Jupiter’s intense aurora provide a window into the complex plasma phenomena that occur throughout its vast magnetosphere. There are many distinct features in the Jovian aurora, which are typically categorized into: the oval-shaped main auroral emission, diffuse emissions equatorward of the main oval, polar emissions, and the Galilean satellite footprint spots and tails. Of the many Jovian auroral features, Jupiter’s innermost Galilean satellite, Io, generates one of the most consistent and identifiable aurora. While the source locations of most auroral features are difficult to determine due to uncertainties in magnetic field mapping, the footprints of the Galilean moons enable a precise determination of the magnetospheric source region for these phenomena. Io’s auroral signature itself has a rich morphology, including a long auroral tail trailing the Io footprint in the Jovian ionosphere. The Juno spacecraft crossed flux tubes connected to this tail at a broad range of Jovian altitudes and longitudinal separations along Io’s footprint tail, enabling detailed measurements of the plasma populations sustaining it’s auroral footprint. This presentation will summarize the current state of knowledge on Io’s auroral emissions and discuss recent in-situ Juno observations that shed light on these complex auroral processes.