
Differentially Private Mechanisms
for Cut-Queries of a Graph

A Survey

Charles River Workshop on
Private Analysis of Social Networks

May 19th 2014

Or Sheffet

Harvard university
osheffet@seas.harvard.edu

Privacy in Graphs

Neighboring graphs:

Differ on a single edge

2

• Goal: satisfy (²,±)-privacy
w.r.t edge changes, while
approximating cut queries

The Right goal?

• Goal: satisfy (²,±)-privacy w.r.t edge changes,
while approximating cut queries

3

?

• Cuts help in divide-and-conquer
• Cuts – communities and clustering

‒ Need extra info: avg degree in subgraph
• Error: max-error over all cuts

 maxS2Q |©G(S) - answer(S)|
• Helps in making qualitative observations???

‒ You tell me / us!

Differential Privacy

• n people

• Neighboring datasets:

– x changes

4

[DMNS06, DKMMN06]

Name PhD? … STD?

Or Sheffet +1 … -1

D

Name PhD? … STD?

??? ??? ?? ?

D’

• Def:

• The basic mechanism: Given f, answer:

5

S

Differential Privacy

• Def:

• The basic mechanism: Given f, answer:

6

Differential Privacy

What can we do
when GS(f) is big?

How to answer
f1, f2, …, ft?

[DVR10] –noise proportional to √t

[BLR08, HR10] –
inefficient/efficient technique to
answer general/linear queries
with noise proportional to log(t)

Graphs = Matrices

• Goal: satisfy (²,±)-privacy w.r.t edge changes,
while approximating cut queries

• AG adjacency-matrix

7

?

0 a

b

1

0

1

b

a

b’

b’

Adjacency Matrix and Cuts

8

0 a

b

1

0

1

b

a

b’

b’

1
1
1
1
0
0
0

1T

0 0 0 0 1 1 1 1 0 1 0 1

1S

=

Release A’ that approximates A well w.r.t cut-norm:

Graphs = Matrices

• Goal: satisfy (²,±)-privacy w.r.t edge changes,
while approximating cut queries

• EG Edge-matrix

9

?

0 … 0 1 … 0 … -1 … 0

n

0 … 0 … … … … … 0 {a,b}

n

2

æ

è
ç

ö

ø
÷

Graphs = Matrices

• Goal: satisfy (²,±)-privacy w.r.t edge changes,
while approximating cut queries

• EG Edge-matrix

• LG = EG
TEG (PSD)

10

?

n

a

b

b

a

dega -1

-1 degb

Edge Matrix and Cuts

• Indeed, 1S
TLG1T is the value of the (S,T)-cut – but caution:

• Approximating (S,S̅) cuts = approximate vector lengths.

• Approximating (S,T) cuts = approximating dot-products (for large vectors!)

0 … 0 1 … 0 … -1 … 0

0 … 0 … … … … … 0

{a,b}

1
1
1
1
0
0
0

0
0
1
0
0
-1
0
0
0
0

=

EG
1S

EG1S

11

Straw-Man Algorithm #1

• Given t queries, S1, S2, …, St, answer each one
with small additive noise.

– Good: efficient; adaptive; non-restricted queries

– Bad: t < ²n4

• If error=O(n/²), then t ¼ (n2/²)

Straw-Man Algorithm #2

• Use exponential mechanism [MT07, BLR08]

• Scoring function: sc(M,G)=maxS |©G(S)-©M(S)|
– Over adjacency matrices:

• 2n2
 matrices) error ¼ n2/²

– Over Laplacians:
• 2n2

 edge-matrices) error ¼ n2/²

• 2nlog(n)/´2
 sparsifiers) error(S) ¼ nlog(n)/² + ´ ©(S)

– Good: low error, non-restricted queries.

– Bad: Non efficient.

Here’s where we restrict
outselves to (S,S ̅) cuts

Straw-Man Algorithm #3

• Use Private Multiplicative Weights [HR10,GRU12] (or
other iterative) mechanism
– Over edges = coordinates of the adjacency matrices

• Universe size of O(n2) (each update step take poly-time)

– Start with M = uniform adjacency matrix
– Per query in Q:

• Either tell user “answer according to M”

• Or tell user “update using the query & private answer a”

– Error of O(|E| |V|/²)1/2 or O(|E| log(|Q|)/²)1/2
– Good: low error (for sparse graphs)
– Bad: Non efficient

– Q: Possible to find update-queries efficiently and privately?

Crux: #“update” is
bounded;
Non-updates hardly
leak privacy

THE Open Question

• Efficient algorithm that answers all cut-queries with
error=O(nlog(n))
– Best known to date: n3/2

• For the general case (any graph, any cut-query)

• Or just for sparse cuts? (with |S| · s)

– Best known to date: s3/2

• Or just for sparse graphs? (with |E|=O(|V|))

– Best known to date: with Q of poly-size. (PMW-mechanism)

• PLEASE(!) break the n3/2 barrier

Rest of this Talk

1. Getting n3/2 via Randomized Response [GRU12]

2. Getting s3/2 for cuts of size s [DTTZ14]

3. Better bounds for better graphs [BBDS12]

– When all eigenvalues of the Laplacian are large

4. Approximating the PCA [DDTZ14]+[HR13, H14]

– Spectral gap (¾k+1 À ¾k) and {v1 … vk} capture many
cut-queries

– Better guarantees for incoherent matrices

1. Randomized Response ~[GRU12]

18

a

a

1

b

b

-1

Algorithm:
Fill adjacency matrix with 1,-1 iid,

Utility:

Privacy:

1

-1

b’

For all queries:
• s = n/2
• º = 1/2s

Hence the n3/2 bound

2. Laplacian Perturbation [DTTZ14]

19

Algorithm:
Additive random (Gaussian) noise of
O(1/²) for each entry in the Laplacian

Utility:
) expected error of a single query = O(s/²)

) w.h.p all ns cut have error O(s3/2log(n)/²)

Privacy:
Each entry changes by · 1

n

a

b

b

a

dega -1

-1 degb

0 … 0 1 … 0 … -1 … 0

0 … 0 … … … … … 0

1
1
1
1
0
0
0

0
0
1
0
0
-1
0
0
0
0

=

EG
1S

EG1S

20

M

3. Johnson-Lindenstrauss [BBDS12]

r

EG, EG’ – two neighboring edge-matrices
guaranteed to have singular values (log(1/±)/²)

R – a row in the JL matrix

 (iid coordinates » (0,1)-Gaussian)

 #rows ¼ log(#Queries)/´2

) singular values ¸

 ((√#rows)¢log(1/±)/²) = ((√log(#Queries))¢log(1/±)/²´)

JL Mechanism - Main Theorem

26

4. PCA of a Matrix

• Cut-queries – a private case of a matrix (LG) operating on a vector (1S)
• PCA: Given LG output M of rank k s.t. we minimize

• Non-privately – the top-k eigenvectors of LG
• We would like to be as close to these k vectors as possible
• All works assume:

– General matrices
– Neighboring matrices – a single entry differs by at most 1

• Doesn’t necessarily imply we give good answers to all / many cuts…

– Query vector should have large weight on subspace spanned by top-k
eigenvectors
• A user can find it out

– And we should have a large gap ¾k > ¾k+1

• We can release this information privately

PCA of a Matrix [DTTZ14]

• Algorithm:
– M = LG + noise(1/²) per entry
– Output u1, u2, …, uk – top-k eigenvectors of M

• Analysis:
– Notation: v1, v2, … vk – top-k eigenvectors of LG

– u1
TMu1 ¸ v1

TMv1 = v1
T(LG + noise(1/²))v1 = ¾1 + E[noise]

– u1
TMu1 · u1

TLGu1 + E[max-noise(1/²)]
–) u1

TLGu1 ¸ ¾1 - O(√n/²)

– For k>1

 uk
TMuk = maxS:dim=k minx2S xTMx

 ¸ minx2span{v1, … vk} xTMx

 = min x2span{v1, … vk} xTLGx - min x2span{v1, … vk} xT[noise]x
–) uk

TLGuk ¸ ¾k - O(√n+√k)/²)

PCA of a Matrix [HR13, H14]

• Release leading eigenvector via power iterations:

PCA of a Matrix [HR13, H14]

• Private power iterations

• In general – roughly same guarantees
– x* T LG x* ¸ ¾1 - O(√n/²)

• Denote SVD LG = UT§ U

• HR main observation: suffices to use noise / ||U||12

– ||xt||1 · ||U||1 w.h.p
– So adding Noise of (√#Iterations)¢coherence/² per coordinate

should maintain privacy in all power-iterations
– Error = O(√n ||U||1/²)

– Optimal noise: matching lower bound.

• To get a rank-k approximation:

– Run power-iteration k times

• At time i, approx first eigenvector of LG-j=1
i-1 ¾j vjvj

T

– Gives error of O(k2(n¢coherence+√k)/²)

– Run power iteration for a n£k matrix

– Gives error of O(√(nk)||U ||1¾1/¾k ²)

PCA of a Matrix [HR13, H14]

Summary
• We know:

– Efficiently answer all cut-queries with error=n3/2
– Inefficiently answer all cut-queries with error=nlog(n)

– Efficiently answer all s-sparse cut-queries with error=s3/2
– Inefficiently answer all s-sparse cut-queries with error=(|E|s)1/2

– Efficiently answer many-cut queries for nice graphs
– Efficiently compute PCA of any matrix with error of error=√n
– Efficiently compute PCA of incoherent matrices with error=√n||U||1

• We don’t know:
– Efficiently answer all cut-queries with error error=nlog(n)
– Efficiently answer all s-sparse cut-queries with error=(ns)1/2
– Other notions of “niceness”

 Thank you!

