Experimental Investigations of Magnetic Reconnection

J Egedal MIT, PSFC, Cambridge, MA

Coronal Mass Ejections

Movie from NASA's Solar Dynamics Observatory (SDO)

Space Weather

The Solar Wind affects the Earth's environment

The Earth's Magnetic Shield

The Daily-Show

Magnetic Fusion Devices

International Thermonuclear Experimental Reactor

Magnetic Fusion Devices

International Thermonuclear Experimental Reactor

The Tokamak Device

Best known confinement device on Earth

Sawtooth reconnection in Tokamaks

Neutron yield in a tokamak

H Park, PRL 2005: localized reconnection

Electromagnetism 101

• Faraday's law:

 $EMF = -Area \cdot \frac{dB}{dt}$

- Faraday's law for a conducting ring: EMF=0.
- The magnetic flux through the ring is trapped
- This also holds if the ring is made of plasma
- \rightarrow plasma frozen in condition

Reconnection: A Long Standing Problem

Simplest model for reconnection: $\mathbf{E} + \mathbf{v} \times \mathbf{B} = \eta \mathbf{j}$ [Sweet-Parker (1957)]

$$-\frac{\partial \Psi}{\partial t}\Big|_{X} = E_{X} = \eta j_{X}$$

Reconnection: A Long Standing Problem

Simplest model for reconnection: $\mathbf{E} + \mathbf{v} \times \mathbf{B} = \eta \mathbf{j}$ [Sweet-Parker (1957)]

Sweet-Parker: $L >> \delta$ *:*

$$t_{sp} = \sqrt{t_R t_A} = \sqrt{\frac{\mu_0 L^2}{\eta}} \sqrt{\frac{L}{\nu_A}}$$

Unfavorable for fast reconnection Two months for a coronal mass ejections

Outline

- The MRX experiment at PPPL
- 2D reconnection in VTF open configuration
 Oscillatory reconnection response
- 3D reconnection in VTF closed configuration

 Explosive reconnection response
- Conclusions

Family of Reconnection Experiments (H.Ji, PPPL)

The MRX experiment at PPPL

M. Yamada, H Ji, et al.

The MRX experiment at PPPL

Experimental Setup and Formation of Current Sheet

Experimentally measured flux evolution

n_e= 1-10 x10¹³ cm⁻³, T_e~5-15 eV, B~100-500 G,

Resistivity increases as collisionality is reduced in MRX

Ji et al. '98 Trintchouk et al, '03 Kuritsyn et al, '06

The measured current sheet profiles agree well with Harris theory

$$B_{z} = -B_{0} \tanh\left(\frac{x}{\delta}\right)$$

$$j_{y} = \frac{B_{0}}{\mu_{0}\delta} \operatorname{sech}^{2}\left(\frac{x}{\delta}\right)$$

$$p = n_{0}(T_{e} + T_{i}) \operatorname{sech}^{2}\left(\frac{x}{\delta}\right)$$

$$\delta = \frac{c}{\omega_{\mathrm{pi}}} \frac{\sqrt{2(T_{e} + T_{i})/m_{i}}}{V_{i} - V_{e}}$$

$$= \frac{c}{\omega_{\mathrm{pi}}} \frac{\sqrt{2}V_{\mathrm{s}}}{V_{\mathrm{drift}}}$$

(Yamada, Ji, Kulsrud, et al., Phys. Plasmas, 7, 1781, 2000)

Neutral sheet Shape in MRX

Changes from "Rectangular S-P" type to "Double edge X" shape as collisionality is reduced

Rectangular shape

Collisional regime: $\lambda_{mfp} < \delta$ Slow reconnection

No Q-P field

2

3

X-type shape

Collisionless regime: $\lambda_{mfp} > \delta$ Fast reconnection

Q-P field present

Yamada et al, PoP 2006

Experimental identification of e-diffusion region

PIC Simulation

Experiment

The electron diffusion region identified inside of the ion diffusion region in a laboratory plasma <=> The first observation of two-scale diffusion region [Ren et al, PRL 08, Ji et al GRL, 08, Dorfman et al '10]

Outline

- The MRX experiment at PPPL
- 2D reconnection in VTF open configuration
 Oscillatory reconnection response
- 3D reconnection in VTF closed configuration

 Explosive reconnection response
- Conclusions

External Coils Vacuum Vessel

Diagnostics

External Coils Vacuum Vessel TF Coils ——

RF-Power

Magnetic Diagnostics

- Voltage in loops ~ (dB/dt) A
- Assuming toroidal symmetry we can use $\mathbf{B}_{\text{pol}} = \nabla \times (A_{\phi} \mathbf{e}_{\phi})$ and build an array to integrate up A_{ϕ}

$$\Psi = RA_{\phi}$$

$$\Delta_{R} \dot{\Psi} = \dot{\Psi}(R_{1}, Z_{0}) - \dot{\Psi}(R_{0}, Z_{0}) = \int_{R_{0}}^{R_{1}} R\dot{B}_{Z} dR$$

$$\Delta_{Z} \dot{\Psi} = \dot{\Psi}(R_{0}, Z_{1}) - \dot{\Psi}(R_{0}, Z_{0}) = -R \int_{Z_{0}}^{Z_{1}} \dot{B}_{R} dZ$$

Magnetic flux array

Kesich et al., RSI 79, 063505 (2008)

Magnetic Array

Rogowski Array

- Construction: copper wire wound on teflon tube
- Measures current through each opening

 $\Phi = n \phi \int dA \mathbf{B} \cdot \mathbf{dI},$

Two different magnetic configurations

An open cusp magnetic field. Fast reconnection by trapped electrons.

A closed cusp by internal coil. Passing electrons & spontaneous reconnection events.

Plasma response to driven reconnection

Kinetic modeling

- Why is the experimental current density so small?
- Liouville/Vlasov's equation: df/dt=0
- For a given $(\mathbf{x}_0, \mathbf{v}_0)$, follow the orbit back in time to \mathbf{x}_1
- Particle orbits calculated using electrostatic and magnetic fields consistent with the experiment.
- Massively parallel code evaluates $f(\mathbf{x}_0, \mathbf{v}_0) = f_{\infty}(|\mathbf{v}_1|)$.

J. Egedal et al., Computer Physics Communications , (2004)

Kinetic modeling

- The current is calculated as $j_{\parallel} = \int v_{\parallel} f \, dv^3$
- Theory consistent with measurements (B-probe resolution: 1.5cm)
- Experimental scaling $j \sim nl_0 E_z$ is reproduced

Experiment

Temporal evolution of the current channel

Time response of the toroidal current ≥²⁰ V_{loop} 100 200 -100 0 300 ₹20 ____ 0 -100 100 0 200 300 ≤^{10†} | rog -100 200 100 300 0 t [µs] Eigen response, f= 10-30 kHz

The electrostatic potential

The electrostatic potential

Ideal Plasma: $E_{\phi}B_{\phi} + \mathbf{E}_{pol} \cdot \mathbf{B}_{cusp} = 0$

> Frozen in law is broken where E•B≠0

Plasma response to driven reconnection

Ion polarization currents due to $d\Phi/dt$

Ion polarization current:

$$\mathbf{j}_{\perp} = -\frac{nm}{B^2} \nabla_{\perp} \left(\frac{d\Phi}{dt} \right)$$

Quasi neutrality:

$$\bigvee \cdot (\mathbf{j}_{\perp} + \mathbf{j}_{\parallel}) = 0$$

$$\stackrel{\longrightarrow}{=} \frac{d}{dl_{\parallel}} j_{\parallel} = \frac{nm}{B^2} \nabla_{\perp}^{2} \left(\frac{d\Phi}{dt}\right)$$

Model for dynamical response

$$A_{\varphi} = lpha_1 J_{||} + A_{ext}$$
, $J_{||} = lpha_2 d\Phi/dt$, $\Phi = - lpha_3 dA_{\varphi}/dt$,

$$A_{\varphi} = -\alpha d^{2}A_{\varphi}/dt^{2} + A_{ext} , \qquad \alpha = \alpha_{1}\alpha_{2}\alpha_{3} > 0$$

Oscillating solutions

Egedal et al., PRL (2003)

t [µs]

Outline

- The MRX experiment at PPPL
- 2D reconnection in VTF open configuration
 Oscillatory reconnection response
- 3D reconnection in VTF closed configuration

 Explosive reconnection response
- Conclusions

Spontaneous Reconnection

 Coronal mass ejections:
 The most powerful explosions in our solar system

X. Wang and A. Bhattacharjee, Phys. Rev. Lett. 70, 1627 (1993).
A. Bhattacharjee, *et al.*, Phys. Plasmas 12, 042305 (2005).
P.A. Cassak *et al.*, Phys. Rev. Lett. 95, 235002 (2005).

000/02/26 12:00:10

Other Outstanding Problems

Arcade

- Heating
- 3D effects
- Trigger

Arcade as seen from above

Closed Magnetic Configuration

Plasma in the VTF Closed Configuration

- Visible light of an Argon discharge - $n_e \sim 10^{18} \text{ m}^{-3}$, $T_e \sim 15 - 25 \text{ eV}$, $\lambda_e \sim 10 \text{ m}$. $B_g \sim 50 \text{ mT}$. $B_p \sim 5 \text{ mT}$

Spontaneous reconnection observed

J. Egedal et al., (2007) Phys. Rev. Lett. 98, 015003

No simple resistivity, $E \neq \eta^* j$!

Plasma outflows

Toroidal Asymmetry: Delayed Onset

Toroidal localized onset 40 (a) J (kA/m^2) 30 $5 \mu s$ delay 20 $=40^{\circ}$ 10 $= 160^{\circ}$ 0 (b) 15 $\partial A_{\varphi}/\partial t ~({\rm V/m})$ 10 5 0 100 250 150 200 t (µs)

3D $\partial A_{\phi}/\partial t$ Data Confirms Asymmetry

- Use 2 fixed arrays & variable onset location to construct full dataset
- Shift onset angle to $\varphi=0$, record relative angle of arrays

3D reconnection (Cartoon)

3D reconnection (Measurements)

Total E-Field is Localized

- Strong toroidal electrostatic E
- Φ_x measured at x-line, keeps total E localized;

Spontaneous reconnection only for rational q

Large q=2 and q=3 modes observed during reconnection

Potential maintains E·B~0 away from X-line (ohm's law)

Experiments show

 $-\partial A_{\phi}/\partial t \propto \phi_{rms}$

Exponential Growth in the Reconnection Rate

• Growth rate $\gamma \sim 1/(20 \mu s \pm 6 \mu s)$ at onset location

• Model for Onset

Ohm's Law

Current Continuity: Cartoon

Current Continuity: Cartoon

$$\nabla \bullet \mathbf{J} = \mathbf{\nabla} \bullet \mathbf{J}_{\parallel} + \nabla \bullet \mathbf{J}_{\perp} = \mathbf{0}$$

 $\mathbf{J}_{\perp} = \frac{nm}{B^2} \frac{d\mathbf{E}_{\perp}}{dt}$ *Ion polarization current*

q=2 electrostatic mode

• Mode amplitude increases during reconnection onset

Growing q=2 Potential

• Ion polarization currents maintain $\nabla \cdot \mathbf{J} = 0$

$$J_{||}(\mathbf{r}) = \int_{\text{edge}}^{\mathbf{r}} \frac{m_i n}{B^2} \nabla_{\perp}^2 \frac{\partial \phi}{\partial t} dl$$

J_{//}=0

Model for dynamical response

$$A_{\varphi} = \alpha_1 J_{||} + A_{ext} , \qquad J_{||} = -\alpha_2 d\Phi/dt , \qquad \Phi = -\alpha_3 dA_{\varphi}/dt ,$$
$$A_{\varphi} = \alpha d^2 A_{\varphi}/dt^2 + A_{ext} , \qquad \alpha = \alpha_1 \alpha_2 \alpha_3 > 0$$

Exponentially growing solution!

N. Katz et al., (2010) Phys. Rev. Lett.

Conclusions

- Collisional reconnection model and the Hall effect have been verified in MRX
- In the collisionless regime of VTF important collisionless effects become evident
- Experiment offers the opportunity to address the trigger problem
- 3D effects are important!

