Optimizing On-Demand Resource Deployment For Peer-Assisted Content Delivery: Ray Sweha, PhD Defense

9:00 am on Monday, November 19, 2012
11:00 am on Monday, November 19, 2012
MCS 148
Abstract: Increasingly, content delivery solutions leverage client resources in exchange for service in a peer-to-peer (P2P) fashion. Such peer-assisted service paradigms promise significant infrastructure cost reduction, but suffer from the unpredictability associated with client resources, which is often exhibited as an imbalance between the contribution and consumption of resources by clients. This imbalance hinders the ability to guarantee a minimum service fidelity of these services to the clients. In this thesis, we propose a novel architectural service model that enables the establishment of higher fidelity services through (1) coordinating the content delivery to optimally utilize the available resources, and (2) leasing the least additional cloud resources, available through special nodes (angels) that join the service on-demand, and only if needed, to complement the scarce resources available through clients. While the proposed service model can be deployed in many settings, this thesis focuses on peer-assisted content delivery applications, in which the scarce resource is typically the uplink capacity of clients. We target three applications that require the delivery of fresh as opposed to stale content. The first application is bulk-synchronous transfer, in which the goal of the system is to minimize the maximum distribution time -- the time it takes to deliver the content to all clients in a group. The second application is live streaming, in which the goal of the system is to maintain a given streaming quality. The third application is Tor, the anonymous onion routing network, in which the goal of the system is to boost performance (increase throughput and reduce latency) throughout the network, and especially for bandwidth-intensive applications. For each of the above applications, we develop mathematical models that optimally allocate the already available resources. They also optimally allocate additional on-demand resource to achieve a certain level of service. Our analytical models and efficient constructions depend on some simplifying, yet impractical, assumptions. Thus, inspired by our models and constructions, we develop practical techniques that we incorporate into prototypical peer-assisted angel-enabled cloud services. We evaluate those techniques through simulation and/or implementation. Thesis Committee: Professor Azer Bestavros, 1st reader Professor Abraham Matta, 2nd reader Professor Mark Crovella, 3rd reader Professor Assaf Kfoury, committee chair Professor Rich West, additional committee member