

The Role of the Atmosphere in Magnetosphere-Ionosphere Coupling (at Saturn)

N. Achilleos (Atmospheric Physics Laboratory, UCL)

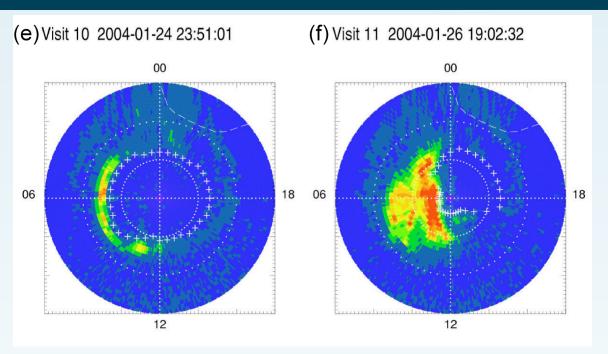
With thanks to colleagues:

C. G. A. Smith (Brooksbank School),

C. Tao, S. V. Badman (JAXA) and

A. D. Aylward (UCL)

An important remark



'If you want to model a cow, you have to start with a sphere.'

C. T. Russell (MAG meeting at AGU, 2008)

Setting the Scene: Saturn's Dynamic Aurora

- HST images of Saturn's southern UV aurora presented by *Badman* et al (JGR, 2005).
- Concurrent observations by Cassini → planet's auroral response to the passage of a solar wind compression / shock.
- Compression → magnetic reconnection on the nightside, which closes of order 10 GWb of open magnetic flux.
- Polar cap boundary (main oval) strongly contracts to higher latitudes.

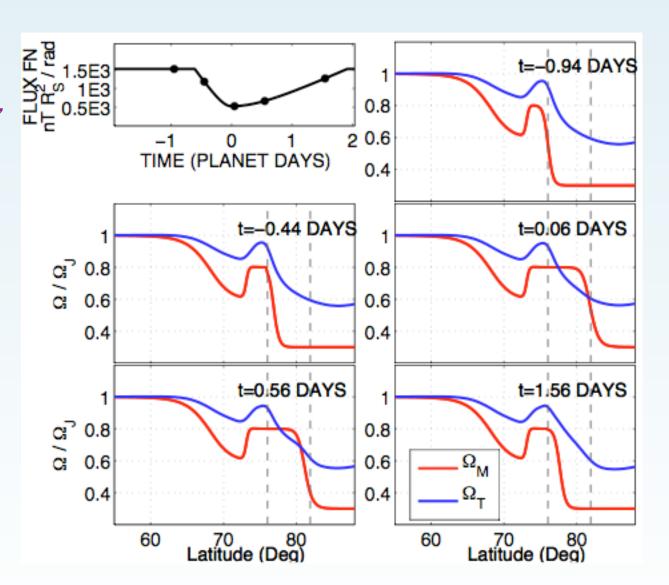
Time scales?

- Timescale for 'dipolarization' of a distended flux tube:
- <~ 0.5-1 hr (observed by Bunce et al, GRL, 2005; see also poster by Arridge et al., this meeting)</p>
- How does this compare to the timescale on which the magnetospheric plasma can be accelerated by currents linking to the ionosphere / thermosphere?

$$t_{MI} = \frac{1}{2} (\sigma / \Sigma_{P}^* B_i B_z) (\rho_e / \rho_i)^2$$

(Expression from Cowley and Bunce PSS 2003)

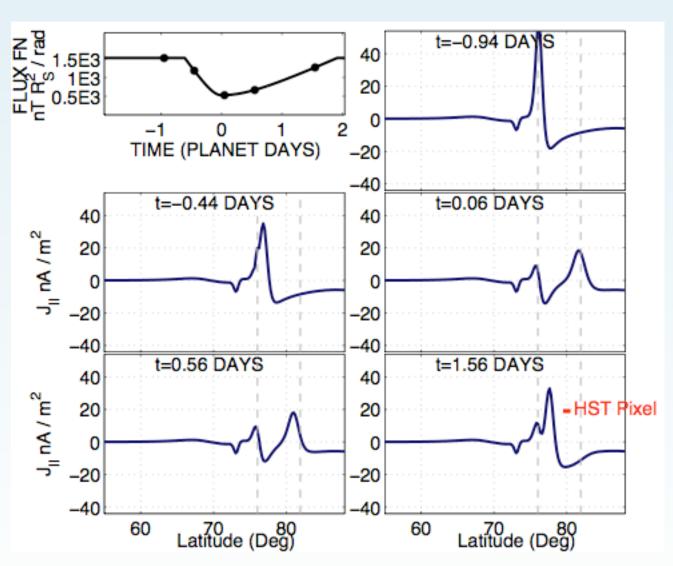
- Surface density of plasma sheet in outer magnetosphere: $\sigma \sim 30 / (2\pi \rho_e)$ tonnes R_S^{-2} (Arridge et al, GRL, 2007)
- Effective Pedersen conductance $\Sigma_P^* \sim 1-4$ mho (Bunce et al, Ann. Geo., 2003; Cowley et al, 2008)
- Ionospheric field B_i~40000 nT
- Magnetospheric field B_z~3 nT
- MSP/ISP distance ratio (ρ_e / ρ_i) ~ 100 for ρ_e ~40 RS Thus t_{MI} ~ 0.5 - 2 hours, t_{MI} ~ t_{dip}


Approach to Modelling

- Start with the UCL axisymmetric thermosphere model of Saturn (*Smith and Aylward, Ann. Geo., 2008*). Now uses the *auroral profile* by *Tao et al.* (*Icarus, 2011*).
- Modify the profile of *plasma angular velocity* $\Omega_{\rm M}$ in the UCL model by shifting the position of the 'polar cap boundary' where $\Omega_{\rm M}$ changes value from ~0.8 $\Omega_{\rm S}$ to ~0.3 $\Omega_{\rm S}$ (use the fit by Cowley et al. (JGR, 2004) to observations presented by Richardson, J. D. (JGR, 1995) and Stallard et al., Icarus, 2004).
- N.B. Since $\mathbf{t_{Ml}} \sim \mathbf{t_{dip}} \rightarrow$ for future work 'feedback' from thermosphere on $\Omega_{\mathbf{M}}$ evolution.
- In more detail:
- Start with a 'contracting' phase where the cap shrinks: $D\Phi/Dt = -220 \text{ kV/radian}$ (e.g. Badman and Cowley., Ann. Geo. 2007)
- Follow with an 'expansion phase' where the cap expands: $D\Phi/Dt = 70 \ kV/radian$

Angular velocity of magnetosphere and thermosphere

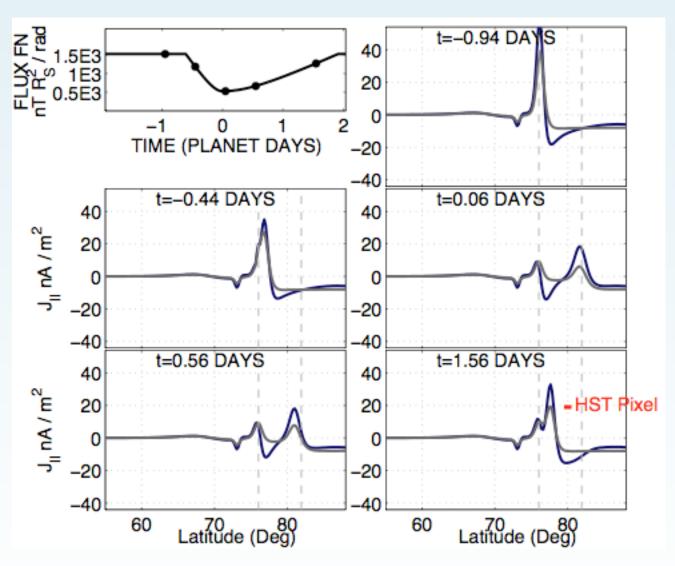
t=0 is most 'contracted' position of polar cap boundary.



- Thermosphere is 'slow' to respond to change in Ω_{M}
- Ionospheric *current* ∝ $(\Omega_T - \Omega_M)$
- At certain phases, $\Omega_T < \Omega_M$ - this leads to interesting predictions for auroral current

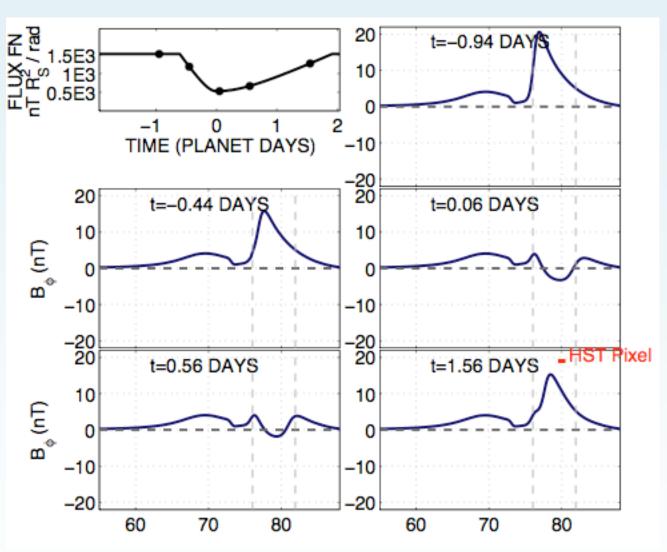
Field-Aligned Currents

UCL


t=0 is most 'contracted' position of polar cap boundary.

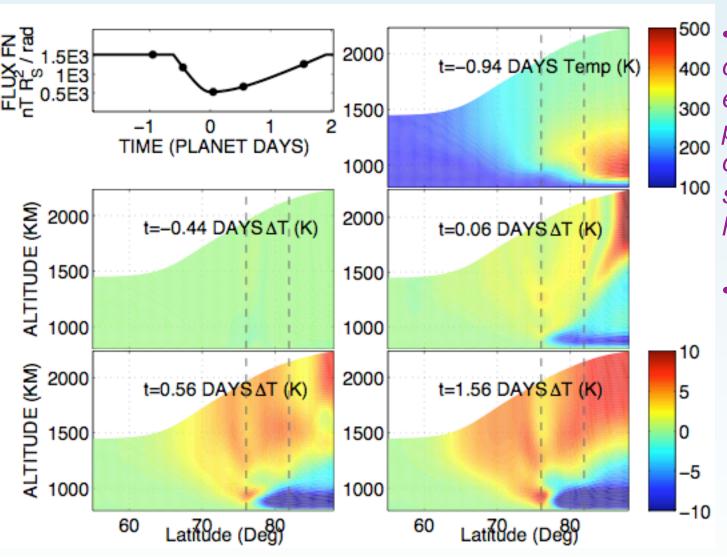
- $(\Omega_T \Omega_M)$ flow pattern leads to appearance and movement of a broad, higher-latitude oval or 'ring'.
- The emission pattern may appear as a 'bifurcation'.
- Here we use $\Sigma_P = 1$ mho, higher values produce higher current density.

Field-Aligned Currents: Actual vs. 'Constant K=0.5'


• The grey profiles assume ionospheric current calculated using: $(1 - \Omega_T) =$

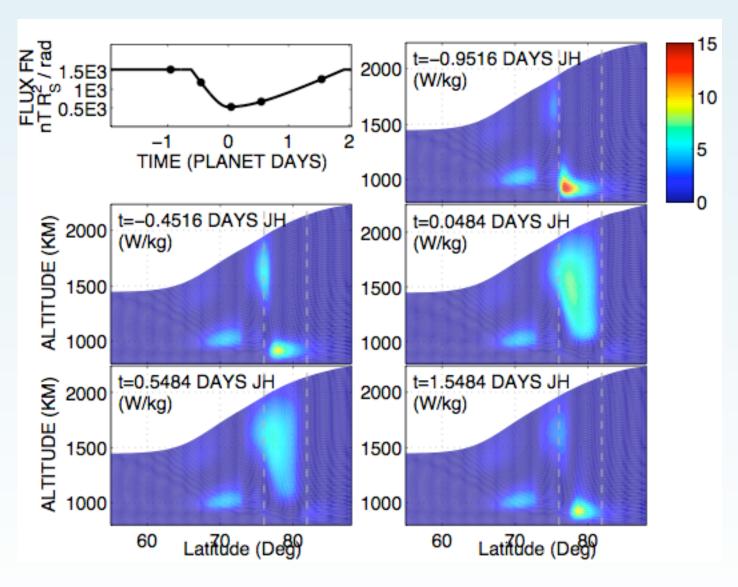
$$(1 - \Omega_T) = K(1 - \Omega_M)$$

UCL


• Use axisymmetric Ampere's Law to calculate **B**¢ following e.g. Cowley et al (Ann. Geo. 2008)

- In certain regions, obtain negative Bφ i.e. 'leading' field without any super-corotation of plasma.
- This happens when neutrals rotate slower than plasma $\Omega_T < \Omega_M$, but both subcorotate.
- Observations?

Neutral Temperature



- Wave fronts'
 of temperature
 enhancement
 propagate
 outwards from
 sites of Joule
 heating.
 - Observations?

Joule Heating

 Unusual patterns of Joule heating, around time of the 'reversal' in the ordering:

$$\Omega_T < \Omega_M$$

 Note that Ω_T is a 'weighted' average of flow velocities over all altitudes in the model.

Summary

- The thermosphere <u>does</u> respond to changes in the magnetosphere, but these changes are **not immediate**.
- This situation is 'intermediate' between assumptions of a perfectly corotating thermosphere, and one which 'instantly' responds with a 'uniform' slippage.
- The resulting patterns of auroral current are significantly **modulated** by atmospheric dynamics, and qualitatively similar to observed morphology.
- Resulting azimuthal field can be **leading**, **without the need** for super-corotating plasma.
- Need further investigation and help from auroral observers, as to implications for observations in UV and IR aurora.