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Abstract

I shall discuss some “conditions of possibility”of a quantum theory of
gravity, stressing the need to confront certain fundamental problems
in any attempt to quantize the field equations of general relativity,
including: the distinction between background-independent, partially
background-dependent and background-dependent theories, the choice
of dynamical variables for quantization, the definition of probability am-
plitudes for processes, and consistency between formalism and possibil-
ities of measurement.

1.1 Introduction

Prolegomena means preliminary observations, and my title is meant to
recall Kant’s celebrated Prolegomena to Any Future Metaphysics That
Can be Claim to be a Science. My words, like his:

are not supposed to serve as the exposition of an already-existing science, but
to help in the invention of the science itself in the first place.

To use another Kantian phrase, I shall discuss some ”conditions of pos-
sibility” of a quantum theory of gravity, stressing the need for solutions
to certain fundamental problems confronting any attempt to apply some
method of quantization to the field equations of general relativity (GR).
Not for lack of interest but lack of space-time (S-T), other approaches
to quantum gravity (QG) are not discussed here (but see (30)).
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1.1.1 Background dependence versus background

independence

The first problem is the tension between ”method of quantization” and
”field equations of GR”. The methods of quantization of pre-general-
relativistic theories† have been based on the existence of some fixed
S-T structure(s), needed both for the development of the formalism and
–equally importantly– for its physical interpretation. This S-T struc-
ture provides a fixed kinematical background for dynamical theories: the
equations for particle or fields must be invariant under all automor-
phisms of the S-T symmetry group. GR theory, on the other hand, is
a background-independent theory, without any fixed, non-dynamical S-T
structures. Its field equations are invariant under all differentiable au-
tomorphisms (diffeomorphisms) of the underlying manifold, which has
no S-T structure until a solution of the field equations is specified. In a
background-independent theory, there is no kinematics independent of
the dynamics‡.

1.1.2 The primacy of process

GR and special relativistic quantum field theory (SRQFT) do share one
fundamental feature that often is not sufficiently stressed: the primacy
of process over state†. The four-dimensional approach, emphasizing pro-
cesses in regions of S-T, is basic to both (see, e.g., (27; 20; 6)). Every
measurement, classical or quantum, takes a finite time, and thus in-
volves a process. In non-relativistic quantum mechanics (QM), one can
sometimes choose a temporal slice of S-T so thin that one can speak

† In particular, non-relativistic quantum mechanics (QM )based on Galilei-
Newtonian S-T, special-relativistic quantum field theory based on Minkowski S-T,
and quantum field theories in non-flat Riemannian S-Ts. But see (25) for a dis-
cussion of topological QFT.

‡ Ashtekar and Lewandowski (2) note that ”in interacting [special-relativistic] quan-
tum field theories, there is a delicate relation between quantum kinematics and
dynamics: unless the representation of the basic operator algebra is chosen appro-
priately, typically, the Hamiltonian fails to be well-defined on the Hilbert space;”
and go on to suggest that in GR one has the same ”problem of choosing the ’correct’
kinematical representation” (p. 51). By a ”background independent kinematics”
for GR they mean a ”quantum kinematics for background-independent theories of
connections.” This phrase obscures the fact that, in a special-relativistic theory,
the ”background independent kinematics” is dictated by the symmetry group of
the background S-T metric; while in GR it only emerges from the field equations
after the introduction of some fibration and foliation leads to a canonical division
into constraint and evolution equations (see Section 1.6).

† Baez (3) emphasizes that both are included in the category of cobordisms. Two
manifolds are cobordant if their union is the complete boundary of a third mani-
fold.
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meaningfully of an ”instantaneous measurement” of the state of a sys-
tem; but even in QM this is not always the case. Continuous quantum
measurements are often needed. And this is certainly the case for mea-
surements in SRQFT, and in GR (see, e.g. (4; 20)). The breakup of a
four-dimensional S-T region into lower-dimensional sub-regions –in par-
ticular, into a one parameter family of three-dimensional hypersurfaces–
raises another aspect of the problem. It breaks up a process into a
sequence of instantaneous states. This is useful, perhaps sometimes in-
dispensable, as a calculational tool in both quantum theory and GR.
But no fundamental significance should be attached to such breakups,
and results so obtained should be examined for their significance from
the four-dimensional, process standpoint (see, e.g., (17)). Since much of
this paper is concerned with such breakups, it is important to emphasize
this problem from the start, as does Smolin in (26):

[R]elativity theory and quantum theory each... tell us - no, better, they scream
at us- that our world is a history of processes. Motion and change are primary.
Nothing is, except in a very approximate and temporary sense. How something
is, or what its state is, is an illusion. It may be a useful illusion for some
purposes, but if we want to think fundamentally we must not lose sight of
the essential fact that ’is’ is an illusion. So to speak the language of the new
physics we must learn a vocabulary in which process is more important than,
and prior to, stasis (p. 53).

Perhaps the process viewpoint should be considered obvious in GR,
but the use of three-plus-one breakups of ST in canonical approaches
to QG (e.g., geometrodynamics and loop QG), and discussions of ”the
problem of time” based on such a breakup, suggest that it is not. The
problem is more severe in the case of quantum theory, where the concepts
of state and state function and discussions of the ”collapse of the state
function” still dominate most treatments. But, as Bohr and Feynman
emphasized, the ultimate goal of any quantum-mechanical theory is the
computation of the probability amplitude for some process undergone by
a system. The initial and final states are just the boundaries of the
process, marked off by the system’s preparation and the registration of
some result, respectively (see (28; 29), which includes references to Bohr
and Feynman).

In SRQFT, the primary instrument for computation of probability
amplitudes is functional integration (see, e.g., (6)). Niedermaier (18)
emphasizes the importance of approaches to general relativity that are:

centered around a functional integral picture. Arguably the cleanest intuition
to ’what quantizing gravity might mean’ comes from the functional integral
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picture. Transition or scattering amplitudes for nongravitational processes
should be affected not only by one geometry solving the gravitational field
equations, but by a ’weighted superposition’ of ’nearby possible’ off-shell ge-
ometries. [A]ll known (microscopic) matter is quantized that way, and using
an off-shell matter configuration as the source of the Einstein field equations
is in general inconsistent, unless the geometry is likewise off-shell” (p. 3).

1.1.3 Measurability analysis

The aim of ”measurability analysis”, as it was named in (4), is based
on ”the relation between formalism and observation” (20); its aim is to
shed light on the physical implications of any formalism: the possibility
of formally defining any physically significant quantity should coincide
with the possibility of measuring it in principle; i.e., by means of some
idealized measurement procedure that is consistent with that formalism.
Non-relativistic QM and special relativistic quantum electrodynamics,
have both passed this test ; and its use in QG is discussed in Section 4.

1.1.4 Outline of the article

In QM and SRQFT, the choice of classical variables and of methods
to describe processes they undergo played a major role in determining
possible forms of the transition to quantized versions of the theory, and
sometimes even in the content of the quantized theory†. Section 2 dis-
cusses these problems for Maxwell’s theory, outlining three classical for-
malisms and corresponding quantizations. The Wilson loops method,
applied to GR, led to the development of a background-independent
quantization procedure. Section 3 surveys possible choices of funda-
mental variables in GR, and Section 4 discusses measurability analysis
as a criterion for quantization. The classification of possible types of
initial-value problems in GR is discussed in Sections 5 and 6. Section
7 treats various ”mini-” and ”midi-superspace” as examples of partially
background-dependent S-Ts in GR, and the quantization of asymptoti-
cally flat S-Ts allowing a separation of kinematics and dynamics at null
infinity. There is a brief Conclusion.

† In SRQFT, inequivalent representations of the basic operator algebra are possible.
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1.2 Choice of Variables and Initial Value Problems in
Classical Electromagnetic Theory

In view of the analogies between electromagnetism (EM) and GR (see
Section 3)– the only two classical long-range fields transmitting interac-
tions between their sources– I shall consider some of the issues arising in
QG first in the simpler context of EM theory‡. Of course, there are also
profound differences between EM and GR– most notably, the former is
background dependent and the latter is not. One important similar-
ity is that both theories are formulated with redundant variables. In
any gauge-invariant theory, the number of degrees of freedom equals the
number of field variables minus twice the number of gauge functions. For
Maxwell’s theory, the count is four components of the electromagnetic
four-potential A (symbols for geometric objects will often be abbrevi-
ated by dropping indices) minus two times one gauge function equals
two degrees of freedom. For GR, the count is ten components of the
pseudo-metric tensor g minus two times four ”gauge” diffeomorphism
functions, again equals two. There are two distinct analogies between
EM and GR. In the first, A is the analogue of g. In the second, it is
the analogue of Γ, the inertio-gravitational connection. In comparisons
between gauge fields and GR, the second analogy is usually stressed.
Maxwell’s theory is a U(1) gauge theory, A is the connection one-form,
the analogue of the GR connection one-form; and F = dA is the curva-
ture two-form, the analogue of the GR curvature two-form (see Section
3 and 6, for the tetrad formulation of GR).

The first analogy may be developed in two ways. The formulation
of EM entirely in terms of the potential four-vector is analogous to the
formulation of GR entirely in terms of the pseudo-metric tensor (see
Section 3): the field equations of both are second order. This analogy is
very close for the linearized field equations: small perturbations hµν of
the metric around the Minkowski metric ηµν obey the same equations
as special-relativistic, gauge-invariant massless spin-two fields, which are
invariant under the gauge transformations hµν → hµν +ξµ,ν +ξν,µ where
ξν is a vector field†; while Aµ obeys those of a spin-one field, which
are invariant under the gauge transformation Aκ → Aκ + ∂κχ, where
χ is a scalar field. The divergence of the left-hand-side of these field
equations vanishes identically (in GR this holds for both the exact and

‡ This theory is simplest member of the class of gauge-invariant Yang-Mills theories,
with gauge group U(1); most of the following discussion could be modified to
include the entire class

† For the important conceptual distinction between the two see Section 7.
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linearized equations), so vanishing of the divergence of the right hand
side (conservation of energy-momentum in GR, conservation of charge
in EM) is an integrability condition. This is no accident: invariance and
conservation law are related by Noethers second theorem (see Section
5).

The formulation of GR in terms of pseudo-metric g and independently
defined inertio-gravitational connection Γ is analogous to the formula-
tion of EM in terms of a one form A and a second two-form field G[µν],
initially independent of F . The definition of the Christoffel symbols { }
in terms of g and its first derivatives is analogous to the definition of
F = dA (see above). The first set of Maxwell equations dF = 0 then
follows from this definition. Some set of constitutive relations between
F and G complete the EM theory. The vacuum relations F = G are
analogous to the compatibility conditions { } = Γ in GR. The second
set of Maxwell equations: dG = j, where j is the charge-current 3-form,
are the analogue of the equations E(Γ) = T equating the Einstein tensor
E to the stress-energy tensor T . This analogy is even closer when GR is
also formulated in terms of differential forms (see Section 3). Splitting
the theory into three-plus-one form (see Section 6), is the starting point
in EM for quantization in terms of Wilson loops, and in QG for the loop
quantum gravity (LQG) program (see, e.g., (25)). In some inertial frame
in Minkowski space: A splits into the three-vector- and scalar-potentials,
A and φ. F and G split into the familiar three vector fields E and B
and D and H, respectively; and j splits into the three-current density
vector j and the charge density ρ. In a linear, homogeneous isotropic
medium†, the constitutive relations are:

D = εE and B = µH,

with εµ = (n/c)2 ε and µ being the dielectric constant and permeability
of the medium, and n is its index of refraction and c is the vacuum speed
of light. The second order field equations split into one three-scalar and
one three-vector evolution equation:

∂

∂t
(divA) + (del)2φ = ρ, grad div A− (del)2A−

(n

c

)2
(

∂2A
∂t2

)
= j

Using the gauge freedom to set divA = 0 initially and (del)2φ = ρ

† The rest frame of a material medium is a preferred inertial frame. In the case of
the vacuum, a similar split may be performed with respect to any inertial frame.
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everywhere, the constraint equation then insures that divA vanishes
everywhere, and the evolution equation reduces to the (three-)vectorial
wave equation for A. By judicious choice of gauge, the two degrees
of freedom of the EM field have been isolated and embodied in the
divergence-free A field, a local quantity the evolution of which proceeds
independently of all other field quantities. In GR, this goal has been
attained in only a few exceptional cases (see Section 7).

Going over from this second order (Lagrangian) to a first-order (Hamil-
tonian) formalism, canonical quantization of EM then may take place in
either the position-representation; or the unitarily-equivalent momentum-
representation, leading to a Fock space representation of the free field.
Since the asymptotic in- and out-fields always may be treated as free,
this representation is useful for describing scattering experiments. In
GR, there is no”natural” analogue of an inertial frame of reference; the
closest is an arbitrarily selected foliation (global time) and fibration (rel-
ative space) (see Section 6.1). Geometrodynamics attempts to use the
(suitably constrained) three-spatial metric (first fundamental form) of
a spacelike foliation as position variables, with the second fundamental
form as the corresponding velocities (see Section 6.3); but apparently
a mathematically rigorous quantization of the theory in this form is
impossible (see (2)). LQG takes the Ashtekar three-connection on the
hypersurfaces as position variables (see Section 5); but rigorous quanti-
zation is based on the introduction of loop variables.

The attempt to better understand LQG inspired a similar approach to
quantization of the EM field. The integral

∫
C

A around a loop or closed
curve C in a hyperplane t = const is gauge-invariant†. It follows from
the definition of E‡ that

∫
C

E = d[
∫

C
A]/dt; so if the

∫
C

A are taken
as ”position” variables, the latter will be the corresponding ”velocities.”
The momenta conjugate to

∫
C

A are
∫ ∫

S
D · ndS, where S is any 2-

surface bounded by C§ The relation between D (momentum) and E
(velocity) is determined by the constitutive relations of the medium, the
analogue of the mass in particle mechanics, which relates a particle’s
momentum and velocity.

† It is a non-local, physically significant quantity. In spaces with non-vanishing first
Betti number its periods form the basis of the Aharonov-Bohm effect.

‡ If there are topological complications, the periods of
R

C(gradφ) may also be
needed.

§ (27) gives a Lagrangian density for arbitrary constitutive relations. When eval-
uated on t= const, the only term in the Lagrangian density containing a time
derivative is (∂A/∂t) ·D, from which the expression for the momentum follows. If
a non-linear constitutive relation is used, the difference between D and E becomes
significant.
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In a four-dimensional formulation, the ”dual momenta” are the in-
tegrals

∫ ∫
S

G over any two-surface S. This suggests the possibility of
extending the canonical loop approach to arbitrary spacelike and null
initial hypersurfaces. But it is also possible to carry out a Feynman-
type quantization of the theory: a classical S-T path of a such loop is
an extremal in the class of timelike world tubes S (oriented 2-surfaces
with boundaries) bounded by the loop integral

∫
C

A on the initial and
final hyperplanes . To quantize, one assigns a probability amplitude
exp iI(S) to each such S, where I(S) is the surface action. The to-
tal quantum transition amplitude between the initial and final loops is
the sum of these amplitudes over all such 2-surfaces¶. More generally,
loop integrals of the 1-form A for all possible types of closed curves C

ought to be considered, leading to a Feynman-type quantization that is
based on arbitrary spacelike loops. Using null-loops, null-hypersurface
quantization techniques might be applicable (see Section 6).

The position and momentum-space representations of EM theory are
unitarily equivalent; but they are not unitarily equivalent to the loop
representation. In order to secure unitary equivalence, one must in-
troduce smeared loops†, suggesting that measurement analysis (see the
Introduction) might show that ideal measurement of loop variables re-
quires ”thickened” four-dimensional regions of S-T around a loop. The
implications of measurement analysis for loop quantization of GR also
deserve careful investigation (see Section 4).

1.3 Choice of fundamental variables in classical GR

One choice is well known: a pseudo-metric and a symmetric affine con-
nection, and the structures derived from them. Much less explored is the
choice of the conformal and projective structures (see, e.g., (12), Section
2.1, Geometries). The two choices are inter-related in a number of ways,
only some of which will be discussed here‡.
¶ See (19; 20)
† The loops are ”smeared” with a one parameter family of Gaussian functions over

the three-space surrounding the loop.
‡ Mathematically, all of these structures are best understood as G-structures of the

first and second order; i.e., reductions of the linear frame bundle group GL(4, R)
over the S-T manifold with respect to various subgroups (see (23)). The metric
and volume structures are first order reductions of the group with respect to the
pseudo-orthogonal subgroup SO(3, 1) and unit-determinant subgroup SL(4, R),
respectively. The projective structure and the first order prolongation of the vol-
ume structure are second order reductions of the frame bundle group. The interre-
lations between the structures follow from the relations between these subgroups.
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1.3.1 Metric and affine connection

The coordinate components of the pseudo-metric§ field gµν are often
taken as the only set of dynamical variables in GR in second order for-
mulations of the theory. The metric tensor plays a dual role physically:

(i) Through the invariant line element ds between two neighboring
events ds2 = gµνdxµdxν it determines the chrono-geometry of S-T
(the intervals may be space-like, time-like or null), as manifested
in the behaviour of ideal rods and clocks. Since ds is not a per-
fect differential, the proper time between two time-like separated
events depends on the path between them.

(ii) Its components also serve as the potentials for the Christoffel
symbols, the components of the Levi-Civita connection that de-
termines the inertio-gravitational field:

Directly, through its role in the geodesic equation governing the
behavior of freely falling particles (metric geodesics are extremals
of the interval: shortest for space-like, longest for time-like, or
zero-length for null curves);

Indirectly, through the role of the Riemann tensor R[κλ][µν] in
the equation of geodesic deviation, governing tidal gravitational
forces.

According to Einstein’s equivalence principle, gravity and inertia are
described by a single inertio-gravitational field and a reference frame can
always be chosen locally (”free fall”), in which the components of the
field vanish. In a four-dimensional formulation of the Newtonian theory
as well as in GR, this field is represented by a symmetric linear connec-
tion Γκ

µν . For this among other reasons, a first order formalism is prefer-
able, taking both pseudo-metric and connection as independent dynam-
ical variables. The connection still describes the inertio-gravitational
field through the geodesic equation: affine geodesics, or better affine
auto-parallel curves, are the straightest paths in S-T (the connection
also determines a preferred affine parameter on these curves. The affine
curvature tensor Aκ

λ[µν], plays a role in the affine equation of geodesic de-
viation similar to that of the Riemann tensor in the metric equation. The
first order field equations can be derived from a Palatini-type variational
principle; one set consists of the compatibility conditions between met-
ric and connection, ensuring that the connection is metric: straightest
curves coincide with extremals; and the Riemann tensor agrees with the

§ Often I shall simply refer to the metric, the Lorentzian signature being understood.
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affine curvature tensor. Introducing a tetrad of basis vectors eI and dual
co-basis of one-forms eI , the relation between tetrad components of met-
ric, connection and curvature tensor may be expressed in various ways.
Recent progress in QG has demonstrated the special significance of the
one based on the cartan connection (see, e.g. (24): the chrono-geometry
is represented by means of the co-basis of 1-forms: g = ηIJeIeJ , where
ηIJ is the Minkowski metric, and the affine connection and curvature
tensor are represented by an SO(3, 1) matrix-valued one-form ωI

J , and
two-form RI

J = dωI
J + ωI

K ∧ ωK
J , respectively (see, e.g., (22) or (31)).

Starting from this formulation, Ashtekar put the field equations of GR
into a form closely resembling that of Yang-Mills theory by defining the
”Ashtekar connection”, a three-connection on a spacelike hypersurface
that embodies all the information in the four-connection on the hyper-
surface (see Section 6). Much recent progress in LQG is based on this
step.

1.3.2 Projective and Conformal Structures

Neither metric nor connection are irreducible group theoretically (see the
earlier note on G-structures): each can be further decomposed: The met-
ric splits into a conformal, causality-determining structure and a volume-
determining structure; the connection splits into a projective, parallel
path-determining structure, and an affine-parameter-determining struc-
ture. Physically, the conformal structure determines the behavior of
null wave fronts and the dual null rays. The projective structure de-
termines the preferred (”straightest”) paths of force-free monopole par-
ticles†. Given a pseudo-Riemannian S-T, the conformal and projective
structures determine its metric. Conversely, given conformal and pro-
jective structures obeying certain compatibility conditions, the existence
of a metric is guaranteed (9). In GR, these compatibility conditions can
be derived from a Palatini-type Lagrangian by taking the conformal,
projective, volume-determining and affine parameter- determining struc-
tures as independent dynamical variables. There are curvature tensors
associated with the conformal and the projective structure; the Weyl
or conformal curvature tensor plays an important role in defining the
structure of null infinity in asymptotically flat S-T’s, and the projective
curvature tensor plays a similar role in defining timelike infinity. This
set of structures is currently being investigated as the possible basis of

† A preferred affine curve, or auto-parallel, curve is parameterized by a preferred
affine parameter; a preferred projective path is not so parameterized.
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an approach to QG that incorporates the insights of causal set theory
(see (30))‡.

1.4 The Problem of Quantum Gravity

In the absence of an accepted theory of QG, measurability analysis (see
the Introduction) of various classical dynamical variables in GR (see the
previous section) may help delimit the choice of a suitable maximal, in-
dependent set. Taking into account the quantum of action should then
restrict joint measurability to compatible subsets, which could serve as
a basis for quantization. The formal representation of such ideal mea-
surements will require introduction of further, non-dynamical structures
on the S-T manifold, such as tetrads, bivector fields, congruences of
subspaces, etc, which are then given a physical interpretation in the
measurement context (see, e.g., (21) and Sections 5 and 6 below). This
question is closely related to that of initial value problems: possible
choices of initial data and their evolution along congruences of subspaces
(see Section 6). Measurability analysis in GR could be carried out at
three levels: metric, connection and curvature (see the previous section):

The pseudo-metric tensor: Measurements of spatial or temporal in-
tervals along some curve; or similar integrals of spatial two-areas and
three volumes†, or of spatio-temporal four-volumes– or integrals of other
similar quantities– could provide information about various aspects of
the metric tensor. In a sense, all measurements ultimately reduce to
such measurements‡. The Introduction and Section 2 present argu-
ments suggesting that four-dimensional process measurements are fun-
damental, measurements of apparently lower-dimensional regions actu-
ally being measurements of specialized processes approximating such
lower-dimensional regions. Because of its fundamental importance, this
question deserves further investigation.

The affine connection: While the inertio-gravitational connection is
not a tensor, an appropriately chosen physical frame of reference can
be used to define a second, relative inertial connection; and the dif-

‡ A Lagrangian based on the volume-defining and causal structures is cubic in the
conformal dynamical variables.

† This is especially important in view of the claim that quantized values of spa-
tial two-areas and three-volumes are measurable (see, e.g., (2; 22) ); for critical
comments on this claim, see (17)). Possible measurability of all two-surface inte-
grals of the curvature two-forms, and not just over spatial two-surfaces, should be
investigated.

‡ Kuhlmann 2006 notes, in the context of SRQFT: ”[S]pace-time localizations can
specify or encode all other physical properties.”
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ference between the inertio-gravitational and the relative inertial con-
nection, like the difference between any two connections is a tensor.
So a frame-dependent gravitational tensor can be defined, and might
be measurable for example, by deviations of time-like preferred affine
inertio-gravitational curves from the preferred purely inertial curves de-
fined with respect to such a frame. Fluctuations around a classical
connection, also being tensors, the mean value of classical or quantum
fluctuations might also be measurable.

Structures abstracted from the affine connection: Measurement anal-
ysis of ”smeared” loop integrals of connection one-forms over S-T loops
–both spatial and non-spatial– should be done in connection with canon-
ical and non-canonicals formulations of LQG. The possibility of similar
measurements on the preferred paths of a projective structure, with re-
sults that depend only on that structure, should also be studied .

The Riemann or affine curvature tensor: DeWitt (6), and Bergmann
and Smith (4) studied the measurability of the components of the lin-
earized Riemann tensor with respect to an inertial frame of reference,
and drew some tentative conclusions about the exact theory. Arguing
that, in gauge theories, only gauge-invariant quantities should be sub-
ject to the commutation rules, they concluded that measurement analy-
sis should be carried out exclusively at the level of the Riemann tensor.
However, this conclusion neglects three important factors:

(i) It follows from the compatibility of chrono-geometry and inertio-
gravitational field in GR that measurements of the former can be
interpreted in terms of the latter. As noted, the interval ds be-
tween two neighboring events is gauge invariant, as is its integral
along any closed world line. Indeed, all methods of measuring
components of the Riemann tensor ultimately depend on mea-
surement of such intervals, either space-like or time-like, which
agree (up to a linear transformation) with the corresponding
affine parameters on geodesics.

(ii) Introduction of additional geometrical structures on the S-T man-
ifold to model macroscopic preparation and registration devices
produces additional gauge-invariant quantities relative to these
structures (see (21)).

(iii) While a geometric object may not be gauge-invariant, some non-
local integral of it may be. The electromagnetic four-potential,
for example, is not gauge invariant, but its loop integrals are (see
Section 2). Similarly, at the connection level, the holonomies of
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the set of connection one-forms play an important role in LQG.
(see, e.g., (2; 22)).

In both EM and GR, one would like to have a method of loop quanti-
zation that does not depend on singling out a family of spacelike hyper-
surfaces. The various ”problems of time” said to arise in the canonical
quantization of GR seem to be artifacts of the canonical technique rather
than genuine physical problems†. The next section discusses some non-
canonical possibilities.

Some tensor abstracted from the Riemann tensor, such as the Weyl or
conformal curvature tensor. For example, measurability analysis of the
Newman-Penrose formalism, based on the use of invariants constructed
from the components of the Weyl tensor with respect to a null tetrad
(see, e.g., Stephani et al 2003, Chapter 7), might suggest new candidate
dynamical variables for quantization.

1.5 The Nature of Initial Value Problems in General
Relativity

Any initial value problem for a set of hyperbolic‡ partial differential
equations on an n-dimensional manifold consists of two parts:

(i) Specification of a set of initial data on some submanifolds of di-
mension d ≤ (n−1) just sufficient to determine a unique solution;
and

(ii) Construction of that solution, by showing how the field equations
determine the evolution of the initial data along some (n − d)-
dimensional congruence of subspaces.

The problems can be classified in terms of the value of d, the nature
of the initial submanifolds, characteristic or non-characteristic, and the
nature of the (n−d)-dimensional congruence of subspaces. In GR, there
are essentially only two possibilities for d:

† That is, problems that arise from the attempt to attach physical meaning to some
global time coordinate introduced in the canonical formalism, the role of which
in the formal-ism is purely as an ordering parameter with no physical significance
(see (21; 20)). The real problem of time is the role in QG of the local or proper
time, which is a measurable quantity classically.

‡ Initial value problems are well posed (i.e., have a unique solution that is stable
under small perturbation of the initial data) only for hyperbolic systems. It is the
choice of Lorentz signature for the pseudo-metric tensor that makes the Einstein
equations hyperbolic; or rather, because of their diffeomorphism invariance (see
Section 5.1), only with the choice of an appropriate coordinate condition (e.g.
harmonic coordinates) does the system of equations become hyperbolic.
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• d = 3: Initial hypersurface(s), with evolution along a vector field
(three-plus-one problems).

• d = 2: Two dimensional initial surfaces with evolution along a con-
gruence of two-dimensional subspaces (two-plus-two problems).

Below we discuss the possible nature of the initial submanifolds and of
the congruence of subspaces.

1.5.1 Constraints Due to Invariance Under a Function Group

If a system of m partial differential equations for m functions is derived
from a Lagrangian invariant up to a divergence under some transfor-
mation group depending on q functions of the q independent variables
(q ≤ m), then by Noethers second theorem (see, e.g., (32)) there will be
q identities between the m equations. Hence, q of the m functions are
redundant when initial data is specified on a (non-characteristic) (q−1)-
dimensional hypersurface, and the set of m field equations splits into q

constraint equations, which need only be satisfied initially, and (m− q)
evolution equations. As a consequence of the identities, if the latter are
satisfied everywhere, the former will also be.

The ten homogeneous (empty space) Einstein equations for the ten
components of the pseudo-metric field as functions of four coordinates
are invariant under the four-function diffeomorphism group. Hence,
there are four (contracted Bianchi) identities between them. In the
Cauchy or three-plus-one initial value problem on a spacelike hypersur-
face (see (10)), the ten field equations split into four constraints and six
evolution equations. The ten components of the pseudo-metric provide
a very redundant description of the field, which as noted earlier has only
two degrees of freedom per S-T point. Isolation of these ”true” degrees
of freedom” of the field is a highly non-trivial problem. One approach
is to find some kinematical structure, such that they may be identified
with components of the metric tensor in a coordinate system adapted
to this structure (see, e.g., the discussion in Section 6 of the conformal
two-structure). Apart from some simple models- (see Section 7) their
complete isolation has not been achieved; but the program is still being
pursued, especially using the Feynman approach (see, e.g., (18)). Quan-
tization of the theory has been attempted both after and before isolation
of the true observables. In quantization methods before isolation, as in
loop quantum gravity, superfluous degrees of freedom are first quantized
and then eliminated via the quantized constraints (see, e.g., (2)).
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Classical GR initial value problems can serve to determine various
ways of defining complete (but generally redundant) sets of dynamical
variables. Each problem requires introduction of some non-dynamical
structures for the definition of such a set, which suggests the need to
develop corresponding measurement procedures. The results also pro-
vide important clues about possible choices of variables in QG. These
questions have been extensively studied for canonical quantization. One
can use initial value formulations as a method of defining ensembles of
classical particle trajectories, based on specification of half the maxi-
mal classical initial data set at an initial (or final) time. The analogy
between the probability of some outcome of a process for such an en-
semble and the corresponding Feynman probability amplitude (see, e.g.,
Stachel 2005b) suggests a similar approach to field theories. In Section
2, this possibility was discussed for the loop formulation of electromag-
netic theory. The possibility of a direct Feynman-type formulation of
QG has been suggested (see, e.g., (6; 18)); and it has been investi-
gated for connection formulations of the theory, in particular for the
Ashtekar loop variables. Reisenberger and Rovelli (20) maintain that:
”Spin foam models are the path-integral counterparts to loop-quantized
canonical theories”†. These canonical methods of carrying out the tran-
sition from classical to quantum theory are based on Cauchy or spacelike
hypersurface initial value problems (see Section 6.1). Another possible
starting point for canonical quantization is the null-hypersurface initial
value problem (see Section 6.1). Whether analogous canonical methods
could be based on two-plus-two initial value problems (see Section 6.2)
remains to be studied.

1.5.2 Non-Dynamical Structures and Differential

Concomitants

GR is a covariant or diffeomorphism-invariant theory, this invariance be-
ing defined as invariance under the group of active point diffeomorphisms
of the underlying manifold†. It is also generally covariant, meaning there
are no additional intrinsic, non-dynamical background S-T structures in
the theory. Such non-dynamical structures as fibrations and foliations of
the manifold, subsequently introduced in order to formulate initial value

† See (3) for the analogy between spin foams in GR and processes in quantum theory:
both are examples of cobordisms.

† It is trivially true that all physical results are independent of passive changes of
the coordinate system.
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problems for the dynamical variables should be introduced by means of
geometrical, coordinate-independent, definitions. In particular, evolu-
tion of the dynamical variables should not involve the introduction of a
preferred ”global time” coordinate‡. The dynamical fields include the
pseudo-metric and inertio-gravitational connection, and any structures
abstracted from them (see Section 3), so any differential operator intro-
duced to describe their evolution should be independent of metric and
connection§. In other words these operators should be differential con-
comitants of the dynamical variables and any non-dynamical structures
introduced¶. The ones most commonly used are the Lie derivatives LvΦ
of geometric objects Φ with respect to a vector field v, and the exterior
derivatives dω of p-forms ω‖ (see, e.g., (31), Chapter 2). Various com-
binations and generalizations of both, such as the Schouten-Nijenhuis
and Frlicher-Nijenhuis brackets, have been -or could be- used in the
formulation of various initial value problems.

1.6 Congruences of Subspaces and Initial-Value Problems in
GR

Initial value problems in GR involve:

(i) a) choice of initial submanifold(s) and of complementary congru-
ence(s) of subspaces†, and b) choice of differential concomitant(s)
to describe the evolution of the initial submanifold(s) along the
congruence of complementary subspaces;

(ii) a) choice of a set of dynamical variables, usually related to the
pseudo-metric and the affine connection, and their split-up by
projection onto the initial submanifold(s) and the complementary
subspace(s), and b) choice of differential concomitants to describe
their evolution;

‡ Subsequent introduction of a coordinate system adapted to some geometrical struc-
ture is often useful for calculations. But coordinate-dependent descriptions of an
initial value problem implicitly introduce these structures. But doing tacitly what
should be done explicitly often creates confusion.

§ If the conformal and projective structures are taken as primary dynamical vari-
ables, the operators should be independent of these structures.

¶ A differential concomitant of a set of geometric objects is a geometric object formed
from algebraic combinations of the objects in the set and their partial derivatives.

‖ Or, equivalently, the ”curl” of a totally antisymmetric covariant tensor and the
”divergence” of its dual contravariant tensor density.

† ”Complementary” in the sense that the total tangent space at any point can be
decomposed into the sum of the tangent spaces of the initial sub-manifold and of
the complementary subspace.
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(iii) a break-up of the field equations into constraint equations on the
initial submanifold(s) and evolution equations along the congru-
ence(s) of complementary subspaces.

The non-dynamical steps 1a), 1b) and 2a) will be discussed in this
subsection, the dynamical ones 2b) and 3) in the next.

As discussed above, in GR there are only two basic choices for step
1a): three-plus-one or two-plus-two splits†. But two further choices are
possible: a congruence of subspaces may be holonomic or non-holonomic;
and some submanifold(s) may or may not be null.

In the three-plus-one case, a sufficiently smooth vector field is always
holonomic (curve-forming); but in the two-plus-two case, the tangent
spaces at each point of the congruence of two-dimensional subspaces
may not fit together holonomically to form submanifolds.

In any theory involving a pseudo-metric (or just a conformal struc-
ture), the initial submanifold(s) or the complementary subspace(s) may
be null, i.e., tangent to the null cone. A null tangent space of dimension
p always includes a unique null direction, so the space splits naturally
into (p − 1)- and 1-dimensional subspaces. The choice of the (p − 1)-
dimensional subspace is not-unique but it is always spacelike.

A non-null tangent space of dimension p in a pseudo-metric space of
dimension n has a unique orthogonal tangent space of dimension (n−p);
so there are orthogonal projection operators onto the p- and (n − p)-
dimensional subspaces. The evolution of initial data on a spacelike p-
dimensional submanifold is most simply described along a set of (n−p)-
orthonormal vectors spanning the orthogonal congruence of subspaces
(or some invariant combination of them (see the next subsection). Oth-
erwise, lapse and shift functions must be introduced (see Sections 6.1
and 6.2), which relate the congruence of subspaces actually used to the
orthonormal congruence.

By definition, null vectors are self-orthogonal, so construction of an
orthonormal subspace fails for null surface-elements. And since there is
no orthonormal, the null-initial value problem is rather different (see the
next subsections). A similar analysis of two-plus-two null versus non-
null initial value problems has not made, but one would expect similar
results.

† Various sub-cases of each arise from possible further breakups, and I shall mention
a few of them below.
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1.6.1 Vector Fields and Three-Plus-One Initial Value

Problems

In the Cauchy problem, the use of a unit vector field n normal to the
initial hypersurface leads to the simplest formulation of the Cauchy prob-
lem. Lie derivatives w.r.t. this field LnΦ are the natural choice of differ-
ential concomitants acting on the chosen dynamical variables Φ in order
to define their ”velocities” in the Lagrangian and their ”momenta” in the
Hamiltonian formulation of the initial-value problem. Their evolution
in the unit normal direction can then be computed using higher order
Lie derivatives. If Lv with respect to another vector field v is used, the
relation between v and n must be specified in terms of the lapse function
ρ and the shift vector σ, with

v = ρn + σ

There is a major difficulty associated with the Cauchy problem for the
Einstein equations. The initial data on a space-like hypersurface, basi-
cally the first and second fundamental forms of the hypersurface, are
highly redundant and subject to four constraint equations (see Section
5), which would have to be solved in terms of a pair of freely specifiable
initial ”positions” and ”velocities”, of the ”true observables”; their evo-
lution would then be uniquely determined by the evolution equations.
Only in a few highly idealized cases, notably for cylindrical gravita-
tional waves (see Section 7), has this program been carried out using
only locally-defined quantities. In general, on a spacelike hypersurface,
quantities expressing the degrees of freedom and the equations governing
their evolution are highly non-local and can only be specified implicity;
for example,in terms of the conformal two structure (see (7)).

Things are rather better for null hypersurface and two-plus-two initial
value problems. By definition, no amount of initial data on a charac-
teristic hypersurface of a set of hyperbolic partial differential equations
suffices to determine a unique solution. In GR, the characteristics are
the null hypersurfaces, and data must be specified on a pair of inter-
secting null hypersurfaces in order to determine a unique solution in the
S-T region to the future of both (see, e.g., (7)). There is a sort of ”two-
for-one” tradeoff between the initial data needed on a single Cauchy
hypersurface and such a pair of null hypersurfaces. While ”position”
and ”velocity” variables must be given on a spacelike hypersurface, only
”position” variables need be given on the two null hypersurfaces. Var-
ious approaches to null hypersurface quantization have been tried. For
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example, one of the two null hypersurfaces may be chosen as future
or past null infinity =± (read ”scri-plus” or ”scri-minus”; for their use
in asymptotic quantization, see Section 7) and combined with another
finite null hypersurface (11). As noted above, a null hypersurface is nat-
urally fibrated by a null vector field, and the initial data can be freely
specified in a rather ”natural” way on the family of transvecting space-
like two surfaces: The projection of the pseudo-metric tensor onto a
null hypersurface is a degenerate three-metric of rank two, which pro-
vides a metric for these two-surfaces. Due to the halving of initial data
(discussed above), only two quantitities per point of each initial null hy-
persurface (the ”positions”) need be specified, leading to considerable
simplification of the constraint problem; the price paid is the need to
specify initial data on two intersecting null hypersurfaces. One way to
get these hypersurfaces is to start from a spacelike two-surface and drag
it along two independent congruences of null directions, resulting in two
families of spacelike two-surfaces, one on each of the two null hypersur-
faces. The initial data can be specified on both families of two-surfaces,
generating a double-null initial value problem. But the same data could
also be specified on the initial spacelike two-surface, together with all of
its Lie derivatives with respect to the two congruences of null vectors.
This remark provides a natural transition to two-plus-two initial value
problems.

1.6.2 Simple Bivector Fields and Two-Plus-Two Initial Value

Problems

In the two-plus-two case, one starts from a space-like two-manifold, on
which appropriate initial data may be specified freely (see (7)); the evo-
lution of the data takes places along a congruence of time-like two sur-
faces that is either orthonormal to the initial submanifold, or is related
to the orthonormal subspace element by generalizations of the lapse and
shift functions. The congruence is holonomic, and a pair of commuting
vector fields† spanning it may be chosen, and evolution off the initial
two-manifold studied using Lie derivatives w.r.t. the two vector fields
They may be chosen either as one time-like and one space-like vector,
which leads to results closely related to those of the usual Cauchy prob-

† They are chosen to commute, so that all results are independent of the order, in
which dragging along one or the other vector field takes place.
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lem‡; or more naturally as two null vectors, which, as noted above, leads
to results closely related to the double-null initial value problem. It is
also possible entirely to avoid such a breakup of the two-surfaces by
defining a differential concomitant that depends on the metric of the
two-surface elements.

1.6.3 Dynamical Decomposition of Metric and Connection

A p-dimensional submanifold in an n-dimensional manifold can be rigged
at each point with a complementary (n−p)-dimensional subspace normal
to it†. Every co- or contra-variant vector at a point of the surface can
be uniquely decomposed into tangential and normal components; and
hence any tensor can be similarly decomposed.

Metric: The concept of ”normal subspace” may now be identified
with ”orthogonal subspace”‡, the metric tensor g splits into just two
orthogonal components§:

g = ′g +′′ g ′g ·′′ g = 0

where ′g refers to the p-dimensional submanifold, and ′′g refers to the
(n−p)-dimensional orthogonal rigging subspace. The properties of these
subspaces, including whether they fit together holonomically to form
submanifolds, can all be expressed in terms of ′g , ′′g and their covariant
derivatives; and all non-null initial value problems can be formulated
in terms of such a decomposition of the metric. It is most convenient
to express ’g in covariant form, in order to extract the two dynamical
variables from it, and express ”g in contravariant form, in order to use
it in forming the differential concomitant describing the evolution of the
dynamical variables. Note that ”g is the pseudo-rotationally invariant
combination of any set of pseudo-orthonormal basis vectors spanning the
timelike subspace, and one may form a similarly invariant combination
of their Lie derivatives¶. In view of the importance of the analysis of

‡ If one drags the spacelike-two surface first with the spacelike vector field, one gets
an initial spacelike hypersurface.

† The word normal here is used without any metrical connotation. Transvecting
would be a better word, but I follow the terminology of Weyl.

‡ This identification excludes the case of null submanifolds.
§ Here again, I avoid the use of indices where their absence is not confusing.
¶ The simple multivector formed by taking the antisymmetric exterior product of

the basis vectors is also invariant under a pseudo-rotation of the basis, and the
exterior product of their Lie derivatives is also invariant and may also be used.
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the affine connection and curvature tensors in terms of one- and two-
forms, respectively, it is important in carrying out the analysis at the
metric level, to include representations based on tetrad vector fields and
the dual co-vector bases, spanning the p-dimensional initial surface and
the (n−p)-dimensional rigging space by corresponding numbers of basis
vectors.

Connection: An n-dimensional affine connection can be similarly de-
composed into four parts with respect to a p-dimensional submanifold
and complementary ”normal” (n−p)-dimensional subspace (see the ear-
lier note). Consider an infinitesimal parallel displacement using the n-
connection in a direction tangential to the submanifold. The four parts
are:

(i) The surface or (t, t) affine connection: The p-connection on the
submanifold that takes a tangential (t) vector into the tangential
(t) component of the parallel-displaced vector.

(ii) The longitudinal or (t, n) curvature †: The mapping taking a
tangential (t) vector into the infinitesimal normal (n) component
of its parallel-displaced vector.

(iii) The (n, n) torsion‡: The linear mapping taking a normal (n)
vector into the infinitesimal normal (n) component of its parallel-
displaced vector.

(iv) The transverse or (n, t) curvature: The linear mapping that tak-
ing a normal (n) vector into the infinitesimal tangential (t) com-
ponent of its parallel-displaced vector.

One gets a similar decomposition of the matrix of connection one-
forms by using covectors. These decompositions of metric and con-
nection can be used to investigate (3 + 1) and (2 + 2) decompositions
of the first order form of the field equations and of the compatibility
conditions between metric and affine connection (see Sections 3 and
6), and in first order formulations of initial value problems. If the n-
connection is metric, then ”normal” has the additional meaning of ”or-
thogonal” (see discussion above). The (t, t) surface affine connection is
(uniquely)compatible with the surface metric; the (t, n) (n, t) curvatures
are equivalent; and the (n, n) torsion reduces to an infinitesimal rota-
tion. On a hypersurface (p = n− 1), the torsion vanishes, and the (t, n)

† The use of ”curvature” here is a reminder of its meaning in the Frenet-Serret
formulas for a curve, and has nothing to do with the Riemannian or affine curvature
tensors.

‡ Note this use of ”torsion” has nothing to do with an asymmetry in the connection.
All connections considered in this paper are symmetric.
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and (n, t) curvatures are equivalent to the second fundamental form of
the hypersurface.

The Ashtekar connection combines the (t, t) and (n, t) curvatures into
a single three-connection. Extension of the Ashtekar variables, or some
generalization of them, to null hypersurfaces is currently under inves-
tigation†. In the two-plus-two decomposition, there is a pair of sec-
ond fundamental forms and the (n, n) rotation is non-vanishing. For a
formulation of the two-plus-two initial value problem when the metric
and connection are treated as independent before imposition of the field
equations. Whether some analogue of the Ashtekar variables can be
usefully introduced in this case remains to be studied.

1.7 Background Space-Time Symmetry Groups

The isometries of a four-dimensional pseudo-Riemannian manifold are
characterized by two integers: the dimension m ≤ 10 of its isometry
group (or group of automorphisms or motions) and the dimension o ≤
min(4,m) of this group’s highest-dimensional orbits (see, e.g., (31; 13)).
There are two extreme cases:

The maximal symmetry group: (m = 10, o = 4). Minkowski S-T is the
unique Ricci-flat S-T in this group. Its isometry group is the Poincar
or inhomogeneous Lorentz group, acting transitively on the entire S-T
manifold. Special-relativistic field theories involving field equations that
are invariant under this symmetry group and are the most important
example of background-dependent theories (see Introduction). At the
other extreme is

The class of generic metrics: (m = 0, o = 0). These S-T’s have no
nontrivial isometries. The class of all solutions to a set of covariant field
equations (see Section 5.2) will include a subclass -by far the largest-
of generic metrics‡. Covariant theories not involving any background
S-T structures, such as GR, are called generally covariant, background-
independent theories (see Section 5.2).

† For a review of some results of a generalization based on null hypersurfaces. For
null Ashtekar variables, see DInverno et al 2006.

‡ This global, active diffeomorphism group should not be confused with the groupoid
of passive, local coordinate transformations. Nor must the trivial freedom to carry
out active diffeomorphisms acting on all structures on the manifold, including
whatever fixed background metric field (such as the Minkowski metric) may be
present, be confused with the existence of a subgroup of such diffeomeorphisms
that constitutes the isometry group of this background metric.
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1.7.1 Non-Maximal Symmetry Groups and Partially-Fixed

Backgrounds

Covariant theories not involving any background S-T structures, such
as GR, are called generally covariant, background-independent theories
(see Section 5.2). We shall say a theory is a partially-fixed background
theory if the metric solutions to a background-independent theory are
further required to preserve some fixed, non-maximal isometry group.
These solutions belong to some class between the two extremes discussed
above. Although the overwhelming majority of solutions to the Einstein
equations must be generic, no generic solution is known. Only the impo-
sition of a partially-fixed background isometry group enables construc-
tion of explicit solutions (see, e.g., (31)). The background-dependent
isometry group determines a portion of the pseudo-metric tensor field
non-dynamically, and the remaining, unrestricted portion obeys a re-
duced set of dynamical field equations. For each isometry group one
must determine how much dynamical freedom remains. Considerable
work has been done on the quantization of two classes of such solutions:

(i) The ”mini-superspace” cosmological solutions, in which the isom-
etry group imposed is so large that only functions of one param-
eter (the ”time”) are subject to dynamical equations. Quanti-
zation here resembles that of a system of particles rather than
fields, and does not seem likely to shed too much light on the
generic case.

(ii) The ”midi-superspace” solutions, notably the cylindrical wave
metrics (see (5)), for which sufficient freedom remains to include
both degrees of free of the gravitational field. In an appropri-
ately adapted coordinate system, they can be isolated and rep-
resented by a pair of “scalar”fields obeying non-linear, coupled
scalar wave equations in two-dimensional flat S-T. In addition
to static and stationary fields, the solutions include gravitational
radiation fields having both states of polarization. Their quanti-
zation can be carried out as if they were two-dimensional fields.
But, of course, the remaining portions of the metric must be
constructed and diffeomorphism invariance of all results carefully
examined, as well as possible implications for the generic case.
Niedermaier in (18) summarizes the work done on Feynman path
quantization of such models.
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Marugan and Montejo (1998) discuss quantization of gravitational plane
waves, and Stephani et al. in (31) discuss solutions to the Einstein
equations having groups of motions with null and non-null orbits, so
it should be possible to study the quantization of such metrics in a
systematic way.

1.7.2 Small Perturbations and the Return of Diffeomorphism

Invariance

While the fiber manifold consisting of all four-metrics over a base man-
ifold is itself a manifold, the space of all four-geometries is not†. It is
a stratified manifold, partitioned into slices; each of which consists of
all geometries having the same isometry group. But, unless it is re-
stricted to lie within some isometry group, the smallest perturbation of
a geometry with nontrivial isometry group takes the resulting geome-
try into the generic slice of the stratified manifold. This observation is
often neglected; in particular, when perturbation-theoretic quantization
techniques developed for special relativistic field theories are applied to
perturbations of the Minkowski solution in GR. Infinitesimal diffeomor-
phisms of such perturbations cannot be treated as pure gauge transfor-
mations on the fixed background Minkowki S-T, but modify the entire
causal and inertio-gravitational structure (see, e.g., (8), Chapter 21).
This is the fundamental reason for the problems that arise in formally
applying special relativistic quantization techniques to such perturba-
tions.

1.7.3 Asymptotic symmetries

An important class of solutions to the field equations, while lacking
global symmetries, has a group of asymptotic symmetries as infinity is
approached along null directions, which permits their asymptotic quan-
tization (see (15), Section VI, and (1)). Imposition of certain conditions
on the behavior of the Weyl tensor in the future or past null limit allows
conformal compactification of this class of S-Ts by adjoining boundary
null hypersurfaces, =±, to the S-T manifold. Both =± have a symmetry

† The space of all metrics divides into equivalence classes under the diffeomorphism
group, suitably restricted for each subclass of metrics having a common isom-
etry group. Each equivalence class corresponding to a single four-geometry, or
physical S-T. The quotient space (see (4)) of the space of all metrics by the (suit-
ably restricted) diffeomorphism group is a four-dimensional superspace (for three-
dimensional superspace see Fischer 1970), which is a stratified manifold.
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group that is independent of particular dynamical solutions to the field
equations in this class. Thus, on =± there is a separation of kinematics
and dynamics, and a more or less conventional quantization based on
this asymptotic symmetry group can be carried out. ”More or less” be-
cause the asymptotic symmetry group, the Bondi-Metzner-Sachs (BMS)
group, is not a finite-parameter Lie group like the Poincar group usually
used to introduce gravitons in the linear approximation, but includes
four so-called ”supertranslation,” functions that depend on two ”angu-
lar” variables. Nevertheless, asymptotic gravitons with two states of
polarization may be defined as representations of the BMS group, no
matter how strong the interior gravitational field (1).

1.8 Conclusion

This paper has discussed only a few possible approaches to quantization
of the field equations of GR. In spite of its emphasis on background-
independent techniques, it is rather conservative, ignoring such promis-
ing avenues of research as causal set theory, causal dynamic triangula-
tion, twistor theory; and attempts to derive S-T structures as emerging
from radically different underlying entities, such as the symmetries of
coherent states in quantum information theory; such theories are re-
viewed elsewhere in this volume. It is by no means certain that any
of the conservative approaches will lead to a fruitful fusion of quantum
theory and GR -indeed, it is even probable that they will not. But until
some approach has been developed leading to a consensus in the QG
community, every approach deserves to be explored to its limits, if only
to draw lessons from the limited successes and ultimate failure of each
such attempt, for the formulation of better alternative approaches.
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