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Privacy in Graphs 

Neighboring graphs: 

Differ on a single edge 
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• Goal: satisfy (²,±)-privacy 
w.r.t edge changes, while 
approximating cut queries  

 



The Right goal? 

• Goal: satisfy (²,±)-privacy w.r.t edge changes, 
while approximating cut queries  
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? 

• Cuts help in divide-and-conquer 
• Cuts – communities and clustering  

‒ Need extra info: avg degree in subgraph 
• Error: max-error over all cuts 

 maxS2Q |©G(S) - answer(S)| 
• Helps in making qualitative observations??? 

‒ You tell me / us! 



Differential Privacy 

• n people 

• Neighboring datasets: 

– x changes 
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[DMNS06, DKMMN06] 

Name      PhD? …             STD? 

Or Sheffet      +1    …       -1 

D 

Name     PhD?         …              STD? 

??? ??? ?? ? 

D’ 



• Def:  

• The basic mechanism: Given f, answer: 
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Differential Privacy 



• Def:  

• The basic mechanism: Given f, answer: 
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Differential Privacy 

What can we do 
when GS(f) is big? 

How to answer 
f1, f2, …, ft? 

[DVR10] –noise proportional to √t 

[BLR08, HR10] – 
inefficient/efficient technique to 
answer general/linear queries 
with noise proportional to log(t) 



Graphs = Matrices 

• Goal: satisfy (²,±)-privacy w.r.t edge changes, 
while approximating cut queries  

• AG adjacency-matrix 
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Adjacency Matrix and Cuts 
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Release A’ that approximates A well w.r.t cut-norm: 
  
 
 



Graphs = Matrices 

• Goal: satisfy (²,±)-privacy w.r.t edge changes, 
while approximating cut queries  

• EG Edge-matrix 
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Graphs = Matrices 

• Goal: satisfy (²,±)-privacy w.r.t edge changes, 
while approximating cut queries  

• EG Edge-matrix 

• LG = EG
TEG    (PSD) 
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Edge Matrix and Cuts 

• Indeed, 1S
TLG1T is the value of the (S,T)-cut – but caution: 

• Approximating (S,S̅) cuts = approximate vector lengths. 

• Approximating (S,T) cuts = approximating dot-products (for large vectors!) 
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Straw-Man Algorithm #1 

• Given t queries, S1, S2, …, St, answer each one 
with small additive noise. 

– Good: efficient; adaptive; non-restricted queries 

– Bad: t < ²n4 

• If error=O(n/²), then t ¼ (n2/²) 

 



Straw-Man Algorithm #2 

• Use exponential mechanism [MT07, BLR08] 

• Scoring function: sc(M,G)=maxS |©G(S)-©M(S)| 
– Over adjacency matrices: 

• 2n2
 matrices ) error ¼ n2/² 

– Over Laplacians: 
• 2n2

 edge-matrices ) error ¼ n2/² 

• 2nlog(n)/´2
 sparsifiers ) error(S) ¼ nlog(n)/² + ´ ©(S) 

– Good: low error, non-restricted queries. 

– Bad: Non efficient. 

Here’s where we restrict 
outselves to (S,S ̅) cuts 



Straw-Man Algorithm #3 

• Use Private Multiplicative Weights [HR10,GRU12] (or 
other iterative) mechanism 
– Over edges = coordinates of the adjacency matrices 

• Universe size of O(n2) (each update step take poly-time) 

– Start with M = uniform adjacency matrix 
– Per query in Q:  

• Either tell user “answer according to M” 

• Or tell user “update using the query & private answer a” 

– Error of  O(|E| |V|/²)1/2 or  O(|E| log(|Q|)/²)1/2  
– Good: low error (for sparse graphs) 
– Bad: Non efficient 

 
– Q: Possible to find update-queries efficiently and privately? 

Crux: #“update” is 
bounded; 
Non-updates hardly 
leak privacy   



THE Open Question 

• Efficient algorithm that answers all cut-queries with 
error=O(nlog(n)) 
– Best known to date: n3/2 

• For the general case (any graph, any cut-query) 

 
• Or just for sparse cuts?  (with |S| · s ) 

– Best known to date: s3/2 

 
• Or just for sparse graphs?  (with |E|=O(|V|)) 

– Best known to date: with Q of poly-size. (PMW-mechanism) 

 

•  PLEASE(!) break the n3/2 barrier 



Rest of this Talk 

1. Getting n3/2 via Randomized Response [GRU12] 

2. Getting s3/2 for cuts of size s  [DTTZ14] 

3. Better bounds for better graphs [BBDS12] 

– When all eigenvalues of the Laplacian are large 

4. Approximating the PCA [DDTZ14]+[HR13, H14] 

– Spectral gap (¾k+1 À ¾k) and {v1 … vk} capture many 
cut-queries 

– Better guarantees for incoherent matrices 

 

 

 



1. Randomized Response ~[GRU12] 
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Algorithm: 
Fill adjacency matrix with 1,-1 iid, 

Utility: 

Privacy: 

1 

-1 

b’ 

For all queries: 
• s = n/2  
• º = 1/2s 

Hence the n3/2 bound 



2. Laplacian Perturbation [DTTZ14] 
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Algorithm: 
Additive random (Gaussian) noise of 
O(1/²) for each entry in the Laplacian 

Utility: 
    ) expected error of a single query = O(s/²) 

    ) w.h.p all ns cut have error O(s3/2log(n)/²) 

                     

Privacy: 
Each entry changes by · 1  
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3. Johnson-Lindenstrauss [BBDS12]  
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EG, EG’ – two neighboring edge-matrices 
guaranteed to have singular values (log(1/±)/²) 

R – a row in the JL matrix 

 (iid coordinates » (0,1)-Gaussian) 

 

 
 #rows ¼ log(#Queries)/´2  

 ) singular values ¸  

  ((√#rows)¢log(1/±)/²) = ((√log(#Queries))¢log(1/±)/²´) 

JL Mechanism - Main Theorem 
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4. PCA of a Matrix 

• Cut-queries – a private case of a matrix (LG) operating on a vector (1S) 
• PCA: Given LG output M of rank k s.t. we minimize 

 
 
 

• Non-privately – the top-k eigenvectors of LG 
• We would like to be as close to these k vectors as possible 
• All works assume: 

– General matrices 
– Neighboring matrices – a single entry differs by at most 1 

 
• Doesn’t necessarily imply we give good answers to all / many cuts… 

– Query vector should have large weight on subspace spanned by top-k 
eigenvectors 
• A user can find it out 

– And we should have a large gap ¾k > ¾k+1 

• We can release this information privately 

 



PCA of a Matrix [DTTZ14] 

• Algorithm: 
– M = LG + noise(1/²) per entry 
– Output u1, u2, …, uk – top-k eigenvectors of M 

• Analysis: 
– Notation: v1, v2, … vk – top-k eigenvectors of LG 

– u1
TMu1 ¸ v1

TMv1 = v1
T(LG + noise(1/²))v1 = ¾1 + E[noise] 

– u1
TMu1 · u1

TLGu1  + E[max-noise(1/²) ] 
–  ) u1

TLGu1 ¸ ¾1 - O(√n/²) 

 
– For k>1 

 uk
TMuk = maxS:dim=k minx2S xTMx  

  ¸ minx2span{v1, … vk} xTMx 

  = min x2span{v1, … vk} xTLGx - min x2span{v1, … vk} xT[noise]x 
–  ) uk

TLGuk ¸ ¾k - O(√n+√k)/²) 

 



PCA of a Matrix [HR13, H14] 

• Release leading eigenvector via power iterations: 

 



PCA of a Matrix [HR13, H14] 

• Private power iterations 
 

• In general – roughly same guarantees 
–  x* T LG x* ¸ ¾1 - O(√n/²) 

 
• Denote SVD LG = UT§ U 

• HR main observation: suffices to use noise / ||U||12 

– ||xt||1 · ||U||1 w.h.p 
– So adding Noise of (√#Iterations)¢coherence/² per coordinate 

should maintain privacy in all power-iterations 
– Error  = O(√n ||U||1/²) 

– Optimal noise: matching lower bound. 



• To get a rank-k approximation: 

– Run power-iteration k times 

• At time i, approx first eigenvector of LG-j=1
i-1 ¾j vjvj

T 

– Gives error of O(k2(n¢coherence+√k)/²) 

 

– Run power iteration for a n£k matrix 

– Gives error of O(√(nk)||U ||1¾1/¾k ²) 

PCA of a Matrix [HR13, H14] 



Summary 
• We know: 

– Efficiently answer all cut-queries with error=n3/2 
– Inefficiently answer all cut-queries with error=nlog(n) 

– Efficiently answer all s-sparse cut-queries with error=s3/2 
– Inefficiently answer all s-sparse cut-queries with error=(|E|s)1/2 

– Efficiently answer many-cut queries for nice graphs 
– Efficiently compute PCA of any matrix with error of error=√n 
– Efficiently compute PCA of incoherent matrices with error=√n||U||1 

• We don’t know: 
– Efficiently answer all cut-queries with error error=nlog(n) 
– Efficiently answer all s-sparse cut-queries with error=(ns)1/2 
– Other notions of “niceness” 

 Thank you! 


