
CSECS 2011, pp. 000 - 000

 The 7 Annual International Conference on
Computer Science and Education in Computer Science,

July 06-10 2011, Sofia, Bulgaria

APPLICATIONS OF CUMULATIVE SUBGOAL FULFILLMENT
TO LINEAR PROGRAMMING

ERIC BRAUDE

Abstract: We show how the CSF program design approach can be used to
synthesize the classical linear programming algorithm as well as Seidel’s
external algorithm.

Keywords: programming, simplex, correctness, synthesis, coding

ACM Classification Keywords: D.2.3 Coding Tools and Techniques

1. Introduction

Cumulative subgoal fulfillment (CSF), introduced in [Braude, 2007], is an
approach to creating procedures that are also, in the classical sense, provably
correct. In this paper, we apply CSF to the linear programming problem,
showing how it produces both Dantzig’s classical algorithm [Dantzig, 1998], as
well as Seidel’s Seidel, 1990]. The latter was actually generated without a priori
knowledge of Seidel’s work. The results are obtained by selecting different
cumulative subgoals. Some general strategies and techniques for selecting
subgoals were described in [Braude, 2007]; others are to appear elsewhere. A
common one is to replace a constant with a variable; i.e., if a postcondition
involves accomplishing an objective for N things, a candidate subgoal is to
accomplish the objective for i of them.

2. Cumulative Subgoal Fulfillment

2 Authors’ Name

The Title of the Paper

CSF is based on principles of physical construction. In such construction, each
stage can be thought of as fulfilling a subgoal: one which remains valid while we
construct additional parts. Informally, CSF consists of a sequence of code
blocks, each of which fulfills a subgoal and (this is the key part) leaves invariant
all subgoals already fulfilled.

Formally, consider a procedure P for which pre, inv, and post are the
conjunctions of the preconditions, invariants, and postconditions respectively.
We define an algorithm plan for P as a sequence s1, s2, ..., sn of predicates for

which pres1s2 ... sninv  postinv. A CSF implementation of P consists
of an algorithm plan s1, s2, ..., sn and a sequence c1, c2, ..., cn of code blocks
satisfying the following Hoare triples.

(1) invpre {c1} invs1, and

(2) invs1s2 ... si-1 { ci } invs1s2 ... si for i = 2, 3, ..., n.

(A Hoare triple A{c}R denotes “If A is true, and code c is executed, then R is
true.”)

A predicate p for which ppost = true will be called a cumulative subgoal for P.
Thus, algorithm plans consist of cumulative subgoals. In most cases, the code
blocks c1, c2, c3, ... can be constructed via a perturb/restore process as follows.

// Fulfill s1: (i.e., the following is c1)

<use pre to fulfill s1 by perturbing variable(s) >

<restore inv>

// Fulfill s2:

<use inv and s1 to fulfill s2>

<restore inv>

<restore s1>

// Fulfill s3:

<use inv, s1, and s2 to fulfill s3>

<restore inv>

CSECS 2011, July 7-11 2011, Sofia, Bulgaria 3

The Title of the Section

<restore s1>

<restore s2>

...

A special case of this is where we fulfill a subgoal si by using a loop as follows,
in which “perturbing variable(s)” is often the incrementing of an index.

// Fulfill si ...

while(!si){ // prove termination ...

< perturb variable(s) using inv, s1, s2, ... , and si-1
to fulfill si more closely>

<restore inv>

<restore s1>

<restore s2>

...

<restore si-1>}

We use the convention that returnX is the variable whose value is returned by
the procedure. We use the ‘x and x’ notation to denote the respective value of x
before and after the relevant set of operations.

3. Linear Programming

For the purpose of demonstrating the application of CSF to linear programming,
it is sufficient to describe the process for two dimensions. The linear
programming problem can then be expressed as follows, which includes explicit
limits on the variables.

double linProgMax(Function anObjectiveFn, Equation[] aConstraint)

// Pre1: anObjectiveFn is linear

// Definition: M == Double.MAX_VALUE

// Pre2: The elements of aConstraint are linear

// AND aConstraint[0,3] = {(x<=M), (x>=-M), (y<=M), (y>=-M)}

4 Authors’ Name

The Title of the Paper

// Pre3: The members of aConstraint are distinct

// Post: returnV is the maximum of anObjectiveFn() subject to every member of
aConstraint.

Most, if not all, approaches depend on the observation that maxima occur at the
intersection of constraints.

4. The Classical Algorithm via CSF

We describe Danzig’s classical linear programming solution here [Dantzig,
1998] in terms of CSF. For now, we take for granted the second half of
precondition 2 above. We will also assume, without compromising the point of
this paper, that the constraints form an inner polygon (illustrated in Figure 1),
one of whose vertices is the locus of the maximum.

Figure 1: Linear Programming Domain in 2 Dimensions

The cumulative property of CSF subgoals allows the reader to verify that if all
subgoals were true, the postconditions will have been fulfilled.

CSECS 2011, July 7-11 2011, Sofia, Bulgaria 5

The Title of the Section

The first subgoal selected here exploits the fact that the maximum occurs at an
intersection of two (or more) constraints. This can be done by labeling such a
point, which is a candidate for the return value.

SG1 (Max occurs at a vertex): returnV is vertex of the interior polygon

AND returnV = aConstraint[s]  aConstraint[t]

We next encapsulate Danzig’s idea of traveling around the polygon.

For x≠y, define v(x,y) as aConstraint[x]  aConstraint[y].

SG2 (Improvement direction identified):

anObjectiveFn(returnV)  anObjectiveFn(v(u,s))

AND v(u,s) is on the interior polygon

The final subgoal describes a successful conclusion to this (finite) process.

 SG3 (No further improvement possible) :

 anObjectiveFn(returnV)  anObjectiveFn(v(t,w))

AND v(t,w) is on the interior polygon

SG1 can be fulfilled by selecting any vertex of the inner polygon. SG2 can be
fulfilled by comparing the value at this vertex with those at its neighbors on the
inner polygon. SG3 can be fulfilled by repeatedly moving in the direction of the
unvisited neighbor with higher or equal value. Each of these fulfillments can be
readily accomplished in a way that preserves its predecessors.

5. Seidel’s Algorithm via CSF

CSF is used in this case in a more straightforward manner than in the classical
case. We use once again the observation that a maximum occurs at an

6 Authors’ Name

The Title of the Paper

intersection but there is no need to identify a inner polygon. We invoke all of
precondition 3. The author applied this alternative CSF reasoning process
independently and afterwards learned of its essential equivalence with Seidel’s
algorithm [Seidel, 1990]. He describes the algorithm for arbitrary dimensions,
and shows its improved efficiency.

By fulfilling the constraints one at a time as (cumulative!) subgoals, the following
algorithm plan results.

SG1: Subject to the constraints in s, anObjectiveFn() attains its
maximum at returnV

SG0: s contains aConstraint[0]

…

SGi: s contains aConstraint[j]

...

SGlast: i = aConstraint.length()-1

SG1 – SGi can be fulfilled together by selecting i=3 and returning a corner point

or the intersection with the 2M2M square, as shown in Figure 2.

Figure 2: Fulfilling SG1-SG4

CSECS 2011, July 7-11 2011, Sofia, Bulgaria 7

The Title of the Section

SGlast can be effected by a loop which increments i and restores each prior
subgoal. The key observation in the restorations is that if ‘returnV fails to satisfy
aConstraint[i+1], then returnV’ lies at the intersection of aConstraint[i+1] and one
of aConstraint[0], aConstraint[1], ..., aConstraint[i]. This is illustrated by Figure
3.

Figure 3: Introducing Next Constraint (i+1)

This amounts to comparing values of anObjectiveFn() at various points on
aConstraint[i+1], which is effectively liner programming in dimension 1. In
general, solving the problem in dimension d can be performed by invoking liner
programming recursively for dimension d-1.

6. Conclusion

The CSF approach was used to generate both the classical and the Seidel
approach to the linear programming problem. These can be thought of as a
perimeter and an external approach respectively. For future work it would be
interesting to see if CSF can yield an internal approach such as [Karmarkar,
1984], and whether it can be used improve linear programming
implementations.

Bibliography

8 Authors’ Name

The Title of the Paper

Braude, Eric J. Cumulative Subgoal Fulfillment in Software Development,
Proceedings of the 11th IASTED International Conference on Software
Engineering and Applications, 480-485 (2007)

Dantzig, George Linear Programming and Extensions, Princeton University
Press, (1998).

Karmarkar, Narendra A New Polynomial Time Algorithm for Linear
Programming, Combinatorica, v.4, no.4 (1984), pp 373–395.

Seidel, Raimund, Linear Programming and Convex Hulls Made Easy, SCG '90
Proceedings of the Sixth Annual Symposium on Computational Geometry,
p211-215, ACM Press (1990).

Authors' Information

ERIC BRAUDE, Ph.D., Associate Professor of Computer Science,
Boston University Metropolitan College, 808 Commonwealth Ave
205, Boston, MA 02215 USA; ebraude@bu.edu

Major Fields of Scientific Research: Software Engineering,
Artificial Intelligence

