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1 Introduction

We begin with a review of the original hole argument, which deals with the
space-time of general relativity, i.e., a four-dimensional manifold M together
with a pseudo-metrical field gµν with Minkowski signature (from now on we
omit the prefix “pseudo”). 1

This field represents not only the chrono-geometrical structure of space-
time, but also the potentials for the inertio-gravitational field.2 There may
also be any number of other tensor fields on the manifold, representing non-
gravitational fields and/or matter and acting as sources of the metrical field
in the inhomogeneous Einstein equations 3 Let the manifoldM contain a hole,
H, i.e., an open region, on which the metric field is the only one present, so
that inside H the metric obeys the homogeneous Einstein equations. The
hole argument involves diffeomorphisms ofM 4 and the mappings they induce
on the metric and any other tensor fields. 5

The Einstein field equations are covariant. By definition, a set of field
equations is said to be covariant if, whenever a set of fields is a solution of
these equations, then any other set obtained from the first by the mapping
induced by any diffeomorphism of M also satisfies these equations. We refer
to such fields as dragged-(carried-) along fields. Suppose the points of M are
individuated independently of the fields in question and the field equations
are covariant then even if all the fields in question are specified everywhere
outside of and on the boundary of the hole H and even if all the normal
derivatives of these fields up to any finite order are also specified on the
boundary, then the metric field inside H is still not determined uniquely no
matter how small the hole H.

The proof is simply to note that, given any solution inside the hole,
an unlimited number of other solutions can be generated from it by those
diffeomorphisms that reduce to the identity on M − H (and any number of
derivatives of which also reduce to the identity on the boundary), but differ
from the identity inside the hole H.

1For full accounts of the hole argument, see [44] and the references to earlier literature
therein.

2See e.g., [47]).
3In most cases the metric field appears on both left and right sides of Einstein equations,

so the space time structure and the source fields in space-time constitute a dynamical
system, the equations of which can only be solved together. For some exceptions ([41])

4That is the 1:1 bi-continuous and differentiable mappings of the manifold onto itself,
i.e., its differentiable automorphisms. We assume the order of differentiability needed for
the equations in questions [5]

5The Appendix shows in detail how to construct these induced mappings for any geo-
metric object field.
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In this proof, the distinctness of the solutions depends crucially on the
assumption that the points of the manifold inside the hole are individuated
in some way that is independent of the fields inside H (e.g. the metric field
in the original hole argument). Then each of the diffeomorphically-related
solutions in the holeH must be regarded as distinct from the others. To single
out a unique solution of a set of field equations with the covariance property,
the solution must be specified at each and every point of the manifold. In
particular, no well-posed initial-value or boundary-value problems can be set
for covariant equations would seem not to be of much use. But we know from
the example of general relativity that there are. Therefore, there must be a
way to evade the hole argument.

To do so, as Einstein first found6, one is forced to assume that, at least
inside the hole, the points of the manifold are not individuated independently
of the fields. In the gravitational case, this means that the space-time points
are not individuated independently of the corresponding physical fields , i.e.,
they have no inherent chron-geometrical or inertio-gravitational properties
or relations that do not depend on the presence of the metric tensor field.
In that case when we drag the solution, we drag the physically individuating
properties and relations of the points along with the fields; thus, the dragged-
along solution does not differ physically from the original one (this assertion
will be given a more precise meaning in Section 3)

Put in other words, while the points of the manifold have an inherent quid-
dity as elements of space-time, they lack haecceity7as individualized points of
that space-time (“events“) unless and until a particular metric field is spec-
ified. 8 It follows that the entire class of diffeomorphically-related solutions
to the homogeneous (émpty space)́ field equations corresponds to just one
inertio-gravitational field.9

It should be clear that a version of the hole argument can also be ap-
plied to regions H of a 4-manifold M , in which the inhomogeneous Einstein
equations hold, together with the set of dynamical equations obeyed by the
non-gravitational matter and fields acting as sources of the metric field, pro-
vided this set of coupled gravitational and non-gravitational field equations
has the covariance property (we leave the details to the reader). In order to
avoid this version of the hole argument, it must be assumed that the points

6For a historical review, see [43]
7For a discussion of quiddity and haecceity, see [49], pp. 204 and [50]
8In the generic case (i.e. no symmetries present), the 4-non-vanishing invariants of the

Riemann tensor in empty space-times can be used to individuate the points of space-time.
These are the so-called Kretschmann-Komar coordinates (see [44], pp. 155-156)

9Those not familiar with the details of the hole argument will find a generalized version,
applicable to any geometric object field, explained in the Appendix.
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of this region are not individuated unless and until both the gravitational
and non-gravitational in the region are specified.10 Again, an entire class of
diffeomorphically related solutions to the coupled equations will correspond
to one physical gravitational and non-gravitational fields.

Put into the language of fibered manifolds (discussed in Section 2), the
root of the hole argument lies in the possibility of independent base-space
diffeomorphisms and total-space automorphisms. So, a necessary condition
for being able to pose the hole argument is the possibility of a base space
defined independently of the total space. But this condition is not sufficient.

A cross-section of a fiber manifold defines a field of quantities on the base
manifold. It may define a physical field, by choosing appropriately the fiber
manifold [5]. The hole argument fails if the points of the base space are not
individuated independently of a cross-section.

In Section 3, we shall generalize the hole argument in two ways: 11

1) the dimension of the differentiable base manifold is arbitrary but finite,
and

2) the metric together with any other tensor fields will be replaced by an
arbitrary geometrical object field.12 The generalization is to the category of
fibered manifolds, which includes such important special cases as fibre bun-
dles, their jet prolongations, and connections on bundles [36]. This permits
the treatment of the physically important case of gauge field theories[6], as
well as first order, Palatini-type formulations of general relativity based on
an independent affine connection as well as a metric field. 13 In all such
cases, the underlying manifold M is taken as the base space of the appropri-
ate fibered manifold. Stachel in [42] gives a similar generalization of the hole
argument, based on the concept of fibered manifolds, with the primary aim
of making it clear that the argument is coordinate-independent.14

10This does not imply that all of these fields are necessary for such individuation. Four
independent invariants of these fields will suffice to individuate the points of the space-time
in the generic case (i.e., when no symmetries are present).

11See [27], pp. 434 : “ Generalization from cases refers to the way in which several
specific prior results may be subsumed under a single more general theorem.“

12The geometrical object field will not be assumed irreducible, in order that one can
combine several irreducible fields into one such field; e.g., in the case of Einstein-Maxwell
equations, the metric (gµν and the 4-potential Aµν) taken together do not form an irre-
ducible geometric object.

13See for example [53], Appendix E, pp. 454-455.
14In [42] the treatment is based on fibered spaces and their automorphisms as in [13].

The paper is written in the language of fiber bundles, but it actually uses only the prop-
erties of a fibered manifold, and defines a geometric object as a cross section of such a
manifold. (To facilitate comparison, we use the same notation here as in that paper.) Ear-
man [9], pp. 158-159, follows [37], pp. 67-68, in giving a coordinate-dependent definition
of geometric object fields, and implies that a coordinate-independent definition would be
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However, it does not take what seems the obvious next step elimination
of an independent base space, which is outlined in the remainder of the
Introduction and discussed in detail in Section 3.

A fibered manifold consists of the triple: total space, base space, and a
projection from total space into base space. The inverse of the projection
operation then defines the fibers of the total space. If all the fibers are
isomorphic, one has a fiber bundle. A natural fiber bundle represents some
type of geometric object field, and a cross-section of it represents a particular
field of the given type. (Section 2.1)

Both the total space and the base space of a fiber manifold are subject to
diffeomorphisms, with the proviso that the total space diffeomorphisms are
required to be fiber-preserving.

A theory is a mathematical choice of fibered manifolds. A type of geo-
metric object is the most general type of fibered manifold that preserve the
unique representation of the base diffeomorphisms. The representation group
is the group of fiber-preserving automorphisms.

For theories for which the hole argument is not valid, we can make a
move to block its formulation. Our proposal is to avoid the hole argument,
by re-formulating the relation between the total and base space in such a
way that we cannot even formulate the hole argument. The idea is to start
with a fibered total space, and define the base space as the quotient space
of the total space by the fibration (Section 3.2). Now the base space is just
derived ( quotient space) and not a primary constituent of the fiber manifold
from the total space by the fibration (relation). There is no independent base
space (no fibered total space, no base space); and it is impossible to carry
out a fiber-preserving diffeomorphism without inducing the corresponding
diffeomorphism of the base space. So, one cannot drag along a cross-section
without dragging along the points of the base space. The hole argument
cannot even be formulated! Therefore this seems the ideal way to treat
situations, such as general relativity or any generally-covariant set of field
equations, in which we do not want independently individuated points of the
base space.

Section 4 sets out the essence of the hole argument for sets. The cate-
gory of sets is reached through a process of abstraction by deletion from the
category of differentiable manifolds. 15 If we abstract from the differentia-
bility, but keep continuity, we reach the category of topological manifolds;

very difficult. Earman cites Stachel [42] in another context, without noting that it gives
such definition.

15See [27], p. 436: “Abstraction by deletion is a straightforward process: One carefully
omits parts of the data describing the mathematical concept in question to obtain the
more abstract concept.“
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and if we abstract from continuity, we are left with bare sets. The same
process of abstraction enlarges the automorphism group of M from the dif-
feomorphism group to the homeomorphism group of the resulting topological
manifold; and then to the group of permutations (bijections) 16 of the result-
ing set. Invariance under the group of diffeomorphisms becomes invariance
under the homeomorphism group, and then invariance under the symmet-
ric group, consisting of all permutations of the set elements.17 Ultimately,
it may prove important for physics to consider the intermediate abstrac-
tion to homeomorphisms of topological manifolds; but in this paper we shall
consider only the direct abstraction from diffeomorphisms of differentiable
manifolds to bijections (permutations) of sets. 18 In this process of abstrac-
tion, a fibered manifold representing some type of geometrical object under
the diffeomorphism group becomes a G-set19 with a G-invariant equivalence
relation, where G is a symmetric group.[30] One can formulate a version of
the hole argument for such a G-sets that is not merely analogous in a general
sense to the geometrical-object version, but that can be derived from the
latter by the application of a forgetful functor.[1]

Section 6 is concerned with the importance of special case of relations,
and shows that the set of all relations between the elements of a set is an
example of a G-set with a G-invariant equivalence relation.

2 Geometrical Object Fields

We will start by describing the basic structures upon which our study of the
hole argument for geometric objects is based.

2.1 Fibered Manifolds and Geometric Objects

A (global) diffeomorphism between two manifolds M and N of the same di-
mension n is a differentiable mapping f : M → N , such that f−1 exists and
is differentiable (of the same order as f). If there exists such of diffeomor-
phism, then M and N are said to be diffeomorphic. We shall be concerned

16When a set contains an infinite number of elements, the term permutation is sometimes
limited to the case when only a finite number of elements are permuted, which would
correspond to a similar abstraction from the concept of local diffeomorphism, discussed
below.

17See, for example, [39] pp. 78, or [30], pp. 9.
18In the language of category theory (see e.g., [1], pp. 22), one applies forgetful functor

from the category of differentiable manifolds with diffeomorphisms to the category of sets
with permutations.

19Some books also use the name G-space for a G-set, e.g. [30] pp 32.
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primarily with automorphisms of M , i.e., diffeomorphisms f : M →M of M
upon itself. [5]

A mapping φ : M → N between two manifolds M and N of the same
dimension is a local diffeomorphism if each point of M has an open neigh-
borhood U ⊆ M such that the restricted mapping φU : U → φ(U) is a
diffeomorphism.

Local diffeomorphism20 is a weaker concept than diffeomorphism. 21

A mapping π : E → M is a submersion at a point x in E, if the rank
of the linear mapping dxπ : TxE → Tπ(x)M is equal to the dimension of the
base manifold M . It is a submersion, if it is a submersion at each point of
E.

A fibered manifold is a triple (E, π,M) , where E and M are manifolds
and π is a surjective submersion. E is called the total space, M is the base
space and π the projection.

Every fibered manifold admits local cross-sections i.e., smooth maps U
σ−→

E defined only on open sets of the base space U ⊆M such that π ◦σ = idM .
This means that, for every point x of E, there exists an open neighborhood
U of π = π(x) in M and local cross-section defined on U , σx : U ⊆M → E.

The weaker concept of local diffeomorphism is suited for use with local
sections. Not all fibered manifolds admit global sections, e.g., a principal
bundle admits a global section if and only if it is trivial, while a vector
bundle admits an infinite number of global sections. [21]

For each p ∈ M , the set π−1(p) = Ep denotes the fiber over p. The
fibers are themselves differentiable manifolds (actually submanifolds of the
total space E), but they are not necessarily isomorphic. If all the fibers are
isomorphic to some manifold F (typical fiber), then we have a fibre bundle
22. [17]

A fibered (manifold) morphism φ (over φ̄) between two fibered manifolds

(E
πM−→ M) and (E ′ πM′−→ M ′) is a differentiable map φ : E → E ′ which map

each fiber of π into a fiber of π′. The map φ between total spaces E and E ′

determines uniquely the map φ̄ between the base spaces[21].
The map φ̄ is the projection of φ. If the two fibered manifolds are identical,

i.e.,(E
πM−→ M) = (E ′ π′

M′−→ M ′) then φ : E → E an automorphism of E,

20If the global topology is not fixed, then we want to use local diffeomorphisms instead
of global diffeomorphisms

21Local diffeomorphisms are not necessarily even surjective or injective mappings.
22We shall carry out all the proofs for the general case of fibered manifolds. However,

from the definition of a type of geometric object (natural bundle), it can be shown (see [21])
that for each n-dim manifold M , the functor F actually induces a fibre bundle structure
on the value FM
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that defines a local diffeomorphism φ̄M of M , which we shall refer to as the
projection diffeomorphism of M .

In modern differential geometry, a type of geometric object 23 is defined
as a natural bundle over the category of smooth manifolds. We will follow
here the coordinate-independent definition given in [21].

Let Mfn be the category of smooth n-dimensional manifolds, i.e. the
category whose objects are n-dimensional manifolds and whose morphisms
are local diffeomorphisms and let FM be the category whose objects are
fibred manifolds and whose morphisms are fibre-preserving morphisms.

A type of geometric objects or a natural bundle is defined as a covariant
functor F of Mfn into FM , i.e., a rule F such that:

1. Each n-dimensional manifold M(object in in the category Mfn) is

transformed into a fibered manifold FM
πM−→ M (object in in the cat-

egory FM)

2. Each local diffeomorphism φ : M → N between two n-dim manifolds
M and N (morphism between two objects in the category Mfn) is
transformed into a fibered preserving morphism Fφ, πN ◦Fϕ = ϕ◦πM(
morphism in the category FM)

3. If φ : M → N and ψ : N → P are two local diffeomorphisms, then
F (ψ ◦φ) = Fψ ◦Fφ is a fiber-preserving morphism over ψ ◦φ : M → P

4. For every open set U ⊆M , the inclusion map i : U →M is transformed
into the inclusion map Fi : FU = π−1

M (U) → FM

A geometric object is a (local) cross-section of some type of geometric
object F . 24

The tangent25 and cotangent bundles ( TM and (T ∗M) respectively) are
examples of natural bundles. Also, any tensor bundle, e.g., the bundle S2M
of all symmetric (0, 2) forms over a smooth manifold, is a natural vector
bundle. The linear frame bundle (LM →M) (which is the principal bundle
associated to the tangent bundle) is a natural bundle. 26

23The type of geometric object is the general class to which a particular geometric object
belongs. Tensors are a proper subclass of all geometric objects and so, for example, metric
tensors are a type of geometric object: symmetric tensors of rank (0,2). The Schwarzschild
metric is an example of a particular geometric object within this type.

24In what follows we shall not distinguish notationally between a natural bundle F , the
fibered manifold FM → M or the total space FM .

25In the case of a tangent bundle TM
τM−→ M , (xa, yi) local fiber coordinates. Then,

to any base coordinate change xa 7−→ x̄b = φb(xa) it is uniquely determined fibered
coordinate change yi 7−→ ȳj = Φj(xa, yi).

26See for further discussions of frame bundles at end of Section 2 and the Appendix
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In general, principal bundles are not natural bundles. There is a gener-
alization of the notion of a natural bundle to the case of principal bundles,
called gauge-natural bundle ( e.g [?] and [21], chap. XII)

2.2 Internal Automorphisms and Gauge Transforma-
tions

Many physical theories are gauge invariant. In such theories there will often
be a class of cross-sections of a suitable fibered manifold, each member of
which represents the same physical model27 of the theory. One member of
the class is related to another by a transformation belonging to Gau(E), the
gauge group .

A gauge transformation φ ∈ Gau(E) is a fiber( manifold) automorphism
φ : E → E such that the projection diffeomorphism is the identity base
diffeomorphism idM : M → M . In other words, φ leaves the points of the
base space M unaltered and hence takes points of the same fiber into each
other, i.e., φ(Ex) = Ex for all x ∈ E. Such an automorphism is also called
an internal automorphism and hence is denoted φint.

Important example of fibered manifolds with internal automorphisms are
G-bundles28 with a left-action of a Lie group G on each fiber; principle fiber
bundles, that are G-bundles, in which each fiber is itself diffeomorphic to G
as a manifold (but the fibers fail to be groups).29

2.3 External Automorphisms

An external automorphism of a fibered manifold (E, π,M) is a fibered auto-
morphism, i.e. a diffeomorphism φ : E → E that projects over an arbitrary
(local) diffeomorphisms φM of M and such that π ◦ φ = φM ◦ π.

The local diffeomorphism φM of the base manifold is uniquely associated
with every fibered manifold automorphism φ. [21] Now, let us look at the
inverse problem: suppose we start with a local diffeomorphism φM of M that
carries a point x ∈M into point y = φM(x) of M . What are the fibered man-
ifold automorphisms associated with it? First, the identity diffeomorphism
idM may have the entire class of internal automorphisms {φint} associated
with it. For other diffeomorphisms φM 6= idM , the only natural restriction
on a fibered manifold automorphism φ : E → E is that it should preserve the

27See Section 3.1 for a formal discusion of physical models
28See [21], pp. 86-87
29In these cases, there are two main types of gauge transformation, which locally are

equivalent. These are atlas transformations and associated principal morphisms. See [35],
pp 38-45

9



relation between points and the fibers over them: if p and q belong to some
small open set U ⊆ M and φM(p) = qthe automorphism φ should carry the
fiber π−1(p) into the fiber π−1(q), both in the open subset π−1(U) ⊆ E.30

Generally, for any φM automorphism of a fiber manifold, there will be many
external automorphisms φ that meet this requirement. Indeed, given one
such φ, then φint ◦ φ will also meet the requirement for all φint .

We may further restrict the external automorphism by demanding that
they form a representation of the local diffeomorphism group. That is:

a) If φ is a fibered manifold automorphism corresponding to the local
diffeomorphism φM , then φ−1 corresponds to φ−1

M .
b) If two local diffeomorphism φM ′ and φM ′′ are such that φM = φM ′◦φM ′′ ,

and if φ′ corresponds to φM ′ and φ′′ corresponds to φM ′′ , then φ = φ′ ◦ φ′′
corresponds to φM .

Because of possibility of internal automorphisms, this condition is still
not enough to always associate a unique fibered manifold automorphism with
each local diffeomorphism. But we can associate the unique equivalence class
{φ} of all automorphisms φ that correspond to the same φM .

There is an equivalence relation of fibered bundle automorphisms, such
that two fibre automorphisms φ and φ′ are equivalent, if there exists an
internal automorphism φint such that φ′ = φ ◦ φint. It can be shown that
this is an equivalence relation (i.e. reflexive, symmetric and transitive) and
therefore partition the automorphisms into equivalence classes.

These equivalence classes then provide a representation of the local dif-
feomorphism group. 31 The importance of this requirement is that, at the
abstract level of the category of fibered manifolds, it represents the trans-
lation of the requirement that a geometric object field transform uniquely
under a diffeomorphism. A type of geometric object can therefore be de-
fined as a fibered manifold (E

πM−→ M) with a unique equivalence class {φ}
associated with every φM .

Physical models of a theory are identified with equivalence classes {σp} of
local sections under the internal automorphisms. Under an external fibered
manifold automorphism φ, a local section equivalence class {σp} is carried
into another (unique) local section equivalence class, symbolized by {φ∗σp}.
That is, {φ∗σp} is the local section equivalence class that results from {σp} if
we carry out the fibered manifold automorphism equivalence class φ without
any automorphism of the base space, i.e., while leaving the points of the base
manifold unchanged.32

30Since the automorphism is local, the two fibers cannot fail to be isomorphic
31Following [13], Stachel in [42] calls the pair consisting of φ and φM a fiber space

automorphism.
32To simplify the language and notation, from now on all reference to equivalence classes

10



We close this section with the following remark. The definition of the
group of external automorphisms leaves open the question of its relation to
the group of internal automorphisms. The two may be entirely independent
of each other, as in the case of Yang-Mills theories (including Maxwells the-
ory), in which the space-time diffeomorphisms are independent of the internal
gauge transformations.

In Yang Mills theory, (E
πM−→ M) is a principal bundle with a Lie group

structure G and the gauge transformations are principal automorphisms over
idM . An external (general) principal automorphism φ is a G-equivariant dif-
feomorphism of E on itself, i.e. φ : E → E is a diffeomorphism such that
φ(pg) = φ(pg), for all g ∈ G, and rg(p) ≡ pg denotes the canonical right
action of G on the total space E. We have Aut(E) the group of all fibered
automorphisms of E. Since φ : E → E is fiber preserving, there is a group
homomorphism pr from Aut(E) to the group DiffM of all diffeomorphisms
of M such that the kernel Kerpr = Gau(E). An external principal auto-
morphism φ of E is associated with a tangent bundle automorphism (φM)∗

of TM that project on φM .
It follows that the following short sequence of group homomorphisms:

{e} → Gau(E)
i−→ Aut(E)

pr−→ DiffM → {e}

is exact.33 The sequence does not split, since we cannot define a homo-
morphism f : DiffM → Aut(E) such that pr ◦ f = idDiffM . This is be-
cause, as shown above, to each φM ∈ DiffM may be many automorphisms
φ ∈ Aut(E) that project over φM .

Now the case when (E
πM−→M) belongs to the category of natural bundles

(i.e. a type of geometric objects), this means that any local diffeomorphism
φM of M admits a canonical lift (to a fiber automorphism φ of E) , treated
as a external (general covariant) transformation. The structure group is
GL(n,R). General Relativity is formulated on such a fiber manifold for which
dimM = 4 and M satisfies some topological conditions such that GL(4,R) is
reducible to the Lorentz group SO(1, 3).34 The associated principal bundle
is the bundle of all linear frames35 in the tangent bundle TM of M . The
projection map p is the mapping that associates to each frame the point

of automorphisms and cross-sections will be omitted, it being understood that they should
be inserted whenever the theory in question has an internal gauge group.

33A short sequence of group homomorphisms {e} → G1
f1−→ G2

f2−→ G3 → {e} is called
exact, if f1 is injective , f2 surjective and Imf1 = Kerf2 (see [23]).

34The corresponding Higgs filed is a pseudo-riemannian metric. A pseudo-riemannian
metric and a connection on LM will define a metric-affine gravitational theory [35]

35see Appendix
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in which the tangent space lies and its standard fibre is the linear group
GL(n,R) . In this case, the exact sequence of group homomorphism

{e} → Gau(E)
i−→ Aut(LM)

pr−→ DiffM → {e}

splits. This means that the group Aut(LM) can be written as the direct sum
of the groups Gau(LM) and DiffM .

To prove this we notice that every local diffeomorphism φM of M has lift
to a diffeomorphism φLM of LM , i.e., φLM = f(φM). But this condition is
equivalent with f is a diffeomorphism of LM which preserves the canonical
soldering form θ = ∂i ⊗ dxi on M , i.e., f ∗θ = θ, which is true. [52]

On the other hand every principal automorphism φLM will induce an as-
sociated bundle automorphisms φ of E [35]. As in the case of general relativ-
ity, the internal and external automorphisms are closely related, a space-time
diffeomorphism induces an affine transformation of the basis vectors at each
point of the frame bundle (see the Appendix). Generalizing the terminol-
ogy often applied to this case, one may say that in such cases the internal
automorphisms are soldered to the external automorphisms.

3 The Hole Argument for Geometric Objects

3.1 Formulating the Hole Argument

We generalize the hole argument for geometric objects as follows. Let us
consider a finite dimensional manifold M and a fiber manifold E →M over
M . A cross-section σ of the fibered manifold E defines a field of physical
quantities on M .

A model consists of the manifold E and a “ global ” cross-section 36 σ[p]
of some type of geometric object

Let φM : M → M be a local diffeomorphism on M . There is a uniquely
defined fibered automorphism φ : E → E 37, that may be used to transport
cross-sections. If σ is a cross-section, then the cross-section defined by φ∗σ =
φ ◦ σ ◦ φ−1

M is the carried-along cross-section.
We have two mathematically distinct cross-sections σ[p] and φ∗σ[q], where

p, q ∈M such that q = φM(p).

36Not all fibered manifolds admit global cross-sections, but every fibered manifold has
local cross-sections. If it admits a global cross-section( defined on the whole manifold M)
then it admits a global cross-section that is the extension of any given local cross-section.
If the fibered manifold does not admit a global cross-section, then we can still pick up an
atlas of local cross-sections defined on open manifolds such that they form an open cover
of the whole base manifold M .

37See in the previous section the definition of a type of geometric object
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Now from the definition of a model it follows that (E, σ[p]) and
(E = φM(M), φ∗σ[φM(p)]) are two elementarily equivalent models i.e.,

they share the same model-theoretic properties 38. The truth values or the
probability of the corresponding assertions in each model will always be the
same. That is for every assertion about the model (E, σ[p]), there is a 1:1
corresponding assertion about the model (E, φ∗σ[φM(p)]). Since it follows
from the definition of φ∗σ that this semantic identity cannot fail to hold 39 ,
we shall refer to it as the trivial identity. 40

We define a theory T based on some geometric object, as a rule for
selecting a class of models 41 of that type of geometric object. 42

Now, the original hole argument generalized to the case of geometric ob-
jects translates in the possibility that under a fiber diffeomorphism (φ, φM)
the two models (E, σ[p]) and (E, φ∗(σ)[p]) do not represent the same possi-
bility.

If we impose the following covariance requirement43 on T : if (E, σ[p]) is
a model of T , then so is (E, φ∗σ[p]), for all local diffeomorphisms φM , but
as we explained above, they are not trivially identical. It matters - or rather
it may matter - if we permute the fibers without permuting the base points(
or, equivalently, permute the base points without permuting the fibers).

In particular, this will be the case if the models are defined as solutions
to a set of covariant field equations for the σ[p] fields.44 Two models related
by such a local diffeomorphism are called diffeomorphism-equivalent. This

38See e.g. [15], pp 43
39For general covariant theories, this follows automatically. For theories that are not

general covariant, the identity still holds: when you move everything, you move nothing !
40There is a more detailed discussion of the trivial identity in the Appendix.
41In other words, a theory consists of a rule for selecting a class of cross-sections of a

fibered manifold defining the type of geometric object that the theory deals with, while
a model is a choice of a particular cross-section. A model of a theory is a choice of a
cross-section obeying a rule.

42Here we follow the traditional account, which keeps the base manifold fixed. Later, we
shall modify this account to allow different local cross sections to correspond to different
base manifolds. In most current physical theories, the selection rule is usually based on
the solutions to some set of differential equations for the type of geometric object; the
formulation of the rule therefore involves jet prolongations of the fibered manifold (see
[13], Chapter I, pp. 1-15 and [21], Chapter IV, pp. 124-125); but here we eschew such,
otherwise important, complications in order the highlight the main point.

43Our approach may be contrasted with that expoused in [?], which calls generally
covariant theories that we call covariant. Our definition of generally covariant is given
below.

44Indeed, we may take this as the definition of a set of covariant differential equations
for the geometric object field. The jet prolongation of the fibered manifold will then have
to be used to formulate these equations. In view of the widespread confusion about the
meaning of covariance, it is worth emphasizing that this definition is coordinate-free.
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relation is clearly an equivalence relation, so it divides all models of T into
diffeomorphically-equivalent classes.

The hole argument hinges on the answer to the following question. Is it
possible to pick out a unique model within an equivalence class by specifying
σ[p] everywhere on M except on some open submanifold H ⊆M (the hole),
i.e., on M −H?

If (E, σ[p]) and (E, φ∗σ[p]) are not elementarily equivalent models for all
φM (except the identity diffeomorphism idM , of course), then the answer
is ”no”. 45 For we can then pick any local diffeomorphism φM−H that is
equal to the identity diffeomorphism on M −H, but differs from the identity
diffeomorphism on H. Then (E, σ[p]) and (E, φ∗σ[p]) will be two different
models that agree onM−H but differ onH, and are therefore non-identical.46

In this case, no conditions imposed on σ[p] on M−H can serve to fix a unique
model on H, no matter how small the hole is; the only way to specify such
a model uniquely, is to specify σ[p] everywhere on M .

This is the hole argument for covariant theories - or rather, against them
if we require a theory that specifies a unique model under the appropriate
assumptions.47 Why does it work? Its validity depends crucially on the
assumption that the distinction between the points of the manifold, which
we call their haecceity, [50] is independent of the specification of a particular
model of the theory T , that is (assuming M given) is independent of the
specification of σ[p] .

If the individuation of the points of M does depend entirely on the model,
then we have no grounds for asserting that (E, σ[p]) and (E, φ∗σ[p]) represent
different models. For using the trivial identity with φM replaced by (φM)−1,
we see that (E, φ∗σ[p]) and (E, σ[φ−1

M (p)]) are identical; and, given the lack
of any model-independent distinction between the points of the manifold, no
distinction can be made between the models (E, σ[p]) and (E, σ[φ−1

M (p)]), so
they are semantically the same model. Conversely, if (E, σ[p]) and (E, φ∗σ[p])
are identical models for all φM , then the hole argument clearly fails; and it
follows that (as far as concerns the covariant theory T under consideration)48

the points of M must be entirely unindividuated before a model σ[p] is intro-

45Remember that, by definition of a covariant theory, all of the φ∗σ are models of T if
one is.

46Of course, they belong to the same equivalence class, but the point is that this does
not automatically make them elementarily equivalent

47We shall not here go into the well-known reasons why the uniqueness requirement
seems a reasonable one to demand of a physical theory.

48One can easily think of cases where the distinction can be made on other grounds. For
example, in describing houses built out of cards, two houses will be regarded as structurally
identical in structure even if built out of cards that can be distinguished independently of
their position in the card house.
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duced. All relevant distinctions between these points must be consequences
of the choice of σ[p]. We call such a theory generally covariant.

3.2 Blocking the Hole Argument

For theories, for which the hole argument fails, we can make a move that
actually blocks its formulation: Instead of including the base space as one of
the elements in the definition of a fibered manifold, we can define the base
space49 in terms of the total space 50.

To do this, we introduce a partition E∗ of the total space E into disjoint
subspaces, the union of which is E.51

We assume further that all subspaces of E∗ are isomorphic. Now let
π : E → E∗ be the surjective map that carries a point of E into an element
of E∗. If E is a topological space, this mapping induces a topology on E∗,
based on the following definition of open sets of E∗. A subset U of E∗ is
open if π−1(U) is an open set of E.

E∗ together with this topology is the quotient space of E. E∗ defines an
equivalence relation ρ on E: two elements of E are equivalent if and only if
they belong to the same element of E∗. One then speaks of the quotient space
with respect to this equivalence relation: E∗ = E/ρ. Alternatively we could
start with an equivalence relation, and define E∗ as the set of equivalence
classes with respect to this relation: E∗ = E/ρ. We can then define the
quotient space of E as above.52

Quotient spaces of topological spaces are not always well-behaved. For
example, E∗ may not be Hausdorff, even if E is. So, if E is a differentiable
manifold, it is by no means the case that the quotient space of E by an
arbitrary partition (or corresponding equivalence relation ρ) will be a differ-
entiable manifold. 53 Rather than go into this question here, we shall simply
assume that the partition (or corresponding equivalence relation) is such that
the quotient space is a differentiable manifold. In practice, one can just start

49This is similar to what is often done in defining a principal fiber bundle (see [20] pp.
50). The definition of a principle bundle requires not only that the fibers be isomorphic
to each other (which is all that is required of a G-bundle structure), but that they be
isomorphic to some Lie group G. Then M is defined the quotient space of (the total
space) P by the equivalence relation induced by G, M = P/G

50In fiber bundles case, the manifold structure of the total space is determined uniquely
by the manifold structure on the base and the typical fiber( see [36])

51Lawvere and Schanuel [24], pp. 82 use the word sorting in general, for such partitions
if no sort is empty.

52A quotient space can be defined for any topological space and an equivalence relation
on it (see, e.g., [19] pp. 1282, and [29], pp. 139).

53For a detailed discussion of quotient manifolds see [3], pp. 84-108.
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from a fibered manifold, throw away the base space, and define the equiv-
alence classes of the total space as its fibers. The quotient space will then
always exist and be diffeomorphic to the original base space. Now the base
space is just derived (quotient) and not a primary constituent of the fibered
manifold from the total space E by the relation ρ. But now, by the definition
of a quotient space, it is impossible to carry out a fiber automorphism of E
without carrying out the corresponding diffeomorphism of the quotient space
E∗, and vice versa. The points of E∗ are now necessarily individuated (to
the extent that they are) only by their place in the total space. Indeed, we
can go further: if there is no total space, there is no quotient space.

This realizes mathematically one of Einsteins intuitions about general rel-
ativity. He insisted that, without the metric field (here the total space), there
should not be a bare manifold, as in the usual mathematical formulations of
general relativity, but - literally nothing:

“On the basis of the general theory of relativity, space as opposed to what
fills space ... has no separate existence If we imagine the gravitational field,
i.e., the functions gik to be removed, there does not remain a space of the
type (of special relativity), but absolutely nothing, and also not topological
space. ... There is no such thing as an empty space, i.e., a space without
field. Space-time does not claim existence on its own, but only as a structural
quality of the field ” (Albert Einstein [42], pp. 1860).

We believe that the approach just outlined is the best way to introduce
the mathematical formalism needed for general relativity, both logically and
pedagogically. 54 Since Lichnerowicz[26], careful accounts of the theory tra-
ditionally start with a bare manifold M , and then introduce various fields on
it. But often this leads to the erroneous impression that, having introduced
M , we are already dealing with a space-time. If we start with a fibered
manifold representing the metric and perhaps other physical fields, and then
introduce M as a quotient space, it becomes difficult to forget that, in gen-
eral relativity, space-time is no more than “ a structural quality of the field
”.

3.3 Lie Groups versus Diffeomorphisms

At this point, it is instructive to contrast the situation in general relativity
with that in pre-general relativistic theories. The move from fibered mani-
fold to quotient space could also be made in the case of a finite-parameter Lie
group, such as the inhomogeneous Galileo or inhomogeneous Lorentz(Poincaré)
symmetry groups needed in pre-general-relativistic Newtonian or special-

54Of course suitably simplified for pedagogical purposes
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relativistic space-time theories. However, in these cases there is no need
to do so in order to block the hole argument: Finite-parameter symmetry
groups have a sufficiently rigid structure to block the hole argument even if
the base space M is defined independently. If an element of the group is
fixed at all points of M −H (outside the hole), then it is fixed at all points
of H ( inside the hole).

Thus, in pre-general-relativistic space-time theories, one may adopt ei-
ther of the two points of view about the individuation of the points of M .
Loosely speaking, we may say that these theories are compatible with either
an absolute or a relational approach to space-time. It is only general rela-
tivity that forces us to adopt the relational point of view if we want to avoid
the hole argument.

3.4 From Local to Global

The move to the quotient space also enables one to remove another outstand-
ing difficulty in the usual mathematical formulations of general relativity.
[43]

In solving the field equation of general relativity, one does not start from a
prescribed global manifold; rather, one solves the equations on some open set
(coordinate patch), and then looks for the maximal extension of this solution
on, subject to some criteria for this extension, e.g., null and/or timelike geo-
desic completeness [43]. The situation is rather analogous to that in complex
variable theory, in which one can define an analytic function or a solution
of the Cauchy-Riemann equations on some open set, and then extends this
function to the Riemann sheet that represents its maximal analytic exten-
sion. This procedure can be formulated more rigorously in terms of sheaves
of germs of holomorphic functions (see [27], pp. 351-353).

Rather than starting with a fixed total space E, we can start with some
open manifold U , which is ultimately to represent a submanifold of a total
space yet to be determined; and a relation ρ(U) on it that serves to define
the quotient space U∗ = U/ρ. To define general covariance and general
covariance locally we need only local diffeomorphisms on U and U∗. After
finding a solution to the field equations on U , i.e., stipulating a cross-section
of U : σ(U), we look for the maximal extension E∗

σ of U∗ and σ(E∗
σ) of σ(U)

subject to the condition that the latter be a solution to the field equations
on all of E∗

σ, and whatever additional criteria we may impose to define a
maximal extension.

In general, the E∗
σ for different σ will not be diffeomorphic : there need

be no single base space that fits all solutions. The covariance of the field
equations will guarantee that all members of the diffeomorphically-invariant
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equivalence class of solutions that contains σ(E∗
σ), will also be cross sections

of E∗
σ. Hopefully, this program can also be formulated more rigorously in

terms of sheaves of germs of the appropriate geometric objects.55

4 Categories, Fibered Sets, and G-Spaces

As noted in the Introduction, the essence of the hole argument does not
depend on the continuity or differentiability properties of the manifold. To
get to this deeper significance one must abstract from the topological and
differentiable properties of manifolds, leaving only sets. We shall start by
defining the basic structures upon which our study of hole argument for sets
will be based.

As usual one gets a clearer idea of the basic structure of the argument by
formulating it in the language of categories ( see e.g. [24], [28], [7])

A general map X
g→ S between two sets is also called sorting, stacking or

fibering of X into S fibers (or stacks). A section for g is a map S
σ→ X such

that g ◦ σ = idS. A retraction is a sort of inverse operation to a section . A
retraction for g is a map S

r→ X such that r ◦ g = idX . If g is not surjective,
some of the fibers of g are empty. If there are empty fibers, then the map g
has no section. If X and S are finite sets and all the fibers are non-empty,
then the map g has a section and it is said that g is a partitioning of X into
B fibers. In what follows we will consider only the case when g is a surjective
map.

If A and B are two sets, a map A
f→ B is an isomorphism if it has

an inverse f−1 that is both a section and a retraction. An automorphism
(or permutation) of a set A is a bijection P : A → A. The set of all the
permutations of a set A forms a group, Perm(A), called the symmetric (or
permutation) group on A. An object in the category of permutations consists
of a set A together with a given permutation (automorphism) A

α→ A. We

denote it by Aα. A map between two objects Aα to Bβ is a map A
f→ B ,

which preserves the given automorphisms α and β, i.e., f ◦ α = β ◦ f . The
composition of two maps f and g can be done by composing them as maps
of sets that preserves the given automorphism, i.e. if f : Aα → Bβ and
g : Bβ → Cγ then g ◦ f : Aα → Cγ such that (see [24], [28]):

(g ◦ f) ◦ α = g ◦ (f ◦ α) = g ◦ (β ◦ f) = (g ◦ β) ◦ f = β ◦ (g ◦ f)

Returning to a fibering X
g→ S , a fiber automorphism Xα of the set X is

55Haag has already done some of the work for quantum field theories (see [12], pp.
326-328
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a permutation α of X which preserves the fibers of g. A fiber automorphism
Xα is naturally associated with a base automorphism Sᾱ, where the base
projection of α is a permutation ᾱ : S → S of base set S.

We are interested in the inverse problem: Given a base automorphism Sᾱ,
how can we define a fiber automorphism Xα, such that ᾱ to be the projection
of the permutation α ?

As in the manifold case we restrict the fiber automorphisms: they must
form a representation of the (symmetric) group of base-space automorphisms.
We have seen above how to compose mappings of Sᾱ ; a similar composition
rule that respects the fibering shall apply to the Xα. In analogy to the
geometric object case, we postulate that to each Sᾱ there corresponds a
unique Xα.

We close this section with a discussion on an important class of such
fibered sets called G- sets. Let π : X → S be a fibered sets for which the
fibers contain the same number of elements. Let G be a finite group.

An action of G on X is a homomorphism of G into the group of per-
mutations of X. To every element x ∈ X and every element g of G, there
corresponds an element of x · g such that (x · g) · h = x · (gh) for any two
elements g,h of G, and x · e = x, where e is the identity element of G.

An equivalence relation ρ on X is G-invariant or a congruence on X
if the action of G on X preserves the relation, i.e., if x = y(modρ) then
x · g = y · g(modρ) for all g in G.

A G- set is determined by the action of a group G of permutations of X,
action that commutes with the projection map π. In other words, the action
of G is a fiber automorphism that permutes the fibers of X. 56

If we take G = Perm(S), the permutation group of X, there is a unique
action of Perm(S) on the total set X, action that commutes with π. The
fibers of X define a relation, of which they are the equivalence classes. So the
fibered set π is a G-set with a congruence and can be viewed the abstraction
to sets with permutatins of a type of geometrical object. 57

5 The Hole Argument for Sets

With this machinery in place, it is easy to see that the hole argument that
applies to fibered manifolds can be modified to apply to fibered sets. We can

56For G-sets, see [30], Chapter 3, pp. 30-33. For congruences on G-sets, see ibid.,
Chapter 7, pp.74-75.

57Important examples are principal bundles ( G is a Lie group of diffeomorphisms) and
regular coverings (or principal bundles with respect to a discrete group G of transforma-
tions); see e.g., [8]
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produce the fibered sets from the fibered manifolds by applying a forgetful
functor [28] to the manifolds, that takes the category Mfn of manifolds with
diffeomorphisms in the category Set of sets with automorphisms. Application
of the forgetful functor to the concept of a covariant theory results in the
concept of a permutable theory.

A theory T is now a rule for selecting a class of sections of a fibered set
X. The theory will be called permutable if, whenever a section s : S → X
belongs to this class, so does every section that results from applying a fiber
automorphism to s. This results in a class of automorphically-related sections.
The theory will be called generally permutable if all the members of this class
are semantically identical.

As we have seen, the forgetful functor can be applied to the category
of fibered manifolds in two ways: only to the base space, or to both the
total space and the base space. we shall consider application of the forgetful
functor each case in turn.

5.1 Base Sets

One can apply the forgetful functor to the base manifold only, abstracting
from its topological and differentiable properties to get a base set S 6= ∅,
while allowing the fiber over each point a ∈ S of the base set to remain a
differentiable manifold Ea.

The total space is the product (union) of the fibers, E =
⋃
a∈S

Ea.

A cross section σ : S 7→ E takes each point a on the base set S into an
element σ(a) ∈ Ea of the fiber over a 58.

At this level of abstraction, local diffeomorphisms59 of the base manifold
become permutations of the points of the base set, while fiber-preserving
diffeomorphisms of the total space become fiber automorphisms, i.e., auto-
morphisms of the fibers.

As we shall now see, this case can be applied to the quantum mechanics
of many-particle systems, and in particular can be applied to the cases in
which these particles are all of the same kind.

Let the points of the base set be identified as elementary particles - for
definiteness let us say a set of N particles. The fiber over each such point rep-
resents a state space for that particle (later, we shall discuss various possible

58While one could continue to talk of points of a fiber in the applications to be discussued,
each fiber will consist of a family of spaces, so it seems better to use the more neutral term
element of a fiber.

59The distinction between diffeomorphisms and local diffeomorphisms disappears at this
level of abstraction, as does that between global cross sections and local sections.
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choices for such a state space). A particular state of the particle represented
by an element of that state space. 60 The total space consists of the (or-
dered) product of each of the state-space fibers, and a cross section consists
of a choice of state for each of the N particles. Suppose all the particles are of
the same natural kind (quiddity). Then the quantum statistics of elementary
particles obliges us to postulate that, if one cross section is a possible state of
the N -particle system, then any cross section that results from permutation
of the fibers of the total space (or equivalently, from a permutation of the N
points of the base space) must also represent a possible state of the system.
In our language, the theory must be permutable.

Now, we face the question of whether it must be generally permutable. In
other words, in the face of quantum statistics, can we maintain the inherited
individuality (hacceity) of particles of the same kind ? If we were to do so,
then the hole argument would apply, and we would have to admit that any
model of the theory must specify the individual state of each of the particles.
But it is assumed in quantum mechanics that, in a case like this, one need
only specify the overall state of the system, without any need to specify the
state of each particle, considered as an individual. This, in effect, amounts
to stipulating that the theory be generally permutable and that no individual
characteristics are inherent in each elementary particle, apart from those that
it inherits from the overall state of the system. 61

What has been said so far could actually be applied to classical systems
of identical particles. Quantum mechanics confronts us with a further com-
plication, unique to it. There are states of the entire system that are not
decomposable into products of N one-particle states, even if we give up the
individuality of thee particles. In fact, these entangled states are responsi-
ble for the most characteristic features of quantum mechanics. Indeed, this
problem arises, independently of quantum statistics, even for a system of
distinct elementary particles (i.e., each of a different kind) as seen in EPR
type-correlation experiment.(see [46] for a discussion of these )

One way around this problem is to adopt the Feynman viewpoint, which
allows us to maintain the concept of trajectories for each particle, but requires

60State of the particle does not necessarily imply an instantaneous state. For example,
in the Feynman approach be discussed below, an entire trajectory in configuration space
represents a possible state of a particle.

61Auyang in [2], pp. 162, has emphasized the analogy between permutation of the
labels of identical particles and coordinate transformations: Discussing the permutation
symmetry of the aggregate of particles , she says: “ Conceptually, it is just a kind of
coordinate transformation, where the coordinates are the particle indices. Permutation
invariance is general and not confined to quantum mechanics. It says that specific particle
labels have no physical significance.“ This is fine as far as it goes. But she does not discuss
active permutations of the particles and the significance of active permutation invariance.
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us to associate a probability amplitude with each trajectory and add the
amplitudes for all trajectories that are not distinguishable within the given
experimental setup.62 It is the addition of the amplitudes before “squaring”
to find the probability of a process that is responsible for the entanglement
of many-particle systems. To see this, consider the simplest possible many-
particle system: two particles not of the same kind. Then if the two are
prepared in a certain way at a certain time, to calculate the probability
that they will be detected in some way at a later time, we must consider all
possible trajectories in the two-particle configuration space, consisting of the
ordered product of two one-particle (ordinary) spaces.

Each one of these two-particle trajectories can be projected onto the two
one-particle axes, so that it is associated with definite one-particle trajec-
tories. But we must add the probability amplitudes for each of these two-
particle trajectories in order to get an overall probability amplitude for the
transition from the preparation to the registration. And this overall prob-
ability amplitude is not associated with any one-particle amplitudes rather,
in some sense, it is associated with all of them.

To apply our technique to the Feynman approach, we must take as the to-
tal space the space of all possible paths in the N -particle configuration space,
which is the N -fold Cartesian product of the N one-particle configuration
spaces. Each fiber is the space of all possible paths in the (N − 1)-particle
configuration space over one of the particles, an element of the fiber being
one possible (N − 1)-particle path. A section of the fibered space represents
a possible path in the N -particle configuration space. All is well as long as
the N particles are of distinct kinds. But if they are all of the same kind, any
theory applied to them must be generally permutable, and all of our previous
results about such theories apply. 63 In particular, we could define the points
of the base space (i.e., the particles) by starting from the total fibered space
and identifying each fiber as a particle. Then, as in the manifold case, there
are no independent permutations of the fibers and of the points of the base
space, and the hole argument cannot even be formulated.

Another way to handle this problem is to introduce a reduced configura-
tion space for identical particles by identifying all points in the N -fold Carte-
sian product of the N one-particle configuration spaces that differ only by
being permutations of the same N points.64 We can formulate this in terms of
an equivalence relation on the original N -particle configuration space. Two

62See [46], which contains references to Feynman’s papers
63If there is a Lagrangian for the system, it must be invariant under the symmetric group

Sym(N), the action of each element of which is to permute the N particles. If there is not
a Lagrangian, the equations of motion must still be invariant under such permutations.

64See [46], section 7, pp. 252-253, which gives references to earlier work
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points in this configuration space are equivalent if and only if one results
from the other by a permutation of points of the N one-particle configuration
spaces. Then each equivalence class of points in the original configuration
space corresponds to a point in the reduced configuration space.

If and only if one excludes all collision points (i.e., points for which the
coordinates of two or more of the particles are the same), this is a multiply-
connected manifold, called the reduced configuration space. It can be re-
garded as a quotient space of the N -particle configuration space by the sym-
metric group Sym(N). A trajectory in the reduced configuration space cor-
responds to a possible N -particle state that makes no distinction between the
N particles, so there is no need for (indeed no possibility of) further permu-
tations. In this, it is reminiscent of the Fock space treatment of particles in
many-particle systems. As Teller in [51], pp. 51-52, emphasizes, for bosons
and fermions, respectively, “A Fock space description ... provides the most
parsimonious description of multiquanta states65... this picture presents us
with a view of entities quite free of primitive thisness.66 ... it provides a
description of the quantum mechanics of many-quanta systems of any kind,
with no necessary tie to the field-theoretic setting or a relativistic descrip-
tion.“

5.2 Fibered Sets

If we apply the forgetful functor to the total space as well as the base space,
abstracting from the topological and differentiable properties of both, then
the base space becomes a base set S, and the total space becomes a total
set X, which is fibered by the base space S. A cross section of the fibered
manifold becomes a section of X over S. Local diffeomorphisms of the base
manifold become automorphisms or permutations of the points of the base
set, while fiber-preserving diffeomorphisms of the total space become fiber
automorphisms of the total set. The resulting structure is very closely related
to the concept of a congruence on a G-set ,and this relation is discussed in
Section 4. We shall forego discussing the hole argument for fibered sets in
general, but turn to an important special case, relations between the elements
of S.

65Teller prefers to use the words quanta and multiquanta instead of particle and multi-
particle to emphasize the lack of inidividuality of the quantum objects.

66I will use the word thisness for the property-transcending individuality that particles
might be thought to have and that quanta do not have“ ([51], pp. 12). In the philosophical
literature, this is often referred to as haecceity. For further discussion in the context of
this problem, see [50].
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6 The Relations Between Things

6.1 Sets, Sequences and Relations

We shall now show that the concept of fibered set may be used to analyze
relations between sets of various types of “entities” or “things” for short. We
assume the set to be finite, although much of what is said would hold true
even for sets of higher cardinality.

Let S be a set of n entities, which we provisionally label {a1, a2, ..., an}
together with an ensemble R = {R1, R2, ..., Rk} of k n-ary relations between
these objects.67

A pair (S,R) is often called a set with structure. 68

Applying the hole argument to the category of fibered sets there are two
possibilities:

1) The objects {a1, a2, ..., an} are individuated (i.e., distinguishable) with-
out reference to the relations R = {R1, R2, ..., Rk}. 69 In this case, the hole
argument is valid.

2) The objects are not individuated (i.e. are indistinguishable, lack haec-
ceity) without reference to the relations R. In this case, the hole argument
fails.

In order to formulate the hole argument for sets-with- structure, we recall
the mathematical definitions of relation and sequence (see e.g., [39]).

Let N be a natural number. For simplicity, in what follows we assume
that N ≤ n, where n = cardS, though it is possible to consider the case
N > n.

An N -sequence of elements of a nonempty set S is defined as a function
s : {1, 2, ...N} → S. The elements of the sequence are denoted by s(i) = si

67Characters in boldface will always stand for sets or ensembles (see next footnote) in
Roman type for elements of a set, and in italic type for sequences of elements of a set

68See [39] pp. 3: Although it is usually used synonymously with set, we shall use the
word ensemble to refer to a set-with-structure, i.e., one that may have some additional
structure(s) relating its elements. ( “ Algebra can be characterized internally as the study
of sets with structure “ - [27], pp. 33). In particular, a set S together with a multiset
of relations R on S is called a relational structure. We shall leave open the question of
the exact nature of this relational structure, not assuming a priori that the relations are
either entirely independent of each other, so that their order is unimportant (as the word
set would imply), nor that there is a unique order among them (as the word sequence
would imply). They might, for example, have the structure of a partially ordered set, or
something even more general.

69Note that this alternative leaves open the possibility that the distinction between
these entities has been established by means of some other ensemble of relations (includ-
ing properties, as one-place relations) between them, so long as this ensemble is entirely
independent of R
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for i ∈ {1, 2, ...N}. Duplications of elements is allowed i.e., si = sj, where
i, j ∈ {1, 2, ...N}.

The direct (Cartesian) product set SN = S × S × ...× S, ( S is taken N
times). The elements of SN are isomorphic to N -uples of elements from the
set S.

An N -ary relation70 R is defined as a subset of SN i.e.,

R = {(a1, a2, ..., aN)} ⊆ SN .

If (a1, a2, ..., aN) belongs to this subset R, the proposition :
“ The relation R holds between the sequence of objects (a1, a2, ..., an) ”

will be abbreviated ”R(a1, a2, ..., aN) holds.”
If the (ordered) sequence (a1, a2, ..., aN) does not belong to this subset R,

the proposition is false. We shall abreviate this by “R(a1, a2, ..., an) doesn’t
hold”.

Note that any N -ary relation with N < n can be treated as an n-ary
relation by simply adjoining to the subset of SN defining the desired relation
all subsets of Sn−N . Then, only the entities occupying of the first N places
in a sequence of n entities will determine whether the N -ary relation holds.
So from now on, we shall only consider n-ary relations, i.e., subsets of Sn,
with the understanding that this constitutes no loss of generality.

A totally symmetric n-ary relation Sn is a n-ary relation R ⊆ Sn such
that if R(a1, a2, ..an) holds, then R(ai1, ai2 , ..ain) holds for all permutations
(i1, i2, ..in) of the indices (1, 2, ..., n). 71

Below are some examples of relations we use in the paper:
An equivalence relation is a binary relation that is reflexive, symmetric

and transitive (RST). It induces a partition of the set into equivalence classes
of subsets that are mutually exclusive and exhaust the set.

A partial ordering is a binary relation that is reflexive, antisymmetric and
transitive (RAT). So a poset (partially ordered set) is one example of a set-
with-structure, and all approaches to space-time theory based on posets, in
particular Sorkin’s causal set approach [40], [?] fall within the purview of this
treatment of sets-with-structure. In particular, the hole argument developed
below applies to all such approaches.

70For example, R is 3-ary relation on Z × Z × Z consisting of (a1, a2, a3) such that
ai ∈ Z and a1 < a2 < a3

71In [?] Saunders shows that if the n entities are indistiguishable, then nothing is lost
by replacing a n-ary relation wih a totally symmetric n-ary relation
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6.2 Fibered Sets and Relations

We are ready to define the type of fibered set, the cross-sections of which
correspond to relations. Consider the base set S, and the total set E = Sn.
The projection is defined as follows: π : E → S, the fiber over some element
a ∈ S is the set of all n-uples (a, ai2 , ..., ain) of elements of S that begin
with that element a. That is, the n-uple (a1, a2, ..., an) belongs to the fiber
over a if and only if a1 = a. The projection operation is thus the projection
over the first set, π = pr1 where pr1(a1, a2, ...an) = a1. The fiber over a,
π−1(a) = {(a, a2, ...an)/a, ai ∈ S} = {a} × Sn−1 is isomorphic to Sn−1

A cross-section of π is a map σ : S → Sn such that π ◦ σ = idS. A
cross-section σ can also be interpreted as the graph of a function from S to
the fiber Sn−1.

We have a natural fiber preserving automorphism f : Sn → Sn associated
to every automorphism fS of the base set S. Namely, if fS(a) = b under a
base automorphism fS : S → S, then f(a, ai2 , ...ain) = (b, bi2 , ...bin), where
bi = f(ai) for all i.

These fiber automorphisms provide a representation of the permutation
group acting on the base set. Clearly, if fS(a) = b and gS(b) = c un-
der base automorphisms, the corresponding fiber automorphisms then sat-
isfy f(a, ai2 , ...ain) = (b, bi2 , ...bin) and g(b, bi2 , ...bin) = (c, ci2 , ...cin), so that
(g ◦ f)S(a) = c corresponds to the fiber automorphisms that takes (g ◦
f)(a, ai2 , ...ain) = (c, ci2 , ...cin). A similar argument holds for inverse auto-
morphisms. To the identity base automorphism idS(a) = a corresponds the
identity fiber automorphism id : Sn → Sn, id(a, ai2 , ...ain) = (a, ai2 , ...ain),
because id(ai) = ai for all indices i.

We assert the following:

Proposition 5.1
A cross-section of π : Sn → S defines an n-ary relation over S.
The proof is a consequence of the definitions of an n-ary relation and π.

If we denote with E ′ the reduced fibered set (S × [Sn−1/Sym(S)], and
where the fiber Sn−1/Sym(S) is the quotient space 72 of Sn−1 by the sym-
metric group of the set S. Then entire equivalence class of cross-sections of
the fibered set (π : Sn → S) corresponds to one cross section of the reduced

fiber set (E ′ pr1→ S).
We have the following proposition.

Proposition 5.2

72see pp. 23
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An n-ary symmetric relation R is a cross-section of the reduced fibered set
(E ′ pr1→ S).

Proof
Let X ⊆ Sn be an n-ary symmetric relation on S. An element of X is

a sequence of elements of the base space, begining with some element of the
base space, let us say “a”. All the elements of X consisting of sequences that
begin with the same element a of the base space form a subset Xa of X. By
the definition given above of a fibered set, Xa lies on the fiber over a of that
set. X is the union of all the subsets Xa of X, each of which lies on some
(different) fiber of the fibered set. But there may be fibers of the set that
do not have any element of Xa on them. In that case, we choose the null
set ∅ on that fiber. Now every fiber has one (and only one) element chosen
on it, so that the chosen elements constitute a class of cross-sections of the
reduced fibered set induced by a fibre automorphism of Sn that projects on
the identity map idS : S → S. Now as mentioned above, an entire equivalence
class of cross-sections of the fibered set corresponds to one cross section of
the reduced fiber set. We have thus proved that an n-ary symmetric relation
X is a cross-section of the reduced fibered set (E ′ pr1→ S).

6.3 The Hole Argument for Relations

The theory of possible worlds originated in Leibniz’ ideas, and has been de-
veloped in recent times by analytical philosophers such as Kripke [22] and
Lewis [25] as a method of solving problems in formal semantics. The concept
of possible worlds is related to modal logics ( see e.g. [34]) and is used to
express modal claims. The two basic modal operators are � (necessity) and �
(possibility). The mathematics of the theory of possible worlds is set-theory
and relations. 73

We call a relational structure (S,R) a world. There are n! permutations
of n entities forming the permutation group Sym(S), so there are n! possible
sequences of the members of S. Let a = (a1, a2, ...an) ∈ Sn be one such
sequence. We write Pa to symbolize a permutation of the sequence a, and
Pa to symbolize the entire set of them.

We write R(a) as an abbreviation for the n-ary relation R with its places
filled by some definite sequence a of the n entities, and R(a) for the entire
ensemble of relations with their places filled in that sequence.

73In a Kripke model., there is a central element interpreted as the actual world. A
world is possible if it is related to the central element by an accessibility relation, which
is a binary relation. In general, the distinction between possible and impossible worlds
depends on the definition of the accessibility relation. The most disputed problem is the
nature of the property that defines one world as actual.[25]
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We see that for some a = (a1, a2, ...an) ∈ Sn , the ensemble of n-ary
relations R(a) holds, while for other n-tuples, R(a) does not hold. 74 We
call R(a) a possible state of the world, whether or not R(a). If R(a) holds
for any sequence a in Sn, then R(a) is called a state of the world.

Consider an ensemble of n-ary relations R = (R1, R2, ...Rk) on S. Let
a = (a1, a2, ...an) ∈ Sn and P : S → S a permutation on S. Then Pa is a
permutated sequence of the n-uple a. Then if R(a) is a possible state of the
world then R(Pa) is another possible states of the world. But, in general, if
R(a) holds then does not necessary imply that R(Pa) will hold. Therefore
we define another ensemble of relations, denoted PR = (PR1, PR2, ...PRk)
which holds for a if and only if R(P−1a) holds, where P−1 is the permuta-
tion inverse to P . That is, the two ensembles of relations are elementarily
equivalent, which we write PR(a) = R(P−1a) or PRi(a) = Ri(P

−1a) for all
i ∈ {1, 2...n}

It follows trivially from this definition (by substituting Pa for a in this
equation, and noting that P ◦ P−1 = Id , the identity permutation), that
PR(Pa) holds if and only if R(a) holds that is, they are too elementarily
equivalent, i.e., PR(Pa) = R(a) or PRi(Pa) = Ri(a) for all i ∈ {1, 2...n}.

This trivial identity or, if you will, tautology (since it depends only on
the definition of PR )-has been taken to contain the essence of covariance
and hence to have important bearing on the hole argument; 75

In fibered sets formulation, this trivial identity can be interpreted as
follows: we have a natural fiber preserving automorphism, denoted P̂ : E ′ →
E ′ of the reduced fiber set π′ = pr1 : E ′ → S. We see that P̂ takes a section
σ : S → E ′ ( i.e, a n-ary symmetric relation R(a) on S) to the carried-along
section σ̄ : S → E, σ̄ = π′P ◦ σ ◦ P−1 (i.e. the n-ary symmetric relation
PR(P−1(a)) ).

Therefore, there is a natural homomorphism76 from (S,R) to (S,PR)
which is defined to be a bijective mapping P : S → S such that P preserves
the relations, i.e.” R(a) holds ” implies ”PR(a) holds”. In other words,
(S,R) is a possible world if and only if (S,PR) is a possible world.

A world (a ,R)is called permutable if the following condition holds: If

74This means that the assertion Ri(a) is either true or false, but not meaningless. Note
that our stipulation leaves open the possibility that the distinction between these entities
is established by means of some other ensemble of relations between them, which is entirely
independent of R.

75See [10]. Of course, their discussion refers to the diffeomorphism version of this iden-
tity, discussed in Section 1. But the permutation version clearly captures the essence of
the matter at a much higher level of abstraction: The point is that a diffeomorphism is
just a highfalutin version of a permutation, as we shall discuss further below.

76The natural homomorphisms in Kripke semantics are called p-morphisms defined as
a map between worlds that preserves the accessibility relations.
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R(a) is a possible state of the world, then PR(a) is also a possible state of
the world, for all permutations P of a. This clearly sets up an equivalence
relation between possible states of the world: two possible states of the world
are equivalent if they differ by a permutation. It will be generally permutable,
if all of these possible states are elementarily equivalent.

7 Conclusion

As we have seen in Section 3, in general-relativistic theories, starting from
some natural bundle , the points of space-time may be characterized as such
independently of the particular relations in which they stand; but they are en-
tirely individuated in terms of the relational structure given by cross-sections
of some fibered manifold. And we have seen in Section 5 that the elementary
particles are similarly individuated by their position in a relational structure.
Electrons as a kind may be characterized in a way that is independent of the
relational structure in which they are imbricated by their mass, spin and
charge, for example; but a particular electron can only be individuated by
its role in such a structure. The reason for this claim is, of course, the require-
ment that all relations between N of these particles be invariant under the
permutation group acting on these particles. As we have seen, it is possible
to make the same move in both the case of the fibered manifolds that gener-
alized space-time and the fibered sets used to describe elementary particles:
by defining the elements of the base set as corresponding to the equivalenc
fibers of the fiber space, we make it impossible to carry out a fiber automor-
phism (i.e, to permute these fibers) without carrying out the corresponding
automorphism (i.e., permuting the elements) of the base space. This sug-
gest the following viewpoint: Since the basic building blocks of any model
of the universe, the elementary particles and the points of space-time, are
individuated entirely in terms of the relational structures in which they are
embedded, only higher-level entities constructed from these building blocks
can be individuated independently. Therefore, the following principle of gen-
eralized covariance should be a requirement on any fundamental theory: The
theory should be invariant under all permutations of the basic elements, out
of which the theory is constructed.

Perturbative string theory fails this test, since the background space-
time (of no matter how many dimensions) is only invariant under a finite-
parameter Lie subgroup of the group of all possible diffeomorphisms of its
elements.

This point now seems to be widely acknowledged in the string community.
I quote from two recent review articles. Speaking of the original string theory
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Michael Green[18] notes:
“This description of string theory is wedded to a semiclassical perturba-

tive formulation in which the string is viewed as a particle moving through a
fixed background geometry .... Although the series of superstring diagrams
has an elegant description in terms of two-dimensional surfaces embedded in
spacetime, this is only the perturbative approximation to some underlying
structure that must include a description of the quantum geometry of the
target space as well as the strings propagating through it ( p. A78). ...
A conceptually complete theory of quantum gravity cannot be based on a
background dependent perturbation theory .... In ... a complete formulation
the notion of string-like particles would arise only as an approximation, as
would the whole notion of classical spacetime (p. A 86) ”

Speaking of the more recent development of M-theory, Green says:
“An even worse problem with the present formulation of the matrix model

is that the formalism is manifestly background dependent. This may be
adequate for understanding M theory in specific backgrounds but is obviously
not the fundamental way of describing quantum gravity (p. A 96).”

And in a review of matrix theory, Thomas Banks comments:
String theorists have long fantasized about a beautiful new physical prin-

ciple which will replace Einsteins marriage of Riemannian geometry and grav-
itation. Matrix theory most emphatically does not provide us with such a
principle. Gravity and geometry emerge in a rather awkward fashion, if at
all. Surely this is the major defect of the current formulation, and we need
to make a further conceptual step in order to overcome it (pp. 181-182).
It is my hope that emphasis on the importance of the principle of dynamic
individuation of the fundamental entities, with its corollary requirement of
invariance of the theory under the entire permutation group acting on these
entities, constitutes a small contribution to the taking of that further con-
ceptual step.
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9 Appendix

In Section 2, it was simply postulated that, to every diffeomorphism of the
base space there corresponds a unique fiber automorphism, and cross sec-
tions of fibered manifolds with this property were used to define geometric
objects. It is worthwhile to see in detail how such a fiber automorphism may
be constructed by lifting a local diffeomorphism of M into a tensor bundle
automorphism, and thereby connect up with the usual definition of a tensor.
We do the lifting with the help of a linear frame field in M .

A linear frame f in an n-dimensional vector space is an ordered set of
linearly independent vectors.

A linear frame fp = (ei)i=1,..n at a point p of an n-dimensional manifold
M is a basis for the tangent space TxM . The collection of all linear frames
at all points of M forms the total space of a fibre bundle LM , called the
frame bundle. Its base is M , the projection is the map that associates to
each frame the point in which the tangent space lies and its standard fibre is
the linear group GL(n,R).

A local linear frame field f is merely a local section of the frame bundle
LM . In other words, a frame field on some open set U ⊆ M are n-vector
fields f = (ei)i=1,..n on U , such that f(p) = (ei(p))i=1,..n is a linear frame at
each p in U .

Let D : M →M a local diffeomorphism on M .
In physics, only the physical components of a tensor ( or more generally,of

a geometric object) can be measured, i.e. the scalars gotten from projection
of the tensor onto a suitable choosen tangent basis and its dual cotangent
basis, only these can be measured.[33]

The values of a scalar field λ at two different points p and Dp can be
compared without further ado since they are just numbers: λ[p] and λ[Dp].

If F [p] is not a scalar field, we must take its components Ff [p] with respect
to some frame f [p] at point p in order to get sets of numbers characterizing
the geometrical object field that we can take from one point to another of
M for comparison.

Given a frame fp, the diffeomorphism D induces a corresponding new
frame D∗fDp at the point Dp. This is called the frame carried (or dragged)
along with the diffeomorphism D.

Let F be a field. The new field D∗F , called the pullback of F , is defined
as follows: D∗Ff [p] = FD−1f [D

−1p]. In other words: the components of the
pullback field with respect to the frame at a point are numerically equal to the
components of the original field in the pulled-back frame at the pulled-back
point.

It is easily shown that this definition is independent of the particular
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linear frame originally used to define the components of the geometrical fields.
Interchanging the roles of D and D−1 in the above expression we obtain

an equivalent expression (D−1)∗Ff [p] = FDf [Dp].
In other words, whether we carry out a diffeomorphism without carrying

along the F (right hand side), or pull back the F by the inverse transforma-
tion without carrying out a diffeomorphism (left hand side), the result is the
same 77.

By substituting now Dp for p in the definition of D∗F , the above formula
can be put in another equivalent form: (D∗FDf [p] = Ff [p]. So, the values of
the carried-along components with respect to the carried-along frame at the
carried-along point are numerically equal to the values of the original field
with respect to the original frame at the original point.

Since, as noted above, any diffeomorphism D induces a corresponding
change of basis field, it follows that the model (M,D∗F [Dp]) is equivalent to
the original model (M,F [p]). (“If we drag everything, we change nothing.“)

Since it follows from the definition of D∗F , this equivalence cannot fail to
hold; so I shall refer to it as the trivial equivalence. Now I shall indicate how
the hole argument runs in this context. Suppose we impose the following re-
quirement on a theory T : For all diffeomorphisms D, if (M,F [p]) is a model,
then so is (M,D∗F [Dp]) (note that we do not require the two models to be
equivalent). In particular, this will be the case if the models are defined as
the solutions to a set of generally-covariant field equations for the F[p] fields.
78 We shall call a theory covariant if it obeys this requirement. Remember
that, by the trivial identity, (M,F [p]) and (M,D∗F [Dp]) always represent
semantically equivalent models, and thus do so for a covariant theory quite
independently of the hole argument for such theories, which I now proceed
to discuss. 79

The hole argument hinges on the answer to the following question. In
a covariant theory, is it possible to pick out a unique model by specifying
F [p] everywhere except on some open submanifold H of M (the hole), i.e.,
on M − H? If (M,F [p]) and (M,D∗F [Dp]) are inequivalent models for
all D except the identity diffeomorphism (by the definition of a covariant
theory, all of them are models of the theory if one is), then the answer is no.
For we can then pick any diffeomorphism DH that is equal to the identity
diffeomorphism on M −H, but differs from the identity diffeomorphism on
H. Then (M,F [p]) and ((M,D∗F [Dp]) will be two different models that

77“Dont raise the bridge, lower the river !”
78Indeed, we may take this as the definition of such a set of generally-covariant field

equations.
79As discussed earlier, this view is in sharp contrast with that expoused in [?], who also

denote as “generally covariant“ theories that I call “covariant.“
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agree on M −H but differ on H, and are therefore inequivalent models. So
no conditions imposed on F [p] on M −H can serve to fix a unique model on
H.
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