Differential Privacy [and Analysis of Social Networks]

Kobbi Nissim

BGU/Harvard/BU

Charles River Workshop on Private Analysis of Social Networks
May 2014
Data Privacy - The Problem

- **Given:**
 - A dataset with sensitive information

- **How to:**
 - Compute and release functions of the dataset without compromising individual privacy
DATA PRIVACY - THE PROBLEM

- **Given:**
 - A dataset with sensitive information
- **How to:**
 - Compute and release functions of the dataset without compromising individual privacy

Diagram:

- **Individuals** sending data to **Server/agency** which computes and releases functions of the dataset.
- **Users** (Government, researchers, businesses (or) Malicious adversary) are the ones querying for answers.
Age of Miss America compared with Murders by steam, hot vapours and hot objects
DATA PRIVACY - THE PROBLEM

Given:
- A dataset with sensitive information

How to:
- Compute and release functions of the dataset without compromising individual privacy

![Diagram of data privacy problem]

- **Individuals**
 - x_1
 - x_2
 - \vdots
 - x_n

- **Server/agency**

- **Users**
 - Government, researchers, businesses (or)
 - Malicious adversary

- **Queries**
- **Answers**
Data Privacy - The Problem

- **Given:**
 - A dataset with sensitive information

- **How to:**
 - Compute and release functions of the dataset without compromising individual privacy

![Diagram of data privacy problem]

Database X: $x_1, x_2, x_3, \ldots, x_{n-1}, x_n$

Server/agency

Users:
- Government, researchers, businesses
- (or)
- Malicious adversary

Server/agency answers queries from Users.
Data Privacy - The Problem

- **Given:**
 - A dataset with sensitive information

- **How to:**
 - Compute and release functions of the dataset without compromising individual privacy

![Diagram](www.perey.com)
Yes, This Has Been Asked Before
YES, THIS HAS BEEN ASKED BEFORE

- Traditional approaches:
 - Anonymization, redaction, auditing, noise addition, synthetic data, ...
 - Still in use
 - Accumulating litany of attacks and failures
Yes, This Has Been Asked Before

- Traditional approaches:
 - Anonymization, redaction, auditing, noise addition, synthetic data, ...
 - Still in use
 - Accumulating litany of attacks and failures

- Lack of rigor leads to unforeseen breaks
YES, THIS HAS BEEN ASKED BEFORE

- Traditional approaches:
 - Anonymization, redaction, auditing, noise addition, synthetic data, ...
 - Still in use
 - Accumulating litany of attacks and failures

- Lack of rigor leads to unforeseen breaks
- Privacy protection is unlike other ‘incremental’ algorithmic endeavors
 - Information cannot be “de-leaked”, breaks are forever
Aggregate Computations and Privacy

- Aren't releases of "global" information safe?
 - Statistics, machine learning, ...
 - Don’t I “hide in the crowd”?
 Aren’t releases of “global” information safe?
 - Statistics, machine learning, …
 - Don’t I “hide in the crowd”?

“Global” goal can depend on a few specific values
 - Not uncommon, e.g., Support Vector Machines
Aggregate Computations and Privacy

- Aren’t releases of “global” information safe?
 - Statistics, machine learning, ...
 - Don’t I “hide in the crowd”?
- “Global” goal can depend on a few specific values
 - Not uncommon, e.g., Support Vector Machines
- Composition
 - Compute average salary before/after professor resigns
Aren’t releases of “global” information safe?
- Statistics, machine learning, ...
- Don’t I “hide in the crowd”?

“Global” goal can depend on a few specific values
- Not uncommon, e.g., Support Vector Machines

Composition
- Compute average salary before/after professor resigns

Statistics may together encode sensitive info
- Too many, “too accurate” stats ⇒ reconstruct the data
- Robust even to fairly significant noise
How to compute aggregates ...
DATA PRIVACY - THE PROBLEM
[REFORMULATED FOR TODAY’S PURPOSES]

How to compute aggregates ...

... while controlling the leakage of individual information
What is differential privacy
 - Differential privacy for graph data - edge/node privacy

Interpretations of the definition

Basic properties

Basic techniques
Differential Privacy

- Changes to my data (almost) unnoticeable in outcome
 - I can claim that my data is different from what it really is (deniability)
Differential Privacy

- Changes to my data (almost) unnoticeable in outcome
 - I can claim that my data is different from what it really is (deniability)

- Omission/inclusion of my data (almost) unnoticeable in outcome
 - As if I chose to opt out
Differential Privacy

- Changes to my data (almost) unnoticeable in outcome
 - I can claim that my data is different from what it really is (deniability)

- Omission/inclusion of my data (almost) unnoticeable in outcome
 - As if I chose to opt out

- My data?
 - Record containing my information in a database
DIFFERENTIAL PRIVACY

- Changes to my data (almost) unnoticeable in outcome
 - I can claim that my data is different from what it really is (deniability)

- Omission/inclusion of my data (almost) unnoticeable in outcome
 - As if I chose to opt out

- My data?
 - Record containing my information in a database
 - Graph data: edge/node
Neighboring Inputs

What Should Be Protected?

- Inputs are neighboring if they differ on the data of a single individual
 - **Record privacy:** Databases X, X' neighboring if differ on one record
Neighboring Inputs

[What Should Be Protected?]

- Inputs are neighboring if they differ on the data of a single individual
 - **Record privacy:** Databases X, X' neighboring if differ on one record
 - **Edge privacy:** graphs G, G' neighboring if differ on one edge

Image credit: www.perey.com
NEIGHBORING INPUTS

[**WHAT SHOULD BE PROTECTED?**]

- Inputs are neighboring if they differ on the data of a single individual
 - **Record privacy**: Databases X, X' neighboring if differ on one record
 - **Edge privacy**: graphs G, G' neighboring if differ on one edge
 - **Node privacy**: graphs G, G' neighboring if differ on one node and its adjacent edges

Image credit: www.perey.com
DIFFERENTIAL PRIVACY
[DMNS 06]
A is **differentially private if**

- for all neighboring G, G'
- given A’s outcome, privacy attacker cannot guess whether input was G or G'

![Diagram showing the process](image)
A is differentially private if

- for all neighboring G, G'
- for all subsets S of outputs
 \[\Pr[A(G) \in S] \approx \Pr[A(G') \in S] \]
Differential Privacy

[DMNS 06]

- A is ε-differentially private if
 - for all neighboring G, G'
 - for all subsets S of outputs
 \[
 \Pr[A(G) \in S] \leq e^\varepsilon \cdot \Pr[A(G') \in S]
 \]
Differential Privacy

[DMNS 06]

- A is ϵ-differentially private if
 - for all neighboring G, G'
 - for all subsets S of outputs
 \[\Pr[A(G) \in S] \leq e^\epsilon \cdot \Pr[A(G') \in S] \]

Notes:
- DP is a property of the algorithm A
 - No sense in saying that a particular output preserves privacy - relationship between input and output is what matters
Differential Privacy
[DMNS 06]

• A is ε-differentially private if
 o for all neighboring G, G'
 o for all subsets S of outputs

$$\Pr[A(G) \in S] \leq e^\varepsilon \cdot \Pr[A(G') \in S]$$

Notes:
• DP is a property of the algorithm A
 o No sense in saying that a particular output preserves privacy - relationship between input and output is what matters
• The parameter ε measures 'leakage' or 'harm' (more later).
 o Not negligible. Think $\varepsilon \approx \frac{1}{100}$ or $\varepsilon \approx \frac{1}{10}$ not $\varepsilon \approx 2^{-80}$
Differential Privacy
[DMNS 06]

- A is ε-differentially private if
 - for all neighboring G, G'
 - for all subsets S of outputs
 \[\Pr[A(G) \in S] \leq e^{\varepsilon} \cdot \Pr[A(G') \in S] \]

Notes:
- DP is a property of the algorithm A
 - No sense in saying that a particular output preserves privacy - relationship between input and output is what matters
- The parameter ε measures ‘leakage’ or ‘harm’ (more later).
 - Not negligible. Think $\varepsilon \approx \frac{1}{100}$ or $\varepsilon \approx \frac{1}{10}$ not $\varepsilon \approx 2^{-80}$
- Choice of distance measure (max log ratio) not accidental
Basic Properties Of Differential Privacy

- Post processing:
 - If A is ϵ-dp then $B \circ A$ is ϵ-dp for all B
Basic Properties Of Differential Privacy

Post processing:
- If A is ε-dp then $B \circ A$ is ε-dp for all B.

Composition:
- A_1, A_2: ε-dp then (A_1, A_2) is 2ε-dp.
 - More efficient composition theorems exist w.r.t. a relaxation of differential privacy.
Basic Properties Of Differential Privacy

- **Post processing:**
 - If A is ε-dp then $B \circ A$ is ε-dp for all B

- **Composition:**
 - A_1, A_2: ε-dp then (A_1, A_2) is 2ε-dp.
 - More efficient composition theorems exist w.r.t. a relaxation of differential privacy
 - t executions of ε-dp private mechanisms are
 $$\approx \sqrt{t\varepsilon}$$-dp
INTERPRETING DIFFERENTIAL PRIVACY

- A naïve hope: Your beliefs about me are the same after you see the output as they were before.
INTERPRETING DIFFERENTIAL PRIVACY

- A naïve hope: Your beliefs about me are the same after you see the output as they were before.

- Suppose I smoke in public
 - A public health study could teach that I am at risk for cancer.
 - But it didn’t matter whether or not my data was part of it.
INTERPRETING DIFFERENTIAL PRIVACY

- A naïve hope: Your beliefs about me are the same after you see the output as they were before.

- Suppose I smoke in public
 - A public health study could teach that I am at risk for cancer.
 - But it didn’t matter whether or not my data was part of it.

- Theorem [Dwork Naor 06]: Learning things about individuals is unavoidable in the presence of arbitrary external information.
Interpreting Differential Privacy

- Compare \(x = (x_1, x_2, ..., x_i, ..., x_n) \) to \(x_{-i} = (x_1, x_2, ..., \perp, ..., x_n) \)

- \(A \) is \(\varepsilon \)-differentially private if for all vectors \(x \) and for all \(i \): \(A(x) \approx \varepsilon \ A(x_{-i}) \).
INTERPRETING DIFFERENTIAL PRIVACY

- **Compare** $x = (x_1, x_2, ..., x_i, ..., x_n)$
 to $x_{-i} = (x_1, x_2, ..., \bot, ..., x_n)$

- **A is ε-differentially private if for all vectors x**
 and for all i: $A(x) \approx _\varepsilon A(x_{-i})$.

- **No matter what you know ahead of time, you learn (almost) the same things about me whether or not my data are used.**
Interpreting Differential Privacy

- **Compare** $x = (x_1, x_2, ..., x_i, ..., x_n)$ to $x_{-i} = (x_1, x_2, ..., \perp, ..., x_n)$

- **A is ε-differentially private if for all vectors x and for all i:** $A(x) \approx \varepsilon A(x_{-i})$.

- **For any non-negative function p of the outcome,**
 \[E[p(A(x))] \leq e^\varepsilon \cdot E[p(A(x'))] \]
INTERPRETING DIFFERENTIAL PRIVACY

- Compare $x = (x_1, x_2, ..., x_i, ..., x_n)$ to $x_{-i} = (x_1, x_2, ..., \bot, ..., x_n)$

- A is ε-differentially private if for all vectors x and for all i: $A(x) \approx _{\varepsilon} A(x_{-i})$.

- For any non-negative function p of the outcome,
 \[E[p(A(x))] \leq e^\varepsilon \cdot E[p(A(x'))] \]
 - Let p = my insurance premium
 - My expected premium almost does not change whether I participate in A or not!
THINGS TO NOTE ABOUT DIFFERENTIAL PRIVACY

- May not protect sensitive global information, e.g.
 - Clinical data: Smoking and cancer
 - Financial transactions: firm-level trading strategies
 - Genomic data: information about me may be revealed if enough of my family members participate
 - Social data: what if my presence affects everyone else?
Things to Note About Differential Privacy

- May not protect sensitive global information, *e.g.*
 - Clinical data: Smoking and cancer
 - Financial transactions: firm-level trading strategies
 - Genomic data: information about me may be revealed if enough of my family members participate
 - Social data: what if my presence affects everyone else?
 - Bug of feature?
THINGS TO NOTE ABOUT DIFFERENTIAL PRIVACY

- **May not protect sensitive global information, e.g.**
 - Clinical data: Smoking and cancer
 - Financial transactions: firm-level trading strategies
 - Genomic data: information about me may be revealed if enough of my family members participate
 - Social data: what if my presence affects everyone else?
 - **Bug of feature?**

- **Leakage accumulates with composition**
 - \(\varepsilon \) adds up with many releases
 - Very unlikely what is usual in crypto
 - Inevitable in some form (reconstruction attacks)
THINGS TO NOTE ABOUT DIFFERENTIAL PRIVACY

- May not protect sensitive global information, e.g.
 - Clinical data: Smoking and cancer
 - Financial transactions: firm-level trading strategies
 - Genomic data: information about me may be revealed if enough of my family members participate
 - Social data: what if my presence affects everyone else?
 - Bug of feature?

- Leakage accumulates with composition
 - ϵ adds up with many releases
 - Very unlike what is usual in crypto
 - Inevitable in some form (reconstruction attacks)
 - How to set ϵ?
Variations on Differential Privacy

- Predecessors [DDN’03, EGS’03, DN’04, BDMN’05]

- (ϵ, δ)-differential privacy [DKMMN’05]
 - Require $\Pr[A(x) \in S] \leq e^\epsilon \Pr[A(x') \in S] + \delta$
 - Similar semantics to $(\epsilon,0)$-differential privacy when $\delta \ll 1/\text{poly}(n)$
 - Allows for improved utility

- Computational variants [MPRV09, MMPRTV’10].

- Distributional variants [RHMS’09, BBGLT’11, BGKS’13].
 - Assume something about adversary's prior distribution.
 - Deterministic releases.
 - Poor composition guarantees.

- Generalizations.
 - [BLR’08, GLP’11] simulation-based definitions.

- Crowd-blending privacy [GHLP’12].
EXAMPLE: COUNTING EDGES
[THE BASIC TECHNIQUE]

- $f(G) = \sum e_{ij}$ where $e_{ij} \in \{0,1\}$
Example: Counting Edges
[The Basic Technique]

- \(f(G) = \Sigma e_{ij} \) where \(e_{ij} \in \{0,1\} \)
- **Algorithm:** On input \(G \) return \(f(G) + Y \), where \(Y \sim Lap(\frac{1}{\varepsilon}) \)

- Laplace Distribution:
 - \(E[Y] = 0; \sigma[Y] = \sqrt{2}/\varepsilon \)

\[
h(y) = \frac{\varepsilon}{2} e^{-\varepsilon |y|}
\]
Example: Counting Edges

The Basic Technique

- $f(G) = \sum e_{ij}$ where $e_{ij} \in \{0,1\}$
- **Algorithm**: On input G return $f(G) + Y$, where $Y \sim Lap\left(\frac{1}{\epsilon}\right)$

Laplace Distribution:
- $E[Y] = 0$; $\sigma[Y] = \sqrt{2}/\epsilon$
- Sliding property: $\frac{h(y)}{h(y+1)} \leq e^{\epsilon}$

$$h(y) = \frac{\epsilon}{2} e^{-\frac{\epsilon}{2} |y|}$$
Example: Counting Edges

[The Basic Technique]

- \(f(G) = \sum e_{ij} \) where \(e_{ij} \in \{0,1\} \)
- **Algorithm:** On input \(G \) return \(f(G) + Y \), where \(Y \sim \text{Lap}(\frac{1}{\varepsilon}) \)

Laplace Distribution:
- \(E[Y] = 0; \sigma[Y] = \sqrt{2}/\varepsilon \)
- **Sliding property:** \(\frac{h(y)}{h(y+1)} \leq e^\varepsilon \)

For \(G, G' \) edge neighboring:

\[
|f(G) - f(G')| = \left| \sum_{ij} e_{ij} - \sum_{ij} e'_{ij} \right| \leq 1
\]
Framework of Global Sensitivity [DMNS06]

- $GS_f = \max |f(G) - f(G')|_1$ taken over neighboring G, G'

- Theorem [DMNS06]:
 - $A(G) = f(G) + \text{Lap}^d \left(\frac{GS_f}{\epsilon} \right)$ is ϵ-differentially private
Framework of Global Sensitivity

\[GS_f = \max |f(G) - f(G')|_1 \text{ taken over neighboring } G, G' \]

\[A(G) = f(G) + \text{Lap}^d \left(\frac{GS_f}{\epsilon} \right) \]

- Many natural functions have low global sensitivity
 - e.g., histogram, mean, covariance matrix, distance to a function, estimators with bounded “sensitivity curve”, strongly convex optimization problems.
FRAMEWORK OF GLOBAL SENSITIVITY

\[GS_f = \max |f(G) - f(G')|_1 \text{ taken over neighboring } G, G' \]

\[A(G) = f(G) + \text{Lap}^d \left(\frac{GS_f}{\epsilon} \right) \]

- Many natural functions have low global sensitivity
 - e.g., histogram, mean, covariance matrix, distance to a function, estimators with bounded “sensitivity curve”, strongly convex optimization problems.

- Laplace mechanism can be a programming interface [BDMN '05].
 - Implemented in several systems [McSherry '09, Roy et al. '10, Haeberlen et al. '11, Moharan et al. '12].
Edge vs. Node Privacy - Counting Edges

\[GS_f = \max |f(G) - f(G')|_1 \text{ taken over neighboring } G, G' \]

\[A(G) = f(G) + \text{Lap}^d\left(\frac{GS_f}{\epsilon}\right) \]

- Counting edges: \(f(G) = \sum e_{ij} \text{ where } e_{ij} \in \{0,1\} \)
- Edge privacy: \(GS_f = 1, \text{ noise } \sim \frac{1}{\epsilon} \)
- Node privacy: \(GS_f = n, \text{ noise } \sim \frac{n}{\epsilon} \)
Edge vs. Node Privacy - Counting Edges

\[G_S f = \max |f(G) - f(G')|_1 \text{ taken over neighboring } G, G' \]

\[A(G) = f(G) + \text{Lap}^d \left(\frac{G_S f}{\epsilon} \right) \]

- **Counting edges:** \(f(G) = \sum e_{ij} \) where \(e_{ij} \in \{0,1\} \)
- **Edge privacy:** \(G_S f = 1 \), noise \(\sim \frac{1}{\epsilon} \)
- **Node privacy:** \(G_S f = n \), noise \(\sim \frac{n}{\epsilon} \)

- **Degree distribution??**
GLOBAL VS. LOCAL SENSITIVITY

Database Space

Range(f)

(Distribr/s on) Output Space
GLOBAL VS. LOCAL SENSITIVITY

Database Space \(X \) Range(\(f \)) (Distribs on) Output Space

\(f(X) \) \(A(X) \)
GLOBAL VS. LOCAL SENSITIVITY

Database Space Range(f) (Distribbs on) Output Space

X $f(X)$ $A(X)$
GLOBAL VS. LOCAL SENSITIVITY

Database Space → Range(f) → (Distribrbs on) Output Space

$X \rightarrow f(X) \rightarrow A(X)$
Global vs. Local Sensitivity

$LS_f (X) = \max_{X' \text{neighbor of } X} |f(X) - f(X')|_1$
Global vs. Local Sensitivity

Database Space | Range(\(f\)) | (Distrib on) Output Space

\[\frac{L S_f (X)}{X} = \max_{X \text{ neighbor of } X} |f(X) - f(X')|_1 \]

\[GS_f = \max_X LS_f (X) \]
Global vs. Local Sensitivity

- $LS_f(X) = \max_{x' \text{ neighbor of } x} |f(X) - f(X')|_1$
- $GS_f = \max_X LS_f(X)$
- [NRS'07,DL'09] Techniques with error \approx local sensitivity
Exponential Sampling [MT07]

- $x_i = \{\text{books read by } i \text{ this year}\}$, $Y = \{\text{book names}\}$
- “Score” of $y \in Y$: $q(y, x) = \#\{i: y \in x_i\}$
- **Goal**: output book read by most
Exponential Sampling [MT07]

- \(x_i = \{\text{books read by } i \text{ this year}\}, \ Y = \{\text{book names}\} \)
- “Score” of \(y \in Y \): \(q(y, x) = \#\{i: y \in x_i\} \)
- **Goal**: output book read by most

- **Mechanism**: given \(x \), output book name \(y \) with probability prop to \(\exp\left(\frac{\xi}{2} \cdot q(y, x)\right) \)
Exponential Sampling [MT07]

- $x_i = \{\text{books read by } i \text{ this year}\}$, $Y = \{\text{book names}\}$
- "Score" of $y \in Y$: $q(y, x) = \#\{i: y \in x_i\}$
- **Goal**: output book read by most

- **Mechanism**: given x, output book name y with probability prop to $\exp\left(\frac{\varepsilon}{2} \cdot q(y, x)\right)$

- **Claim**: Mechanism is ε-differentially private
Exponential Sampling [MT07]

- $x_i = \{\text{books read by } i \text{ this year}\}$, $Y = \{\text{book names}\}$
- “Score” of $y \in Y$: $q(y, x) = \# \{i: y \in x_i\}$
- **Goal**: output book read by most

- **Mechanism**: given x, output book name y with probability prop to $\exp\left(\frac{\epsilon}{2} \cdot q(y, x)\right)$

- **Claim**: Mechanism is ϵ-differentially private

- **Claim**: If most popular website has score $T = \max_{y \in Y} q(y, x)$, then $E[q(y_0, x)] \geq t - O\left(\frac{\log|Y|}{\epsilon}\right)$
APPLICATIONS OF EXPONENTIAL SAMPLING

• Very general and widely used
 ○ Often a ‘first attempt’ at a differentially private task.

• Used explicitly for
 ○ Learning discrete classifiers, Synthetic data generation, Convex Optimization, Genome-wide association studies, High-dimensional sparse regression, ...

• But, generally inefficient [DNRRV,...]
Differential Privacy in “Practice”

• Currently, differential private algorithms hard to use.
 o Noise.
 o No off-the-shelf software.
 o Each application requires fresh thinking.

• Several systems to make use easier.
 o [McSherry’09] PINQ: variation on LINQ with differential privacy enforced by query mechanism.
 o [Haeberlen et al. ’11] Programming language with privacy enforced by type system.
 o [Roy et al. ’10, Moharan et al. ’12] Systems for restricted classes of queries, focus on usability with legacy code.

• Hard to get right!
 o [Mironov ’12] Leakage via numerical errors.
Settings where Differential Privacy was Applied [Partial List]

- Machine learning
- Statistics
- Continual observation and pan privacy
 - When input is supplied gradually
 - When the state of the algorithm can be subpoenaed
- Distributed settings
 - Surprising relationships with computational differential privacy
- Mechanism design
- Privacy for the analyzer
- Graph data
CONCLUSIONS

• Heuristic treatment of privacy leads to failures
 o Weaknesses: Auxiliary information, (self) composition, leakage in decisions, ...
• Differential Privacy: privacy defined in terms of my effect on output
 o Meaningful despite arbitrary external information.
 o I should participate if I get benefit.
• Computations with rigorous privacy guarantees.
 o Basic Tools.
 o More advanced examples.
• Connections to many areas: Security and crypto, Machine learning, Statistics, Economics.