sole diagnosis, but 
may be associated with other neurodegenerative disorders, 
including motor neuron disease (CTE-MND). Although 
the incidence and prevalence of CTE are not known, CTE 
has been reported most frequently in American football 
players and boxers. Other sports associated with CTE 
include ice hockey, professional wrestling, soccer, rugby, 
and baseball.

Introduction

Each year, an estimated 38 million children and adoles-
cents and 170 million adults participate in organized sports 
in the United States (US) [47]. Participation in sports has 
many clear benefits, including increased physical fitness, 
reduced body fat, improved cardiovascular and meta-
bolic disease risk profiles, improved psychological health, 
enriched interpersonal relationships, and reduced symp-
toms of depression and anxiety [55, 154]. At the same time, 
the play of sports is also associated with a small, but unpre-
dictable risk for sudden death and catastrophic traumatic 
injury [48], and there is growing awareness that mTBI, 
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such as concussion and subconcussion, can sometimes pro-
duce persistent cognitive, behavioral, and psychiatric prob-
lems [48]. In addition, repetitive mTBIs experienced during 
the play of certain sports are associated with the develop-
ment of a progressive neurodegeneration, chronic traumatic 
encephalopathy (CTE) [38, 65, 88, 92, 126–128, 147, 148]. 
The purpose of this review is to broadly summarize the 
beneficial aspects of sports participation on psychologi-
cal, physical and cognitive health, and to specifically ana-
lyze some of the less common adverse neuropathological 
outcomes.

The benefits of exercise and sports participation

The psychological benefits of sports participation

Sports participation is associated with improved psycho-
social health as well as increased physical health, and 
participation in team sports is associated with improved 
health outcomes compared to individual sports [55]. In a 
recent systematic review of the psychological and social 
health benefits of participation in sport for children and 
adolescents, the most commonly reported benefits of 
sports participation were higher self-esteem, better social 
skills, fewer depressive symptoms, higher confidence, and 
a sense of higher competence among sport participants 
compared to non-sport participants [55]. Cross-sectional 
studies using surveys of US high school students have 
found that sports participation is associated with increased 
life satisfaction, increased emotional self-efficacy, as well 
as reduced hopelessness and suicidality [185]. In another 
cross-sectional survey, Boone and Leadbeater found that 
involvement in team sports is positively associated with 
social acceptance and negatively associated with depres-
sive symptoms possibly related to enhanced perceived 
social acceptance and reduced body dissatisfaction [13]. 
In a longitudinal study of adolescents, team sport par-
ticipation was found to be protective against depressed 
mood associated with school performance levels 1 year 
later [73]. Other studies have shown increased self-esteem 
3 years later in females [151] and lower social isolation 
12 years later, compared with other school-based activi-
ties [7]. In studies of adolescents classified as ‘athletes’ or 
‘non-athletes’ based on school and club participation, ath-
letes reported superior well-being, including feeling better 
adjusted, less nervous or anxious, happier, more energetic, 
less depressed, and having improved body image with 
fewer suicide attempts than non-athletes [60, 172]. In a 
large population-based sample of adults, exercisers were 
found to be less anxious, less depressed, less neurotic, 
more extroverted, and higher in self-rated health than non-
exercisers [49, 50].

The physical benefits of sports participation

The beneficial effects of exercise, physical fitness, and 
sports participation on cardiovascular and brain health are 
undeniable. Regular physical activity is essential to the 
maintenance of a healthy lifestyle and exercise prescription 
is a cornerstone in the management of many disease con-
ditions. Higher levels of physical activity, exercise train-
ing, and overall cardiorespiratory fitness reduce the risk for 
hypertension, obesity, type 2 diabetes mellitus, stroke, and 
metabolic syndrome, as well as lower cardiovascular mor-
tality [104, 110, 178, 200]. Regular exercise produces ben-
eficial effects in high-density lipoprotein-cholesterol levels, 
glucose control, weight control, and resting heart rate and 
blood pressure [178]. Physical activity increases antioxi-
dant enzymes, including superoxide dismutase and heat 
shock proteins, and reduces reactive oxygen species [178]. 
Exercise training is also associated with improved endothe-
lial function, decreased arterial stiffness, and greater vascu-
lar reactivity associated with coronary artery disease, heart 
failure, and peripheral vascular disease [110]. In patients 
with pre-existing coronary artery or peripheral vascular 
disease, exercise therapy promotes enhanced vasorespon-
siveness (angiogenesis, arteriogenesis, mitochondrial syn-
thesis), enhances oxygen delivery and metabolic responses, 
delays disease progression, and extends longevity [143]. 
Exercise training also suppresses chronic low-grade inflam-
mation and reduces levels of C-reactive protein and TNF-
alpha [152].

Exercise as a neuroprotectant against age-related cognitive 
decline

Although regular exercise improves cognitive status indi-
rectly by enhancing sleep, reducing stress and depression, 
and bettering cardiovascular health [9], physical exercise 
also directly promotes neurogenesis, cell survival [187], 
synaptogenesis, synaptic plasticity [54, 96] and angio-
genesis [99], improves cognitive function, learning and 
memory, and significantly moderates age-related cogni-
tive decline [2, 97, 104, 110, 187, 188, 200], reviewed in 
[10]. The molecular mechanisms by which exercise directly 
affects the brain most likely involve growth factors, such 
as brain derived neurotrophic factor (BDNF). BDNF acts 
on neurons to promote growth, increase synaptic plasticity, 
and enhance resistance to injury and neurodegeneration. In 
the hippocampus, BDNF promotes the production and sur-
vival of new neurons from stem cells and the integration of 
new neurons into existing neuronal circuits [141], reviewed 
in [160].

Cross-sectional studies show that improved physical fit-
ness is associated with more efficient cognitive functions 
and longitudinal studies show less cognitive decline in 
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working memory, processing speed, attention, and execu-
tive function in older adults without dementia [170]. Mid-
dle-aged and older adults who complete an aerobic train-
ing program show a significant improvement in cognitive 
performance and executive control. Furthermore, resistance 
training, motor learning, and coordinative exercise also 
enhance neurocognitive function in older adults (reviewed 
in [10, 190]).

Imaging studies indicate that physical exercise and 
higher fitness levels are associated with a reduced loss of 
hippocampal, gray and white matter volume with aging 
[34, 56, 57, 90, 189]. Aerobic exercise increases hip-
pocampal and cortical volume and significantly improves 
spatial memory after 1 year [57]. Furthermore, functional 
MRI has documented that aerobic fitness is associated with 
improved cortical connectivity and activation [35, 191].

Exercise has also been shown to be neuroprotective, 
to delay the onset and progression, and reduce the risk 
for many neurodegenerative diseases, including Alzhei-
mer’s disease (AD) and Parkinson’s disease (PD) [17, 
39, 58, 89, 108, 163, 193, 199]. Epidemiological research 
shows that persons with higher levels of physical activ-
ity have a reduced risk of dementia [17, 107, 163, 199]. 
Prospective epidemiological studies show that increased 
baseline physical activity reduces the risk of developing 
dementia by 28 % and of developing AD by 45 % [58, 
83]. Although most epidemiological studies assess physi-
cal activity later in life and the incidence of dementia, a 
multicenter, prospective study of women 65 and older 
showed that physical activity at three time points—age 
30, age 50 and late-life—was associated with reduced 
odds of developing cognitive impairment [132]. Geda 
and colleagues also observed that moderate activity dur-
ing midlife was associated with a 39 % lower risk of mild 
cognitive impairment in later life [64]. In studies using 
objective measures of activity such as actigraphy instead 
of self-report, older women with the highest quartile of 
activity performed better than those with the lowest quar-
tile of activity on cognitive and executive functioning 
assessment [8]. In addition, those with the lowest base-
line activity were two times more likely to develop AD 
3.5 years later than those with the highest baseline activ-
ity [199]. There is also evidence that physical activity 
may slow cognitive decline in individuals already experi-
encing cognitive impairment. Fitness levels correlate with 
higher whole-brain and white matter volume in patients 
with early AD [18, 108]. In older adults with MCI and 
AD, higher muscle strength was associated with a slower 
rate of global cognitive decline [14]. Furthermore, moder-
ate-intensity exercise for 6 months in older subjects with 
memory loss produced significantly better cognition at 
6 months compared to sedentary subjects, and the effect 
persisted at least for 18 months [108].

In addition to enhanced cognition, exercise also 
improves motor performance in individuals with Parkin-
son’s disease [153], lowers disability in multiple sclerosis 
[161], improves functionality in individuals with motor 
neuron disease [46], and improves cognitive, mood and 
motor recovery from TBI, although the precise timing and 
intensity of the beneficial exercise after TBI remain to be 
determined [62, 197].

The mechanisms underlying improved cognition, 
enhanced motor function, increased brain volumes, low-
ered dementia risk, and resilience to neurodegeneration 
in physically active individuals are most likely exercise-
induced enhanced neuroplasticity and upregulation of pro-
teins involved in signal transduction, synaptic trafficking 
and transcriptional regulation. Numerous animal studies 
have demonstrated the beneficial effects of exercise, par-
ticularly aerobic endurance exercise, on the structure and 
function of the brain. Rodents that run voluntarily on run-
ning wheels exhibit increased numbers of dendritic spines 
and synapses in hippocampal neurons, increased neuro-
genesis, and improved performance in some behavioral 
tests of cognitive function [59, 185]. Treadmill exercise 
also improves hippocampus-dependent spatial learning and 
memory as well as aversive memory [2, 3, 25, 97, 112, 174, 
186, 187]. Furthermore, in rodent models, BDNF, insulin–
like growth factor 1 (IGF-1), mitogen-activated protein 
kinase phosphatase-1 (MKP-1), and glial-derived neuro-
trophic factor (GDNP) are elevated by exercise [1, 53, 179] 
and early post-injury exercise has been shown to reverse 
memory deficits and inhibit the progression of neurodegen-
eration following TBI [27].

Adverse neuropathological outcomes associated 
with sports participation

Sudden death in young athletes

Overall, athletes are at a low risk of sudden death, but 
physical exertion in the presence of clinically unsuspected 
cardiovascular disease increases this risk. Hypertrophic 
cardiomyopathy, congenital coronary artery anomalies, val-
vular heart disease, and myocarditis are the most common 
cardiovascular disorders encountered in young athletes that 
result in unforeseen fatalities [117]. Sudden death may 
also occur in athletes without antecedent heart disease as 
a result of blunt trauma to the chest that produces ventricu-
lar fibrillation (commotio cordis). Children and adolescents 
with compliant chest walls and undeveloped musculature 
are most susceptible, as commotion cordis is typically 
the result of a projectile, such as a hockey puck, lacrosse 
ball or baseball, traveling at high velocity and striking the 
precordium [117]. Other less common causes of sudden 
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death in young athletes include heat stroke, uncontrolled 
bronchial asthma, ruptured cerebral artery aneurysm, and 
drug use [117].

Catastrophic traumatic head and neck injuries also 
occur. Analysis of the 30-year US National Registry of 
Sudden Death in Young Athletes from 1980 to 2009 found 
1,827 deaths in athletes aged 21 years or younger (mean 
16 �  2 years; 90 % male) including 261 (14 %) due to 
trauma, most often to the head and neck. The mortality rate 
was 0.11 in 100,000 participants (95 % confidence interval 
0.08–0.15) with the largest number of deaths reported in 
American football (148 [57 %]), including 17 high school 
athletes who sustained concussions shortly before a fatal 
head trauma (“second-impact syndrome”) [181]. Cata-
strophic head and neck injuries caused by direct contact 
during sports participation result in fatal, nonfatal perma-
nent, or serious nonpermanent injury, and include skull 
fracture, subdural and epidural hematoma, ruptured verte-
bral artery with subarachnoid hemorrhage, second-impact 
syndrome, and juvenile head trauma syndrome. Of these, 
the most common cause of death or disability in sports-
related head injury is subdural hematoma [113, 133]. Since 
1982, there have been 133 non-professional American 
football players who died or experienced incomplete neu-
rological recovery following catastrophic head and neck 
injury. Over 90 % of these injuries occurred in high school 
athletes, 8 % occurred in college participants, and 1 % 
involved sandlot players [139].

Second-impact syndrome

Second-impact syndrome (SIS) occurs when an athlete 
sustains an initial mild head injury or concussion, then 
suffers a second head injury before the symptoms associ-
ated with the first impact have cleared, with resultant dif-
fuse cerebral swelling and grave deterioration [19, 20, 113, 
133, 137, 164]. Typically, the second head injury is only 
a minor blow to the head and is not followed by immedi-
ate loss of consciousness. However, within minutes of the 
injury, the athlete precipitously collapses into coma from 
severe cerebrovascular engorgement, cerebral edema, and 
brain herniation. All reported cases of SIS have involved 
young athletes, predominantly males (90 %) ranging in age 
from 10 to 24 years, mean age 17.9 years [137]. 71 % of 
the affected athletes have been American football players, 
usually at the high school level, but younger players and 
collegiate athletes have occasionally been reported. 14 % 
of SIS cases occurred during boxing competition, and iso-
lated cases have been reported in association with karate, 
skiing, and ice hockey. Although the definition of SIS is 
controversial and some investigators have challenged its 
existence [123], SIS is thought to result from abrupt post-
traumatic loss of cerebral blood flow autoregulation and 

catecholamine release that create a rapid increase in intrac-
ranial blood volume and catastrophic cerebral edema [32, 
105]. In two-thirds of cases, a thin, acute subdural hema-
toma has been reported on neuroimaging or at autopsy [19, 
137], which may be a result of the hyperemic state, in the 
absence of other major hematomas or space-occupying 
lesions. The relationship of SIS to juvenile head trauma 
syndrome, or malignant cerebral edema after mTBI, is 
uncertain, and both may be manifestations of the same 
underlying pathophysiology.

Juvenile head trauma syndrome

Minor craniocerebral trauma complicated by severe, often 
fatal, cerebral edema and coma, known as juvenile head 
trauma syndrome, has been reported primarily in chil-
dren. The neurological deterioration may be immediate or 
delayed, occurring after a “lucid interval”. The cause of 
this rapid vasodilation and redistribution of blood into the 
brain parenchyma is not clear, but the process may involve 
a functional channelopathy or a disturbance of ion channel 
subunits. Several individuals with this juvenile head trauma 
syndrome have been reported to have a mutation in the cal-
cium channel subunit gene (CACNA1A) associated with 
familial hemiplegic migraine [101]. In some cases of juve-
nile head trauma syndrome, the rapidly developing cerebral 
edema occurs in a young athlete who experiences two head 
injuries, with the second injury occurring before complete 
recovery from the first impact, similar to SIS [129].

Acute concussive injury

The Centers for Disease Control estimates that 1.6 to 3.8 
million concussions occur in sports and recreational activi-
ties annually in the US [47]. A concussion is an mTBI 
induced by an impulsive force transmitted to the head result-
ing from a direct or indirect impact to the head, face, neck, 
or elsewhere [37, 125]. Symptoms from concussion and 
other forms of mTBI are usually self-limited and resolve 
spontaneously over a period of several weeks, although 
10–30 % of individuals develop prolonged symptoms. If 
symptoms persist for more than 3 months, the condition is 
referred to as post-concussive syndrome (PCS) [51]. Signs 
and symptoms of concussion and PCS include loss of con-
sciousness, amnesia, as well as sleep disturbances, behav-
ioral changes (e.g., irritability), cognitive impairment (e.g., 
slowed reaction times), somatic symptoms (e.g., headaches), 
cognitive symptoms (e.g., feeling “in a fog”), and/or emo-
tional symptoms (e.g., emotional lability) [125]. Neuropsy-
chological testing in PCS may reveal persistent, yet subtle, 
cognitive deficits, most often in the executive domain [192]. 
Impact injuries less severe than concussion that do not pro-
duce overt neurological symptoms, yet are associated with 
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subtle neuropsychiatric deficits or changes in functional 
MRI, are referred to as “subconcussion” [81, 180]. Sub-
concussive injuries can be substantial in some sports: for 
instance, it has been reported that an offensive lineman in 
American football can experience over 1,000 subconcus-
sive hits over the level of 10g in the course of a single col-
legiate season [41]. Closed head injury with concussion and 
subconcussion occurs in a wide variety of sports, including 
American football, boxing, wrestling, rugby, ice and field 
hockey, lacrosse, and soccer [21, 22, 36, 40, 47, 68, 80, 86, 
93, 95, 116, 125, 131, 140, 182]. A recent study compar-
ing the concussion rate in high school football compared to 
collegiate football found that high school football was asso-
ciated with concussion rate of 0.21 per 1,000 athlete expo-
sures (A-E) in practice and 1.55 concussions per 1,000 A–E 
in competitions, compared to 0.39 per 1,000 A-E in practice 
and a rate of 3.02 concussions per 1,000 A-E in competi-
tions in collegiate football players [68]. Multiple concus-
sions were noted in 81 of 233 (34.9 %) high school football 
athletes [106]. Concussions are also frequent in soccer, the 
most popular sport worldwide with an estimated 265 mil-
lion male and female players [102]. Causes of concussion 
in soccer include heading, or using the head to advance or 
redirect the ball—a unique feature of the sport—or colli-
sions with another player, the goalpost, or the ground. Esti-
mates of the concussion rate in high school soccer range 
from 1.38 concussions per 1,000 game time A-E for boys 
to 1.80 for girls [68]. Concussions in girls high school soc-
cer rank second only to boys high school football [116]. 
Studies using accelerometers to measure the peak accelera-
tions of the head during soccer heading found linear accel-
erations as high as 54.7g in high school players heading a 
soccer ball kicked from a distance of 30 yards, more than 
the average peak accelerations of 29.2 or 35g that occur in 
football or ice hockey [142]. Recently, head accelerations 
associated with heading in girls’ youth soccer were found to 
range from 4.5 to 62.9g and included substantial rotational 
acceleration at times [85]. Concussions also occur in rugby 
and Australian Rules football, although the data are not 
as widely available. In a cohort of 3,207 male nonprofes-
sional rugby players followed for one or more seasons, the 
incidence of mTBI was 7.97 per 1,000 player game hours, 
with 313 players (9.8 %) sustaining 1 or more mTBIs dur-
ing the study. Players who wore protective headgear during 
games were at a reduced risk (incident rate ratio 0.57; 95 % 
confidence interval [CI], 0.40–0.82), while the risk nearly 
doubled for players who had sustained one or more mTBIs 
within the previous 12 months [94].

Pathophysiology of concussion

Concussion and subconcussion are produced by accelera-
tion and deceleration forces on the brain, either linear or 

rotational [130]. When the brain is subjected to rapid accel-
eration, deceleration and rotational forces, the brain elon-
gates and deforms, stretching individual components such 
as neurons, glial cells, and blood vessels and altering mem-
brane permeability. These traumatic stretch injuries affect 
neuronal cell bodies, axons, dendrites, blood vessels, and 
glial cells; axons are especially vulnerable as they often 
extend long distances from the neuronal cell bodies and 
may be injured even without the death of the neuron of ori-
gin [155, 156]. Traumatic axonal injury (TAI) does not uni-
formly affect all axonal populations; smaller, unmyelinated 
axons may be more susceptible to damage from concus-
sive forces than larger myelinated axons [158]. In addition, 
immediately after biomechanical injury to the brain there 
is a “neurometabolic cascade of concussion”, characterized 
by a rapid release of neurotransmitters, efflux of potassium, 
influx of calcium, and acceleration of the cellular sodium–
potassium (NaC–KC) pump to maintain membrane homeo-
stasis, requiring large increases in glucose metabolism [71]. 
This post-concussive hypermetabolism occurs in the setting 
of diminished cerebral blood flow, with a widening dispar-
ity between glucose supply and demand producing a cel-
lular energy crisis [71].

Pathology of concussion

Pathological studies of acute concussion and PCS are rare 
and often include subjects with more severe traumatic inju-
ries, but multifocal traumatic axonal injury TAI, microhe-
morrhage, and microglial activation have been reported 
[12, 150]. Oppenheimer described microscopic petechial 
hemorrhages, axonal injury, and microglial clusters that 
were often perivascular [150]. Blumbergs and colleagues 
examined five cases of human concussive head injury using 
amyloid precursor protein (APP) immunohistochemistry 
and reported multifocal axonal injury in the fornices, a 
major hippocampal projection pathway involved in mem-
ory [12]. The authors suggested that damage to the fornix 
might underlie some of the persisting memory deficits that 
occur in patients after concussion. In general, the amount 
and distribution of TAI is dependent on the severity of the 
TBI, with mild injury producing only microscopic axonal 
damage and moderate and severe TBI producing more 
severe axonal injury.

Over the last 5 years, 117 brains of athletes, defined as a 
player over the age of 12 years who participated in organ-
ized sports for at least 3 consecutive years, have been ana-
lyzed at the mTBI brain bank at VA Boston/Boston Univer-
sity School of Medicine. Of these 117 athletes, there were 
115M:2F, ranging in age at death from 14 to 98 years, mean 
54.1 �  22.3 years, including 6 athletes who died within 
6 months of a reported concussion (6 M:0F, 14–28 years 
old at death, mean 18.6 �  3.75 years) (Table 1).
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In the players who died within 6 months of a reported 
concussion, neuropathological examination showed multi-
focal and perivascular axonal injury in the corpus callosum, 
fornix, subcortical white matter, and cerebellum detectable 
using APP and phosphorylated neurofilament immuno-
histochemistry (Fig. 1). The finding of multifocal axonal 
injury in the cerebrum, cerebellum, and brainstem after 
concussion is consistent with the earlier literature. There 
was also striking perivascular microgliosis and astrocytosis. 
In addition, three of the six cases showed TDP-43 immu-
nopositive neurites in the white matter and one case dis-
played mild beta amyloid (Ab) deposition in leptomenin-
geal vessels. Focal accumulations of paired helical filament 
(PHF)-tau as neurofibrillary tangles (NFTs) and dot and 
spindle-shaped neurites around small blood vessels were 
found at the depth of the sulci in four cases; in two cases 
the PHF-tau immunoreactivity was consistent with Stage I 
CTE and in one case with Stage II CTE. One subject, an 
18-year-old who suffered a concussion with temporary 
loss of consciousness after a fall off a 28-foot jump while 
snowboarding, had a single focal microbleed characterized 
by perivascular and parenchymal hemosiderin and axonal 
spheroids in the uncus, with focal PHF-tau immunoposi-
tive neurons and neurites at the periphery of the microbleed 
(Table 1; Fig. 1). The finding of focal PHF-tau abnormali-
ties in the brains of recently concussed young individuals 
in close proximity to focal axonal injury and foci of micro-
hemorrhage suggests that axonal injury, loss of microvas-
cular integrity, and breach of the blood brain barrier may 
be mechanistically linked to the development of PHF-tau 
pathology.

Imaging studies after concussion

The structural changes in the brain after concussive injury, 
including traumatic axonal injury (TAI), are not detectable 
with conventional structural imaging studies, including 
computed tomography (CT) scan and magnetic resonance 
imaging (MRI). Diffusion tensor imaging (DTI), however, 
provides information about the white matter microstruc-
ture and fiber tract integrity and is emerging as a valuable 
tool in refining the diagnosis, prognosis, and management 
of mTBI [5, 149, 196]. In addition, the severity of symp-
toms after mTBI correlates with reduction of white matter 
integrity on DTI, suggesting that persistent microstructural 
brain injury underlies the symptoms of PCS [45]. There 
have also been reports of alterations in brain activation 
through blood oxygen level-dependent (BOLD) signals, 
resting state functional connectivity [120, 168], magnetic 
resonance spectroscopy [184], and SPECT imaging after 
concussion, although the neuroanatomical sites involved 
vary across different studies. Functional MRI (fMRI) stud-
ies have detected significant alterations in brain activation 

patterns in individuals with persistent symptoms after 
mTBI [26, 74]. These abnormal brain activation patterns 
can remain for months after injury, despite normal neuro-
cognitive task performance [115, 122]. The discrepancy 
between fMRI and neurocognitive testing may be the result 
of functional re-allocation of neurocognitive resources as a 
compensatory mechanism, followed by a more prolonged 
period of microstructural recovery [45]. In a study of mTBI 
patients using fMRI to assess the neural correlate of work-
ing memory, patients with more severe post-concussive 
symptoms showed increased brain activity in the normal 
working memory network, as well as the recruitment of 
brain regions outside this network [171].

Chronic neurodegeneration including CTE

Clinical studies

Several studies have examined the relationship between 
exposure to repetitive brain trauma and long-term cog-
nitive deficits and depression. Specifically, surveys of 
retired professional football players found that players 
who reported sustaining three or more concussions were 
significantly more likely to report cognitive symptoms, 
including a threefold increase in self-reported significant 
memory impairment and a fivefold increase in diagnosed 
mild cognitive impairment [77]. Multiple studies have also 
demonstrated cognitive deficits in retired NFL players on 
neurological and neuropsychological examination [63, 
87, 157] that in some studies correlated with white matter 
pathology on DTI and FLAIR imaging as well as altera-
tions in regional cerebral blood flow [84, 87]. Retired NFL 
players with only modest behavioral performance deficits 
on an executive task showed pronounced hyperactivation 
and hypoconnectivity of the dorsolateral frontal and fron-
topolar cortices using an fMRI-optimized neuropsycho-
logical test of executive function [84]. A study looking at 
the cause of death in retired NFL players who played for 
5 years or more also found elevated rates of death due to 
AD and amyotrophic lateral sclerosis (ALS). Although the 
death certificates indicated AD or ALS, there was no neu-
ropathological verification and the actual diagnoses might 
well have included CTE and CTE-MND [109]. Clinical 
and functional impairments in cognition have also been 
correlated with the frequency of impacts to the head in 
high school and collegiate football players wearing helmet-
mounted accelerometers [16, 121, 180], although not all 
helmet sensor studies have supported this relationship [81].

Brain trauma experienced in sport has also been linked 
to disturbances in mood. The survey of retired profes-
sional football players conducted by Guskiewicz and 
colleagues found that athletes who experienced three or 
more concussions had a threefold increase in diagnosed 
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Fig. 1  The neuropathology of acute concussive injury. a Axonal 
swelling in the corpus callosum (Table 1, case 2), APP immunostain-
ing, 10 m-paraffin section. b Perivascular clusters of activated micro-
glia in the corpus callosum and subcortical white matter (Table 1, 
case 1), LN3 immunostain, 50 mm free-floating section. c Vascular 
amyloid in leptomeningeal vessel (Table 1, case 6), Ab 42 immu-
nostain, 10 m paraffin section. d Persistent axonal swelling in the 
cerebellar white matter (Table 1, case 6), APP immunostain, 10 m 
paraffin section. e Perivascular microglia around deep white matter 
vessel (Table 1, case 3), 50 mm free-floating section. f Hemosiderin-
laden macrophages around a small blood vessel indicating a remote 
microbleed (asterisk) in close proximity to focal PHF-tau NFTs and 
neurites in the uncus (arrowhead) (Table 1, case 5). AT8 immunostain 
with hematoxylin counterstain, 10 m paraffin section. g Perivascular 
axonal spheroid in the cerebellar white matter (Table 1, case 6). APP 
immunostain, 10 m paraffin section. h Perivascular reactive astrocytes 

in white matter (Table 1, case 3), GFAP immunostain, 10 m paraffin 
section. i PHF-tau immunoreactive neurites in the medulla (Table 1, 
case 3), AT8 immunostain, 50 mm free-floating section. j Axonal 
swelling with digestion chamber in the midbrain tegmentum (Table 1, 
case 5), SMI 34 immunostain, 10 m-paraffin section. k Perivascular 
reactive astrocytes in white matter (Table 1, case 2), GFAP immu-
nostaining, 10 m-paraffin section. l PHF-tau immunoreactive NFTs in 
the reticular formation of the medulla (Table 1, case 3), AT8 immu-
nostain, 50 mm free-floating section. m Perivascular axonal swellings 
(arrowhead) (Table 1, case 2), APP immunostaining, 10 m-paraffin 
section. n TDP-43 immunoreactive neurites in the fornix (arrow-
heads) (Table 1, case 1), TDP-43 immunostain, 50 mm free-floating 
section. o PHF-tau immunoreactive perivascular NFTs and neurites in 
the frontal cortex (Table 1, case 3), AT8 immunostain, 50 mm free-
floating section. All magni�cation bars 100 mm
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depression [78]. A follow-up survey administered 9 years 
later provided further evidence for a dose–response rela-
tionship between self-reported concussions and depressive 
symptoms later in life. Neuropsychological assessment in 
former professional football players has confirmed the 
relationship between increased self-reported concussions 
and depression [52]. Depression in these athletes is also 
associated with increased fractional anisotropy on DTI, as 
well as white matter abnormalities on structural imaging 
[87, 176].

Clinical symptoms in CTE

In 1928, Harrison Martland, a New Jersey pathologist, out-
lined a symptom complex well recognized in professional 
pugilists that appeared to result from repeated sublethal 
blows to the head [118]. In his monograph, ‘Punch Drunk’, 
Martland described unsteadiness of gait, mental confu-
sion, and slowing of muscular movements, occasionally 
combined with hesitancy in speech, tremors of the hands, 
and nodding of the head. This condition was referred to 
as “dementia pugilistica”, “traumatic progressive encepha-
lopathy”, and “chronic traumatic encephalopathy” (CTE) 
to highlight its chronic and progressive nature [43, 44]. 
The clinical symptoms associated with this disease were 
examined in case summaries throughout the twentieth cen-
tury; however, the disease presentation described in these 
reports was inconsistent [38, 65, 92, 100, 126]. In 2013, 
the largest single cohort of neuropathologically confirmed 
cases of CTE was reported [127], and a subset of these 
cases without co-morbid neurologic disease was supple-
mented with eight additional cases to identify clinical fea-
tures distinctive for CTE [175]. Specifically, two presenta-
tions of CTE were found, one that consisted of behavioral 
and mood symptoms usually appearing in the third decade 
of life (mean age at onset of 35 years) and another consist-
ing of cognitive impairment and memory loss developing 
in the fifth decade (mean age at onset of 59 years). The 
majority of subjects (86 %) who presented with initial 
behavior or mood symptoms progressed to have cognitive 
symptoms and memory disturbances before passing away 
(mean age at death of 51 years), whereas behavioral and 
mood disorders less commonly developed (46 %) in the 
cohort presenting with cognitive impairment (mean age 
at death of 69 years). The earlier CTE literature also sug-
gests two differing disease presentations, but proper vali-
dation will require additional longitudinal clinical stud-
ies. It will also be important to determine if other factors 
account for the difference in presentations, such as genet-
ics, other environmental exposures such as use of perfor-
mance-enhancing drugs, and evolving changes in the play 
of modern American football compared to football played 
decades ago.

Neuropathology of CTE

Although isolated neuropathological reports of CTE 
appeared in the literature in the 1950s, it was not until 1973, 
with the detailed description of the clinical and neuropatho-
logical features of 15 retired boxers by Corsellis, Bruton 
and Freeman-Browne [38], that a relatively stereotyped 
pathological pattern of structural brain abnormalities began 
to emerge. These changes included cerebral atrophy with 
enlargement of the lateral and third ventricles, thinning of 
the corpus callosum, cavum septum pellucidum with fen-
estrations, and cerebellar scarring. Neuronal loss was noted 
in the cerebellar tonsils and substantia nigra with Cresyl 
violet stain, and there was neurofibrillary degeneration of 
the substantia nigra and cerebral cortex using Von Braun-
mühl’s silver stain. Senile plaques were found in 27 % of 
cases. The observation that PHF-tau immunoreactive NFTs 
in CTE are preferentially distributed to the superficial lay-
ers of the cerebral cortex (layers II and upper third of layer 
III) was made by Hof, who noted the similarity between the 
superficial distribution of NFTs in CTE and two other envi-
ronmentally triggered tauopathies, post-encephalitic Par-
kinson disease and Guamanian ALS parkinsonism/demen-
tia [91]. In addition to a different topography of NFTs in 
CTE compared to AD, the size of individual NFTs in CTE 
is generally larger and the neurites are more dot like and 
spindle shaped [128]. The conspicuous perivascular nature 
of the neurofibrillary pathology and its tendency to be 
irregularly concentrated at the sulcal depths of the cortex 
in CTE were first noted by Geddes in her description of 
the neuropathological alterations of five young men, 23–
28 years old, including two boxers, one soccer player, one 
developmentally challenged individual with a long history 
of head banging, and a poorly controlled epileptic patient 
who frequently hit his head during seizures [65, 66]. Ged-
des described argyrophilic, PHF-tau positive neocortical 
NFTs and neurites, strikingly arranged in groups around 
small intracortical blood vessels, in the absence of Ab [65], 
a feature that has recently been found to distinguish even 
early stages of CTE from other tauopathies.

Phosphorylated tau pathology

The focal collections of perivascular NFTs in the depths 
of the cortical sulci in CTE [65, 66, 126–128] differ sub-
stantially from PHF-tau pathology of the Alzheimer type 
reported in some cognitively normal young adults [15], 
opiate abusers [4], and non-demented elderly subjects such 
as those in the Framingham Heart Study [6] or Honolulu 
Asian Aging Study [67, 194]. Additionally, medial tempo-
ral lobe PHF-tau pathology is not found in early stages of 
CTE, while it is considered the hallmark of emerging or 
preclinical AD pathology.
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CTE is similar to AD in its tau isoform profile and 
phosphorylation state [165], and neuronal tau pathology is 
immunoreactive to both 3R and 4R tau [128]. Astrocytic 
PHF-tau pathology in CTE is predominantly 4R tau immu-
nopositive, but more widely distributed than that reported 
in the medial temporal lobe in aging and AD [103, 114]. 
Characteristically, the locus coeruleus shows neurofibril-
lary PHF-tau pathology in early stages of CTE, which 
can be substantial even in individuals under the age of 
30. Although some studies have interpreted phosphoryl-
ated tau abnormalities in the locus coeruleus to be an early 
stage of AD pathology [15], young control subjects were 
not screened for a history of exposure to mTBI despite the 
fact that mTBI is common among young individuals and 
that 17 % of the control subjects died from acute trauma or 
accidental death.

The patchy, perivascular location of the PHF-tau pathol-
ogy in sulcal depths, features prominent in early CTE, is 
most likely related to the physics of traumatic injury and 
shear deformation of the brain. Stress and resultant axonal 
injury are greatest at the interface of two tissues with dif-
fering viscoelastic properties (such as between blood ves-
sels and brain, or between gray and white matter) and the 
depths of the cortical sulci are areas of stress concentration 
[11, 28, 33]. In addition, the local distribution of TAI to the 
subcortical white matter at the sulcal depths correlates with 
the distribution of PHF-tau pathology in the overlying cor-
tex [72]. The early and predominant involvement of PHF-
tau pathology in the superior and dorsolateral frontal lobes 
in football players parallels the high frequency of impacts 
to the top of the head compared to those to the front, back, 
and side of the head in football [79], as well as fMRI data 
showing activation impairment in dorsolateral prefrontal 
cortex that is associated with significantly higher numbers 
of head collisions to the top-front of the head [180].

Many factors might influence the initiation and acceler-
ate the propagation of PHF-tau pathology in CTE, includ-
ing age at initial traumatic exposure, gender, physiologi-
cal stress, or environmental influences such as alcohol, 
opiates, or performance-enhancing drugs. Rodent studies 
have shown that glucocorticoids and stress increase tau 
phosphorylation and cognitive deficits [75, 144, 173], and 
PHF-tau immunoreactivity in opiate user brains is signifi-
cantly higher than in age-matched controls [4]. In addition, 
the developing brain may be more susceptible to poor out-
comes following TBI. Studies have suggested that children 
and adolescents experience prolonged recovery rates after 
TBI compared to adults [61] and poorer outcome [70]. 
Factors that might contribute to increased vulnerability to 
trauma in the developing brain include age-specific differ-
ences in myelination rates, synaptic pruning, neurotrophic 
factor levels, brain water content, cerebral blood flow, and 
glucocorticoid receptor expression [69, 76, 183].

A� in CTE

In early reports of dementia pugilistica or CTE using Ab 
immunohistochemistry, it was determined that 95 % of 
cases of CTE showed widespread diffuse Ab deposits. This, 
coincident with the demonstration of Ab deposits in up 
to 30 % of cases of acute severe trauma and APP abnor-
malities after axonal injury [98, 145, 159, 169], provoked 
a surge of interest in the role of Ab and APP in CTE patho-
genesis. However, despite evidence for Ab deposition in 
moderate to severe TBI [94], Ab plaques have not been 
found in early or mild stages of CTE in young individuals 
[65, 66, 72, 91, 126] but occur in older subjects with CTE 
in association with increased age at death [128]. Nonethe-
less, it is possible that APP or some form of Ab, such as 
oligomeric Ab, plays a role in CTE pathogenesis, although 
to date it has not been demonstrated.

Staging system

Provisional criteria for the pathological diagnosis of CTE 
and four pathological stages of severity have been proposed 
based on the topography of PHF-tau pathology [128]; for-
mal consensus validation of these diagnostic and staging 
criteria by a large group of neuropathologists is currently in 
progress (National Institute of Neurological Diseases and 
Stroke, 1UO1NS086659-01). The contributions of other 
pathologies to the diagnostic and staging criteria, includ-
ing TDP-43 immunoreactivity, axonal and neuronal loss, 
remain to be established.

Stages of CTE pathology

Stage I Brains with Stage I CTE are grossly unremark-
able. Microscopically, there are one or two isolated perivas-
cular foci of PHF-tau NFTs and dot-like neuropil threads, 
most commonly found at the depths of cerebral sulci of the 
frontal cortex (Fig. 2) and usually in association with sub-
pial PHF-tau positive astrocytes. NFTs are also commonly 
found in the locus coeruleus. About half of Stage I cases 
will also have abnormal TDP-43 inclusions within the sub-
cortical frontal white matter and fornix [128]. Ab plaques or 
vascular amyloid deposits are not found.

This stage is most likely preclinical, although some sub-
jects with Stage I pathology report vague and non-specific 
symptoms such as headache, loss of attention and concen-
tration, short-term memory difficulties, and depression.

Stage II Half of the cases with Stage II CTE show subtle 
macroscopic changes including mild enlargement of the lat-
eral and third ventricles, cavum septum pellucidum, and pal-
lor of the locus coeruleus and substantia nigra. Microscopi-
cally, multiple foci of PHF-tau pathology are found at the 
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depths of the sulci, commonly in the frontal, temporal, pari-
etal, insular, and septal cortices (Figs. 2, 3, 6). NFTs are also 
found in superficial layers of the adjacent cerebral cortex, 
locus coeruleus and substantia innominata, but the medial 
temporal lobe structures are spared. Deep structures such as 
the substantia nigra, dorsal and median raphe, and thalamus 
show mild neurofibrillary degeneration. TDP-43 pathology 
consists of rare neuropil threads and inclusions within cer-

ebral subcortical white matter, medial temporal lobe, and 
brainstem. In Stage II CTE in our series, Ab plaques were 
found only in an 87-year-old former NFL player, and vascu-
lar Ab was found only in a 28-year-old former NHL player.

Symptoms in Stage II CTE are variable, but in some 
instances there are prominent behavioral and personal-
ity changes, paranoia, irritability, depression, headaches, 
and short-term memory loss. In our autopsy series, suicide 
claimed the life of 33 % NFL players with Stage II CTE 
and suicide combined with drug or alcohol abuse accounted 
for 55 % of deaths (Table 2).

Stage III In Stage III CTE, most brains show reduced brain 
weight, mild frontal and temporal atrophy, and enlargement 
of the lateral and third ventricles. Septal abnormalities are 
common (50 %), including cavum septum pellucidum or 
septal fenestrations. There is often pallor of the locus coer-
uleus and substantia nigra, atrophy of the mammillary bod-
ies, thalamus and hypothalamus, and thinning of the corpus 
callosum. Microscopically, NFTs are present diffusely in the 
frontal, temporal, and parietal cortices and are most concen-
trated around small vessels and at the depths of sulci. The 
hippocampus, entorhinal cortex, amygdala, nucleus basa-
lis of Meynert, and locus coeruleus show extensive NFTs. 
NFTs are also present in hypothalamus, mammillary bod-
ies, substantia nigra, and dorsal and median raphe nuclei. In 
about one-third of cases, NFTs are also found in the dentate 
nucleus of the cerebellum and spinal cord. The majority 
of cases show TDP-43-positive neurites and inclusions in 
cerebral cortex, medial temporal lobe, diencephalon, and 
brainstem. Ab deposition is found in 13 % of cases as sparse 
diffuse and neuritic Ab plaques and vascular amyloid.

Symptoms in Stage III CTE include memory loss, execu-
tive dysfunction, explosivity, difficulty with attention and 
concentration, and aggression. 75 % of subjects in our series 
were considered cognitively impaired. As in Stage II, 33 % 
of former NFL players with Stage III CTE committed sui-
cide, and suicide combined with drug or alcohol abuse led 
to 55 % of deaths in Stage III CTE in our series (Table 2).

Stage IV Brains with Stage IV CTE usually show signifi-
cant reduction of brain weight (Fig. 4), with pronounced atro-
phy of the frontal and temporal lobes, medial temporal lobe, 
and anterior thalamus. The hypothalamic floor is thinned, the 
mammillary bodies are darkly discolored and atrophied, and 
there is marked enlargement of the lateral and third ventricles. 
Approximately, 2/3 of subjects will have septal abnormali-
ties including cavum septum pellucidum, fenestrations, or 
absence. There is generalized atrophy of the white matter, and 
the posterior body of the corpus callosum is disproportion-
ately thin. The locus coeruleus and substantia nigra are pale.

Microscopically, there is severe spongiosus of layer 2 of 
the cerebral cortex and widespread neuronal loss. Neurons 

Fig. 2  The four stages of chronic traumatic encephalopathy. In Stage 
I CTE, PHF-tau pathology is restricted to discrete foci in the cerebral 
cortex, most commonly in the superior, dorsolateral or lateral frontal 
cortices, and typically around small vessels at the depths of sulci. In 
Stage II CTE, there are multiple epicenters at the depths of the cer-
ebral sulci and spread of neurofibrillary pathology to the superficial 
layers of adjacent cortex. The medial temporal lobe is spared neu-
rofibrillary PHF-tau pathology in Stage II CTE, although it becomes 
progressively more involved as disease severity increases. In Stage 
III, PHF-tau pathology is widespread; the frontal, insular, temporal, 
and parietal cortices, amygdala, hippocampus, and entorhinal cortex 
show widespread neurofibrillary pathology. In Stage IV CTE, there 
is widespread severe PHF-tau pathology affecting most regions of the 
cerebral cortex and the medial temporal lobe, sparing calcarine cortex 
in all, but the most severe cases. All images, CP-13 immunostained 
50 m tissue sections
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in the substantia nigra are severely depleted. There is prom-
inent, patchy, widespread myelin loss and astrocytosis of 
the white matter of the cerebral hemispheres with perivas-
cular macrophage deposition. There is also severe PHF-tau 
deposition as clusters of glial tangles and small NFTs in a 

patchy irregular distribution throughout the frontal, tempo-
ral, and parietal cortices (Fig. 5). Neurofibrillary degenera-
tion is extremely severe in insula, septal area, temporal cor-
tex, amygdala, hippocampus, entorhinal cortex, substantia 
nigra, and locus coeruleus. The calcarine cortex is relatively 

Fig. 3  CTE Stage II in a 
36-year-old former Major 
League baseball player. Top 
row whole mount sections of 
occipital and frontal cortex; 
CP-13 immunostained 50 m 
tissue sections. Red circles indi-
cate clusters of neurofibrillary 
pathology, which are primarily 
perivascular and concentrated at 
the sulcal depths. The arrow-
head shows an area of acute 
hemorrhage secondary to the 
fatal gunshot. a–e Neurofibril-
lary pathology in the frontal 
and occipital cortices, showing 
a tendency for the PHF-tau 
pathology to be perivascular, 
subpial, and more concentrated 
at the depths of the cerebral 
sulci. CP-13 immunostain, 
50 mm free-floating sections. f 
A focus of PHF-tau neurofibril-
lary pathology surrounding a 
small blood vessel. There are 
hematoidin-laden macrophages 
around the vessel (asterisk) and 
focal neuronal loss, changes 
indicative of a remote micro-
bleed. CP-13 immunostain, 
50 mm free-floating section. All 
magni�cation bars 100 mm

Table 2  Causes of death in former NFL athletes with CTE (without other pathological diagnoses)

CTE chronic traumatic encephalopathy, FTT failure to thrive secondary to dementia, NFL National Football League

n Age Cause of death

Stage I CTE 3 37.7 �  16.8 years 1 cardiac, 1 suicide, 1 malignancy

Stage II CTE 9 48.1 �  20.0 years 3 cardiac, 3 suicide, 1 alcohol-related, 1 drug use, 1 malignancy

Stage III CTE 9 59.9 �  11.5 years 2 cardiac, 3 suicide, 2 overdose, 1 accidental gunshot wound, 1 malignancy

Stage IV CTE 8 81.5 �  7.3 years 2 cardiac, 2 respiratory, 3 FTT, 1 malignancy,

Overall 27 63.9 �  17.4 years
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spared, though 39 % of cases will show some PHF-tau 
pathology. In Stage IV CTE, NFTs are found widely dis-
tributed throughout the hippocampal formation including 
the dentate gyrus, CA3, CA2, and CA4. CA1 is typically 
severely sclerotic, with few remaining neurons, numerous 
ghost tangles and PHF-tau immunoreactive astrocytes. In 
Stage IV CTE, PHF-tau pathology also generally involves 
the cerebellum, including the dentate nucleus and granule 
cell layer and the medial lemniscus and inferior olives of 
the medulla. There is marked loss and distortion of axons 
throughout the cerebral and cerebellar white matter. TDP-
43 deposition is severe and widespread with dense accumu-
lations of dot-like and thread-like inclusions in neurites and 
intra-neuronal cytoplasmic inclusions in all cases.

Symptoms in Stage IV CTE include severe executive 
dysfunction and memory loss with dementia. Most subjects 
also show profound loss of attention and concentration, 
language difficulties, explosivity, aggressive tendencies, 

paranoia, depression, and gait and visuospatial difficulties. 
In our autopsy series, none of the athletes diagnosed with 
Stage IV CTE died from suicide or drug overdose (Table 2).

TDP-43 pathology

Abnormal TDP-43 pathology is found in all stages of CTE. 
In early stages the inclusions consist of neuritic threads and 
dot-like inclusions in subpial, perivascular, and periventricu-
lar regions; cytoplasmic neuronal inclusions are first seen in 
Stage II disease and are characteristic of late stages where 
they partially co-localize with PHF-tau inclusions [128].

Axonal pathology in CTE

In addition to PHF-tau pathology, axonal pathology is pre-
sent at all stages of CTE and becomes more severe as CTE 
stage advances [72, 128]. In early CTE, distorted axonal 

Fig. 4  Gross neuropathological 
findings in a 77-year-old former 
Australian Rules rugby player 
who died with severe dementia 
and Stage IV CTE. Cognitive 
problems, memory loss, atten-
tion difficulties, and executive 
dysfunction were first noted 
in his mid-50s, followed by 
depression and anxiety, worsen-
ing explosivity and impulsivity. 
By his mid-60s, he was physi-
cally and verbally abusive, para-
noid, and severely demented. 
He began playing rugby at age 
13, and played for 19 years 
in U21 and senior leagues. a 
At autopsy, the brain weighed 
1,030 g and showed severe atro-
phy and ventricular enlargement 
with a prominent cavum septum 
pellucidum (arrowhead). b–c 
The mid-portion of the septum 
pellucidum (asterisk) is reduced 
to a thin filament with severe 
atrophy of the fornix, thalamus, 
hypothalamus, mammillary 
bodies, amygdala, anterior 
hippocampus, and entorhinal 
cortex. d There is bilateral 
hippocampal atrophy (arrow-
heads). e The floor of the hypo-
thalamus is severely thinned 
and the mammillary bodies are 
severely atrophic (arrowhead). 
f Brainstem sections show 
pallor of the pars compacta of 
the substantia nigra and locus 
coeruleus, with discoloration of 
the frontal tracts of the cerebral 
peduncle
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profiles are found in the cortex, subcortical white matter, 
and deep white matter tracts of the diencephalon. By stages 
III and IV, there is severe axonal loss and pathological pro-
files throughout the subcortical white matter, particularly 
the frontal and temporal lobes.

Chronic traumatic encephalopathy with co-morbid 
degenerative disease

CTE is associated with the development of other neurode-
generations, notably Lewy body disease (LBD), AD, fron-
totemporal lobar degeneration (FTLD), and motor neuron 
disease (MND) [127, 128]. In our current experience of 
103 neuropathologically confirmed cases of CTE, co-exist-
ent LBD was found in 12 (12 %) cases, MND in 13 (13 %), 
AD in 15 (15 %), and FTLD in 6 (6 %), suggesting that 
either repetitive trauma or the accumulation of tau pathol-
ogy in CTE provokes the deposition of other abnormal pro-
teins involved in neurodegeneration [127, 128].

CTE as an acquired frontotemporal lobar degeneration

TDP-43 is an RNA-binding protein that regulates RNA 
metabolism, including mRNA splicing, stability, and trans-
port [167]. After acute traumatic injury in animal models, 
TDP-43 expression is upregulated and TDP-43 relocates 

from the neuronal nucleus to accumulate in the neuronal 
cytoplasm [134, 135] TDP-43 binds to many cellular tran-
scripts including tau and alpha synuclein, and its dysregula-
tion may underlie some of the pathologies seen with these 
proteins [162]. In particular, TDP-43 may influence tau iso-
form expression [136]. There is also evidence that altera-
tion in tau protein metabolism including hyperphosphoryla-
tion, tau phosphatase resistance, and deposition of PHF-tau 
intracellular aggregates may be found in diseases character-
ized by abnormal TDP-43 metabolism, such as ALS [177]. 
As CTE is accompanied by a range of symptoms reflec-
tive of frontotemporal dysfunction, including behavioral 
and cognitive deficits and a dysexecutive syndrome, and is 
associated with frontotemporal lobar atrophy, superficial 
spongiosus, neuronal loss, deposition of tau and TDP-43, 
and MND, it is increasingly considered an acquired fronto-
temporal lobar degeneration (FTLD).

CTE with motor neuron disease

Some data suggests that trauma and athletic exposure are 
risk factors for developing ALS [30, 31, 166], although 
there are conflicting reports regarding single versus repeti-
tive head injury [24]. Recent data on American football 
players who played professionally for more than five sea-
sons show the risk of dying from ALS is more than four 

Fig. 5  Microscopic neuropathological findings in a 77-year-old 
former Australian Rules rugby player with Stage IV CTE. Top row 
whole mount coronal sections of the brain and brainstem; CP-13 
immunostained 50 m tissue sections. There is widespread PHF-tau 
immunoreactive neurofibrillary pathology. a–f Microscopic sec-
tions show extreme neuronal loss and PHF-tau pathology; CP-13 

immunostaining, 50 mm free-floating sections. a. Frontal cortex. 
b Periventricular caudate. c Temporal cortex. d Superior colliculus. 
e Substantia nigra pars compacta. f Locus coeruleus. g P-TDP-43 
immunoreactive inclusions and neurites in the frontal cortex; pTDP-
43 immunostaining, 50 mm free-floating sections. All magni�cation 
bars 100 mm
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times greater than age- and gender-matched controls [109]. 
In our current experience of 103 neuropathologically con-
firmed cases of CTE, there have been 13 individuals who 
developed a progressive motor neuron disease (MND) 
(13 %) [128]. Most subjects (63 %) presented with motor 
weakness, atrophy, and fasciculations indistinguishable 
from sporadic ALS and developed mild cognitive and 

behavioral symptoms several years after the onset of motor 
symptoms. Individuals who present with motor symptoms 
of MND have milder CTE at death (Stages II–III), a reflec-
tion of their shortened life span, whereas those who present 
with cognitive symptoms die with advanced CTE (Stage III 
and IV). In all cases, there is a distinct TDP-43 proteinopa-
thy affecting the brain and spinal cord (Fig. 6) [128].

Fig. 6  CTE Stage II with motor neuron disease in a 29-year-old 
soccer player who developed fatigue and weakness of his lower 
extremities and hands at age 27 and 3 months later was diagnosed 
with ALS. 21 months after the onset of his symptoms, he died of 
respiratory insufficiency at age 29. He had played soccer since 
the age of 3, and started heading the ball at age 5. He played soc-
cer for 12 years in public school, 4 years in college, and 2.5 years 
as a semi-professional. a Whole mount sections showing clusters of 
perivascular PHF-tau immunoreactivity preferentially at the sulcal 
depths of the frontal, temporal, and parietal cortices; CP-13 immu-
nostain. b Sections of lower medulla, cervical thoracic, and lumbar 
spinal cord show extreme loss of lateral (asterisks) and ventral cor-
ticospinal tracts; luxol fast blue, and hematoxylin and eosin stain. c 
Extreme loss of axons, myelin with macrophage infiltration in lat-
eral corticospinal tracts; luxol fast blue, and hematoxylin and eosin 
stain. d Severe loss of anterior horn cells in the ventral horn of spinal 
cord; luxol fast blue, and hematoxylin and eosin stain. e–g Perivascu-
lar clusters of PHF-tau immunoreactive NFTs and neurites in cortex; 

CP-13 immunostain, 50 mm free-floating sections. h Axonal swell-
ings and distorted axons and hemosiderin-laden macrophages around 
small blood vessel in cortical white matter; SMI-34 immunostain, 
10 m paraffin section. i FUS immunoreactive intracytoplasmic inclu-
sions, both rounded and fibrillar; FUS immunostain, 10 m paraffin 
section. j Ubiquilin immunoreactive nucleus; ubiquilin immunostain, 
10 m-paraffin section. k PTDP-43 neurites in frontal cortex; phospho-
rylated-TDP-43 immunostain, 50-mm free-floating section. l PTDP-
43 neurites in Rolandic cortex; phosphorylated-TDP-43 immunostain, 
50-mm free-floating section. m PTDP43 intraneuronal fibrillar inclu-
sions and neurites in lumbar spinal cord; phosphorylated-TDP-43 
immunostain, 50 mm free-floating section. n PTDP-43 immuno-
reactivity in axon in lumbar spinal cord; phosphorylated-TDP-43 
immunostain, 50-mm free-floating section. o PTDP immunoreactive 
intracytoplasmic inclusions and neurites; phosphorylated-TDP-43 
immunostain, 10 m-paraffin section. p PHF-tau immunoreactive intra-
cytoplasmic granular inclusions; AT8 immunostain, 10 m-paraffin 
section
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CTE in sports

Although CTE was first identified in association with box-
ing, CTE has been diagnosed neuropathologically in Amer-
ican football players, professional and amateur boxers, 
ice hockey players, professional wrestlers, soccer players, 
rugby players, and a professional baseball player (Figs. 3, 
4, 5, 6) [38, 65, 66, 88, 91, 127, 128, 146–148].

American football

American football is the most common sport associated 
with CTE, accounting for more than half of reported 
cases; 75 % of reported football players with CTE played 
at the professional level. In different autopsy series, 
the percentage of former professional American foot-
ball players who have died and donated their brains to 
research varies from 50 % [88], 80 % [146], to 97 %) 
[128]. While many football players had a history of 
repeated concussions, some did not, suggesting that 
exposure to football even in the absence of symptomatic 
or reported concussions is associated with CTE. Among 
American football players, the stage of CTE at death sig-
nificantly correlates with age at death, number of years 
playing football, and number of years after retirement 
from football [128].

Soccer

There have been reports in the lay press about soccer play-
ers with CTE [138] and early changes of CTE were by 
noted by Geddes in an amateur soccer player [65]. We 
have also confirmed CTE-MND in a 29-year-old semi-
professional soccer player (Fig. 6). In soccer players, it is 
unclear what role heading of the ball and cervical spine 
injury play in the development of CTE and MND; this 
determination has considerable importance, as heading 
is considered a feature of soccer potentially amenable to 
restriction or elimination. Recently, soccer players who 
head the ball more than 1,800 times per year were found to 
have microstructural abnormalities in the temporo-occipital 
white matter on DTI that correlated with poorer memory 
scores [111]. ALS incidence and mortality are also reported 
to be unusually high among professional soccer play-
ers in Italy [30, 31]. The 29-year-old soccer player with 
CTE-MND in our series played soccer since the age of 3 
and frequently headed the ball; at autopsy, PHF-tau neu-
rofibrillary changes were extensive in both the frontal and 
posterior temporo-occipital regions. The demonstration of 
CTE- MND in a young soccer player, college and profes-
sional football players, and boxers raises the possibility that 
the neuropathological substrate of MND in some athletes 
might be CTE-MND.

Rugby

The demonstration of CTE in a professional rugby player 
(Figs. 4, 5), as well as a semi-professional soccer player 
(Fig. 6) indicate that CTE can affect players of non-hel-
meted sports. These findings have important implications 
on potential rule changes in helmeted sports, as it has 
been argued that risk compensation in helmeted sports has 
increased the incidence of brain injury [82]. The diagnosis 
of CTE in non-helmeted sports suggests that risk compen-
sation alone is insufficient in reducing brain trauma bur-
den below the threshold of developing disease. However, 
whether the risk of developing CTE in rugby players and 
athletes in other non-helmeted sports is as high as play-
ers of helmeted sports remains to be determined and will 
require future epidemiologic studies of CTE.

Ice hockey

In our series, CTE was found in the brains of five hockey 
players, including four former NHL players. Three of the 
hockey players were enforcers, which likely contributed to 
their overall exposure to repetitive brain trauma. Hockey 
players experience a very different profile of linear and 
rotational head impacts compared to football players as 
measured by helmet sensor studies [42, 195]. Elucidating 
the relationship between the nature of these exposures and 
the resulting neurodegenerative disease may uncover the 
type of impacts responsible for the pathogenesis of CTE.

Trauma exposure

The sequence of neuropathological changes in CTE—first 
as a single focus and later as multiple perivascular foci 
of PHF-tau at the depths of the cerebral sulci—and their 
association with acute axonal injury and microbleeds sug-
gest that an initial trauma may induce a focal change in 
PHF-tau and that continued exposure to repetitive trauma 
may induce multifocal, more widespread PHF-tau changes 
(Nowinski, personal communication). Whether an iso-
lated PHF-tau lesion advances to involve adjacent brain 
parenchyma may depend on additional factors, including 
age, gender, exposure to other toxins, and genetic suscep-
tibilities. It is possible, even likely, that some individuals 
develop a single isolated focus of PHF-tau that never pro-
gresses. The progression of CTE from a multifocal state 
(Stage II) to widespread disease (Stage III) might represent 
a period of exponential increase in PHF-tau accumulation, 
hypothetically from such mechanisms as protein templat-
ing or other modes of interneuronal spreading [128]. Stage 
II and III disease correlate with the onset of overt symp-
toms and mental distress, including depression and death 
due to suicide, alcohol, or drug overdose. Stage IV disease, 
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characterized by widespread neuronal loss and neurodegen-
eration, correlates with advanced memory loss, executive 
dysfunction, and dementia. The degree of aggregated PHF-
tau and TDP-43 protein deposition, neuronal and axonal 
loss, neuroinflammation, cerebral atrophy and ventricular 
enlargement, as well as clinical symptoms, all appear to 
increase with longer survival.

Conclusion

The benefits of regular exercise, physical fitness, and sports 
participation are irrefutable. Physical activity reduces the 
risk for cardiovascular disease, type 2 diabetes, hyper-
tension, obesity and stroke, and enhances psychological 
health. Exercise also reduces age-related loss of brain vol-
ume, improves cognition, and reduces the risk of devel-
oping dementia. Nonetheless, the play of sports is also 
associated with some risks, including risks for TBI, cata-
strophic traumatic injury and death. There is also growing 
awareness that repetitive minor TBIs may lead to persistent 
cognitive, behavioral, and psychiatric problems and, rarely, 
to the development of CTE. CTE has been reported most 
frequently in American football players and boxers, but 
players of other sports are also vulnerable, including those 
participating in ice hockey, professional wrestling, soc-
cer, rugby, and baseball. The incidence and prevalence of 
CTE are not currently known and their precise determina-
tion will require longitudinal clinical studies and the capa-
bility to accurately diagnose CTE during life. All reported 
cases of CTE have had a history of repetitive mTBI, yet 
there continues to be vigorous debate surrounding the con-
cept that a chronic neurodegeneration might be triggered 
by the traumatic impacts experienced in popular sports, a 
debate reminiscent of the controversies surrounding boxing 
in the last century [124, 125, 157]. Nevertheless, the risk 
of mTBI in sports is increasingly recognized, and changes 
in the play and management of popular sports have started 
to begin. Resistance is perhaps understandable, as accept-
ing trauma as the primary cause for CTE would have enor-
mous financial repercussions, as well as necessitate major 
changes in the play or management of many popular sports 
and constitute a paradigm shift in the science of neurode-
generation. Further understanding of the precise relation-
ship between traumatic exposure and the development 
of CTE will be greatly facilitated by efforts to develop a 
highly specific and sensitive way to diagnose CTE in liv-
ing persons, such as with new PET tau ligands [29, 119, 
198, 201], as well as prospective longitudinal studies with 
accurate measures of cumulative traumatic exposures. 
Neuropathological evaluation of the brains of athletes who 
have experienced repetitive brain trauma has already pro-
vided important information on the acute and long-term 

consequences of neurotrauma experienced in sport and will 
continue to be important for confirming clinical diagnoses, 
understanding pathogenetic mechanisms, developing bio-
markers, and evaluating potential therapies.
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