Energetic charged particle absorption signatures in Saturn's magnetosphere: observations and applications

E. Roussos¹, N. Krupp¹, P. Kollmann¹, M. Andriopoulou¹, C. Paranicas², D.G Mitchell², S.M. Krimigis^{2, 3}, M.F. Thomsen⁴

1: Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany

- 2: John Hopkins Applied Physics Laboratory, Laurel, Maryland, USA
- 3: Office of Space Research and Technology, Academy of Athens, Greece
- 4: Los Alamos National Laboratory, USA

Electron Microsignatures

- 1. Localized dropouts in energetic electron fluxes, caused by particle absorption on moons or rings
- 2. Depth of dropout is dependent on the angular separation from the absorbing body (typically decreasing)

Microsignature formation

- 1. Plasma absorbing interaction (e.g. similar to Earth's Moon S.W. interaction)
- Plasma absorbing moons at Saturn (Mimas, Tethys, Dione, Rhea...)
- 3. Main features:
 - Formation of plasma cavity (wake) & interaction region downstream
 - Refilling processes of the wake

Wake refilling I

- 1. Along the field (most effective):
 - Potential drops, field aligned particle acceleration, two-stream instability...
 - Does not work for energetic electrons (above few keV) at Saturn's moons:

Wake refilling II

- 2. Perpendicular to the field (less effective):
 - Electric fields due to pressure gradients, deviation from charge neutrality
 - Even less effective for energetic particles

- Magnetic drifts of energetic particles occur on lines of equal B_{m}
- Energetic particles have the tendency to be excluded from the wake

Electron microsignatures

Time, Distance [Rsx], Latitude [°], LTsx

- 1. Refilling of microsignatures
- 2. Displacement of microsignatures

Magnetospheric diffusion (I)

Magnetospheric diffusion (II)

- 1. Refilling of microsignatures
- 2. Displacement of microsignatures

Types of displacements

(A) ORGANIZED(B) COMPLEX

Displacement origin:

- Dipole assumption insufficient
- Magnetospheric electric fields

Magnetic field models (I)

Insufficient mapping of equatorial microsignature location when using a dipole?

Succesfull tracing can help set constrains on field model inputs:

- Current sheet boundaries/dimensions
- Plasma/energetic particle parameters of ring current
- Solar wind parameters, magnetopause distance

Magnetic field models (II)

Example:

- DOY 2008-168/ 40 deg latitude
- 2 deg downstream of Dione
- Inwards displaced assuming a dipole

Succesfull tracing with:

- a) Current sheet model + magnetopause scaling laws by Bunce et al. (2006), (MP at 21.3Rs) + current sheet thickness of 2.4-2.5 Rs
- b) K. Khurana's model (AGU, 2006) for SW dynamic pressure that corresponds to a MP distance of 21.5 Rs

Results not always consistent from different magnetic field models

Magnetic field models (III)

- 1. Only part of the solution
- 2. Displacements visible also at equatorial latitudes
- 3. Current sheet perturbation explains only inward displacements
- 4. Drift shell spliting weak (10-15% difference would be required between day/night |B| at constant radial distance & latitude)
- 5. Energy dependent displacements, complex displacement profiles cannot be explained

Magnetospheric electric fields necessary

Electric Fields (I)

- 1. Displacement calculation corrected for current sheet perturbation
- 2. On average:
 - outward at noon
 - inward at midnight
 - smaller amplitudes at dawndusk
- 3. Consistent with a noon-midnight electric field

Electric Fields (II)

Electric Fields (III) (noon to midnight electric field) Various methods for electric field estimation, eg: $\Phi = \frac{\alpha \Omega B_o R_s^2}{L} - \frac{mc^2}{|a|} \left[\left(\frac{2\mu B_m}{mc^2} + 1 \right)^{\frac{1}{2}} - 1 \right] - E_o L R_s \cos\vartheta, \ (\theta = 0, \text{ LT 12h})$ $\Phi = \text{const.}$ at microsignature observation & formation point Range: 0.1 - 1.0 mV/m1000 Tethys Dione Method not applicable for small displacements 100 No of Events Other methods being tested currently 10 • Pointing of E-field can also be set as free parameter 0.01 0.10 10.00 Electric Field [mV/m]

Electric Fields (IV) (magnetospheric dynamics)

- Complex displacement profiles are indicative of local dynamics
- Microsignature age energy dispersion + energy dispersion in displacement → radial velocities/azimuthal electric fields in these dynamic regions

Electric Fields (IV) (magnetospheric dynamics)

Complex profiles relevant to injections ? (Chen and Hill 2008; Mueller et al. 2010)

Additional/future applications

- Plasma composition/charged states (Selesnick and Cohen, 2009)
- Bimodal diffusion (Selesnick and Cohen, 1993)
- Energetic particle sources (Paranicas et al. 1997)
- Backwards tracing of microsignatures with models for electric/magnetic fields
- Organization as a function of SKR longitude at Saturn
- Combined injection/microsignature studies
- Applications to Jovian magnetosphere
- Multi-instrument studies
- Interdisciplinary science (detection/characterization of ring arcs etc.)
- +++

Moon interaction signatures give us the capability to indirectly perform 'multi-point' observations in the magnetospheres of outer planets.

Instrumentation

- Energetic particle detector
 - 1. Lowest energy: Where magnetic drifts start to be important (time dispersion effects of microsignatures become visible)
 - 2. Upper energy: Gradient/curvature drifts cancel corotation (displacements at these energies sensitive to weak electric fields)
 - 3. Time resolution: Seconds (most microsignatures last 1-2 minutes at a given energy range)
 - Energy resolution: dE/E~0.1, 10 energy channels at least (time/energy dispersion effects of microsignatures become visible)
 - 5. Pitch angle coverage: Spinning sensors probably not sufficient (difficult to cover all pitch angles in 1-2 minutes)