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Abstract The hole argument was developed by Einstein in 1913 while he was
searching for a relativistic theory of gravitation. Einstein used the language
of coordinate systems and coordinate invariance, rather than the language of
manifolds and diffeomorphism invariance. He formulated the hole argument
against covariant field equations and later found a way to avoid it using coordi-
nate language. In this paper we shall use the invariant language of categories,
manifolds and natural objects to give a coordinate-free description of the hole
argument and a way of avoiding it. Finally we shall point out some important
implications of further extensions of the hole argument to sets and relations for
the problem of quantum gravity.

Keywords General relativity · Differential geometry

Contents

1 The hole argument in general relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1242
1.1 The original hole argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1242
1.2 The hole argument for inhomogeneous Einstein’s field equations . . . . . . . . . . . 1244

2 The hole argument for covariant theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245
2.1 Theory, models, covariance and general covariance . . . . . . . . . . . . . . . . . . . 1245
2.2 Background independent versus background dependent theories . . . . . . . . . . . 1246
2.3 The hole argument for geometric objects . . . . . . . . . . . . . . . . . . . . . . . . . 1247
2.4 Blocking the formulation of the hole argument . . . . . . . . . . . . . . . . . . . . . 1250

3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251

M. Iftime
School of Arts and Sciences, MCPHS, Boston, MA, USA

J. Stachel (B)
Department of Physics and Center for Philosophy and History of Science, Boston, MA, USA
e-mail: John.stachel@gmail.com



1242 M. Iftime, J. Stachel

1 The hole argument in general relativity

1.1 The original hole argument

In Einstein’s most detailed account of the hole argument [3], G(x) represents a
metric tensor field that satisfies the field equations in the x-coordinate system
and G′(x′) represents the same gravitational field in the x′-coordinate system.
Einstein realized that, if the field equations for the metric tensor are covariant,
then G′(x) must also represent a solution to these equations in the x-coordi-
nate system. He asked the following question: Do the metrics G(x) and G′(x)
represent the same or distinct gravitational fields? If they represent distinct
gravitational fields, as Einstein originally assumed, then the hole argument
showed that no specification of the metric field outside of and on the boundary
of a hole (i.e. an open set of space-time) could uniquely determine the field
inside the hole.

Einstein posed the hole argument as a boundary-value problem. Hilbert rea-
lised that it was more appropriate to formulate it as an initial value problem.1 If
G(x) and G′(x) represent distinct solutions, then the specification of the G-field
and any finite number of its time derivatives on an initial hypersurface t = 0
could not determine the field uniquely off the initial hypersurface. These two
formulations are refered as the boundary-value and initial-value formulations
of the original hole argument.2

We shall formulate the hole argument in manifold language. Our approach
will be global, in the sense that the whole base (space-time) manifold M and
(global) diffeomorphisms of M come into play, rather than working in a coor-
dinate patch and local coordinate transformations.

A general relativistic space-time is a four-dimensional manifold M, together
with a Lorentz metric field g on M.3 This metric field represents not only
the chrono-geometrical structure of space-time, but also the potentials for the
inertio-gravitational field.4

Einstein’s field equations are covariant. This means that, if g is a solution of
Einstein’s equations, then all pull-backs metrics φ∗(g) obtained from g by the
mapping induced by diffeomorphisms φ on M also satisfy Einstein’s equations.

The question at the heart of the hole argument is the following.
Do all metrics φ∗(g) describe the same gravitational field? Einstein’s ultimate

answer was “yes”. This assertion is what we call general covariance of Einstein’s
equations.5

1 For modern discussions of the implications of the diffeomorphism invariance for the Cauchy
problem in general relativity, see [5,8].
2 For more details and a historical review of the original hole argument see [23,24].
3 Time-orientability is an extra condition needed to formulate the global Cauchy problem and
global causal structure on space-time [5,12].
4 See e.g., [25,27].
5 Some authors define general covariance as what we call covariance, not making a clear distinction
between the two. See [24] for this distinction.
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Let us suppose a space-time manifold (M, g) contains a hole, i.e., an open
space-time region H on which the metric field g is the only one present, so that
inside H, the metric g obeys the (homogeneous) Einstein empty space-time
equations:

Ein(g) = Ric(g)− 1
2

gR(g) = 0 (1)

Given a solution g everywhere outside of and on the boundary of the hole
H, including all the normal derivatives of the metric up to any finite order
on that boundary, the metric field g inside H is still not determined uniquely
no matter how small the hole. The proof: Given any solution inside the hole
H, an unlimited number of other solutions can be generated from it by those
diffeomorphisms that reduce to the identity on M − H (and any number of
derivatives of which also reduce to the identity on the boundary), but differ
from the identity inside H. This brings us to the following contradiction (the
hole argument): No well-posed initial-value and/or boundary-value problem
can be posed for Einstein’s covariant equations6 So, such field equations would
seem not to be of much use, which is why Einstein (and then Hilbert) initially
rejected them [26].

Einstein found a way to evade the hole argument using coordinate language.
Translated into the language of manifolds, one must assume that, at least inside
the hole H, the points of the manifold are not individuated independently of
the metric field. This means that space-time points have no inherent chrono-
geometrical or inertio-gravitational properties or relations that do not depend
on the presence of the metric tensor field. This implies that when we drag-along
the metric, we actually drag-along the physically individuating properties and
relations of the points. Thus, the pull-back metric does not differ physically from
the original one. It follows that the entire equivalence class of diffeomorphical-
ly-related solutions to Einstein’s empty space-time field equations corresponds
to one inertio-gravitational field.

Put in other words, while the points of the manifold have an inherent quiddity
as elements of space-time, they lack haecceity7 as individualized points of that
space-time (“events”) unless and until a particular metric field is specified.8

Mathematically, we have M(M) the collection of all Lorentz metrics on a
space-time manifold M and Diff (M) the group of diffeomorphisms of M.

Diff (M) acts as a transformation group on M(M) by pulling-back metrics
on M(M): for all φ ∈ Diff (M) and g ∈ M(M) the action map is defined by
(φ, g) �−→ φ∗(g).

6 The proof works also for any set of covariant equations.
7 For a discussion of quiddity and haecceity, see [28], p. 204 and [29].
8 In the generic case (i.e. no symmetries present), the four non-vanishing invariants of the
Riemann tensor in empty space-times can be used to individuate the points of space-time. See
[24], pp. 155–156.
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For a fixed metric g, Og = {φ∗(g)| φ ∈ Diff (M)} is the orbit through g. Two
metrics g1 and g2 are on the same orbit, if and only if φ∗(g1) = g2 for some
φ ∈ Diff (M), i.e. g1 and g2 are isometric.

If g1 satisfies Einstein’s equations then g2 does. Two space-time solutions of
Einstein’s equations are considered to be physically equivalent if one is isometric
to the other.

The action of Diff (M) on M(M) partition M(M) into (disjoint) isometry
classes of Lorentz metrics.

The space Q(M) of all isometry classes of space-time metrics on M is the
quotient M(M)/Diff (M). A physical space-time is therefore a point in Q(M).
The space Q(M) does not have a manifold structure, but in some cases it can
be shown that Q(M) forms a stratified manifold, with each strata consisting
of space-times with conjugate isometry groups [9,11]. One of the reasons why
Q(M) does not have a manifold structure is because the isometry (symme-
try) group Hg = {φ ∈ Diff (M)|φ∗(g) = g} is not trivial, if the metric g has
symmetries.

The projection map � : M(M) −→ Q(M) identifies all isometric Lorentz
metrics to a single diffeomorphically-equivalence class. The image of�(g) = [g]
represents the (unique) physical gravitational field defined by g.

1.2 The hole argument for inhomogeneous Einstein’s field equations

Let (M, g) be a space-time manifold. There may also be a collection ψ of other
tensor fields on M, representing non-gravitational fields and/or matter and act-
ing as sources of the metrical field in the inhomogeneous Einstein’s equations:

Ein(g) = Ric(g)− 1
2

gR(g) = T(g,ψ) (2)

In most cases the metric field appears on both left and right sides of Einstein
equations, so the space-time structure and the source fields in space-time con-
stitute a dynamical system, the equations of which can only be solved together.9

It is clear that a generalized version of the hole argument can also be applied
to regions H of a space-time M, in which the inhomogeneous Einstein equations
hold, together with the set of dynamical equations obeyed by the non-gravita-
tional matter and fields (e.g. coupled Einstein–Maxwell or Einstein–Yang Mills
equations), provided this set of coupled gravitational and non-gravitational field
equations has the covariance property. (The generalization is straightforward
and we leave the details to the reader.)

In order to avoid this version of the hole argument, we must assume that
space-time points of this region H are not individuated unless and until both
the gravitational and non-gravitational fields are specified in H.10

9 For some exceptions, see [21].
10 This does not imply that all of these fields are necessary for such individuation. The values of
four independent invariants of the metric fields will suffice to individuate the space-time points in
the generic case.
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Thus, an entire class of diffeomorphically-related solutions to the coupled
equations will correspond to one set of physical gravitational and non-gravita-
tional fields.

2 The hole argument for covariant theories

We shall formulate the hole argument for theories that are covariant and give
a way of avoiding it.

2.1 Theory, models, covariance and general covariance

At the level of physics,11 we have the following correlations between physical
concepts and mathematical structures:

A type of theory is correlated with the concept of a type of natural bundle or
gauge-natural bundle.

A natural bundle is defined as a covariant functor F of the category whose
objects are n-dimensional manifolds and whose morphisms are local diffeomor-
phisms into the category whose objects are fibred manifolds and whose mor-
phisms are fibre-preserving morphisms. We can think of F as a rule such that it
takes an n-dimensional manifold M into a fibered manifold (FM = E

π−→ M)

and a local diffeomorphism φ : M → N between two n-dim manifolds M and
N to a fiber-preserving morphism Fφ over φ.

A gauge-natural bundle can be defined similarly as a covariant functorF from
the category of principal bundles and principal fibre-preserving morphisms into
the category of fibred manifolds and fibre-preserving morphisms.

Notationally, we will make no distinction between the functor F, the fibered
manifold (E

π−→ M) or the total space E, but one should keep in mind that F is
a functor, i.e. the object (E

π−→ M) together with a class of automorphisms.
A mathematical model of a type of theory is correlated with a cross-section

of the natural bundle (E
π−→ M), or a class of gauge-equivalent cross sections

of the gauge-natural bundle.
A particular theory of given type is correlated with a rule for selecting a class

of cross-sections of the (gauge-)natural bundle, that is a class of mathematical
models of that type of theory.

For example, Maxwell’s electromagnetic theory is a rule for selecting the class
of cross-sections of the gauge-natural bundle of one-form fields that obey the
linear, gauge-invariant field equations derived from the Maxwell lagrangian.
On the other hand, Born–Infeld electrodynamic theory is a rule for selecting a
(different) class of cross-sections of the gauge natural bundle of one-form fields
that obey the non-linear, but gauge-invariant field equations derived from the
Born-Infeld lagrangian [1].

11 Or indeed any other natural science that has reached the level of abstraction, at which mathe-
matical structures may be usefully correlated with the concepts of this science.
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As these examples illustrate, for a theory based upon field equations derived
from the variation of a lagrangian, the selected cross-sections must satisfy some
set of differential equations for the type of geometric object.

So, in order to formulate the rule of selecting cross-sections one needs to use
jet extensions of the configuration space [19]. But for our purposes we do not
need go to any further details about the rule for selecting cross-sections(see [6],
Chapter I, pp. 1–15 and [13], Chapter IV, pp. 124–125).

General relativity can be formulated in terms of natural bundles.12 A mathe-
matical model consists of a cross-section σ of the associated bundle �PR of the
linear frames LM with standard fiber GL(4)/O(1, 3) [19].

In most cases the metric must satisfy some additional criteria, e.g. timelike
and/or null geodesic completeness. In general, a cross-section σ can be viewed as
a maximal extension of a local cross-section subject to some additional criteria.

The properties of local cross-sections of a fiber bundle may be expressed in
the language of sheaf theory. In terms of sheaves, giving a mathematical model
means giving a sheaf of local cross-sections of the fibered manifold (E

π→ M).
Alternatively, we can replace the sheaf of cross-sections by its corresponding

étale bundle (Ê
π̂→ M) over M [16].

The following question arises: Do all mathematically distinct models of a
physical theory necessarily correspond to physically distinct models of the the-
ory? As we have already seen, the hole argument concerns this question. The
answer to this question is the basis for the distinction between covariant and
generally covariant theories.

2.2 Background independent versus background dependent theories

A background independent theory is a physical theory defined on a base man-
ifold M endowed with no extra structure, like geometry or fixed coordinates.
If a theory does include any such geometric structures, it is called background
dependent.

Examples of background dependent theories are all special-relativistic field
theories: the Minkowski metric and the (unique) symmetric inertial connection
compatible with it are background structures of these theories. More generally, a
field theory may be specified in a space-time with any given background Lorentz
metric and the corresponding (fixed) inertio-gravitational connection. One may
say that, in any such background-dependent theory, there is a kinematics that
is prior to and independent of the dynamics of the theory.

Examples of background independent theories are all general-relativistic
gravitational theories, obeying either the Einstein empty space-time equations
or a set of generally covariant coupled equations for a theory of matter fields

12 There two major ways to formulate general relativity; one uses only the metric and the second
order jet extension ([5,18]) and the other, the metric and the connection and the first order jet
extension [8].
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coupled to Einstein’s gravity.13 Both the Lorentz metric and the compatible
inertio-gravitational connection are among the dynamical variables, for which
a solution to the Einstein’s equations must be specified. One may say that, in
a background independent theory, there is no kinematics prior to and inde-
pendent of the dynamics of the theory. It is to such background independent
theories that the hole argument applies.

2.3 The hole argument for geometric objects

Let us consider a particular theory T defined on a manifold M i.e. a rule for
selecting a set of models of a type of theory (FM = E

π→ M). In other words
we pick up a sheaf �(π) of local cross-sections of π .

If φ : M → M is an arbitrary diffeomorphism of the base manifold M, from
the definition of a natural bundle follows that there is a uniquely defined fibered
manifold automorphism Fφ = � : E → E that projects over φ i.e., � is diffe-
omorphism of E and π ◦ � = φ ◦ π . Such a fibered manifold automorphism
(�,φ) can be used to transport local cross-sections of π to local cross-sections
of π :

If σ is a local cross-section of π defined on a small open set Up around p ∈ M,
then φ∗σ defined by φ∗σ = � ◦ σ ◦φ−1 is a new local cross-section of π defined
on the open set Uq = φ(Up) around q = φ(p) ∈ M, and called the carried-along
cross-section of σ by the fibered manifold automorphism (�,φ).

In functorial language, a diffeomorphism φ will induce functors in both direc-
tions on the associated categories of sheaves of cross-sections on M. To each
sheaf of cross-sections �(π), φ∗�(π) is the direct image of the sheaf of cross-
sections �(π) under the base diffeomorphism φ : M → M:

φ∗�(π)(Uq) = �(π)(Up), Up = φ−1
M (Uq). (3)

If σ ∈ �(π)(Up), then the carried-along cross-section φ∗σ ∈ φ∗�(π)(Uq).
In the case when E := TM is the tangent bundle over M, if φ : M → M is an

arbitrary diffeomorphism on M, then (φ∗,φM) is a bundle isomorphism of TM.
So, if v is a vector field on M, then φ∗v is the carried along tangent vector field.
In the case of the metric field, φ∗g is the pulled-back metric of g by the adjoint
map of φ∗, where (φ∗,φ) is a bundle isomorphism of the cotangent bundle T∗M.

A theory T is covariant if all the carried-along cross-sections φ∗σ of any
model σ in the theory are also models of the theory. Two models related by such
a local diffeomorphism are called diffeomorphically-equivalent. This relation is
clearly an equivalence relation and it divides all models of T into diffeomor-
phically-equivalent classes of cross-sections on M.

13 In the case of a background independent classical theory, it seems natural to require back-
ground independence in the corresponding quantum theory. See, for example [14] for a discussion
of background independent quantization of a scalar field.
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A covariant theory T is called generally covariant if all the carried-along
cross-sections φ∗σ of any model σ in the theory represent the same physical
model.

It is the presence of non-dynamical individuating fields that prevents a covar-
iant theory from being generally covariant, enabling one to distinguish between
two models in the same equivalence class.14

The original hole argument generalized to the case of geometric objects
translates into the possibility that the two models have physically identical
properties.

Let T be a covariant theory on a base manifold M. Let H be a “hole”, which is
an open set in M. Giving a model σ everywhere outside of and on the boundary
of the hole H, we cannot uniquely determine σ inside H no matter how small
the hole in M. From the covariance property, the hole argument hinges on the
answer to the following question:

Is it possible to pick out a unique model within an equivalence class by speci-
fying σ everywhere on M except on some open submanifold H ⊆ M? The proof
(that the answer to this question is negative) is analogous to that in the original
argument. Given a model σ on M, an unlimited number of other solutions φ∗σ
that are identical with σ on M − H and on the boundary of H, but differ inside
H, can be generated from σ by those diffeomorphisms of M that reduce to the
identity on M − H on the boundary of H, but differ from the identity inside H.
Then σ and φ∗σ will be two different models that agree on M − H but differ
on H.15 In this case, no conditions imposed on σ on M − H can serve to fix
a unique model on H, no matter how small the hole is. The only way to spec-
ify such a model uniquely, is to specify σ everywhere on M. This is the hole
argument for covariant theories, or rather against them.

If we postulate that each diffeomorphically-equivalent class of cross-sections
corresponds to one physical solution, then this requirement depends on the
assumption that the base points of M are individuated exclusively by the model
(i.e., the class of cross-sections). In other words, the hole argument’s validity
depends crucially on the assumption that the distinction between the points
of the manifold (i.e., their haecceity), is independent of the specification of a
particular model of the theory T .

If the individuation of the points of M depends entirely on the model, then
we have no grounds for asserting that σ and φ∗σ represent different physi-
cal models. Given the lack of any model-independent distinction between the
points of the manifold, no distinction can be made between the models σ and
φ∗σ , so they represent the same physical model. Conversely, if σ and φ∗σ rep-
resents the same physical model for all base diffeomorphisms φ, then the hole
argument clearly fails. It follows that (as far as concerns the covariant theory
T under consideration) the points of M must be entirely unindividuated before
a model σ is introduced. All relevant distinctions between these points must

14 E.g. the color space manifold [23].
15 Of course, they belong to the same equivalence class, but they are not automatically physically
equivalent.
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be consequences of the choice of the model σ , i.e. such a theory is generally
covariant.

Any background independent theory is generally covariant. For background
independent theories (e.g. general relativity), the ‘gauge freedom’ is the full
diffeomorphism group Diff (M) of the base manifold M: under any arbitrary
base difeomorphism φ, the two mathematical models(M, σ) and (φ(M) =
M,φ∗σ) are physically indistinguishable. In coordinate language, the coordi-
nates (or physical components) of φ∗σ in the carried along frame are the same
as the coordinates of σ in the original frame. Informally this means that if
everything is carried along, nothing is changed.16

The hole argument can only apply to background-independent theories. But
in between (full) background independence and (full) background dependence
(i.e., maximal symmetry group) there are fields with non-maximal symmetry
groups and non-trivial orbits. These case have to be treated by examining the
action of the full diffeomorphism group on the quotient space [15].

If the theory is background dependent then the hole argument fails automat-
ically. A background space-time structure is sufficiently “rigid” to prevent the
hole argument’s formulation. Specification of a solution outside of and on the
boundary of a hole H completely determines, indeed over-determines a solu-
tion inside H. The class of physical fields on M must have the same symmetry
as the background structure. The class of all physical solutions to some set of
field equations thus falls into equivalence classes under the symmetry group of
the background metric. But, in the background-dependent case, the members
of each equivalence class can be physically distinguished from each other by
those further specifications that enable a distinction to be made between the
points on the orbits of the symmetry group.

In the case of space-times with a fixed background structure, the background
metric will have a symmetry group that may be a finite (up to ten) parameter
Lie group or the trivial group. We refer to the latter class of metrics as generic
space-times. The points of generic space-times are completely individuated (at
least locally) by the values of four invariants of the Riemann tensor.17 If there
is a (non-zero) finite-parameter Lie group, some further specification of the
points on the orbit(s) of the group is needed in order to individuate them.

In the important case of special-relativistic field theories, the specification of
a fibration consisting of parallel timelike geodesic (“straight”) world-lines and
the corresponding orthogonal foliation of spacelike (“flat”) hyperplanes singles
out a particular inertial frame of reference in Minkowski space-time. Choice of a
spatial origin world line of the fibration and a temporal origin hyperplane of the
foliation, together with units of space and time, will then completely individuate

16 The two models (M, σ) and (M,φ∗σ) are elementarily equivalent models in the sense of model
theory i.e., they share the same model-theoretic properties [7]. The truth values or the probabilities
of the corresponding assertions in each model will always be the same. That is for every assertion
about the model (M, σ), there is a one-to-one corresponding assertion about models (M,φ∗σ).
17 Even if the Ricci tensor vanishes, there will be four such non-vanishing invariants in the generic
case.
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each point of Minkowksi space. The individuation of the points of Minkowski
space by means of choice of an inertial frame of reference, together with a
specification of spatial and temporal origins and units, enables us to distinguish
physically between members of each equivalence class of solutions under the
Poincaré group. The Coulomb field of a charge q centered at the origin of one
inertial frame belongs to the same equivalence class as the Coulomb field of a
charge q centered at the origin of another inertial frame moving with velocity
v with respect to the first; but with respect to the first frame the two are quite
different physical fields.

2.4 Blocking the formulation of the hole argument

For theories that are generally covariant, in order to avoid the formulation of
this generalized version of the hole argument we define a quotient space of clas-
ses of models, so that each class of models corresponds to a (unique) physical
model.

Einstein’s idea implies that if you drag-along the metric field, you drag all the
physical properties of space-time points along with them. Therefore, a whole
class of diffeomorphically related metrics corresponds to a unique physical
gravitational field.

Based on the construction of the quotient space of classes of models of a
theory, we obtain a 1:1 correspondence between a point in the quotient space
(i.e., a class of diffeomorphically related mathematical models) and a (unique)
physical model of the theory.

Let us consider a background independent theory T defined on a manifold
M i.e. a rule for selecting a set of cross-sections of a natural bundle (E

π→ M).
Denote �(E; M) the collection of all cross-sections of π . The group of base

diffeomorphisms Diff (M) acts as a transformation group on �(E; M) by carry-
ing-along cross-sections of π : for all φ ∈ Diff (M) and σ ∈ �(E; M) the action
map is defined by (φ, σ) �−→ φ∗(σ ).

For a fixed model σ , Oσ = {φ∗(σ )| φ ∈ Diff (M)} is the orbit through σ .
Two cross-sections σ1 and σ2 are on the same orbit, if and only if φ∗(σ1) = σ2
for some φ ∈ Diff (M). The action of Diff (M) on �(E; M) partition �(E; M)

into (disjoint) diffeomorphically equivalent classes of cross-sections.
The space Q(M) of all diffeomorphically-equivalent classes of cross-sections

on M is �(E; M)/Diff (M). A physical model corresponds to a point in this
quotient space.

The space Q(M) usually is singular and not a manifold and the infinite-dimen-
sional analysis is quite complicated. In fact, only if the action of the Lie group
is free i.e. all isotropy subgroups Hσ = {φ ∈ Diff (M)|φ∗(σ ) = σ } are trivial, the
resulting orbit space bears a manifold structure and (� : �(E; M) −→ Q(M))

forms a principal fiber bundle. More often, the orbit space Q(M) admits a strat-
ification into manifolds. The existence of such a stratification is usually shown
by proving the existence of slices at every point for the group action.18

18 For details about the slice theorem, see [17].
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The projection map � : �(E; M) −→ Q(M) identifies all diffeomorphically-
equivalent models to a single diffeomorphically-equivalence class. The image
of �(σ) = [σ ] represents the physical model defined by σ .

3 Conclusion

In our approach we start with a fibered manifold representing the metric and
perhaps other physical fields, rather than the base manifold. This way it becomes
difficult to forget that, in general relativity, space-time is no more than “a struc-
tural quality of the field.” This agrees with one of Einstein’s intuitions about
general relativity:

On the basis of the general theory of relativity, space as opposed to what
fills space ... has no separate existence. If we imagine the gravitational field,
i.e. the functions gik to be removed, there does not remain a space of the
type [of special relativity], but absolutely nothing, and also not topological
space. ... There is no such thing as an empty space, i.e. a space without field.
Space-time does not claim existence on its own, but only as a structural
quality of the field. (Albert Einstein ) [22], pp. 1860, [4], pp. 155.

In a backgound independent theory (e.g. general-relativistic theories), if we
start from some natural bundle, the base points may be characterized as such
independently of the particular relations in which they stand; but they are
entirely individuated in terms of the relational structure given by cross-sections
of some fibered manifold.

In our invariant formulation, the hole argument can be easily further gen-
eralized to the case of sets and relation with some important implications for
problems in quantum gravity [10]. Elementary particles are similarly individu-
ated by their position in a relational structure and this suggests the following
viewpoint: Since the basic building blocks of any model of the universe, the
elementary particles and the points of space-time, are individuated entirely in
terms of the relational structures in which they are embedded, only “higher-
level” entities constructed from these building blocks can be individuated inde-
pendently. Therefore, the following principle of generalized covariance should
be a requirement on any fundamental theory: The theory should be invari-
ant under all permutations of the basic elements, out of which the theory is
constructed.
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